TWI767567B - 反射遮罩及其製造方法 - Google Patents

反射遮罩及其製造方法 Download PDF

Info

Publication number
TWI767567B
TWI767567B TW110105580A TW110105580A TWI767567B TW I767567 B TWI767567 B TW I767567B TW 110105580 A TW110105580 A TW 110105580A TW 110105580 A TW110105580 A TW 110105580A TW I767567 B TWI767567 B TW I767567B
Authority
TW
Taiwan
Prior art keywords
layer
based material
absorber
mask
substrate
Prior art date
Application number
TW110105580A
Other languages
English (en)
Other versions
TW202144902A (zh
Inventor
蔡虹驛
謝瑋哲
連大成
李信昌
林秉勳
鄭浩平
陳明威
蔡思屏
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/103,023 external-priority patent/US11592737B2/en
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202144902A publication Critical patent/TW202144902A/zh
Application granted granted Critical
Publication of TWI767567B publication Critical patent/TWI767567B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/48Protective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • G03F1/56Organic absorbers, e.g. of photo-resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • G03F1/58Absorbers, e.g. of opaque materials having two or more different absorber layers, e.g. stacked multilayer absorbers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

一種反射遮罩包括基板、設置於基板上的反射性多層、設置於反射性多層上的覆蓋層以及設置於覆蓋層上的吸收層。吸收包括由基於Cr的材料、基於Ir的材料、基於Pt的材料或基於Co的材料中的一或多者製成的基礎材料,且進一步包括由Si、B、Ge、Al、As、Sb、Te、Se及Bi組成的群組所選擇的一或多種額外元素。

