TWI767368B - Intelligent ultrasonic grinding and polishing aided system and method thereof - Google Patents

Intelligent ultrasonic grinding and polishing aided system and method thereof Download PDF

Info

Publication number
TWI767368B
TWI767368B TW109136301A TW109136301A TWI767368B TW I767368 B TWI767368 B TW I767368B TW 109136301 A TW109136301 A TW 109136301A TW 109136301 A TW109136301 A TW 109136301A TW I767368 B TWI767368 B TW I767368B
Authority
TW
Taiwan
Prior art keywords
grinding
processing
module
sub
accuracy
Prior art date
Application number
TW109136301A
Other languages
Chinese (zh)
Other versions
TW202217629A (en
Inventor
林正堅
張鈞淯
林鑫佑
蔡明義
黃守正
Original Assignee
國立勤益科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立勤益科技大學 filed Critical 國立勤益科技大學
Priority to TW109136301A priority Critical patent/TWI767368B/en
Publication of TW202217629A publication Critical patent/TW202217629A/en
Application granted granted Critical
Publication of TWI767368B publication Critical patent/TWI767368B/en

Links

Images

Abstract

An intelligent ultrasonic grinding and polishing aided system is proposed. The intelligent ultrasonic grinding and polishing aided system includes a polishing apparatus, a data base and a processor. The data base records a plurality of processing data of the polishing apparatus. The processor includes a processing precision predicting module and a processing parameter optimizing module. The processing precision predicting module receives the processing data from the data base, the processing data are used to establish a precision predicting model according to an interval type-II fuzzy neural network, and produce a surface polishing precision. The processing parameter optimizing module calculates a best processing parameter corresponds to the surface polishing precision. The polishing apparatus polishes the workpiece according to the best processing parameter. Thus, the cost and the material cost by the trial and error method can be reduced, and the beginner can also polish the workpiece with an ideal polishing precision.

Description

智慧型超音波輔助研磨加工系統及其方法Intelligent ultrasonic-assisted grinding system and method

本發明是關於一種研磨加工系統及其方法,特別是關於一種智慧型超音波輔助研磨加工系統及其方法。The present invention relates to a grinding processing system and a method thereof, in particular to an intelligent ultrasonic-assisted grinding processing system and a method thereof.

於現有研磨拋光加工技術中,加工材料、加工磨棒、拋光刀具及拋光材料的選擇會產生不同的加工精度、表面粗糙度及研磨拋光時間。研磨拋光加工主要依賴個人經驗來設定加工的參數,若欲對未接觸過的材料進行研磨拋光,則無法精確的設定加工參數。In the existing grinding and polishing processing technology, the selection of processing materials, processing grinding rods, polishing tools and polishing materials will result in different processing accuracy, surface roughness and grinding and polishing time. Grinding and polishing mainly relies on personal experience to set the processing parameters. If you want to grind and polish untouched materials, you cannot set the processing parameters accurately.

由此可知,目前市場上缺乏一種可根據使用者需求設定預期的表面粗糙值計算最佳加工參數的研磨加工系統,故相關業者均在尋求其解決之道。It can be seen that there is currently a lack of a grinding processing system on the market that can set the expected surface roughness value according to the user's needs and calculate the optimal processing parameters, so the relevant manufacturers are all looking for the solution.

因此本發明之目的在於提供一種智慧型超音波輔助研磨加工系統及其方法,其根據先前記錄之加工數據建立研磨預測模型而產生表面研磨精度,並計算出對應表面研磨精度之最佳加工參數。Therefore, the purpose of the present invention is to provide an intelligent ultrasonic-assisted grinding processing system and method thereof, which establishes a grinding prediction model according to previously recorded processing data to generate surface grinding precision, and calculates the optimal processing parameters corresponding to the surface grinding precision.

