TWI769662B - 帶電粒子線裝置及檢查裝置 - Google Patents

帶電粒子線裝置及檢查裝置 Download PDF

Info

Publication number
TWI769662B
TWI769662B TW110101217A TW110101217A TWI769662B TW I769662 B TWI769662 B TW I769662B TW 110101217 A TW110101217 A TW 110101217A TW 110101217 A TW110101217 A TW 110101217A TW I769662 B TWI769662 B TW I769662B
Authority
TW
Taiwan
Prior art keywords
charged particle
particle beam
image data
signal
image
Prior art date
Application number
TW110101217A
Other languages
English (en)
Other versions
TW202129685A (zh
Inventor
新谷敦子
鈴木誠
川田洋揮
Original Assignee
日商日立全球先端科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日立全球先端科技股份有限公司 filed Critical 日商日立全球先端科技股份有限公司
Publication of TW202129685A publication Critical patent/TW202129685A/zh
Application granted granted Critical
Publication of TWI769662B publication Critical patent/TWI769662B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/282Determination of microscope properties
    • H01J2237/2826Calibration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30433System calibration
    • H01J2237/3045Deflection calibration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

消除檢測器的訊號處理延遲引起的時間性訊號的擴散的影響,亦即掃描方向的圖像的暈散。為此,帶電粒子線裝置,具有:帶電粒子光學系統;及檢測器,檢測藉由帶電粒子線與樣本的相互作用而放出的二次帶電粒子而輸出檢測訊號;及演算部,修正基於將帶電粒子線在樣本上二維地掃描而從檢測器輸出的檢測訊號之第1圖像資料,而生成第2圖像資料;演算部,利用相當於從第1圖像資料抽出的n個第1方向的訊號強度分布之第1訊號輪廓與相當於檢測器中的訊號處理延遲之窗函數的功率譜密度P(f)(f:空間頻率),而生成第2圖像資料。