Description

反射遮罩及其製造方法
本揭露之一些實施例是關於一種反射遮罩以及製造反射遮罩的方法。
光微影術操作係半導體製造製程中的關鍵操作之一。光微影術技術包括紫外線微影術、深紫外線微影術及極紫外線微影術(extreme ultraviolet lithography;EUVL)。光罩係光微影術操作中的重要元件。製造具高反射性部分及高吸收部分的具有高對比度的EUV光罩係至關重要的。
根據本揭露之一些實施例,一種反射遮罩包含基板、反射性多層、覆蓋層以及吸收層。反射性多層設置於基板上。覆蓋層設置於反射性多層上。吸收層設置於覆蓋層上。 吸收層包括由基於Cr的材料、基於Ir的材料、基於Pt的材料或基於Co的材料中的一或多者製成的基礎材料,且進一步包含選自由Si、B、Ge、Al、As、Sb、Te、Se及Bi組成的群組的一或多種額外元素。
根據本揭露之一些實施例,一種反射遮罩包含基板、反射性多層、覆蓋層、中間層以及吸收層。反射性多層設置於基板上。覆蓋層設置於反射性多層上。中間層設置於覆蓋層上。吸收層設置於中間層上。中間層係包含一或多種類金屬元素的一層。
根據本揭露之一些實施例,一種製造反射遮罩之方法包含在遮罩毛胚上方形成光阻層,遮罩毛胚包括基板、在基板上的反射性多層、在反射性多層上的覆蓋層、在覆蓋層上的吸收層及硬遮罩層。圖案化光阻層。藉由使用經圖案化的光阻層作為遮罩來圖案化硬遮罩層。藉由使用經圖案化的硬遮罩層作為遮罩來圖案化吸收層。移除該硬遮罩層,其中在圖案化該吸收層之期間,在吸收層的蝕刻側壁上形成保護層,其中保護層抑制吸收層的橫向蝕刻。
EB:光化輻射
5:EUV光罩毛胚
10:基板
15:多層Mo/Si堆疊
20:覆蓋層
22:中間層
23:中間層
25:吸收層
25A:額外元素
29:保護層
30:硬遮罩層
35:第一光阻層
40:圖案
41:圖案
42:圖案
45:背側導電層
50:第二光阻層
55:圖案
57:黑色邊界圖案
EUV:極紫外線
S:基板
S801:步驟
S802:步驟
S803:步驟
S804:步驟
Si:矽層
Mo:鉬層
TL:目標層
PR:光阻層
X1:數值
X2:數值
Y1:數值
Y2:數值
X:方向
Y:方向
Z:方向
本揭露的一些實施例係在結合附圖閱讀時自以下詳細描述最佳地理解。要強調的是,根據產業中的標準作業,各種特徵未按比例繪製且僅用於說明目的。實際上,為論述清楚起見,各種特徵的尺寸可任意地增大或縮小。
第1A圖、第1B圖及第1C圖展示根據本揭露的一些實 施例的EUV光罩毛胚。
第2A圖、第2B圖、第2C圖、第2D圖、第2E圖及第2F圖示意性地說明根據本揭露的一些實施例的製造EUV光罩的方法。
第3A圖、第3B圖、第3C圖及第3D圖示意性地說明根據本揭露的一實施例的製造EUV光罩的方法。
第4A圖、第4B圖及第4C圖根據本揭露的一些實施例展示製造EUV光罩的各種狀態的剖面圖。
第5A圖、第5B圖、第5C圖及第5D圖根據本揭露的一些實施例展示製造EUV光罩的各種狀態的剖面圖。
第6A圖及第6B圖根據本揭露的一些實施例展示製造EUV光罩的各種狀態的剖面圖。
第7A圖及第7B圖展示根據本揭露的一些實施例的EUV光罩的剖面圖。
第8A圖展示製造半導體元件的方法的流程圖,且第8B圖、第8C圖、第8D圖及第8E圖展示根據本揭露的一些實施例的製造半導體元件的方法的順序製造操作。
將理解,以下揭示內容提供用於實施本揭露的一些實施例不同特徵的許多不同實施例或實例。元件及配置的特定實施例或實例將在下文描述以簡化本揭露的一些實施例。當然,此等元件及配置僅為實例且不欲為限制性的。舉例而言,元件的尺寸不限於所揭示的範圍或值,但可視 元件的處理條件及/或所要性質而定。此外,在隨後描述中的第一特性在第二特徵上方或上形成可包括第一及第二特徵直接接觸地形成的實施例,且亦可包括額外特徵可介於第一特徵與第二特徵之間形成,使得第一及第二特徵不可直接接觸的實施例。為簡單及清楚起見,各種特徵可按不同標度任意地繪製。
此外,為了方便用於描述如諸圖中所圖示的一個元件或特徵與另一元件或特徵的關係的描述,在本文中可使用空間相對術語,諸如「在......下面」、「在......之下」、「下部」、「在......之上」、「上部」及類似術語。空間相對術語意欲涵蓋除了諸圖中所描繪的定向以外的元件在使用或操作時的不同定向。元件可另外定向(旋轉90度或處於其他定向),且本文中所使用的空間相關描述符可類似地加以相應解釋。另外,術語「由......製成」可意味「包含」或「由......組成」。在本揭露的一些實施例中,片語「A、B及C中的一者」意味「A、B及/或C」(A、B、C、A及B、A及C、B及C或A、B及C),且不意味來自A的一個元件、來自B的一個元件及來自C的一個元件,除非另外描述。
本揭露的一些實施例提供一種製造一EUV光罩的方法。更確切地,本揭露的一些實施例提供用於防止或抑制EUV光罩的背側導電層上的損傷的技術。
EUV微影術(EUV lithography;EUVL)使用掃描器,該些掃描器使用具有在極紫外線(extreme ultraviolet;EUV)區域中的波長(約1nm至約100nm,例如,13.5nm)的光。遮罩係EUVL系統的關鍵元件。因為光學材料對EUV輻射不透明,所以EUV光罩係反射遮罩。電路圖案形成於設置於反射結構上方的吸收層中。吸收體具有低EUV反射率,例如小於3%至5%。
本揭露的一些實施例提供一種具有低反射(高吸收)吸收體結構的EUV反射光罩。
第1A圖及第1B圖展示根據本揭露的一些實施例的EUV反射光罩毛胚。第1A圖係(自頂部觀看的)平面圖且第1B圖係沿著X方向的剖面圖。
在一些實施例中,具有電路圖案的EUV光罩係由EUV光罩毛胚5形成。EUV光罩毛胚5包括基板10、多個交替的矽層Si及鉬層Mo的多層Mo/Si堆疊15、覆蓋層20、吸收層25及硬遮罩層30。此外,背側導電層45形成於基板10的背面上,如第1B圖所示。
在一些實施例中,基板10係由低熱膨脹材料形成。在一些實施例中,基板係低熱膨脹玻璃或石英,諸如熔融矽石或熔融石英。在一些實施例中,低熱膨脹玻璃基板透射可見波長、靠近可見光譜的紅外線波長(近紅外線)的一部分及紫外線波長的一部分的光。在一些實施例中,低熱膨脹玻璃基板吸收極紫外線波長及靠近極紫外線的深紫外線波長。在一些實施例中,基板10的尺寸X1×Y1為152mm×152mm、具有約20mm的厚度,其中數值X1可大於、等於或小於數值Y1。在其他實施例中,基板10 的尺寸X1×Y1小於152mm×152mm且等於或大於148mm×148mm。基板10的形狀為正方形或矩形。
在一些實施例中,基板之上的功能層(多層Mo/Si堆疊15、覆蓋層20、保護層22、吸收層25及硬遮罩層30)具有比基板10小的寬度。在一些實施例中,該些功能層的尺寸X2 x Y2在從約138mm×138mm至142mm×142mm的範圍間,其中數值X2可大於、等於或小於數值Y2。在一些實施例中,該些功能層的形狀為正方形或矩形。
在其他實施例中,吸收層25及硬遮罩層30具有比基板10、多層Mo/Si堆疊15及覆蓋層20小、在從約138mm×138mm至142mm×142mm範圍間的尺寸,如第1C圖所示。該些功能層中的一或多者的較小尺寸能夠藉由在藉由例如濺射形成各別層時使用具有在從約138mm×138mm至142mm×142mm範圍間的開口的框形狀蓋形成。在其他實施例中,基板10之上的所有層具有與基板10相同的尺寸。