依據本發明的結構態樣之一實施方式提供一種智慧型超音波輔助研磨加工系統,用以預測工件經研磨後之表面研磨精度。智慧型超音波輔助研磨加工系統包含研磨機台、資料庫及處理器。資料庫訊號連接研磨機台,並記錄研磨機台之複數加工數據。處理器訊號連接研磨機台及資料庫,並包含加工精度預測模組及加工參數優化模組。加工精度預測模組接收資料庫之此些加工數據,加工精度預測模組依據區間二型模糊類神經網路對此些加工數據進行訓練並建立研磨預測模型,區間二型模糊類神經網路經由動態分群差分演算單元調整而產生表面研磨精度。加工參數優化模組訊號連接加工精度預測模組並接收表面研磨精度,加工參數優化模組依據優化單元針對此些加工數據優化而計算出對應表面研磨精度之複數最佳加工參數。研磨機台依據此些最佳加工參數研磨工件。According to one embodiment of the structural aspect of the present invention, an intelligent ultrasonic-assisted grinding processing system is provided for predicting the surface grinding accuracy of the workpiece after grinding. The intelligent ultrasonic-assisted grinding processing system includes a grinding machine, a database and a processor. The database signal is connected to the grinding machine, and records the multiple processing data of the grinding machine. The processor signal is connected to the grinding machine and the database, and includes a processing accuracy prediction module and a processing parameter optimization module. The machining accuracy prediction module receives the machining data in the database, and the machining accuracy prediction module trains the machining data according to the interval type 2 fuzzy neural network and establishes a grinding prediction model. The dynamic grouping difference calculation unit is adjusted to produce surface grinding accuracy. The signal of the processing parameter optimization module is connected to the processing precision prediction module and receives the surface grinding precision. The processing parameter optimization module calculates a plurality of optimal processing parameters corresponding to the surface grinding precision according to the optimization of the processing data by the optimization unit. The grinding machine grinds the workpiece according to these optimal machining parameters.

藉此,使不具備經驗的操作者也能根據欲達成的表面研磨精度設定對應表面研磨精度的最佳加工參數,並對工件進行研磨或拋光處理。In this way, even an unexperienced operator can set the optimum processing parameters corresponding to the surface grinding precision according to the surface grinding precision to be achieved, and grind or polish the workpiece.

依據本發明的方法態樣之一實施方式提供一種智慧型超音波輔助研磨加工方法,用以預測工件經研磨後之表面研磨精度。智慧型超音波輔助研磨加工方法包含加工數據記錄步驟、加工精度預測步驟、加工參數優化步驟及研磨步驟。加工數據記錄步驟係將研磨機台之複數加工數據記錄於資料庫。加工精度預測步驟係依據區間二型模糊類神經網路模型對此些加工數據進行訓練,並建立研磨預測模型,其中區間二型模糊類神經網路模型經由動態分群差分演算規則調整而產生表面研磨精度。加工參數優化步驟係依據優化規則針對此些加工數據優化而計算出對應表面研磨精度之複數最佳加工參數。研磨步驟係驅動研磨機台依據此些最佳加工參數研磨工件。According to an embodiment of the method aspect of the present invention, an intelligent ultrasonic-assisted grinding processing method is provided for predicting the surface grinding precision of the workpiece after grinding. The intelligent ultrasonic-assisted grinding method includes a processing data recording step, a processing accuracy prediction step, a processing parameter optimization step, and a grinding step. The processing data recording step is to record the multiple processing data of the grinding machine in the database. The processing accuracy prediction step is to train these processing data according to the interval type 2 fuzzy neural network model, and establish a grinding prediction model, wherein the interval type 2 fuzzy neural network model is adjusted by the dynamic grouping difference algorithm to generate surface grinding. precision. The machining parameter optimization step is to optimize the machining data according to the optimization rule to calculate a plurality of optimal machining parameters corresponding to the surface grinding precision. The grinding step drives the grinding machine to grind the workpiece according to these optimal processing parameters.

藉此,使不具備經驗的操作者也能根據欲達成的表面研磨精度設定對應表面研磨精度的最佳加工參數,並對工件進行研磨或拋光處理。In this way, even an unexperienced operator can set the optimum processing parameters corresponding to the surface grinding precision according to the surface grinding precision to be achieved, and grind or polish the workpiece.