Description

帶電粒子線裝置及檢查裝置
本發明有關帶電粒子線裝置及檢查裝置。
近年的電子元件或光學元件的構造係微細化,更加複雜化,使用的材料亦多樣化。因此,製造過程中的檢查中,必須計測更微細而複雜的形狀的圖樣。此外,必須觀察更小的異物或缺陷的情況。為了這些目的,會使用運用了電子或雷射光之掃描型顯微鏡。特別是掃描型電子顯微鏡(SEM:Scanning Electron Microscope)其解析力高。SEM一面掃描電子束一面至觀察對象,偵測從照射部分產生的二次電子而取得對象物的資訊作為圖像。
SEM的電子束藉由電子光學系統而被縮窄,當碰撞觀察對象時會成為奈米尺度的點,藉此發揮高解析力。但由於電子/光學元件的高度積體化或複雜化,而要求有更高的解析力。一般而言,入射射束是光也好電子線也好,若要圖像的高解析度化可料想圖像處理與硬體的改良這2種方式。前者是做用來將取得的圖像予以高解析度化之修正。若可獲得空間性訊號的擴散亦即點展開函數(PSF:Point spread function),則能夠藉由圖像處理來推定當沒有空間性訊號的擴散的影響的情形下之圖像。後者是藉由觀察裝置的光學系統的改良而將入射射束的些微的擴散(強度分布)更加減小。
同時就最近的傾向而言,逐漸有必要觀察由容易因電子線照射而受損壞的有機材料、容易帶電的絕緣體等各式各樣的材料所成之圖樣。因此,專利文獻1中揭示因應觀察對象來使電子線的掃描速度變化。若減緩掃描速度則瞬間地照射至某一場所的電子的密度會變高。反之若加快掃描則能夠將電子的密度抑制得較低。檢測器,主要具有將檢測到的二次電子變換成電子訊號之檢測電路(狹義)與用來傳達至後段的電路之放大電路。當加快掃描速度的情形下,檢測器中必須設計響應快的檢測電路(廣義,以下除有特別載明之情形,否則指包含檢測電路(狹義)與放大電路之廣義的檢測電路)。
這是因為,當檢測電路的響應比掃描速度慢的情形下,在某一位置產生的二次電子強度的資訊,會混入來自其以後被電子束照射的場所的二次電子強度的資訊。其結果,藉由訊號強度而形成的圖像的濃淡會朝掃描方向拖出尾巴。換言之,訊號通過檢測電路時產生的時間資訊的擴散,於最終的圖像中會顯現為入射射束的掃描方向的空間性的暈散。在高解析力為必要,且其要求年年提高之微細圖樣觀察系統中,暈散增大並不樂見。以下,將這樣的檢測器中的訊號處理延遲引起而產生的掃描方向的暈散稱為時間性訊號的擴散,將光學系統引起的暈散稱為空間性訊號的擴散。另,在成為了圖像的狀態之時間點,這2種類的訊號的擴散皆會成為圖像的暈散而無法區别。
專利文獻2中,為了低成本而簡便地減低時間性訊號的擴散,係以2種類的掃描速度(訂為大、小)拍攝圖樣的圖像,由兩者的差異來獲得掃描方向的暈散的修正用資料。利用此修正用資料,將以掃描速度大取得的圖像資料變換成相當於以掃描速度小拍攝的情形下之資料。先前技術文獻 專利文獻
專利文獻1:國際公開第2011/016208號 專利文獻2:日本特開2012-142211號公報
發明所欲解決之問題
如前述般,若要帶電粒子線裝置的解析力提升(抑制暈散),由於降低解析力的原因有複數個,必須區別它們來應對。但,對策本身也可能肇生新的待解問題。
例如,如果將掃描速度抑制到能夠忽略時間性訊號的擴散的程度而僅觀測空間性訊號的擴散,而求出PSF是否就可獲得高解析力的圖像,倒也未必如此。首先,由於減緩掃描速度,在觀察對象會發生帶電。即使觀察對象是不易帶電的材料,也可能在真空中有些微殘留的原子、分子附著於照射部分,或因射束的能量而觀察對象變形。此外,因長時間射束照射至同一位置,也會變得容易受振動等的影響,而也可能發生視野偏離而在圖像發生暈散。亦即,藉由降低掃描速度無法保證可獲得正確的資料。專利文獻2的方法中同樣地,以掃描速度小取得時的圖像的暈散已是藉由此修正方法所能夠到達的極限,要修正空間性訊號的擴散引起的暈散有其極限。
此外,時間性訊號的擴散引起的暈散,其特徵在於圖像的濃淡會朝掃描方向拖出尾巴。當將帶電粒子裝置用於電子元件或光學元件的圖樣的檢查計測用途的情形下,受到時間性訊號的擴散的影響之圖像,由於拖尾而圖樣形狀看起來呈朝掃描方向拉長的形狀。因此,可能發生按照設計而形成的圖樣被判斷成不良,或其相反。因此,希望從檢查計測用的圖像資料消除掃描方向的拖尾。對此,專利文獻2中揭示的方法雖可適用,但如前述般以掃描速度小取得的圖像的暈散已是修正的極限。此外,為了取得修正用資料不得不對裝置投入導電性佳,真空中的原子/分子不易附著,且不易因射束照射而變形之標準觀察對象,管理開銷(overhead)亦大。
本發明中,其待解問題在於簡便且高精度地修正以帶電粒子線裝置取得的圖像中混雜的複數個種類的暈散當中由時間性訊號的擴散引起而產生的掃描方向的圖像的暈散。解決問題之技術手段
本發明的一實施形態之帶電粒子線裝置,具有:帶電粒子光學系統;及檢測器,檢測藉由帶電粒子線與樣本的相互作用而放出的二次帶電粒子而輸出檢測訊號;及演算部,修正基於將帶電粒子線在樣本上二維地掃描而從檢測器輸出的檢測訊號之第1圖像資料,而生成第2圖像資料;演算部,利用相當於從第1圖像資料抽出的n個第1方向的訊號強度分布之第1訊號輪廓與相當於檢測器中的訊號處理延遲之窗函數的功率譜密度P(f)(f:空間頻率),而生成第2圖像資料。發明之功效
能夠消除檢測器的訊號處理延遲引起的時間性訊號的擴散的影響,亦即掃描方向的圖像的暈散。
其他待解問題與新穎特徵,將由本說明書之記述及隨附圖面而明瞭。
利用圖1說明本實施例的原理。此處,將帶電粒子線裝置的掃描方向訂為拍攝出的圖像的水平方向,而訂其為X方向。圖表101示意實空間中的資料(例如像素的亮度),橫軸示意圖像中的X座標,縱軸其示意在該位置的訊號強度。圖表102,為從將圖表101中表現的訊號強度做傅立葉變換而得到的係數算出的功率譜(Power spectral density、以下記為「PSD」)的期望值。橫軸示意頻率,縱軸示意該頻率的PSD。以下,將訊號強度的X方向分布稱為訊號輪廓(profile)。
圖表101,為完全沒有時間性訊號的擴散的情形下的訊號輪廓(將其稱為理想訊號輪廓)的例子,特別是從在會影響訊號強度的樣本的表面及內部其材料及形狀為一定,亦即若沒有訊號離散則以訊號強度而言期望之值為均一的區域(以下記為訊號強度的期望值為均一的區域)的圖像所取出的訊號輪廓。圖表102,為從圖表101的理想訊號輪廓得到的PSD的期望值。於和圖表101對應的觀測區域,若樣本的形狀及材料沒有不均一性,則圖表101的理想訊號輪廓為隨機的值,1個理想訊號輪廓的PSD的值,會以圖表102所示之PSD的期望值(常數函數)為中心帶有離散而分布。
相對於此,圖表103為藉由以實機觀測而得到的訊號輪廓(為了與理想訊號輪廓區别,特別稱為實訊號輪廓)的例子。觀測對象與圖表101相同,為從訊號強度的期望值為均一的區域的圖像所取出之訊號輪廓,但不同於圖表101,會受到實機的檢測器中的訊號處理延遲引起之時間性訊號的擴散的影響。圖表104,為從圖表103的實訊號輪廓得到的PSD的期望值。不同於圖表102,在PSD的期望值會顯現時間性訊號的擴散的影響,因此不會成為常數函數。1個實訊號輪廓的PSD的值,會以圖表104所示之PSD的期望值為中心,帶有離散而分布。