在一些實施例中,多層Mo/Si堆疊15包括約30個交替的矽層及鉬層至約60個交替的矽層及鉬層。在一些實施例中,形成約40個至約50個交替的矽層及鉬層。在一些實施例中,反射率比感興趣波長(例如,13.5nm)的約70%高。在一些實施例中,矽層及鉬層係藉由化學氣相沈積(chemical vapor deposition;CVD)、電漿增強化學氣相沈積(plasma-enhanced CVD;PECVD)、 原子層沈積(atomic layer deposition;ALD)、物理氣相沈積(physical vapor deposition;PVD)(濺射)或任何其他合適的膜形成方法形成。矽及鉬的每一層厚約2nm至約10nm。在一些實施例中,矽層及鉬層具有近似相同的厚度。在其他實施例中,矽及鉬的層厚度不同。在一些實施例中,每一矽層的厚度為約4nm且每一鉬層的厚度為約3nm。
在其他實施例中,多層堆疊15包括交替的鉬層及鈹層。在一些實施例中,儘管只要維持足夠反射率以用於將目標基板成像,允許任何數目個層,但多層堆疊15中的層的數目在從約20至約100的範圍間。在一些實施例中,反射率比感興趣波長(例如,13.5nm)的約70%高。在一些實施例中,多層堆疊15包括約30個至約60個交替的Mo層及Be層。在本揭露的其他實施例中,多層堆疊15包括約40個至約50個交替的Mo層及Be層。
在一些實施例中,覆蓋層20設置於多層Mo/Si堆疊15上方以防止多層堆疊15的氧化。在一些實施例中,覆蓋層20係由釕、釕合金(例如,RuNb、RuZr、RuZrN、RuRh、RuNbN、RuRhN、RuV或RuVN)或基於釕的氧化物(例如,RuO2、RuNbO、RiVO或RuON)製成,具有約2nm至約10nm的厚度。在一些實施例中,覆蓋層20的厚度為約2nm至約5nm。在一些實施例中,覆蓋層20具有3.5nm±10%的厚度。在一些實施例中,覆蓋層20係藉由化學氣相沈積、電漿增強化學氣相沈積、 原子層沈積、物理氣相沈積(例如,濺射)或任何其他合適的膜形成方法形成。在其他實施例中,將Si層用作為覆蓋層20。
吸收層25設置於覆蓋層20上方。在一些實施例中,吸收層25為基於Ta的材料。在一些實施例中,吸收層25係由具有約25nm至約100nm的厚度的TaN、TaO、TaB、TaBO或TaBN製成。在一些實施例中,吸收層25厚度在從約50nm至約75nm的範圍間。在其他實施例中,吸收層25包括基於Cr的材料,諸如CrN、CrO、CrON、CrB及/或CrBN。在一些實施例中,吸收層25具有Cr、CrO、CrON、CrB及/或CrBN的多層結構。在其他實施例中,吸收層25包括基於Ir的材料,該材料包括元素銥(非化合物)或銥合金的諸如IrPt、IrAl、IrRu、IrB、IrN、IrSi及/或IrTi。在其他實施例中,吸收層25包括基於Pt的材料,該材料包括元素鉑(非化合物)或Pt合金,諸如PtAl、PtRu、PtB、PtSi、PtN及/或PtTi。在其他實施例中,吸收層25包括基於Co的材料,該材料包括元素鈷(非化合物)或Co合金,諸如CoO、CoB、CoBN、CoN及/或CoSi。
在一些實施例中,吸收層25係藉由化學氣相沈積、電漿增強化學氣相沈積、原子層沈積、物理氣相沈積或任何其他合適的膜形成方法形成。在一些實施例中,一或多個層如下文所陳述地設置於覆蓋層20與吸收層25之間。
在一些實施例中,吸收層25進一步包括一或多種 元素,諸如Si、B、Ge、Al、As、Sb、Te、Se及/或Bi,如下文所陳述。
在一些實施例中,一抗反射層(未示出)視情況設置於吸收層25上方。抗反射層在一些實施例中係由氧化矽製成,且具有約2nm至約10nm的厚度。在其他實施例中,將具有在從約2nm至約20nm範圍間的厚度的TaBO或Ta2O5層用作為抗反射層。在一些實施例中,抗反射層的厚度為約3nm至約10nm。在一些實施例中,抗反射層係藉由化學氣相沈積、電漿增強化學氣相沈積、原子層沈積、物理氣相沈積或任何其他合適的膜形成方法形成。
在一些實施例中,硬遮罩層30設置於吸收層25上方。在一些實施例中,硬遮罩層30形成於抗反射層上方。在一些實施例中,硬遮罩層30係由基於Cr的材料(諸如CrN、CrO、CrON或CrCON)製成。在其他實施例中,硬遮罩層30係由基於Ta的材料(諸如TaB、TaO、TaBO或TaBN)製成。在其他實施例中,硬遮罩層30係由矽、基於矽的化合物(例如,SiN或SiON)、釕或基於釕的化合物(Ru或RuB)製成。在一些實施例中,硬遮罩層30具有約4nm至約20nm的厚度。選擇硬遮罩層30的材料以具有對吸收層25的足夠高的蝕刻選擇性及與覆蓋層20相同或類似的蝕刻速率。在一些實施例中,硬遮罩層30係藉由化學氣相沈積、電漿增強化學氣相沈積、原子層沈積、物理氣相沈積或任何其他合適的膜形成方法形成。
在一些實施例中,背側導電層45設置於基板10 的第二主表面上,該第二主表面與多層Mo/Si堆疊15形成所在的基板10的第一主表面相反。在一些實施例中,背側導電層45係由TaB(硼化鉭)或其他基於Ta的導電材料製成。在一些實施例中,硼化鉭係晶體。晶狀硼化鉭包括TaB、Ta5B6、Ta3B4及TaB2。在其他實施例中,硼化鉭係多晶的或非晶的。在其他實施例中,背側導電層45係由基於Cr的導電材料(CrN或CrON)製成。在一些實施例中,背側導電層45的表面電阻等於或小於20Ω/□。在一些實施例中,背側導電層45的表面電阻等於或大於O.1Ω/□。在一些實施例中,背側導電層45的表面粗糙度Ra等於或小於0.25nm。在一些實施例中,背側導電層45的表面粗糙度Ra等於或大於0.05nm。此外,在一些實施例中,背側導電層45的平坦度等於或小於50nm(在EUV光罩內)。在一些實施例中,背側導電層45的平坦度大於1nm。在一些實施例中,背側導電層45的厚度在從約50nm至約400nm的範圍間。在其他實施例中,背側導電層45具有約50nm至約100nm的厚度。在一些實施例中,厚度在從約65nm至約75nm的範圍間。在一些實施例中,背側導電層45係藉由大氣化學氣相沈積(chemical vapor deposition;CVD)、低壓CVD、電漿增強CVD、雷射增強CVD、原子層沈積(atomic layer deposition;ALD)、分子束磊晶(molecular beam epitaxy;MBE)、包括熱沈積、脈衝雷射沈積、電子束蒸發、離子束輔助蒸發及濺射的物理氣相沈積或任 何其他合適的膜形成方法形成。在CVD的情況下,源氣體在一些實施例中包括TaCl5及BCl3
在一些實施例中,能夠利用EUV輻射將形成於光罩上的碳氫化合物殘餘物催化成CO2及/或H2O的光催化層(未示出)設置於覆蓋層20上。因此,執行對遮罩表面的原位自清洗。在一些實施例中,在EUV掃描器系統中,將氧氣及氫氣注入至EUV腔室中以維持腔室壓力(例如,處於約2Pa)。腔室背景氣體可為氧的來源。除了光催化功能之外,光催化層對各種化學品及各種化學程序(諸如清洗及蝕刻)具有足夠的耐久性及抵抗性。在一些實例中,用於在後續製程中製造EUV反射遮罩的臭氧化水損害由Ru製成的覆蓋層20且導致顯著的EUV反射率下降。在一些實施例中,在Ru氧化之後,Ru氧化物容易藉由諸如Cl2或CF4氣體的蝕刻劑蝕刻除去。在一些實施例中,光催化層包括氧化鈦(TiO2)、氧化錫(SnO)、氧化鋅(ZnO)及硫化鎘(CdS)中的一或多者。光催化層的厚度在一些實施例中在從約2nm至約10nm的範圍間,且在其他的實施例中在從約3nm至約7nm的範圍間。當厚度過薄時,光催化層不能充分地充當蝕刻終止層。當厚度過大時,光催化層可吸收EUV輻射。
