TWI768333B - Heat dissipation module and electronic device - Google Patents
Heat dissipation module and electronic device Download PDFInfo
- Publication number
- TWI768333B TWI768333B TW109114122A TW109114122A TWI768333B TW I768333 B TWI768333 B TW I768333B TW 109114122 A TW109114122 A TW 109114122A TW 109114122 A TW109114122 A TW 109114122A TW I768333 B TWI768333 B TW I768333B
- Authority
- TW
- Taiwan
- Prior art keywords
- magnetic
- magnetic particles
- pipeline
- heat dissipation
- electronic device
- Prior art date
Links
Images
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本發明是有關於一種散熱模組與電子裝置。The present invention relates to a heat dissipation module and an electronic device.
近年來,隨著科技產業日益發達,電子裝置例如筆記型電腦、個人數位助理與智慧型手機等產品已頻繁地出現在日常生活中。這些電子裝置內部所搭載的部分電子元件在運作過程中通常會產生熱能,累積的熱能若無法順利排除,將會影響電子裝置的運作效能。因此,電子裝置內部通常會配置散熱模組或散熱元件,例如是散熱風扇、散熱貼材或者散熱管,以協助將電子元件的產熱散逸至電子裝置的外部。In recent years, with the development of the technology industry, electronic devices such as notebook computers, personal digital assistants, and smart phones have frequently appeared in daily life. Some electronic components mounted in these electronic devices usually generate heat energy during operation. If the accumulated heat energy cannot be removed smoothly, the operation performance of the electronic device will be affected. Therefore, a heat dissipation module or a heat dissipation element, such as a heat dissipation fan, a heat dissipation sticker or a heat dissipation pipe, is usually arranged inside the electronic device to help dissipate the heat generated by the electronic element to the outside of the electronic device.
在上述散熱模組中,散熱風扇可有效使熱能散逸至外部,但其耗電量大、重量較重且所需空間較大,而不利於應用在追求輕薄設計的電子裝置上,且容易產生噪音而影響電子裝置所附加的通訊功能。此外,為使散熱風扇藉由對流進行散熱,電子裝置的外殼需設置開口,此舉亦會降低電子裝置的機械強度。In the above heat dissipation module, the heat dissipation fan can effectively dissipate heat energy to the outside, but it consumes a lot of electricity, weighs more and requires a large space, which is not conducive to application in electronic devices that pursue a thin and light design, and is easy to generate Noise affects the additional communication functions of electronic devices. In addition, in order for the cooling fan to dissipate heat by convection, the casing of the electronic device needs to be provided with an opening, which also reduces the mechanical strength of the electronic device.
另一方面,散熱貼材可吸收電子元件的熱能而降低表面溫度,且其成本與所需空間較低,故可廣泛地應用在電子裝置內,但其難以使熱能進一步透過其他構件散逸至外部,其散熱效果有限。再者,散熱管可將電子元件的熱能傳遞至另一板件上,但其缺乏對流作用,故散熱效果有限。On the other hand, the heat dissipation material can absorb the heat energy of electronic components to reduce the surface temperature, and its cost and required space are low, so it can be widely used in electronic devices, but it is difficult for the heat energy to be further dissipated to the outside through other components , its cooling effect is limited. Furthermore, the heat pipe can transfer the heat energy of the electronic element to another board, but it lacks the convection effect, so the heat dissipation effect is limited.
有鑒於此,現有散熱管可進一步搭配蒸發器與冷凝器構成迴路,且可藉由吸收或釋放熱能而轉換於兩相態(例如液態與氣態)之間的相變化傳熱介質可在散熱管內循環流動,以在蒸發器吸收熱能並在冷凝器釋放熱能,從而將熱能從電子元件傳遞至外部。然而,傳熱介質僅藉由其自身的相變化而在迴路中流動,其流動效果較差,進而使其散熱效果有限。In view of this, the existing heat pipe can be further matched with the evaporator and the condenser to form a loop, and the phase change heat transfer medium that can be converted between two phases (such as liquid and gas) by absorbing or releasing heat energy can be used in the heat pipe. Internal circulation flows to absorb thermal energy in the evaporator and release it in the condenser, thereby transferring the thermal energy from the electronic components to the outside. However, the heat transfer medium only flows in the loop by its own phase change, and its flow effect is poor, and thus its heat dissipation effect is limited.