圖表103所示的實訊號輪廓,相對於圖表101所示的理想訊號輪廓,係相當於使用相當於實機的訊號處理延遲之窗函數105來施以摺積而得到的函數。惟,窗函數105為未知的函數。但,實空間中的摺積已知等同於傅立葉空間中的單純的積的計算。若利用此定理,則便能從實訊號輪廓除去時間性訊號的擴散的影響,而得到理想訊號輪廓的資料。
首先,取得大量的實訊號輪廓,將從該些實訊號輪廓的各者算出的PSD予以平均化,藉此算出實訊號輪廓的PSD的期望值。如前述般,從1個訊號輪廓算出的PSD會在圖表104所示之PSD的期望值的周圍離散,但藉由將從位於訂為計測對象的區域之大量的訊號輪廓算出的PSD予以平均化,便能得到平滑而明確看出特徵的實訊號輪廓的PSD的期望值(亦即圖表104)。
此外,理想訊號輪廓的PSD的期望值(圖表102)為常數函數,因此實訊號輪廓的PSD的期望值(圖表104),會成為將窗函數105做傅立葉變換而得到的窗函數105的PSD(圖表106)的常數倍。如前述般,從訊號強度的期望值為均一的區域的圖像取出訊號輪廓,藉此便能將理想訊號輪廓視為白噪訊,故能夠實現理想訊號輪廓的PSD平均而言成為常數函數這樣的狀況。
故,即使窗函數10或是窗函數105的PSD為不明,藉由從實際的圖像得到實訊號輪廓的PSD的期望值(圖表104),而忽視常數倍的因子,便能視為是窗函數105的PSD(圖表106)。或者,以調整使得在圖表104的左端值會成為1,或者PSD的積分值會成為1之方式,將實訊號輪廓的PSD的期望值(圖表104)的全體乘常數倍來作為窗函數105的PSD亦可。這是因為常數倍的因子僅會影響圖像的對比度的程度。和依此方式得到的窗函數105的PSD對應之函數106,以下記為「修正用PSD」。
通常,在樣本的表面及內部,掃描材料及形狀為一定的區域而得到的訊號的離散,就運用圖像之檢查計測的觀點看來會成為噪訊,而成為檢查計測的妨礙。相對於此,本實施例中積極地活用此一訊號的離散,利用這樣的區域中的理想訊號輪廓的PSD的期望值會成為常數這一點,來得到修正用PSD106。
以上說明的得到修正用PSD的工程中,包含以下的特徵性的處理。第1處理,為取得訊號會成為白噪訊這樣的區域的圖像資料,使得實訊號輪廓的PSD的期望值104可視為是常數函數亦即理想訊號輪廓的PSD的期望值102與修正用PSD106之積之工程。此工程,亦可從拍攝不會出現隨機的訊號以外之區域而成的圖像全體抽出相當於實訊號輪廓103的訊號而做資料處理,或者亦可從圖像抽出被判斷沒有除了隨機的訊號之區域,而從該區域取得相當於實訊號輪廓103的訊號而做資料處理。無論任一種,必須有下述處理,即,判斷為了算出實訊號輪廓的PSD而使用之區域的訊號,是由可視為白噪訊的隨機的訊號所構成。
這裡,不照射帶電粒子束而取得圖像資料的方法並不合適。這是因為修正用PSD106的算出,必須要帶有一定程度高的訊號強度的隨機的訊號經窗函數105的影響之後的訊號亦即訊號輪廓103。若不照射帶電粒子束便取得圖像資料的情形下,於通過窗函數105之前產生的隨機的訊號近乎為零,因此圖像資料會由因電子電路等而產生的噪訊所構成。經窗函數105的影響之後,電子電路等中被添加的隨機的訊號(噪訊)只是計算的誤差。本實施例中,是在會影響訊號強度的樣本表面及內部,對材料及形狀為一定這樣的區域照射帶電粒子束而取得圖像資料。藉此,由於每單位面積的入射電子數發生的離散、產生的二次電子數的離散等而隨機的訊號會受到窗函數105的影響,能夠得到帶有足夠的訊號強度的實訊號輪廓。換言之,所謂實訊號輪廓具有足夠的訊號強度,是指電子電路等中被添加的隨機的訊號(噪訊)大到能夠忽視的程度。此一條件,當照射帶電粒子束來取得圖像資料的情形下,若裝置設置的環境合適則可認為一般會被滿足。
為了適當地取得修正用PSD,帶電粒子線裝置具備輸入裝置,其讓操作者遵照觀察對象的資訊而判斷而能夠指定取得圖像資料之特定的區域。或者,具備計算裝置與輸入裝置之組合,計算裝置對取得的圖像施以濾波而輸出和噪訊以外的成分對應之指標值,輸入裝置讓操作者遵照指標值而能夠指定特定的區域。或者,具備計算裝置,其遵照前述的指標值而自動地指定特定的區域。
第2處理,為針對複數個訊號輪廓算出PSD,予以平均化之工程。隨機噪訊的PSD成分的誤差為100%。換言之1個訊號輪廓的PSD的值會從其期望值大幅度離散。故,為了可靠性良好地得到修正用PSD106,必須有取得大量的訊號輪廓,將該些PSD平均化之工程。惟,本實施例的情形下,得到大量的訊號輪廓這件事本身,其處理的資料為圖像資料即複數個訊號輪廓的集合體,因此相對容易。
將對於欲進行除去時間性訊號的擴散的影響之修正的對象圖像進行的處理統整如下。首先,將從沒有隨機的訊號以外的資料之圖像或者圖像區域抽出的訊號輪廓I(i,x)做傅立葉變換,得到傅立葉係數A(i,f)。這裡,i為訊號輪廓的編號(i=1~m),x為圖像中的水平方向的位置,f為空間頻率。水平方向的位置係被指定像素作為單位。接著,從A(i,f)計算第i個的訊號輪廓的PSD,將得到的m個的PSD做平均而得到P(f)。P(f)為訊號強度的期望值為均一的區域中的實訊號輪廓的PSD的期望值,如前述般,為修正用PSD。
另一方面,將欲施以修正之圖像分解成訊號輪廓。將訊號輪廓訂為J(k,x)。這些,k為訊號輪廓的編號(k=1~n)。接下來將J(k,x)做傅立葉變換,得到傅立葉係數B(k,f)。修正後的傅立葉係數B'(k,f)與傅立葉係數B(k,f)之間會成立(數1)的關係,故利用(數1)算出修正後的傅立葉係數B'(k,f)。
Figure 02_image001
接下來將B'(k,f)做逆傅立葉變換,藉此得到修正後的訊號輪廓J'(k,x)。將此對n個的訊號輪廓反覆進行,從修正後的訊號輪廓J'(k,x)得到修正圖像。
另,上述雖示意求出傅立葉係數A(i,f)而求出P(f)的例子,但從I(i,x)求出自相關函數R(I,r),把將其平均化而成者做傅立葉變換,亦可求出P(f)。兩者在數學上等價,因此只要選擇演算時間短的算出方法即可。實施例 1
圖2示意掃描型電子顯微鏡(SEM)的模型圖,作為用於檢查裝置之帶電粒子線裝置的例子。框體201,包含置放電子光學系統及檢測系統之鏡柱與置放供樣本207(此處為矽晶圓)載置的平台208之試料室,被保持在高真空狀態。電子光學系統,就主要的構成而言具有放出電子線(一次電子)203的電子槍202、用來使電子線203聚焦至樣本207上的電子透鏡(聚光透鏡204、對物透鏡206)、將電子線203在樣本207上二維地掃描的偏向器205。偏向器205,藉由一面朝與X方向正交的Y方向挪移位置一面反覆往X方向的帶電粒子線之掃描,而將電子線203二維地掃描。檢測系統,包含檢測由於電子線203與樣本207之相互作用而放出的二次電子209之檢測器210。構成電子光學系統及檢測系統的構成要素係藉由控制部211而被控制。演算部(電腦)212,透過控制部211控制電子光學系統及檢測系統,並且形成基於檢測器210檢測二次電子209而輸出的檢測訊號之圖像。此外,在演算部212,連接有記憶控制資訊或圖像資訊的記憶裝置213。