第2A圖至第2F圖及第3A圖至第3D圖示意性地說明製造供極紫外線微影術(extreme ultraviolet lithography;EUVL)使用的EUV光罩的方法。據瞭解,對於該方法的額外實施例,額外操作可在藉由第2A圖至 第3D圖展示的程序之前、期間及之後提供,且下文描述的操作中的一些可替換或消除。操作/程序的次序可為可互換的。
在EUV光罩的製造中,在EUV光罩毛胚的硬遮罩層30上方形成第一光阻層35,如第2A圖所示,且使光阻層35選擇性地曝光於光化輻射EB,如第2B圖所示。在一些實施例中,在第一光阻層35形成之前,EUV光罩毛胚經受檢查。顯影選擇性曝光的第一光阻層35以在第一光阻層35中形成圖案40,如第2C圖所示。在一些實施例中,光化輻射EB為電子束或離子束。在一些實施例中,圖案40對應於半導體元件特徵的圖案,該圖案將使用EUV光罩在後續操作中形成。
接下來,將第一光阻層35中的圖案40延伸至硬遮罩層30中,從而形成在硬遮罩層30中、暴露吸收層25的部分的圖案41,如第2D圖所示。延伸至硬遮罩層30中的圖案41係藉由蝕刻形成,在一些實施例中,蝕刻使用對吸收層25具選擇性的合適的濕或乾蝕刻劑。在硬遮罩層30中的圖案41形成之後,藉由光阻剝除器移除第一光阻層35以暴露硬遮罩層30的上部表面,如第2E圖所示。
接著,使硬遮罩層30中的圖案41延伸至吸收層25中,從而形成在吸收層25中、暴露覆蓋層20的部分的圖案42,如第2F圖所示,且接著移除硬遮罩層30,如第3A圖所示。延伸至吸收層25中的圖案42係藉由蝕刻形成,在一些實施例中,該蝕刻使用對吸收層25具選擇性 的合適的濕或乾蝕刻劑。在一些實施例中,使用電漿乾式蝕刻。
如第3B圖所示,在吸收層25上方形成第二光阻層50,從而填充吸收層25中的圖案42。使第二光阻層50選擇性地曝光於諸如電子束、離子束或紫外線輻射的光化輻射。顯影選擇性曝光的第二光阻層50以形成第二光阻層50中的圖案55,如第3B圖所示。圖案55對應於圍繞電路圖案的黑色邊界。黑色邊界係藉由在電路圖案區域周圍的區域中移除EUV光罩上的所有多層形成的框形狀區域。形成黑色邊界以防止當將EUV光罩印刷在晶圓上時的鄰近場的暴露。在一些實施例中,黑色邊界的寬度在從約1mm至約5mm的範圍間。
接下來,使第二光阻層50中的圖案55延伸至吸收層25、覆蓋層20及多層Mo/Si堆疊15中,從而形成在吸收層25、覆蓋層20及多層Mo/Si堆疊15中、暴露基板10的部分的圖案57(參見第3D圖),如第3C圖所示。圖案57係藉由蝕刻形成,在一些實施例中,蝕刻使用對蝕刻的層中的每一者具選擇性的一或多種合適的濕或乾蝕刻劑。在一些實施例中,使用電漿乾式蝕刻。
接著,藉由合適的光阻剝除器移除第二光阻層50以暴露吸收層25的上部表面,如第3D圖所示。在本揭露的一些實施例中,吸收層25、覆蓋層20及多層Mo/Si堆疊15中的黑色邊界圖案57界定光罩的黑色邊界。
一般地,基於Cr的材料、基於Ir的材料、基於 Pt的材料或基於Co的材料(除基於Ta的材料外的材料)具有高EUV吸收(消光)係數k。舉例而言,CrN具有0.0387的k值,該k值高於TaBN的k值(0.031)及TaBO的k值(0.027)。因此,有可能減小吸收層的厚度(例如,自TaBN的70nm減小至CrN的46nm),此可抑制經圖案化的吸收層的三維效應。然而,基於Cr的材料、基於Ir的材料、基於Pt的材料或基於Co的材料由於該些材料的低蝕刻速率而難以蝕刻,且難以控制經圖案化的吸收層的形狀。舉例而言,經圖案化的吸收層的側面可具有造成三維效應的凹面形狀或楔形形狀。
在本揭露的一些實施例中,將一或多種元素添加至吸收層以控制經圖案化的吸收層25的輪廓。特別地,選擇元素,使得保護(或鈍化)層由於元素與蝕刻氣體之間的反應而形成於經圖案化或蝕刻的吸收層的側面上。在一些實施例中,保護層為氧化物。
在一些實施例中,吸收層25進一步包括一或多種額外的類金屬元素,諸如Si、B、Ge、Al、As、Sb、Te、Se及/或Bi。在一些實施例中,額外元素不同於組成作為基礎材料的吸收層25的元素。
在一些實施例中,額外元素25A摻雜於吸收層25中,如第4A圖所示。在一些實施例中,摻雜的額外元素的濃度在從約1×1020個原子/cm3(atoms/cm3)至1×1022個原子/cm3的範圍間,且在其他實施例中在從約5×1020個原子/cm3至5×1021個原子/cm3的範圍間。在 一些實施例中,額外元素25A均勻地分佈於吸收層25中。在其他實施例中,額外元素的分佈在吸收層中不均勻。在一些實施例中,額外元素的濃度自底部(覆蓋層20與吸收層之間的界面)至頂部(吸收層25與硬遮罩層30之間的界面)增大。在其他實施例中,額外元素的濃度自底部至頂部減小。在其他實施例中,額外元素的濃度自底部至頂部增大,然後減小,且在其他實施例中,額外元素的濃度自底部至頂部減小,然後增大。在一些實施例中,額外元素的濃度在橫向方向上係實質上均勻的(在±5%內)。在一些實施例中,在EUV遮罩中,額外元素25A的濃度在從0.5原子百分比(atomic%)至30原子百分比的範圍間且在其他實施例中在從約1原子百分比至10原子百分比的範圍間。當額外元素的量小於此等範圍時,不能獲得如下文解釋的保護效應,且當額外元素的量大於此等範圍時,此可減少吸收層25對EUV光的吸收或可使得難以蝕刻吸收層25。
在一些實施例中,摻雜具有額外元素25A的吸收層25係藉由CVD、ALD或包括濺射的PVD形成。在一些實施例中,濺射程序使用由用於吸收層的材料(例如,TaBN)及額外元素(例如,Si)製成的靶。吸收層的濺射靶可安置在用於額外元素的濺射靶旁邊,且藉由用離子或電子束濺射兩個靶,摻雜具有額外元素的吸收層形成。藉由調整離子或電子束,有可能調整額外元素的濃度。在一些實施例中,該些靶係藉由各別離子或電子束濺射。在CVD 或ALD的情況下,在一些實施例中使用原位摻雜技術。
如第4B圖及第4C圖所示,在吸收層25的蝕刻期間,保護層29形成於吸收層的蝕刻側面上,以抑制吸收層的橫向蝕刻。在一些實施例中,蝕刻氣體包括含氯氣體(例如,Cl2、HCl、CCl4等)及含氧氣體(例如,O2)。在一些實施例中,使用含氟氣體(例如,F2、SF6、碳化氟(CF4、CHF3等)等)。在一些實施例中,蝕刻氣體中的氧與額外元素25A反應,從而形成作為蝕刻的副產物的保護層29。在一些實施例中,保護層為額外元素25A的氧化物,諸如氧化矽、氧化鍺、氧化硼等。在一些實施例中,保護層29的平均厚度在從約0.2nm至約2nm的範圍間。在其他實施例中,含碳、氟及/或氫的聚合物形成為保護層29。
如第4B圖及第4C圖所示,由於保護層29係在吸收層25的圖案化期間形成於吸收層的蝕刻側面上,因此有可能改良經圖案化的吸收層的輪廓。在一些實施例中,獲得實質上垂直的側壁。特別地,能夠避免在硬遮罩層30的吸收層25的底切,該底切可另外在蝕刻製程的過蝕刻步驟期間形成。