請一併參閱第1圖至第3圖。第1圖係繪示本發明第一實施例之智慧型超音波輔助研磨加工系統100之方塊示意圖;第2圖係繪示第1圖之智慧型超音波輔助研磨加工系統100之區間二型模糊類神經網路320之示意圖;及第3圖係繪示第1圖之智慧型超音波輔助研磨加工系統100之動態分群差分演算單元330之方塊示意圖。智慧型超音波輔助研磨加工系統100用以預測工件經研磨後之表面研磨精度 Y,並包含研磨機台10、資料庫20及處理器30。其中資料庫20訊號連接研磨機台10,並記錄研磨機台10之複數加工數據。處理器30訊號連接研磨機台10及資料庫20。具體而言,研磨機台10可為三軸CNC銑床,資料庫20可為記憶體,處理器30可為中央處理器(Central Processing Unit;CPU),但本發明不以此為限。 Please refer to Figures 1 to 3 together. FIG. 1 is a schematic block diagram of the intelligent ultrasonic-assisted grinding system 100 according to the first embodiment of the present invention; FIG. 2 is a block diagram of the second type of blurring of the intelligent ultrasonic-assisted grinding system 100 of FIG. 1 A schematic diagram of the neural-like network 320; and FIG. 3 is a block diagram illustrating the dynamic grouping and differential computing unit 330 of the intelligent ultrasonic-assisted polishing system 100 in FIG. 1. FIG. The intelligent ultrasonic-assisted grinding processing system 100 is used to predict the surface grinding accuracy Y after the workpiece is ground, and includes a grinding machine 10 , a database 20 and a processor 30 . The database 20 is connected to the grinding machine 10 with a signal, and records multiple processing data of the grinding machine 10 . The processor 30 is connected to the grinding machine 10 and the database 20 by signals. Specifically, the grinding machine 10 may be a three-axis CNC milling machine, the database 20 may be a memory, and the processor 30 may be a central processing unit (CPU), but the invention is not limited thereto.

處理器30包含加工精度預測模組310、加工參數優化模組340。加工精度預測模組310接收資料庫20之加工數據,並依據區間二型模糊類神經網路320對加工數據進行訓練並建立研磨預測模型,區間二型模糊類神經網路320經由動態分群差分演算單元330調整而產生表面研磨精度 Y。加工參數優化模組340訊號連接加工精度預測模組310並接收表面研磨精度 Y。具體而言,加工數據包含複數加工參數及對應精度值,加工參數包含加工材料、鑽石號數、線速度、進給速度、切削深度、切削寬度及超音波功率,但本發明不以此為限。 The processor 30 includes a machining accuracy prediction module 310 and a machining parameter optimization module 340 . The machining accuracy prediction module 310 receives the machining data from the database 20, trains the machining data according to the interval type 2 fuzzy neural network 320, and establishes a grinding prediction model. Unit 330 is adjusted to produce surface finish Y . The signal of the processing parameter optimization module 340 is connected to the processing precision prediction module 310 and receives the surface grinding precision Y . Specifically, the machining data includes complex machining parameters and corresponding precision values, and the machining parameters include machining material, diamond number, line speed, feed speed, depth of cut, width of cut and ultrasonic power, but the present invention is not limited to this .

區間二型模糊類神經網路320包含第一層Layer1、第二層Layer2、第三層Layer3、第四層Layer4及第五層Layer5。第一層Layer1存有加工數據,將加工數據作為區間二型模糊類神經網路320之輸入值 X 1~ X n傳送至第二層Layer2;第二層Layer2將加工數據進行模糊化運算,並計算出區間二型模糊集合;第三層Layer3對區間二型模糊集合進行累乘運算;第四層Layer4對區間二型模糊集合及線性函數權重進行降階運算,並計算出一型模糊集合;第五層Layer5對一型模糊集合進行解模糊運算,並計算出表面研磨精度 Y,其中區間二型模糊集合包含高斯平均值、高斯標準差及高斯位移量。 The interval type II fuzzy neural network 320 includes a first layer Layer1 , a second layer Layer2 , a third layer Layer3 , a fourth layer Layer4 and a fifth layer Layer5 . The first layer Layer1 stores processing data, and transmits the processing data as input values X 1 to X n of the interval type II fuzzy neural network 320 to the second layer Layer 2; Calculate interval type 2 fuzzy sets; the third layer Layer 3 performs cumulative multiplication operation on interval type 2 fuzzy sets; the fourth layer Layer 4 performs order reduction operations on interval type 2 fuzzy sets and linear function weights, and calculates type 1 fuzzy sets; The fifth layer, Layer 5, performs de-blurring operations on the first-type fuzzy set, and calculates the surface grinding accuracy Y , where the interval-type two-type fuzzy set includes Gaussian mean, Gauss standard deviation and Gaussian displacement.