作為樣本示意帶有高低差的矽晶圓的例子。圖3示意樣本的觀察區域。俯視圖(topview)300,為縱橫皆3000nm的正方形的區域。截面301為沿著俯視圖300所示直線A-B的截面,同樣地,截面302為沿著俯視圖300所示直線C-D的截面。另,俯視圖300中,將高低差的交界以粗線示意。俯視圖300中的區域303是為了算出修正用PSD而取得修正用資料的區域,區域304、305是為了解析力評估而取得評估用資料的區域,區域303~305皆是一邊512nm的正方形區域。
圖4是為了取得修正用PSD而掃描型電子顯微鏡取得的圖像400。相當於圖像400的樣本上的區域為俯視圖300的一部分,圖4中將相當於修正用資料區域303的區域以虛線示意。掃描型電子顯微鏡所做的電子線的掃描是從紙面的左朝右方向進行。另,以實際的掃描型電子顯微鏡取得的圖像,例如以256階度的灰階表現,但圖4中予以單純化,將特別亮(訊號強度高)的部分以白(實線),暗(訊號強度低)的部分以黑表現。基於來自二次電子檢測器的檢測訊號之圖像,於樣本表面的高低差其訊號強度會變高。
算出修正用PSD的流程圖如圖5A所示。修正用PSD的算出,是藉由操作者的指示而由演算部212執行。演算部212具備作為電腦的硬體。也就是說,處理器將儲存器(例如HDD(Hard Disc Drive)或SSD(Solid State Drive)等)中記憶的程式叫出至記憶體(RAM(Random Access Memory))而執行。此外,操作者的指示是使用演算部212具備的鍵盤或指向裝置等的輸入裝置,從監視器中顯示的GUI(Graphical User Interface)畫面輸入。另,於令算出修正用PSD的程式開始之前或者與開始並行地,操作者將樣本的晶圓投入掃描型電子顯微鏡,預先調整平台及光學系統。
首先工程501中,演算部212透過演算部212的監視器中顯示的GUI,指示操作者拍攝用來得到修正用PSD的區域(修正用資料區域)周邊。操作者,於工程502控制電子光學系統及檢測系統,例如掃描樣本的俯視圖300的左上區域,取得如圖4所示般一邊為1000nm的正方形的圖像。構成圖像的像素的尺寸為0.5nm,故此情形下的像素數為2000×2000。一旦拍攝結束,操作者啟動從拍攝出的圖像搜尋修正用資料區域之演算法。
工程503中,演算部212分析操作者拍攝出的圖像(原圖像),顯示用於修正用資料取得之推薦區域。顯示推薦區域的GUI畫面510的例子如圖5B所示。演算部212讀入原圖像,顯示於GUI畫面510的原圖像顯示區域511,並且在圖像尺寸顯示欄512顯示原圖像的像素數。操作者,將修正用資料訂為一邊為512nm(1024像素)的區域,在修正用資料區域尺寸設定欄513輸入該值。
演算部212,從原圖像搜尋最佳的區域以作為被指定的尺寸的修正用資料區域。說明其一例。原圖像,為2000×2000並排的訊號強度的值的集合,亦即行列。對於其中除了外周2行2列以外的1996×1996的像素,指派以本身為中央之5×5的區域的訊號強度的平均值。此處理相當於施以5×5的平均化濾波。
將得到的平均訊號強度的陣列訂為P(x,y)。這裡x及y為從1到1996為止的整數,表示像素的位置。接下來,對於位置的變數(x,y),指派以下的(數2)所示之指標Q。
Figure 02_image003
這裡Abs[α]為α的絕對值。此外,在陣列的右端與下端存在無法計算的區域,惟該區域從分析對象剔除。在成為分析對象的區域中,搜尋一邊為512nm的區域(1024×1024像素),且區域內的所有的像素的指標Q的值成為事先設定好的基準值以下的區域,其中再抽出區域內的指標Q的合計值最低的區域。
按照本指標之搜尋方法為一例,不限於此方法。亦可設計成具備複數個搜尋演算法或指標而選擇。在此情形下,在GUI畫面510設置濾波選擇欄514,操作者從濾波選擇欄514選擇適用的濾波,點擊搜尋按鈕515,藉此令搜尋開始。此外,當適用如前述般的平均化濾波的情形下,亦可將濾波尺寸訂為可變而設置濾波尺寸的輸入欄。
演算部212,一旦修正用資料區域的搜尋完成,便將抽出的推薦作為修正用資料區域之區域顯示給操作者。GUI畫面510(圖5B)示意顯示例。此例中,將推薦區域522顯示於濾波圖像顯示欄521中顯示的濾波圖像內。濾波圖像在圖5B中雖單純以黑白顯示,但係以像素值作為指標Q的值而以濃淡表示者,會成為比原圖像更暈散的圖像。亦可令GUI畫面510跳出詢問推薦區域522是否可作為修正用資料區域之視窗。
工程504中,操作者決定修正用資料區域。當操作者選擇將推薦區域522訂為修正用資料區域的情形下,點擊決定按鈕523。此時,示意作為推薦區域522的白框可藉由操作者的指示而移動,操作者亦可以目視判斷而令白框移動後再點擊決定按鈕523。在該情形下,移動後的白框的區域會被設定作為修正用資料區域。
以上已示意了演算部212顯示用於修正用資料取得的推薦區域的例子,但亦可設計成演算部212中不進行推薦區域的搜尋(工程503),而是僅將原圖像顯示於GUI畫面而將修正用資料區域的設定委由操作者。反之,亦能訂為不進行工程504,而是演算部212將搜尋到的區域自動地設定作為修正用資料區域之流程。
工程505中,將被選擇的512nm見方的修正用資料區域(像素數為1024×1024)切出,將該資料分割成於X方向長的帶狀的區域。如前述般,X方向為掃描型電子顯微鏡的掃描方向,為原圖像的水平方向。將此1個帶狀的區域的資料予以圖表化而成之物便相當於圖表103。藉此,便從被選擇的修正用資料區域,得到1024個資料數1024的訊號輪廓。這對於用來算出修正用PSD之平均化是足夠的個數。
如前述般,將各訊號輪廓做傅立葉變換而求出PSD,將得到的1024個的訊號輪廓的PSD予以平均化,藉此得到修正用PSD((數1)的P(f))。另,f為(數3)所示的空間頻率。
Figure 02_image005
這裡,Δf為基本頻率,為修正用資料區域303的X方向的長度的倒數。此外,s為自然數。
工程506中,演算部212將得到的修正用PSD圖表化而顯示於監視器,工程507中要求操作者選擇是否保存修正用PSD的資料。操作者,藉由修正用PSD的圖表(相當於圖1的圖表104)被顯示,便能判斷作為修正用PSD是否得到足夠平滑的資料。若操作者選擇保存則進入工程508,將修正用PSD的資料命名而示意往記憶裝置213之路徑,與記載著原圖像取得時的條件之資料一併保存。藉此,相當於修正用PSD(P(f))的資料的表格便被保存於記憶裝置213,藉由以上,修正用PSD的取得完成。