本發明提供一種散熱模組與電子裝置,其藉由磁性粒體的磁性隨著吸、放熱改變而形成用以散熱的循環。The present invention provides a heat dissipation module and an electronic device, which form a circulation for heat dissipation by changing the magnetic properties of magnetic particles with heat absorption and heat dissipation.
本發明的散熱模組,設置於電子裝置。電子裝置具有熱源。散熱模組包括管路、磁產生器、工作流體以及多個磁性粒體。管路具有加熱區與冷卻區。熱源熱接觸加熱區以將熱量傳送至加熱區。磁產生器配置於管路外且對應至加熱區旁。工作流體填充於管路。磁性粒體活動地配置於工作流體。當加熱區沿重力方向是位於冷卻區之上時,行經加熱區的磁性粒體因吸熱且溫度升高而磁損耗,並藉由重力移至冷卻區。在冷卻區的磁性粒體因散熱且溫度降低而磁恢復,並被磁產生器磁吸回加熱區。磁性粒體在管路中的行進形成循環。The heat dissipation module of the present invention is arranged on an electronic device. Electronic devices have heat sources. The heat dissipation module includes a pipeline, a magnetic generator, a working fluid and a plurality of magnetic particles. The pipeline has a heating zone and a cooling zone. The heat source is in thermal contact with the heating zone to transfer heat to the heating zone. The magnetic generator is arranged outside the pipeline and corresponding to the heating zone. The working fluid is filled in the pipeline. The magnetic particles are movably arranged in the working fluid. When the heating zone is located above the cooling zone along the direction of gravity, the magnetic particles passing through the heating zone lose their magnetic properties due to heat absorption and increase in temperature, and move to the cooling zone by gravity. The magnetic particles in the cooling zone recover magnetically due to heat dissipation and temperature reduction, and are magnetically attracted back to the heating zone by the magnetic generator. The travel of magnetic particles in the pipeline forms a cycle.
本發明的電子裝置,包括機體、管路、磁產生器、工作流體以及多個磁性粒體。機體內配置有熱源。管路配置於機體內。管路具有加熱區與冷卻區。熱源熱接觸加熱區以將熱量傳送至加熱區。磁產生器配置於管路外且對應至加熱區旁。工作流體填充於管路。磁性粒體活動地配置於工作流體。當加熱區沿重力方向是位於冷卻區之上時,行經加熱區的磁性粒體因吸熱且溫度升高而磁損耗,並藉由重力移至冷卻區。在冷卻區的磁性粒體因散熱且溫度降低而磁恢復,並被磁產生器磁吸回加熱區。磁性粒體在管路中的行進形成循環。The electronic device of the present invention includes a body, a pipeline, a magnetic generator, a working fluid and a plurality of magnetic particles. The body is equipped with a heat source. The pipeline is arranged in the body. The pipeline has a heating zone and a cooling zone. The heat source is in thermal contact with the heating zone to transfer heat to the heating zone. The magnetic generator is arranged outside the pipeline and corresponding to the heating zone. The working fluid is filled in the pipeline. The magnetic particles are movably arranged in the working fluid. When the heating zone is located above the cooling zone along the direction of gravity, the magnetic particles passing through the heating zone lose their magnetic properties due to heat absorption and increase in temperature, and move to the cooling zone by gravity. The magnetic particles in the cooling zone are magnetically recovered due to heat dissipation and temperature reduction, and are magnetically attracted back to the heating zone by the magnetic generator. The travel of magnetic particles in the pipeline forms a cycle.
基於上述,散熱模組與應用其的電子裝置,分別在管路內配置有工作流體與多個磁性粒體,除了使磁性粒體藉由工作流體而在管路內移動之外,同時更因磁性粒體的磁性會隨溫度改變,而搭配對應構件設置,以讓磁性粒體在管路內形成循環。Based on the above, the heat dissipation module and the electronic device using the same are respectively equipped with a working fluid and a plurality of magnetic particles in the pipeline. In addition to making the magnetic particles move in the pipeline by the working fluid, it is also The magnetic properties of the magnetic particles will change with temperature, and the corresponding components are set to make the magnetic particles circulate in the pipeline.