在其他實施例中,額外元素係作為設置於覆蓋層20與吸收層25之間的層22提供於遮罩毛胚中,如第5A圖至第5D圖所示。如第5A圖所示,作為額外元素的來源的中間層22形成於覆蓋層20與吸收層25之間。在一些實施例中,中間層22係由Si、B、Ge、Al、As、Sb、Te、Se及/或Bi(非化合物)或該些元素的合金或化合物 中的一者製成。在一些實施例中,中間層22的厚度在從約1nm至約10nm的範圍間,且在其他實施例中在從約2nm至約5nm的範圍間。若厚度過小,則用於形成保護層的額外元素的供應不足,且若厚度過大,則會影響EUV遮罩的反射性及/或吸收。在一些實施例中,中間層係藉由CVD、PECVD、ALD、PVD(濺射)或任何其他合適的膜形成方法形成。在一些實施例中,吸收層25不含中間層22的元素。
如第5B圖所示,吸收層25的蝕刻到達中間層22。接著,在過蝕刻步驟期間,中間層經蝕刻,從而形成如第5C圖所示的保護層29。因此,抑制可另外在過蝕刻步驟期間形成的底切或凸面側壁形狀。在一些實施例中,沿著垂直方向的保護層29的厚度不均勻。在一些實施例中,厚度自底部至頂部增大,如第5D圖所示。在一些實施例中,中間層22形成於吸收層25內,使得中間層22設置於下部吸收層與上部吸收層之間。在此情況下,下部吸收層的厚度與上部吸收層的厚度相同或不同(更小/更大)。
在一些實施例中,多個中間層23形成於吸收層25中,如第6A圖所示。在一些實施例中,中間層23中的每一者係由Si、B、Ge、Al、As、Sb、Te、Se及/或Bi(非化合物)或該些元素的合金中的一者製成。在一些實施例中,由如上文陳述的額外元素製成的2個至10個層在吸收層內。在一些實施例中,所有中間層23係由相同材料製成,且在其他實施例中,中間層23中的至少一者 係由與剩餘層不同的材料製成。在一些實施例中,一個層形成於吸收層的底部,類似於第5A圖,或一個層形成於吸收層的頂部。在一些實施例中,中間層23中的每一者的厚度在從約0.1nm至約1nm的範圍間,且在其他實施例中在從約0.2nm至約0.5nm的範圍間。若厚度過小,則用於形成保護層的額外元素的供應不足,且若厚度過大,則會影響吸收層25的吸收能力。在一些實施例中,中間層23中的至少一者為額外元素的單層或雙層。在一些實施例中,中間層23的厚度彼此相同,且在其他實施例中,中間層23中的至少一者具有不同於剩餘層的厚度。在一些實施例中,中間層23沿著垂直方向以相等間隔配置。在其他實施例中,中間層23的間距改變。
在一些實施例中,中間層22或中間層23係使用由額外元素(例如,Si)製成的濺射靶藉由濺射形成。濺射靶可安置在另一濺射靶(例如,吸收層的靶)旁邊。藉由切換靶,有可能形成中間層及吸收層的雙層或多層結構。切換可包括切換至靶上的濺射程序的離子或電子束。
在一些實施例中,保護層29保留在成品光罩上。在其他實施例中,保護層29將在圖案化吸收層25之後藉由例如濕式及/或乾式蝕刻移除,且因此,無保護層保留在成品光罩上。
第7A圖展示根據本揭露的一些實施例的成品EUV光罩的剖面圖。在一些實施例中,具有如第7A圖所示的電路圖案42的EUV光罩包括基板10、多個交替的 矽層及鉬層的多層Mo/Si堆疊15、覆蓋層20及經圖案化的吸收層25。此外,黑色邊界圖案57形成於吸收層25、覆蓋層20及多層堆疊15中,且背側導電層45形成於基板10的背面上。在一些實施例中,經圖案化的吸收層25包括基於Cr的材料、基於Pt的材料、基於Ir的材料或基於Co的材料。在一些實施例中,吸收層25進一步含有Si、B、Ge、Al、As、Sb、Te、Se及/或Bi中的一或多者。在一些實施例中,保護層29(例如,Si、B、Ge、Al、As、Sb、Te、Se及/或Bi中的一或多者的氧化物)形成於經圖案化的吸收層25的側壁上。在一些實施例中,保護層係以黑色邊界圖案57在覆蓋層及/或多層堆疊15的側壁上形成。在一些實施例中,無保護層保留在成品光罩上。
第7B圖展示根據本揭露的一些實施例的成品EUV光罩的剖面圖。在一些實施例中,具有如第7B圖所示的電路圖案42的EUV光罩包括基板10、多個交替的矽層及鉬層的多層Mo/Si堆疊15、覆蓋層20、經圖案化的中間層22及經圖案化的吸收層25。此外,黑色邊界圖案57形成於吸收層25、中間層22、覆蓋層20及多層堆疊15中,且背側導電層45形成於基板10的背面上。
在一些實施例中,經圖案化的吸收層25包括基於Cr的材料、基於Pt的材料、基於Ir的材料或基於Co的材料。在一些實施例中,中間層22包括Si、B、Ge、Al、As、Sb、Te、Se及/或Bi或該些元素的合金中的一或多 者。在一些實施例中,保護層29(例如,Si、B、Ge、Al、As、Sb、Te、Se及/或Bi中的一或多者的氧化物)形成於經圖案化的吸收層25的側壁上。在一些實施例中,保護層係以黑色邊界圖案57形成於覆蓋層及/或多層堆疊15的側壁上。在一些實施例中,無保護層保留在成品光罩上。
第8A圖展示製造半導體元件的方法的流程圖,且第8B圖、第8C圖、第8D圖及第8E圖展示根據本揭露的一些實施例的製造半導體元件的方法的順序製造操作。提供半導體基板S或其他合適的基板S,基板S將被圖案化以在其上形成積體電路。在一些實施例中,半導體基板S包括矽。替代或另外地,半導體基板S包括鍺、矽鍺或其他合適的半導體材料,諸如第III族至第V族半導體材料。在第8A圖的步驟S801,在基板上方形成待圖案化的目標層。在一些實施例中,基板S為半導體基板。在一些實施例中,目標層TL包括:導電層,諸如金屬層或多晶矽層;介電層,諸如氧化矽、氮化矽、SiON、SiOC、SiOCN、SiCN、氧化鉿或氧化鋁;或半導體層,諸如磊晶形成的半導體層。在一些實施例中,目標層TL係形成於諸如下面的隔離結構、電晶體或接線的結構之上。在第8A圖的步驟S802,在目標層上方形成光阻層,如第8B圖所示。光阻層PR在後續光微影術曝光程序期間對來自曝光源的輻射敏感。在當前實施例中,光阻層PR對在光微影術曝光程序中使用的極紫外線光EUV敏感。光阻層PR可藉由旋 塗或其他合適的技術形成於目標層TL上方。經塗佈的光阻層PR可經進一步烘烤以驅逐光阻層PR中的溶劑。在第8A圖的步驟S803,將光阻層曝光於EUV輻射,且圖案化光阻層,如第8B圖所示。光阻層PR的圖案化包括使用反射遮罩R(例如EUV遮罩)藉由極紫外線EUV的曝光系統來執行光微影術曝光程序。在曝光程序期間,在EUV遮罩上界定的積體電路(integrated circuit;IC)設計圖案成像至光阻層PR以在光阻層PR上形成潛伏圖案。光阻層PR的圖案化進一步包括顯影暴露的光阻層以形成具有一或多個開口的圖案化光阻層。在光阻層PR為正調性光阻層的一個實施例中,在顯影程序期間移除光阻層的暴露部分。光阻層PR的圖案化可進一步包括其他程序步驟,諸如不同階段的各種烘烤步驟。舉例而言,曝光後烘烤(post-exposure-baking;PEB)程序可在光微影術曝光程序之後且在顯影程序之前實施。
在第8A圖的步驟S804,利用經圖案化的光阻層PR作為蝕刻遮罩來圖案化目標層,如第8D圖所示。在一些實施例中,圖案化目標層TL包括使用經圖案化的光阻層PR作為蝕刻遮罩將蝕刻製程應用於目標層TL。蝕刻在經圖案化的光阻層PR的開口內暴露的目標層TL的部分,同時保護剩餘部分不被蝕刻。此外,可藉由濕剝離或電漿灰化來移除經圖案化的光阻層PR,如第8E圖所示。