另一方面,當作為修正用PSD未得到足夠平滑的資料這樣的情形下,操作者不選擇保存修正用PSD,而是從修正用資料區域的決定重做(工程504)。
若要利用修正用PSD進行解析力評估,則操作者在圖3所示區域304及區域305取得解析力評估用圖像,保存於記憶裝置213。這裡,解析力評估用圖像的訊號輪廓中的資料數、鄰接的資料的各者的圖像的間隔、及掃描速度(電子線掃描鄰接的資料的各者的圖像的間隔所需要的時間),以及用來取得修正用PSD的訊號輪廓中的資料數、鄰接的資料的各者的圖像的間隔、及掃描速度必須相符。資料數及鄰接的資料的各者的圖像的間隔,是為了使訂為進行傅立葉變換、傅立葉逆變換的對象之訊號輪廓彼此的大小相符。此外,本實施例訂為待解問題之時間性訊號的擴散,是因相對於電子線的掃描速度而言實機的訊號處理延遲而引起,因此在解析力評估用圖像的訊號輪廓與在用來取得修正用PSD的訊號輪廓必須使掃描速度相符。
因此,就最單純的方法而言,只要使取得解析力評估用圖像時的像素尺寸、圖像尺寸及電子線的掃描速度(或者和它們相關的檢測系統的設定參數),與取得修正用資料用圖像時的像素尺寸、圖像尺寸及電子線的掃描速度一致即可。圖像的像素尺寸、圖像尺寸嚴格說來只要X方向(電子線的掃描方向)的像素尺寸、X方向的圖像尺寸相符即可,這是因為為了求出修正用PSD會將於X方向長的帶狀的區域的訊號輪廓訂為對象來進行傅立葉變換。惟,即使圖像中的這些條件相異,只要在訂為訊號輪廓的階段,掃描速度、資料間隔及資料數在解析力評估用圖像的訊號輪廓與在用來取得修正用PSD的訊號輪廓之間相符就沒有問題。另,解析力評估用圖像的取得,是在修正資料用圖像的取得的前或後並不過問。或者,亦可一口氣拍攝包含修正用資料區域與解析力評估區域之圖像,而切出各區域的拍攝結果。
解析力評估,是對解析力評估用圖像執行修正時間性訊號的擴散的影響之程式,藉由時間性訊號的擴散引起的暈散已被修正的圖像而進行。圖6示意對於解析力評估用圖像修正時間性訊號的擴散的影響的流程圖。演算部212,從儲存器叫出和圖6的流程對應之程式而執行。
首先工程601中,操作者指定檔案名而叫出修正用PSD資料(P(f))。接下來工程602中,操作者指定檔案名而叫出解析力評估用圖像資料。工程603中,演算部212將修正用PSD與解析力評估用圖像各者中附加的記載著圖像取得時的條件之資料檔案予以比對,若前述的像素尺寸、圖像尺寸、掃描速度相同則進入下一工程604。若不同則進入工程605,回到工程601,委托操作者再指定條件一致的修正PSD資料。
工程604中,演算部212將解析力評估用圖像分割成訊號輪廓。圖7示意工程602中叫出的修正前的解析力評估用圖像700。此為圖3所示區域304的拍攝結果,圖像中央的粗白線示意矽的有高低差的部分。圖中記載著用來指定像素位置之X及Y座標的方向。X,Y皆為像素的編號,值是取1至1024的值。訊號輪廓,為Y座標一定的像素的亮度(亦即訊號強度)的數值的列。將其表記為J(k,x)。
工程606中,演算部212將J(k,x)(x=1~1024)做傅立葉變換,得到複(complex)傅立葉係數B(k,f)。令k從1變化至k_max(本實施例中為1024),得到解析力評估用圖像700的所有的訊號輪廓的傅立葉係數B(k,f)。
工程607中,演算部212遵照(數1),對於所有的k的值求出B'(k,f)。接下來工程608中對於所有的k(k=1~1024)做B'(k,f)逆傅立葉變換而得到J'(k,x)。工程609中將k_max(1024)個的數值列J'(k,x)視為訊號輪廓,將訊號輪廓J’(k,x)依k的升序朝Y方向並排,藉此將圖像再構成。再構成而成的修正圖像,相當於將解析力評估用圖像700的各像素的亮度亦即J(k,x)置換成J'(k,x)而成者。以上,圖像的修正完成。演算部212在監視器顯示修正圖像,工程609中操作者判斷是否保存修正圖像資料(工程610),當保存的情形下命名保存(工程611),結束流程。
圖8A~B為將圖3所示區域304、305的圖像藉由圖6所示流程予以修正,而示意修正前後的圖像的訊號強度分布。圖8A為區域304的圖像的Y=512的訊號強度分布,X座標示意350~650的範圍。圖8B為區域305的圖像的X=512的訊號強度分布,Y座標示意350~650的範圍。從這裡可知,修正前在X方向訊號峰值比Y方向還擴散,但修正後X方向與Y方向訊號峰值的擴散皆成為同程度。修正後的峰值寬度,可以說反映了除去訊號處理中的延遲的影響後之電子光學系統的解析力,故將修正後的峰值寬度訂為解析力指標來管理裝置狀態,藉此便能更精確地掌握裝置的狀態。例如,從修正後的圖像會除去訊號處理中的延遲的影響,故會變得容易辨明剩餘的暈散的原因(空間性訊號的擴散、或者平台的振動等)。
像這樣,實施例1中,能夠利用相於檢測器中的訊號處理延遲之窗函數的PSD來消除圖像的拖尾現象,窗函數的PSD能夠從以用於檢查計測的掃描速度拍攝出的修正用資料區域的圖像而算出,故可以較小的管理開銷正確地除去時間性訊號的擴散的影響,而進行帶電粒子線裝置的解析力評估。實施例 2
作為實施例2,說明一種事先取得對於複數個拍攝條件的修正用PSD而預先保存於檢查裝置,利用保存的修正用PSD在半導體製造現場修正檢查圖像,基於修正後的檢查圖像來進行檢查之檢查裝置。作為用於檢查裝置的帶電粒子線裝置,如同實施例1般能夠使用圖2所示掃描型電子顯微鏡。
首先,說明取得修正用PSD的工程。操作者為了取得修正用PSD而訂定的條件的例子如圖9所示。這裡,是電子線的加速電壓、1像素的1邊的尺寸、修正用資料區域的像素數、將修正用資料區域朝X方向掃描1次所需要的掃描時間這4個拍攝參數。在此情形下,藉由4個拍攝參數的組合,全部有60種的參數組(set)。另,拍攝參數中,必須包含實施例1中說明的辨明圖像的像素尺寸、圖像尺寸、電子線的掃描速度之資訊。另,作為辨明的條件,只要可辨明訊號輪廓中的資料數、鄰接的資料的各者的圖像的間隔及掃描速度(電子線掃描鄰接的資料的各者的圖像的間隔所需要的時間),則亦可設計成以示例以外的條件來辨明。又,追加一對於時間性訊號的擴散引起之掃描方向的暈散造成影響的參數,藉此便能期待更適當地消除取得圖像中包含的掃描方向的拖尾。此例中,電子線的加速電壓被追加作為參數。這是因為照射至樣本的電子的量愈多,對於取得圖像的影響愈容易顯現。
為了修正用PSD的取得而使用之樣本(晶圓)的例子如圖10所示。於晶圓上在一邊5μm的區域淺淺地蝕刻有編號(「23」,「24」…),在編號區域1000的右側1μm蝕刻有用來調整焦點或像散之孔圖樣1001。在編號區域1000蝕刻01至99為止的數字。此數字是為了辨明取得修正用資料區域圖像的位置而使用。某一編號的編號區域1000與孔圖樣1001之組,配置成與另一編號之組相互距離10μm。