當加熱區沿重力方向是位在冷卻區之上時,磁性粒體因吸熱而磁損耗,而使其不被磁產生器吸引無法抵抗重力而移向冷卻區,待其散熱而溫度降低而磁恢復,便能被磁產生器磁吸回加熱區,進而使磁性粒體在管路內形成循環,而達到散熱的效果。如此一來,工作流體與磁性粒體分別能因應不同狀態而提供所需的散熱效果。When the heating zone is located above the cooling zone along the direction of gravity, the magnetic particles lose their magnetic properties due to heat absorption, so that they are not attracted by the magnetic generator and cannot resist gravity and move to the cooling zone. After recovery, it can be magnetically attracted back to the heating zone by the magnetic generator, thereby making the magnetic particles circulate in the pipeline to achieve the effect of heat dissipation. In this way, the working fluid and the magnetic particles can respectively provide required heat dissipation effects according to different states.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.
圖1是依據本發明一實施例的散熱模組的示意圖。圖2是磁性粒體於不同溫度時的磁滯曲線。請同時參考圖1與圖2,在本實施例中,散熱模組100適用於電子裝置,所述電子裝置具有熱源11,其例如是電子裝置的處理器晶片或顯示晶片,散熱模組100包括管路110、磁產生器120、工作流體140以及多個磁性粒體130,其中管路110具有加熱區112與冷卻區113,熱源11熱接觸於加熱區112,以使熱源11產生的熱量傳送至加熱區112。磁產生器120,包括電磁鐵、永久磁鐵或其組合,配置於管路110外且對應至加熱區112旁。工作流體140填充於管路110內,磁性粒體130,例如是微米顆粒形式的磁粉或奈米顆粒形式的磁粉,活動地配置於工作流體140中。在此將管路110及其內的工作流體140予以虛體化,以利於辨識出工作流體140內的磁性粒體130。再者,管路110是迴路(loop)管路,磁性粒體130利用工作流體140作為介質而得以順利地在管路110內活動。加熱區112與冷卻區113分屬迴路管路的相對兩側。在此並未限制磁產生器120的對應於熱源11的位置,舉凡能將冷卻區113的磁性粒體130予以磁吸回加熱區112者,皆可適用於本實施例。FIG. 1 is a schematic diagram of a heat dissipation module according to an embodiment of the present invention. Figure 2 shows the hysteresis curves of magnetic particles at different temperatures. Please refer to FIG. 1 and FIG. 2 at the same time. In this embodiment, the
如圖2所示,磁性粒體130例如是以釹鐵硼磁石(NdFeB)製成,在此顯示其在第二象限的磁滯曲線,其中磁場強度H(圖示橫軸)和磁感應強度B(圖示縱軸)之間的關係是非線性的,但其隨著溫度的改變趨勢卻很明顯,也就是當溫度升高時,將使磁性粒體130的磁滯力降低,反之,其也將因溫度降低而使其磁滯力升高。As shown in FIG. 2 , the
如此一來,如圖1所示,當加熱區112沿重力方向G是位於冷卻區113之上時,行經加熱區112的磁性粒體130因吸熱且溫度升高而磁損耗,如圖中以剖面線標示出的部分磁性粒體130。接著,這些已經磁損耗的磁性粒體130將會與磁產生器120的磁吸作用降低,進而無法抵抗此時的重力,故而藉由重力由上而下地移至冷卻區113。也就是說,當磁性粒體130磁損耗時,磁產生器120對磁性粒體130的磁吸力會小於磁性粒體130的重力勢能。因此,在加熱區112以降低磁滯力的磁性粒體130將會隨著重力影響而滑落至冷卻區113。In this way, as shown in FIG. 1 , when the
接著,在冷卻區113的磁性粒體130則因散熱且溫度降低而磁恢復,也就是本實施例的磁性粒體130的磁損耗是可逆的。如此,磁性粒體130的磁滯力將會因其逐漸散熱而逐漸恢復,進而順利地被磁產生器120磁吸而再次移回加熱區112。據此,磁性粒體130將在管路110中構成循環式的行進流徑(flow path)F1。Next, the
圖3是散熱模組於另一狀態的示意圖,與圖1相較之下,圖3呈現出將圖1進行上下顛倒的使用狀態。請參考圖3,在本實施例中,散熱模組100例如是兩相流散熱模組,在圖3的狀態下,冷卻區113沿重力方向G是位於加熱區112之上,因此工作流體140在加熱區112吸熱而從液態轉變為氣態並移向冷卻區113,且工作流體140在冷卻區113會因散熱而從氣態轉變為液態,並流回加熱區112。如此,工作流體140將在管路110中構成另一個循環式的行進流徑F2。從圖3能清楚得知,在此狀態下,因磁性粒體130的重力勢能大於工作流體140因吸熱所具有的分子勢能,因此磁性粒體130仍留於加熱區112,並未隨著工作流體140移動。FIG. 3 is a schematic diagram of the heat dissipation module in another state. Compared with FIG. 1 , FIG. 3 shows a use state in which FIG. 1 is turned upside down. Referring to FIG. 3 , in this embodiment, the