在本揭露的一些實施例中,一或多種額外元素包括於吸收層中或鄰近於吸收層以控制經圖案化的吸收層的輪 廓,該一或多種額外元素可在吸收層的蝕刻期間形成保護層。亦有可能抑制或防止硬遮罩層下的底切(橫向凹部)。該些額外元素對於通常具有低蝕刻速率的吸收層有效。有可能獲得經圖案化的吸收層的垂直側壁,垂直側壁反過來抑制EUV微影術中的三維效應。
將理解,並非所有優點需要在本文中論述,無特定優點係所有實施例或實例所需要的,且其他實施例或實例可提供不同優點。
根據本揭露的一些實施例,一種反射遮罩包括基板、設置於基板上的反射性多層、設置於反射性多層上的覆蓋層以及設置於覆蓋層上的吸收層。吸收層包括由基於Cr的材料、基於Ir的材料、基於Pt的材料或基於Co的材料中的一或多者製成的基礎材料,且進一步含有選自由Si、B、Ge、Al、As、Sb、Te、Se及Bi組成的群組的一或多種額外元素。在先前及以下實施例中的一或多者中,一或多種額外元素不包括於基礎材料中。在先前及以下實施例中的一或多者中,該一或多種額外元素的一濃度在從0.5原子百分比至30原子百分比的範圍間。在先前及以下實施例中的一或多者中,沿著垂直方向的吸收層中的一或多種額外元素的濃度不均勻。在先前及以下實施例中的一或多者中,吸收層的基礎材料係由基於Ir的材料、基於Pt的材料或基於Co的材料製成。在先前及以下實施例中的一或多者中,吸收層經圖案化,且反射遮罩進一步包含保護層,保護層設置於經圖案化的吸收層的側壁上。在先前及以下 實施例中的一或多者中,保護層包括一或多種額外元素的氧化物。
根據本揭露的一些實施例,一種反射遮罩包括基板、設置於基板上的反射性多層、設置於反射性多層上的覆蓋層、設置於覆蓋層上的中間層及設置於中間層上的吸收層。中間層係一或多種類金屬元素的一層。在先前及以下實施例中的一或多者中,吸收層包括基於Cr的材料、基於Ir的材料、基於Pt的材料或基於Co的材料中的一或多者。在先前及以下實施例中的一或多者中,該中間層的厚度在從1nm至10nm的範圍間。在先前及以下實施例中的一或多者中,吸收層經圖案化,且反射遮罩進一步包含保護層,保護層設置於經圖案化的吸收層的側壁上。在先前及以下實施例中的一或多者中,該保護層包括一或多種類金屬元素的化合物。在先前及以下實施例中的一或多者中,保護層包括氧化矽或氧化硼。在先前及以下實施例中的一或多者中,吸收層不包含中間層的元素。
根據本揭露的一些實施例,一種反射遮罩包括基板、設置於基板上的反射性多層、設置於反射性多層上的覆蓋層以及設置於覆蓋層上的吸收層。吸收層包括由選自由Si、B、Ge、Al、As、Sb、Te、Se及Bi組成的群組中的至少一者製成的一或多個額外層。在先前及以下實施例中的一或多者中,吸收層包括基於Cr的材料、基於Ir的材料、基於Pt的材料或基於Co的材料中的一或多者。在先前及以下實施例中的一或多者中,提供兩個或多個額外層,額 外層中的至少一者設置於吸收層的底部或吸收層的頂部。在先前及以下實施例中的一或多者中,一或多個額外層中的每一者的一厚度在從0.1nm至1nm的範圍間。在先前及以下實施例中的一或多者中,吸收層經圖案化,且反射遮罩進一步包含保護層,保護層設置於經圖案化的吸收層的側壁上。在先前及以下實施例中的一或多者中,保護層包括選自由Si、B、Ge、Al、As、Sb、Te、Se及Bi組成的群組中的至少一者的化合物。
根據本揭露的一些實施例,在一種製造反射遮罩的方法中,在遮罩毛胚上方形成光阻層。遮罩毛胚包括基板、在基板上的反射性多層、在反射性多層上的覆蓋層、在覆蓋層上的吸收層及硬遮罩層。圖案化光阻層。藉由使用經圖案化的光阻層來圖案化硬遮罩層。藉由使用經圖案化的硬遮罩層來圖案化吸收層。移除硬遮罩層。吸收層包括基礎材料,且進一步包含有選自由Si、B、Ge、Al、As、Sb、Te、Se及Bi組成的群組的一或多種額外元素,一或多種額外元素不包括於基礎材料中。在先前及以下實施例中的一或多者中,基礎材料係由基於Cr的材料、基於Ir的材料、基於Pt的材料或基於Co的材料中的一或多者製成。在先前及以下實施例中的一或多者中,在圖案化吸收層的步驟期間,在吸收層的蝕刻側壁上形成保護層以抑制吸收層的橫向蝕刻。在先前及以下實施例中的一或多者中,保護層包括該一或多種額外元素的化合物。在先前及以下實施例中的一或多者中,保護層包括該一或多種額外元素 的氧化物。在先前及以下實施例中的一或多者中,藉由使用含氧氣體之電漿乾式蝕刻來圖案化吸收層。在先前及以下實施例中的一或多者中,電漿乾式蝕刻進一步使用含氯氣體。
根據本揭露的一些實施例,在一種製造反射遮罩的方法中,在遮罩毛胚上方形成光阻層。遮罩毛胚包括基板、在基板上的反射性多層、在反射性多層上的覆蓋層、在覆蓋層上的中間層、在中間層上的吸收層及硬遮罩層。圖案化光阻層。藉由使用經圖案化的光阻層來圖案化硬遮罩層。藉由使用經圖案化的硬遮罩層來圖案化吸收層。移除硬遮罩層。中間層包括選自由Si、B、Ge、Al、As、Sb、Te、Se及Bi組成的群組的一或多種額外元素的一層。在先前及以下實施例中的一或多者中,基礎材料係由基於Cr的材料、基於Ir的材料、基於Pt的材料或基於Co的材料中的一或多者製成。在先前及以下實施例中的一或多者中,該一或多種額外元素並非吸收層的組成部分。在先前及以下實施例中的一或多者中,在圖案化吸收層的步驟的過蝕刻步驟期間,在吸收層的蝕刻側壁上形成保護層以抑制吸收層的橫向蝕刻。在先前及以下實施例中的一或多者中,保護層包括一或多種額外元素的氧化物。在先前及以下實施例中的一或多者中,藉由使用含氧氣體之電漿乾式蝕刻來圖案化吸收層。在先前及以下實施例中的一或多者中,電漿乾式蝕刻進一步使用含氯氣體。
根據本揭露的一些實施例,在一種製造反射遮罩的 方法中,在遮罩毛胚上方形成光阻層。遮罩毛胚包括基板、在基板上的反射性多層、在反射性多層上的覆蓋層、在覆蓋層上的吸收層以及硬遮罩層。圖案化光阻層。藉由使用經圖案化的光阻層來圖案化硬遮罩層。藉由使用經圖案化的硬遮罩層來圖案化吸收層。移除硬遮罩層。在圖案化吸收層的步驟期間,在吸收層的蝕刻側壁上形成保護層以抑制吸收層的橫向蝕刻。在先前及以下實施例中的一或多者中,吸收層包括基於Cr的材料、基於Ir的材料、基於Pt的材料或基於Co的材料中的一或多者。在先前及以下實施例中的一或多者中,保護層包括選自由Si、B、Ge、Al、As、Sb、Te、Se及Bi組成的群組的一或多種額外元素的化合物。在先前及以下實施例中的一或多者中,一或多種額外元素係供應自吸收層。在先前及以下實施例中的一或多者中,一或多種額外元素係供應自設置於覆蓋層與吸收層之間的中間層。在先前及以下實施例中的一或多者中,藉由使用含氧氣體之電漿乾式蝕刻來圖案化吸收層。
先前內容概述幾個實施例或實例的特徵,使得熟習此項技術者可更好地理解本揭露的一些實施例之態樣。熟習此項技術者應瞭解,該些技術者可容易地使用本揭露的一些實施例作為用於設計或修改用於實現本文中介紹的實施例或實例的相同目的及/或達成本文中介紹的實施例或實例的相同優點的其他程序及結構的基礎。熟習此項技術者亦應認識到,此等等效構造不背離本揭露的一些實施例的精神及範疇,且在不背離本揭露的一些實施例的精神及 範疇的情況下,該些技術者可在此作出各種改變、取代及更改。
5:EUV光罩毛胚
10:基板
15:多層Mo/Si堆疊
20:覆蓋層
25:吸收層
30:硬遮罩層
45:背側導電層
X、Z:方向