操作者對60種類的參數組每一者,取得用來取得修正用PSD的修正用資料區域的圖像。在此情形下,設定圖9所示條件當中的一者,例如加速電壓500V、像素尺寸0.5nm、像素數512×512、掃描時間2.5ms,而開始拍攝。操作者尋找樣本上的編號區域1000所示之數字,利用位於其右側的孔圖樣1001來校準光學條件後,從該處朝紙面上相當於右邊的方向移動4μm而拍攝,保存圖像。被拍攝的區域,是在會影響訊號強度的樣本表面及內部,材料及形狀為一定的區域。接著,變更成下一參數組,尋找相異的編號區域1000的數字,以相同手續反覆進行拍攝。
針對60種類的參數組全部,拍攝完修正用資料區域的圖像後,操作者以圖11所示手續,從各者的修正用資料區域的圖像作成修正用PSD。首先,操作者叫出取得的修正用資料區域的圖像(工程1101)。工程1102中,演算部212執行與圖5A的流程中的工程505相同的處理。也就是說,將修正用資料區域的圖像分割成於X方向長的帶狀的區域,得到與修正用資料區域的圖像的Y方向的像素數相同數量的訊號輪廓。將各訊號輪廓做傅立葉變換而求出PSD,將得到的PSD予以平均化而得到修正用PSD((數1)的P(f))。
工程1103中,演算部212執行與圖5A的流程中的工程506相同的處理。演算部212將得到的修正用PSD圖表化而顯示於監視器,工程507中要求操作者選擇是否保存修正用PSD的資料。若操作者選擇保存則進入工程1104,將修正用PSD的資料命名而示意往記憶裝置213之路徑,與記載著修正用資料區域的圖像取得時的條件之資料一併保存。將圖11所示手續適用於依60種類的參數組每一者而取得的修正用資料區域的圖像,藉此每一拍攝條件的修正用PSD的取得便完成。
實施例2中,藉由利用記憶裝置213中保存的修正用PSD資料而修正了時間性訊號的擴散的影響之檢查圖像來進行微細圖樣的檢查。圖12示意其流程。
操作者,將進行檢查的樣本投入圖2的裝置,取得事先決定好的檢查處的圖像(工程1201)。此檢查圖像1300中出現的圖樣例的模型圖如圖13A所示。此外,執行檢查的GUI畫面1400的例子如圖14所示。演算部212,將拍攝出的檢查圖像顯示於檢查圖像顯示區域1401。拍攝出的檢查圖像的拍攝條件與修正用PSD資料的拍攝條件當中,操作者欲使其符合的項目已經事先登錄,顯示於修正資料選擇條件欄1402。此例中,於修正用PSD的取得時為了設定參數組而選擇的4個拍攝參數,被顯示作為欲使其符合的拍攝條件的項目。接著,工程1202中,操作者將認為符合該拍攝條件的修正用PSD資料,指定其檔案名而叫出。GUI畫面1400的情形下,操作者在檔案名輸入欄1403輸入修正用PSD資料檔案名,點擊選定按鈕1404,則演算部212將檢查圖像的拍攝條件與被指定的修正用PSD資料的拍攝條件予以比對(工程1203)。當拍攝條件不合的情形下將拍攝條件不一致之訊息顯示於GUI畫面1400(工程1205),再度要求指定修正用PSD資料(工程1202)。另一方面,當拍攝條件契合的情形下,將拍攝條件一致之訊息顯示於GUI畫面1400(工程1204)。這裡,又若操作者點擊試行按鈕1405,則利用指定的修正用PSD資料而被修正的圖像會顯示於修正檢查圖像顯示區域1406,操作者能夠與檢查圖像顯示區域1401中顯示著的修正前的檢查圖像比較,確認是否合適地被修正。另,雖說明以拍攝條件來選擇修正用PSD的例子,但亦可設計成依訊號輪廓的條件(資料數、鄰接的資料的各者的圖像的間隔及掃描速度(電子線掃描鄰接的資料的各者圖像的間隔所需要的時間))來選擇。
以下,利用已確認能夠合適地修正之修正用PSD資料來執行檢查。樣本上的85處訂為事先被指定作為檢查處者。工程1206中,演算部212拍攝85處的檢查處,針對拍攝出的檢查圖像利用自動地被指定之修正用PSD資料來修正檢查圖像。圖13B為修正拍攝出的檢查圖像1300而成之修正檢查圖像1310的模型圖。檢查內容訂為檢查圖像中包含的第1圖樣P1與第2圖樣P2之最短距離d。演算部212,從修正檢查圖像讀取距離D'作為圖樣間的最短距離d。工程1206中,在85處實施檢查處的拍攝、修正及基於修正檢查圖像之距離的計測,而算出最短距離d的平均值與標準差。工程1207中,演算部212顯示最短距離d的平均值與標準差作為檢查結果,並且自動地保存修正前的檢查圖像與修正後的修正檢查圖像及計測出的最短距離d的值(工程1208)。工程1207中得到的檢查結果在元件製造中若為容許範圍,則對象的晶圓被送至下一工程。
若未進行利用了修正用PSD資料之修正,則如圖13A所示,檢查圖像1300中會由於時間性訊號的擴散而在掃描方向(X方向)發生暈散,因此距離D會被讀取作為最短距離d。因此,第1圖樣P1與第2圖樣P2之最短距離d會被評估成比實際還窄(距離D<距離D')。如此一來,實際上為容許範圍內的圖樣被誤判定為容許範圍外的可能性會升高。實施例2中,是藉由修正圖像進行檢查,藉此可以更高精度進行有關元件製造之重要處的計測,能夠使良率提升。
101,102,103,104,106:圖表 105:窗函數 201:框體 202:電子槍 203:電子線 204:聚光透鏡 205:偏向器 206:對物透鏡 207:樣本 208:平台 209:二次電子 210:檢測器 211:控制部 212:演算部(電腦)
213:記憶裝置
300:俯視圖
301,302:截面
303,304,305:區域
400:圖像
501~508:(算出修正用PSD的)工程
510:GUI畫面
511:原圖像顯示區域
512:圖像尺寸顯示欄
513:修正用資料區域尺寸設定欄
514:濾波選擇欄
515:搜尋按鈕
521:濾波圖像顯示欄
522:推薦區域
523:決定按鈕
601~611:(修正解析力評估用圖像的)工程
700:解析力評估用圖像
1000:編號區域
1001:孔圖樣
1101~1105:(依每一拍攝條件算出修正用PSD的)工程
1201~1208:(檢查的)工程
1300:檢查圖像
1310:修正檢查圖像
1400:GUI畫面
1401:檢查圖像顯示區域
1402:修正資料選擇條件欄
1403:檔案名輸入欄
1404:選定按鈕
1405:試行按鈕
1406:修正檢查圖像顯示區域
[圖1]用來說明本實施例的原理之圖。 [圖2]掃描型電子顯微鏡的模型圖。 [圖3]樣本的例子(帶有高低差的矽晶圓)的模型圖。 [圖4]用來取得修正用PSD的圖像例的模型圖。 [圖5A]算出修正用PSD的流程圖。 [圖5B]GUI畫面的例子。 [圖6]修正解析力評估用圖像的流程圖。 [圖7]解析力評估用圖像例的模型圖。 [圖8A]修正前圖像的訊號強度分布示意圖表。 [圖8B]修正後圖像的訊號強度分布示意圖表。 [圖9]取得修正用PSD的拍攝條件的表。 [圖10]用於修正用PSD取得的樣本的佈局例示意圖。 [圖11]依每一拍攝條件算出修正用PSD的流程圖。 [圖12]檢查流程圖。 [圖13A]修正前檢查圖像例的模型圖。 [圖13B]修正後檢查圖像例的模型圖。 [圖14]GUI畫面的例子。
101,102,103,104,106:圖表
105:窗函數