加工精度預測模組310更透過動態分群差分演算單元330調整區間二型模糊類神經網路320中的參數。參數包含高斯平均值、高斯標準差、高斯位移量及線性函數權重。動態分群差分演算單元330包含初始化子模組331、適應閥值計算子模組332、分群子模組333、突變子模組334、交換子模組335以及選擇子模組336。The machining accuracy prediction module 310 further adjusts the parameters in the interval type 2 fuzzy neural network 320 through the dynamic group difference calculation unit 330 . The parameters include Gaussian mean, Gaussian standard deviation, Gaussian displacement and linear function weight. The dynamic grouping and difference computing unit 330 includes an initialization submodule 331 , an adaptive threshold calculation submodule 332 , a grouping submodule 333 , a mutation submodule 334 , an exchange submodule 335 and a selection submodule 336 .

初始化子模組331將高斯平均值、高斯標準差、高斯位移量及線性函數權重編碼為一個體,其中區間二型模糊類神經網路320更包含複數個體。The initialization sub-module 331 encodes the Gaussian mean, the Gaussian standard deviation, the Gaussian displacement and the linear function weight into one body, wherein the interval type II fuzzy neural network 320 further includes a plurality of individuals.

適應閥值計算子模組332訊號連接初始化子模組331,適應閥值計算子模組332計算各個體之距離閥值及適應閥值,並定義複數群體之複數領袖。詳細地說,適應閥值計算子模組332將此些個體的群組編號初始值設為0,並將所有個體根據其適應閥值排序。排序後自群體編號為0的個體中將適應閥值最高的個體設定為領袖,並將群體編號更新為

Figure 02_image001
,然後計算距離閥值(
Figure 02_image003
)及適應閥值(
Figure 02_image005
),其計算規則如式(1)到式(4)所示:
Figure 02_image007
尚未被分群              (1);
Figure 02_image009
(2);
Figure 02_image011
尚未被分群              (3);
Figure 02_image013
(4); 其中D代表維度,NP為個體總數,
Figure 02_image001
為組別,
Figure 02_image015
則代表第
Figure 02_image001
群的領袖,
Figure 02_image017
代表當前的個體,NI代表當前個體中群組編號為0的個體總數。 The adaptive threshold calculation sub-module 332 is connected to the initialization sub-module 331 with a signal, and the adaptive threshold calculation sub-module 332 calculates the distance threshold and the adaptive threshold of each individual, and defines the plural leaders of the plural groups. Specifically, the adaptation threshold calculation sub-module 332 sets the initial value of the group numbers of these individuals to 0, and sorts all individuals according to their adaptation thresholds. After sorting, the individual with the highest fitness threshold is set as the leader from the individuals whose group number is 0, and the group number is updated to
Figure 02_image001
, and then calculate the distance threshold (
Figure 02_image003
) and the adaptation threshold (
Figure 02_image005
), and its calculation rules are shown in equations (1) to (4):
Figure 02_image007
has not been grouped (1);
Figure 02_image009
(2);
Figure 02_image011
has not been grouped (3);
Figure 02_image013
(4); where D represents the dimension, NP is the total number of individuals,
Figure 02_image001
for the group,
Figure 02_image015
represents the first
Figure 02_image001
group leader,
Figure 02_image017
represents the current individual, and NI represents the total number of individuals whose group number is 0 in the current individual.

分群子模組333訊號連接適應閥值計算子模組332,並依據各個體之距離閥值及適應閥值將此些個體分為此些群體。具體而言,分群子模組333計算各群體編號為0的個體與各領袖的距離差(