Claims (10)

  1. 一種反射遮罩,包含:一基板;一反射性多層,設置於該基板上;一覆蓋層,設置於該反射性多層上;一吸收層,設置於該覆蓋層上,其中該吸收層包括由一基於Cr的材料、一基於Ir的材料、一基於Pt的材料或一基於Co的材料中的一或多者製成的一基礎材料,且進一步包含選自由Si、B、Ge、Al、As、Sb、Te、Se及Bi組成的群組的一或多種額外元素,其中該吸收層經圖案化;以及一保護層,設置於經圖案化的該吸收層的側壁上,且該保護層與該基板分隔。
  2. 如請求項1所述之反射遮罩,其中該吸收層的該基礎材料係由一基於Ir的材料、一基於Pt的材料或基於Co的材料製成。
  3. 如請求項1所述之反射遮罩,其中該一或多種額外元素的一濃度在0.5原子百分比至30原子百分比的範圍間。
  4. 一種反射遮罩,包含:一基板; 一反射性多層,設置於該基板上;一覆蓋層,設置於該反射性多層上;一中間層,設置於該覆蓋層上;一吸收層,設置於該中間層上,其中該中間層係包含一或多種類金屬元素的一層,其中該吸收層經圖案化;以及一保護層,設置於經圖案化的該吸收層的側壁上,且該保護層包含該一或多種類金屬元素的一化合物。
  5. 如請求項4所述之反射遮罩,其中該吸收層包含一基於Cr的材料、一基於Ir的材料、一基於Pt的材料或基於Co的材料中的一或多者。
  6. 如請求項4所述之反射遮罩,其中該吸收層不包含該中間層的一元素。
  7. 如請求項4所述之反射遮罩,其中該中間層的一厚度在1奈米至10奈米的範圍間。
  8. 一種製造一反射遮罩的方法,包含:在一遮罩毛胚上方形成一光阻層,該遮罩毛胚包括一基板、在該基板上的一反射性多層、在該反射性多層上的一覆蓋層、在該覆蓋層上的一吸收層及一硬遮罩層;圖案化該光阻層;藉由使用經圖案化的該光阻層作為一遮罩來圖案化該硬 遮罩層;藉由使用經圖案化的該硬遮罩層作為一遮罩來圖案化該吸收層;以及移除該硬遮罩層,其中在圖案化該吸收層之期間,在該吸收層的一蝕刻側壁上形成一保護層,其中該保護層抑制該吸收層的橫向蝕刻。
  9. 如請求項8所述之方法,其中該吸收層包含一基於Cr的材料、一基於Ir的材料、一基於Pt的材料或基於Co的材料中的一或多者。
  10. 如請求項9所述之方法,其中該保護層包含選自由Si、B、Ge、Al、As、Sb、Te、Se及Bi組成的群組的一或多種額外元素的一化合物。
TW110105580A 2020-05-29 2021-02-18 反射遮罩及其製造方法 TWI767567B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063032444P 2020-05-29 2020-05-29
US63/032,444 2020-05-29
US17/103,023 2020-11-24
US17/103,023 US11592737B2 (en) 2020-05-29 2020-11-24 EUV photo masks and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW202144902A TW202144902A (zh) 2021-12-01
TWI767567B true TWI767567B (zh) 2022-06-11