由圖1與圖3可清楚得知,本實施例的散熱模組100能藉由工作流體140與磁性粒體130形成不同的行進流徑F1、F2,而得以對應熱源11所處位置不同,或電子裝置處於不同操作姿勢的不同散熱需求。換句話說,本實施例的散熱模組100是提供複合式的散熱手段,而依據重力狀態進行散熱模式的切換。It can be clearly seen from FIG. 1 and FIG. 3 that the
還需說明的是,散熱模組100並不限於圖1與圖3所示的,讓加熱區112位於冷卻區113的正上方,或讓冷卻區113位於加熱區112的正上方。舉例來說,即使電子裝置呈現傾斜狀態,也就是將圖1的散熱模組100予以傾斜置放,但加熱區112與冷卻區113由於是在管路110的相對兩側,因此沿重力方向G仍存高低差異。若使加熱區112高於冷卻區113時,其仍能達到如圖1所示,讓吸熱後的磁性粒體130藉由重力而移至冷卻區113以進行散熱。It should also be noted that the
另外,在本實施例中,磁性粒體130分別存在外覆層(未繪示)而具有能避免彼此聚合的外形輪廓與表面粗糙度,也就是如圖1與圖3所示球形或具備流線外輪廓而有利於其在工作流體140中移動者。此舉能有效地避免磁性粒體130彼此相互聚合而產生結塊等情形。In addition, in this embodiment, the
圖4是電子裝置及其內散熱模組的示意圖。請參考圖4,電子裝置10例如是平板電腦,其內設置有熱源11與散熱模組,且熱源11所產生的熱量是經由熱管12傳送至散熱模組,而散熱模組藉由與電子裝置10的機體結構接觸,且涵蓋電子裝置10的大部範圍,而使管路210在遠離熱源11處皆可視為冷卻區。FIG. 4 is a schematic diagram of an electronic device and its internal heat dissipation module. Please refer to FIG. 4 , the
在此,散熱模組如前述實施例具備類似的構件組成,因此對於相同部分本實施例便不再予以細述。與前述實施例不同的是,本實施例的管路210包括加熱區212、冷卻區213以及磁產生區211,如前所述,磁產生器包括電磁鐵、永久磁鐵或其組合,為了讓冷卻區213的磁性粒體能被順利地磁吸至加熱區212,故可預期地將不同型式的磁產生器對應地配置在磁產生區211的不同分段S1、S2,並使所述分段S1、S2能產生不同磁力而形成磁力梯度。Here, the heat dissipation module is composed of similar components as in the previous embodiment, so the same parts will not be described in detail in this embodiment. Different from the previous embodiment, the
舉例來說,本實施例的熱源11也同時是電子裝置10的控制單元,其電性連接至用以對應分段S1、S2的電磁鐵(即,前述實施例的磁產生器120),因此能依據所需而在分段S1、S2處調整所提供磁力的大小及磁力的產生頻率,藉以順利地將磁性粒體導引回加熱區212。For example, the
此外,若將所述控制單元對應至圖3所示實施例,當冷卻區113沿重力方向G高於加熱區112時,也就是當下是由工作流體140作為散熱手段時,則控制單元即能據此停止或休眠磁產生器120。反之,控制單元則啟動磁產生器120。換句話說,控制單元能依據散熱模組100中,管路110的加熱區112與冷卻區113在重力場的狀態而據以對應地控制磁產生器120。In addition, if the control unit corresponds to the embodiment shown in FIG. 3 , when the
綜上所述,在本發明的上述實施例中,散熱模組與應用其的電子裝置,分別在管路內配置有工作流體與多個磁性粒體,除了使磁性粒體藉由工作流體而在管路內移動之外,同時更因磁性粒體的磁性會隨溫度改變,而搭配對應構件設置,以讓磁性粒體在管路內形成循環。To sum up, in the above-mentioned embodiments of the present invention, the heat dissipation module and the electronic device using the same are respectively provided with working fluid and a plurality of magnetic particles in the pipeline, except that the magnetic particles are dissipated by the working fluid. In addition to the movement in the pipeline, at the same time, because the magnetic properties of the magnetic particles will change with temperature, they are arranged with corresponding components to allow the magnetic particles to form a circulation in the pipeline.