Figure 02_image019
)及適應值差(
Figure 02_image021
),並判斷未分群的個體之群體編號,距離差(
Figure 02_image019
)及適應值差(
Figure 02_image021
)的計算規則如式(5)、式(6)所示:
Figure 02_image023
(5);
Figure 02_image025
(6); 若
Figure 02_image027
Figure 02_image029
,則表示個體
Figure 02_image017
與第
Figure 02_image001
群的領袖
Figure 02_image015
是相似的,將
Figure 02_image017
的群組編號更新為
Figure 02_image001
,所有個體皆有組別後,分群子模組333終止執行。 The grouping sub-module 333 is connected to the adaptive threshold calculating sub-module 332 with a signal, and divides the individuals into these groups according to the distance threshold and the adaptive threshold of each individual. Specifically, the grouping sub-module 333 calculates the distance difference (
Figure 02_image019
) and the fitness difference (
Figure 02_image021
), and determine the group number of the ungrouped individuals, the distance difference (
Figure 02_image019
) and the fitness difference (
Figure 02_image021
) calculation rules are shown in formulas (5) and (6):
Figure 02_image023
(5);
Figure 02_image025
(6); if
Figure 02_image027
and
Figure 02_image029
, which means that the individual
Figure 02_image017
with the first
Figure 02_image001
group leader
Figure 02_image015
is similar to the
Figure 02_image017
The group ID of is updated to
Figure 02_image001
, after all individuals have groups, the grouping sub-module 333 terminates the execution.

突變子模組334訊號連接分群子模組333,並依據萊維飛行策略自其中一領袖及此些領袖之最佳領袖中產生突變向量。詳細地說,突變子模組334之結合萊維飛行策略之突變規則如式(7)、式(8)、式(9)、式(10)所示:

Figure 02_image031
(7);
Figure 02_image033
(8);
Figure 02_image035
(9);
Figure 02_image037
(10); 其中
Figure 02_image039
為突變向量,
Figure 02_image041
為最佳領袖,
Figure 02_image043
為所有群組中隨機選取的其中一領袖,F為突變權重因子,
Figure 02_image045
為萊維飛行策略,
Figure 02_image047
為萊維飛行策略之飛行指數,
Figure 02_image049
Figure 02_image051
為具有均值
Figure 02_image053
Figure 02_image055
的常態隨機分布。突變子模組334藉由結合萊維飛行策略,將最佳領袖設為基準向量,並加入兩個隨機個體的差異向量,使得突變後的突變向量圍繞著最好的個體。 The mutant sub-module 334 signal connects to the clustering sub-module 333 and generates a mutation vector from one of the leaders and the best of these leaders according to the Levi flight strategy. In detail, the mutation rules of the mutation sub-module 334 combined with the Levi flight strategy are shown in formula (7), formula (8), formula (9), and formula (10):
Figure 02_image031
(7);
Figure 02_image033
(8);
Figure 02_image035
(9);
Figure 02_image037
(10); wherein
Figure 02_image039
is the mutation vector,
Figure 02_image041
for the best leader,
Figure 02_image043
is one of the leaders randomly selected from all groups, F is the mutation weight factor,
Figure 02_image045
For Levi flight strategy,
Figure 02_image047
is the flight index of Levi's flight strategy,
Figure 02_image049
and
Figure 02_image051
to have the mean
Figure 02_image053
and
Figure 02_image055
a normal random distribution. The mutation sub-module 334 sets the best leader as the reference vector by combining the Levi flight strategy, and adds the difference vector of two random individuals, so that the mutated mutation vector surrounds the best individual.

交換子模組335訊號連接突變子模組334,係將突變向量做交換運算並產生試驗向量。交換子模組335依據一交換規則將每一個突變向量與對應的目標向量進行交換運算,並產生一個新的試驗向量,交換運算之規則如式(11)所示:

Figure 02_image057
(11); 其中
Figure 02_image059
為試驗向量;
Figure 02_image061
為突變向量;
Figure 02_image063
為目標向量;
Figure 02_image065
為每個維度對應的隨機值,其值為0到1之間的亂數;CR為交換率。若交換率CR愈大,則試驗向量與突變向量的相似度愈高;若交換率CR愈小,則試驗向量與突變向量的相似度愈低。 The signal of the exchange sub-module 335 is connected to the mutation sub-module 334, and the mutation vector is exchanged to generate a test vector. The exchange sub-module 335 performs an exchange operation between each mutation vector and the corresponding target vector according to an exchange rule, and generates a new test vector. The exchange operation rule is shown in formula (11):
Figure 02_image057
(11); wherein
Figure 02_image059
is the test vector;
Figure 02_image061
is the mutation vector;
Figure 02_image063
is the target vector;
Figure 02_image065
is a random value corresponding to each dimension, and its value is a random number between 0 and 1; CR is the exchange rate. If the exchange rate CR is larger, the similarity between the test vector and the mutation vector is higher; if the exchange rate CR is smaller, the similarity between the test vector and the mutation vector is lower.