Family

ID=77228057

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110105580A TWI767567B (zh) 2020-05-29 2021-02-18 反射遮罩及其製造方法

Country Status (3)

Country Link
US (2) US12044959B2 (zh)
CN (1) CN113267956A (zh)
TW (1) TWI767567B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201435485A (zh) * 2012-12-27 2014-09-16 Asahi Glass Co Ltd Euv微影術用反射型光罩基底及其製造方法
WO2016058822A1 (en) * 2014-10-17 2016-04-21 Asml Netherlands B.V. Radiation source-collector and method for manufacture
TW201830122A (zh) * 2016-07-27 2018-08-16 應用材料股份有限公司 具有合金吸收劑的極紫外線遮罩坯料及製造方法
CN110837203A (zh) * 2018-08-17 2020-02-25 台湾积体电路制造股份有限公司 光罩的制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607862B2 (en) * 2001-08-24 2003-08-19 Intel Corporation Damascene extreme ultraviolet lithography alternative phase shift photomask and method of making
US8764995B2 (en) 2010-08-17 2014-07-01 Taiwan Semiconductor Manufacturing Company, Ltd. Extreme ultraviolet light (EUV) photomasks, and fabrication methods thereof
US8841047B2 (en) 2012-04-02 2014-09-23 Taiwan Semiconductor Manufacturing Company, Ltd. Extreme ultraviolet lithography process and mask
US8877409B2 (en) 2012-04-20 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Reflective mask and method of making same
US8828625B2 (en) 2012-08-06 2014-09-09 Taiwan Semiconductor Manufacturing Company, Ltd. Extreme ultraviolet lithography mask and multilayer deposition method for fabricating same
US9093530B2 (en) 2012-12-28 2015-07-28 Taiwan Semiconductor Manufacturing Company, Ltd. Fin structure of FinFET
US9046781B2 (en) * 2013-03-15 2015-06-02 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for reflective-type mask
US8796666B1 (en) 2013-04-26 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. MOS devices with strain buffer layer and methods of forming the same
US9548303B2 (en) 2014-03-13 2017-01-17 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET devices with unique fin shape and the fabrication thereof
US9529268B2 (en) 2014-04-03 2016-12-27 Taiwan Semiconductor Manufacturing Company, Ltd. Systems and methods for improving pattern transfer
US9256123B2 (en) 2014-04-23 2016-02-09 Taiwan Semiconductor Manufacturing Co., Ltd. Method of making an extreme ultraviolet pellicle
US9184054B1 (en) 2014-04-25 2015-11-10 Taiwan Semiconductor Manufacturing Company, Ltd. Method for integrated circuit patterning
US10996553B2 (en) * 2017-11-14 2021-05-04 Taiwan Semiconductor Manufacturing Co., Ltd. Extreme ultraviolet mask with reduced wafer neighboring effect and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201435485A (zh) * 2012-12-27 2014-09-16 Asahi Glass Co Ltd Euv微影術用反射型光罩基底及其製造方法
WO2016058822A1 (en) * 2014-10-17 2016-04-21 Asml Netherlands B.V. Radiation source-collector and method for manufacture
TW201830122A (zh) * 2016-07-27 2018-08-16 應用材料股份有限公司 具有合金吸收劑的極紫外線遮罩坯料及製造方法
CN110837203A (zh) * 2018-08-17 2020-02-25 台湾积体电路制造股份有限公司 光罩的制造方法

Also Published As

Publication number Publication date
CN113267956A (zh) 2021-08-17
US20230205072A1 (en) 2023-06-29
TW202144902A (zh) 2021-12-01
US12044959B2 (en) 2024-07-23
US20240337918A1 (en) 2024-10-10

Similar Documents

Publication Publication Date Title
US11592737B2 (en) EUV photo masks and manufacturing method thereof
TWI764604B (zh) 製造反射遮罩之方法
US12044960B2 (en) EUV photo masks and manufacturing method thereof
US11829062B2 (en) EUV photo masks and manufacturing method thereof
US20230251563A1 (en) Euv photo masks and manufacturing method thereof
TWI767567B (zh) 反射遮罩及其製造方法
TWI760057B (zh) 反射遮罩及其製造方法
TWI790020B (zh) 反射型罩幕及其製造方法
TWI785481B (zh) 反射遮罩及其製造方法