當加熱區沿重力方向是位在冷卻區之上時,磁性粒體因吸熱而磁損耗,而使其不被磁產生器吸引無法抵抗重力而移向冷卻區,待其散熱而溫度降低而磁恢復,便能被磁產生器磁吸回加熱區,進而使磁性粒體在管路內形成循環,而達到散熱的效果。反之,當冷卻區沿重力方向是位在加熱區之上時,則改以工作流體及其所形成的另一循環作為當下的散熱手段。如此一來,工作流體與磁性粒體分別能因應不同狀態而提供所需的散熱效果。When the heating zone is located above the cooling zone along the direction of gravity, the magnetic particles lose their magnetic properties due to heat absorption, so that they are not attracted by the magnetic generator and cannot resist gravity and move to the cooling zone. After recovery, it can be magnetically attracted back to the heating zone by the magnetic generator, thereby making the magnetic particles circulate in the pipeline to achieve the effect of heat dissipation. On the contrary, when the cooling zone is located above the heating zone along the direction of gravity, the working fluid and another circulation formed by it are used as the current heat dissipation means. In this way, the working fluid and the magnetic particles can respectively provide required heat dissipation effects according to different states.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be determined by the scope of the appended patent application.
10:電子裝置
11:熱源
12:熱管
100:散熱模組
110、210:管路
112、212:加熱區
113、213:冷卻區
120:磁產生器
130:磁性粒體
140:工作流體
211:磁產生區
B:磁感應強度
F1、F2:行進流徑
G:重力方向
H:磁場強度
S1、S2:分段10: Electronics
11: Heat source
12: Heat pipe
100: cooling
圖1是依據本發明一實施例的散熱模組的示意圖。 圖2是磁性粒體於不同溫度時的磁滯曲線。 圖3是散熱模組於另一狀態的示意圖。 圖4是電子裝置及其內散熱模組的示意圖。FIG. 1 is a schematic diagram of a heat dissipation module according to an embodiment of the present invention. Figure 2 shows the hysteresis curves of magnetic particles at different temperatures. FIG. 3 is a schematic diagram of the heat dissipation module in another state. FIG. 4 is a schematic diagram of an electronic device and its internal heat dissipation module.