Claims (15)

  1. 一種帶電粒子線裝置,具有:帶電粒子光學系統,包含放出帶電粒子線的帶電粒子線源、與令前述帶電粒子線聚焦於樣本上的複數個透鏡、與將前述帶電粒子線在前述樣本上掃描的偏向器;及檢測器,檢測藉由前述帶電粒子線與前述樣本的相互作用而放出的二次帶電粒子而輸出檢測訊號;及演算部,修正基於將前述帶電粒子線在前述樣本上二維地掃描而從前述檢測器輸出的前述檢測訊號之第1圖像資料,而生成第2圖像資料;前述偏向器,藉由一面朝與第1方向正交的第2方向挪移位置一面反覆往前述第1方向的前述帶電粒子線之掃描,而將前述帶電粒子線在前述樣本上二維地掃描,前述演算部,利用相當於從前述第1圖像資料抽出的n個前述第1方向的訊號強度分布之第1訊號輪廓與相當於前述檢測器中的訊號處理延遲之窗函數的功率譜密度P(f)(f:空間頻率),而生成前述第2圖像資料,前述演算部,基於將前述帶電粒子線在包含修正用資料區域的樣本上二維地掃描而從前述檢測器輸出的前述檢測訊號,從相當於前述修正用資料區域之第3圖像資料算出前述窗函數的功率譜密度P(f),前述演算部,算出將相當於從前述第3圖像資料抽出的m個前述第1方向的訊號強度分布之第3訊號輪廓做傅立葉變換而成之傅立葉係數A(i,f)(i=1~m)的功率譜密度, 取m個前述傅立葉係數A(i,f)的功率譜密度的平均,藉此算出前述窗函數的功率譜密度P(f)。
  2. 如請求項1所述之帶電粒子線裝置,其中,前述演算部,從將n個前述第1訊號輪廓做傅立葉變換而成之傅立葉係數B(k,f)(k=1~n)與相當於前述檢測器中的訊號處理延遲之窗函數的功率譜密度P(f),來算出傅立葉係數B'(k,f),基於將前述傅立葉係數B'(k,f)做逆傅立葉變換而得到的n個第2訊號輪廓而生成前述第2圖像資料,前述傅立葉係數B'(k,f)與前述傅立葉係數B(k,f)及前述窗函數功率譜密度P(f),具有
    Figure 110101217-A0305-02-0032-1
    的關係。
  3. 如請求項1所述之帶電粒子線裝置,其中,前述第1訊號輪廓與前述第3訊號輪廓,其資料數、鄰接的資料的各者的圖像的間隔、及前述帶電粒子線掃描前述間隔所需要的時間係相等。
  4. 如請求項1所述之帶電粒子線裝置,其中, 前述第1圖像資料與前述第3圖像資料,其前述第1方向的像素尺寸、前述第1方向的圖像尺寸、及取得圖像資料時的往前述第1方向的前述帶電粒子線之掃描速度係相等。
  5. 如請求項1所述之帶電粒子線裝置,其中,前述修正用資料區域,其將前述帶電粒子線二維地掃描而從前述檢測器輸出的前述檢測訊號的訊號強度的期望值為均一。
  6. 如請求項1所述之帶電粒子線裝置,其中,前述修正用資料區域,是在會影響將前述帶電粒子線二維地掃描而從前述檢測器輸出的前述檢測訊號的訊號強度的樣本的表面及內部,其材料及形狀為一定的區域。
  7. 如請求項1所述之帶電粒子線裝置,其中,前述演算部,從基於將前述帶電粒子線在包含前述修正用資料區域的樣本上二維地掃描而從前述檢測器輸出的前述檢測訊號之第4圖像資料,抽出推薦作為前述修正用資料區域之推薦區域,前述推薦區域,係適用對於構成前述第4圖像資料的像素的訊號強度事先設定好的濾波,而求出構成前述第4圖像資料的每一像素的指標值,基於前述指標值而抽出。
  8. 一種檢查裝置,係於複數個檢查處檢查 形成於樣本上的圖樣之檢查裝置,具有:帶電粒子光學系統,包含放出帶電粒子線的帶電粒子線源、與令前述帶電粒子線聚焦於樣本上的複數個透鏡、與將前述帶電粒子線在前述樣本上掃描的偏向器;及檢測器,檢測藉由前述帶電粒子線與前述樣本的相互作用而放出的二次帶電粒子而輸出檢測訊號;及演算部,修正基於將前述帶電粒子線在前述樣本上二維地掃描而從前述檢測器輸出的前述檢測訊號之第1圖像資料,而生成第2圖像資料;及記憶複數個相當於前述檢測器中的訊號處理延遲之窗函數的功率譜密度P(f)之記憶裝置;前述偏向器,藉由一面朝與第1方向正交的第2方向挪移位置一面反覆往前述第1方向的前述帶電粒子線之掃描,而將前述帶電粒子線在前述樣本上二維地掃描,前述演算部,利用相當於從前述第1圖像資料抽出的n個前述第1方向的訊號強度分布之第1訊號輪廓與從前述記憶裝置叫出的第1窗函數的功率譜密度P(f)(f:空間頻率),而生成前述第2圖像資料,基於前述第2圖像資料來判定前述第1圖像資料中拍攝的圖樣的良莠,前述演算部,基於依事先決定好的複數個拍攝條件每一者將前述帶電粒子線在包含修正用資料區域的樣本上二維地掃描而從前述檢測器輸出的前述檢測訊號,從相當於前述修正用資料區域之複數個第3圖像資料各自算出複數個前述窗函數的功率譜密度P(f),與拍攝條件一併記憶於 前述記憶裝置,前述演算部,算出將相當於從前述第3圖像資料抽出的m個前述第1方向的訊號強度分布之第3訊號輪廓做傅立葉變換而成之傅立葉係數A(i,f)(i=1~m)的功率譜密度,取m個前述傅立葉係數A(i,f)的功率譜密度的平均,藉此算出前述窗函數的功率譜密度P(f)。
  9. 如請求項8所述之檢查裝置,其中,前述演算部,從將n個前述第1訊號輪廓做傅立葉變換而成之傅立葉係數B(k,f)(k=1~n)與前述第1窗函數的功率譜密度P(f),來算出傅立葉係數B'(k,f),基於將前述傅立葉係數B'(k,f)做逆傅立葉變換而得到的n個第2訊號輪廓而生成前述第2圖像資料,前述傅立葉係數B'(k,f)與前述傅立葉係數B(k,f)及前述第1窗函數功率譜密度P(f),具有
    Figure 110101217-A0305-02-0035-2
    的關係。
  10. 如請求項8所述之檢查裝置,其中,前述演算部,以在前述第1訊號輪廓與前述第3訊號輪廓之間,其資料數、鄰接的資料的各者的圖像的間隔、及前述帶電粒子線掃描前述間隔所需要的時間成為相等之方式,從前述記憶裝置叫出前述第1窗函數的功率譜密度 P(f)。
  11. 如請求項8所述之檢查裝置,其中,前述演算部,以在前述第1圖像資料與前述第3圖像資料之間,其前述第1方向的像素尺寸、前述第1方向的圖像尺寸、及取得圖像資料時的前述帶電粒子線往前述第1方向的掃描速度成為相等之方式,從前述記憶裝置叫出前述第1窗函數的功率譜密度P(f)。
  12. 如請求項11所述之檢查裝置,其中,前述演算部,更以取得前述第1圖像資料時的前述帶電粒子線的加速電壓與取得前述第3圖像資料時的前述帶電粒子線的加速電壓成為相等之方式,從前述記憶裝置叫出前述第1窗函數的功率譜密度P(f)。
  13. 如請求項8所述之檢查裝置,其中,前述修正用資料區域,其將前述帶電粒子線二維地掃描而從前述檢測器輸出的前述檢測訊號的訊號強度的期望值為均一。
  14. 如請求項8所述之檢查裝置,其中,前述修正用資料區域,是在會影響將前述帶電粒子線二維地掃描而從前述檢測器輸出的前述檢測訊號的訊號強度的樣本的表面及內部,其材料及形狀為一定的區域。
  15. 如請求項8所述之檢查裝置,其中,前述演算部,將前述第1圖像資料中拍攝的圖樣與前述第2圖像資料中的被修正的圖樣顯示於監視器。
TW110101217A 2020-01-22 2021-01-13 帶電粒子線裝置及檢查裝置 TWI769662B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/JP2020/002115 2020-01-22
PCT/JP2020/002115 WO2021149188A1 (ja) 2020-01-22 2020-01-22 荷電粒子線装置及び検査装置