11:熱源11: Heat source
100:散熱模組100: cooling module
110:管路110: Pipeline
112:加熱區112: Heating zone
113:冷卻區113: Cooling zone
120:磁產生器120: Magnetic Generator
130:磁性粒體130: Magnetic particles
140:工作流體140: Working fluid
F1:行進流徑F1: Traveling flow path
G:重力方向G: direction of gravity
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109114122A TWI768333B (en) | 2020-04-28 | 2020-04-28 | Heat dissipation module and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109114122A TWI768333B (en) | 2020-04-28 | 2020-04-28 | Heat dissipation module and electronic device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202140987A TW202140987A (en) | 2021-11-01 |
TWI768333B true TWI768333B (en) | 2022-06-21 |
Family
ID=80783428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109114122A TWI768333B (en) | 2020-04-28 | 2020-04-28 | Heat dissipation module and electronic device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI768333B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116520605B (en) * | 2023-07-05 | 2023-09-08 | 惠科股份有限公司 | Display device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI259569B (en) * | 2005-06-09 | 2006-08-01 | Ind Tech Res Inst | Micro channel heat sink driven by hydromagnetic wave pump |
CN1995898A (en) * | 2006-12-21 | 2007-07-11 | 清华大学 | Thermomagnetic convection type magnetic fluid heat-convection system |
CN102064148A (en) * | 2009-11-14 | 2011-05-18 | 佛山市顺德区汉达精密电子科技有限公司 | Magnetic thermal cycling system |
JP6172945B2 (en) * | 2013-01-09 | 2017-08-02 | 株式会社Kri | MAGNETIC FLUID DRIVE DEVICE, HEAT TRANSPORT DEVICE AND POWER GENERATION DEVICE USING THE SAME |
WO2018026327A1 (en) * | 2016-08-04 | 2018-02-08 | Nanyang Technological University | An apparatus for transferring heat from a heat source to a heat sink |
CN110446397A (en) * | 2019-06-19 | 2019-11-12 | 京东方科技集团股份有限公司 | Heat dissipation screened film and its application |
-
2020
- 2020-04-28 TW TW109114122A patent/TWI768333B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI259569B (en) * | 2005-06-09 | 2006-08-01 | Ind Tech Res Inst | Micro channel heat sink driven by hydromagnetic wave pump |
CN1995898A (en) * | 2006-12-21 | 2007-07-11 | 清华大学 | Thermomagnetic convection type magnetic fluid heat-convection system |
CN102064148A (en) * | 2009-11-14 | 2011-05-18 | 佛山市顺德区汉达精密电子科技有限公司 | Magnetic thermal cycling system |
JP6172945B2 (en) * | 2013-01-09 | 2017-08-02 | 株式会社Kri | MAGNETIC FLUID DRIVE DEVICE, HEAT TRANSPORT DEVICE AND POWER GENERATION DEVICE USING THE SAME |
WO2018026327A1 (en) * | 2016-08-04 | 2018-02-08 | Nanyang Technological University | An apparatus for transferring heat from a heat source to a heat sink |
CN110446397A (en) * | 2019-06-19 | 2019-11-12 | 京东方科技集团股份有限公司 | Heat dissipation screened film and its application |
Also Published As
Publication number | Publication date |
---|---|
TW202140987A (en) | 2021-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060278373A1 (en) | Microchannel cooling device with magnetocaloric pumping | |
US20070068172A1 (en) | Liquid cooling system | |
US7295435B2 (en) | Heat sink having ferrofluid-based pump for nanoliquid cooling | |
US20060185973A1 (en) | Power supply system employing conductive fluid | |
TWI768333B (en) | Heat dissipation module and electronic device | |
US7423874B2 (en) | Magneto-hydrodynamic heat sink | |
CN103503226A (en) | Cooling device and method for cooling an electrochemical energy accumulator | |
US7861769B2 (en) | Magneto-hydrodynamic hot spot cooling heat sink | |
US20220045592A1 (en) | Liquid heat exchanger for electronic device | |
TW201633887A (en) | Heat dissipation module | |
TWI582924B (en) | Heat dissipation module and electronic device | |
TWM309314U (en) | Heat-dissipating mechanical housing | |
CN113710052B (en) | Heat dissipation module and electronic device | |
CN107094359B (en) | Radiating module and electronic device | |
US7269007B2 (en) | Magneto-hydrodynamic heat sink | |
TWM524499U (en) | Heat dissiapation module | |
JP2015536578A (en) | Passing air cooling technology and passing air circuit board module | |
CN202603132U (en) | Groove-type magnetic fluid cooling device suitable for electronic device | |
EP1934670B1 (en) | Magneto-hydrodynamic heat sink | |
US20240314921A1 (en) | Thermal solutions for cooling electronic devices | |
JP2012233627A (en) | Heat transport by non-magnetic solid floating and sinking in magnetic fluid | |
TWI793891B (en) | Heat conduction module and electronic device | |
TWI731578B (en) | Heat conducting device and electronic device | |
TW201508236A (en) | Cycling heat dissipation module | |
CN116719395A (en) | Portable electronic device |