Publications (2)

Publication Number Publication Date
TW202129685A TW202129685A (zh) 2021-08-01
TWI769662B true TWI769662B (zh) 2022-07-01

Family

ID=76991835

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110101217A TWI769662B (zh) 2020-01-22 2021-01-13 帶電粒子線裝置及檢查裝置

Country Status (5)

Country Link
US (1) US20240297012A1 (zh)
JP (1) JP7336540B2 (zh)
KR (1) KR20220103140A (zh)
TW (1) TWI769662B (zh)
WO (1) WO2021149188A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236938A (ja) * 1989-03-10 1990-09-19 Hitachi Ltd 画像復元方法並びに走査型電子顕微鏡及びパターン外観検査装置及び走査像検出装置
TW473892B (en) * 1999-11-05 2002-01-21 Nippon Electric Co Semiconductor device tester
US6815693B2 (en) * 2000-02-18 2004-11-09 Nikon Corporation Charged-particle-beam microlithography apparatus and methods including proximity-effect correction
US20130278745A1 (en) * 2011-01-04 2013-10-24 Hitachi High-Technologies Corporation Charged particle beam device and method for correcting detected signal thereof
WO2020011580A1 (en) * 2018-07-13 2020-01-16 Asml Netherlands B.V. Sem image enhancement methods and systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177064A (ja) 2007-01-19 2008-07-31 Hitachi High-Technologies Corp 走査型荷電粒子顕微鏡装置および走査型荷電粒子顕微鏡装置で取得した画像の処理方法
JP5639590B2 (ja) 2009-08-07 2014-12-10 株式会社日立ハイテクノロジーズ 走査型電子顕微鏡及び試料観察方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236938A (ja) * 1989-03-10 1990-09-19 Hitachi Ltd 画像復元方法並びに走査型電子顕微鏡及びパターン外観検査装置及び走査像検出装置
TW473892B (en) * 1999-11-05 2002-01-21 Nippon Electric Co Semiconductor device tester
US6815693B2 (en) * 2000-02-18 2004-11-09 Nikon Corporation Charged-particle-beam microlithography apparatus and methods including proximity-effect correction
US20130278745A1 (en) * 2011-01-04 2013-10-24 Hitachi High-Technologies Corporation Charged particle beam device and method for correcting detected signal thereof
WO2020011580A1 (en) * 2018-07-13 2020-01-16 Asml Netherlands B.V. Sem image enhancement methods and systems

Also Published As

Publication number Publication date
JPWO2021149188A1 (zh) 2021-07-29
US20240297012A1 (en) 2024-09-05
WO2021149188A1 (ja) 2021-07-29
KR20220103140A (ko) 2022-07-21
TW202129685A (zh) 2021-08-01
JP7336540B2 (ja) 2023-08-31

Similar Documents

Publication Publication Date Title
US8106357B2 (en) Scanning electron microscope and method for processing an image obtained by the scanning electron microscope
JP4069545B2 (ja) 電子顕微方法及びそれを用いた電子顕微鏡並び生体試料検査方法及び生体検査装置
US7399964B2 (en) Electron microscope, measuring method using the same, electron microscope system, and method for controlling the system
US7164127B2 (en) Scanning electron microscope and a method for evaluating accuracy of repeated measurement using the same
US20110187847A1 (en) Scanning type charged particle microscope device and method for processing image acquired with scanning type charged particle microscope device
TWI494537B (zh) A pattern measuring method, a device condition setting method of a charged particle beam device, and a charged particle beam device
US9460889B2 (en) Charged particle microscope device and image capturing method
TWI776085B (zh) 用於監測束輪廓及功率的方法及設備
JP3424512B2 (ja) 粒子ビーム検査装置および検査方法並びに粒子ビーム応用装置
JP2009245674A (ja) 荷電粒子顕微鏡装置及びそれを用いた画像処理方法
US10943762B2 (en) Inspection system, image processing device and inspection method
US20190066973A1 (en) Pattern Measuring Method and Pattern Measuring Apparatus
US7439503B2 (en) Charged particle beam irradiation method, method of manufacturing semiconductor device and charged particle beam apparatus
WO2018138875A1 (ja) 荷電粒子線装置
US11424098B2 (en) Pattern measurement device, and computer program
DE112017007862B4 (de) Ladungsträgerstrahlvorrichtung
JP4548432B2 (ja) 電子顕微方法及びそれを用いた電子顕微鏡並び生体試料検査方法及び生体検査装置
TWI769662B (zh) 帶電粒子線裝置及檢查裝置
TWI611162B (zh) 相對臨界尺寸之量測的方法及裝置
JP4922710B2 (ja) 電子顕微鏡の分解能評価用試料及び電子顕微鏡の分解能評価方法並びに電子顕微鏡
JP2012142299A (ja) 走査型荷電粒子顕微鏡装置および走査型荷電粒子顕微鏡装置で取得した画像の処理方法
JP4069785B2 (ja) 電子顕微方法及びそれを用いた電子顕微鏡並び生体試料検査方法及び生体検査装置
US20240144560A1 (en) Training Method for Learning Apparatus, and Image Generation System
TWI730438B (zh) 用以對焦一掃描式電子顯微鏡之方法、用以對焦一掃描式電子顯微鏡之電腦程式產品、及測試裝置
JP2003331769A (ja) 粒子ビーム検査装置および検査方法並びに粒子ビーム応用装置