選擇子模組336訊號連接交換子模組335,係將試驗向量、最佳領袖進行比較並選擇保留適應閥值最大者而成為表面研磨精度 Y。具體而言,選擇子模組336利用適應閥值評估試驗向量是否能成為表面研磨精度 Y,其選擇公式如式(12)所示:

Figure 02_image067
(12); 其中
Figure 02_image069
為選擇後的目標向量;
Figure 02_image071
為試驗向量;
Figure 02_image073
為當前的目標向量;
Figure 02_image075
為試驗向量的適應值差;
Figure 02_image077
為當前的目標向量的適應值差。 The signal of the selection sub-module 336 is connected to the exchange sub-module 335, and the test vector and the best leader are compared, and the one with the largest adaptive threshold value is selected to be the surface grinding accuracy Y. Specifically, the selection sub-module 336 uses the adaptive threshold to evaluate whether the test vector can become the surface grinding accuracy Y , and the selection formula is shown in formula (12):
Figure 02_image067
(12); wherein
Figure 02_image069
is the selected target vector;
Figure 02_image071
is the test vector;
Figure 02_image073
is the current target vector;
Figure 02_image075
is the fitness value difference of the test vector;
Figure 02_image077
is the fitness value difference of the current target vector.

加工參數優化模組340依據優化單元350針對加工數據優化而計算出對應表面研磨精度 Y之最佳加工參數。優化單元350對各加工數據之複數加工參數及表面研磨精度 Y進行運算而計算出對應表面研磨精度 Y之此些最佳加工參數。優化單元350之計算規則如式(13)、式(14)所示:

Figure 02_image079
(13);
Figure 02_image081
(14); 其中
Figure 02_image083
是ith粒子的速度;
Figure 02_image085
是當前粒子的位置;
Figure 02_image087
是粒子本身的最佳解;
Figure 02_image089
是整個族群的最佳解;
Figure 02_image091
為慣性權重;
Figure 02_image093
為認知係數;
Figure 02_image095
為社會係數;
Figure 02_image097
Figure 02_image099
為介於0到1之間的隨機亂數。 The machining parameter optimization module 340 calculates the optimal machining parameters corresponding to the surface grinding precision Y according to the optimization of machining data by the optimization unit 350 . The optimization unit 350 calculates the optimal machining parameters corresponding to the surface polishing accuracy Y by calculating the complex machining parameters and the surface polishing accuracy Y of each machining data. The calculation rules of the optimization unit 350 are shown in equations (13) and (14):
Figure 02_image079
(13);
Figure 02_image081
(14); wherein
Figure 02_image083
is the velocity of the ith particle;
Figure 02_image085
is the position of the current particle;
Figure 02_image087
is the optimal solution of the particle itself;
Figure 02_image089
is the best solution for the entire population;
Figure 02_image091
is the inertia weight;
Figure 02_image093
is the cognitive coefficient;
Figure 02_image095
is the social coefficient;
Figure 02_image097
and
Figure 02_image099
is a random number between 0 and 1.

研磨機台10依據加工參數優化模組340所計算之最佳加工參數研磨工件。The grinding machine 10 grinds the workpiece according to the optimum processing parameters calculated by the processing parameter optimization module 340 .

處理器30更包含更新數據收集模組360,更新數據收集模組360訊號連接加工精度預測模組310及加工參數優化模組340。更新數據收集模組360收集表面研磨經度及最佳加工參數而形成更新數據組。加工精度預測模組310依據更新數據收集模組360所形成之更新數據組更新研磨預測模型而產生更新預測模型。詳細地說,隨著研磨機台10長時間的運作,內部零件的磨耗使得研磨預測模型所預測之表面研磨精度 Y與研磨機台10實際研磨可獲得之表面研磨精度 Y有誤差,透過更新預測模型可使智慧型超音波輔助研磨加工系統100所預測之表面研磨精度 Y與實際的研磨精度更加接近。 The processor 30 further includes an update data collection module 360 , and the signal of the update data collection module 360 is connected to the machining accuracy prediction module 310 and the machining parameter optimization module 340 . The update data collection module 360 collects the surface grinding longitude and optimal processing parameters to form an update data set. The machining accuracy prediction module 310 updates the grinding prediction model according to the update data set formed by the update data collection module 360 to generate an update prediction model. In detail, with the long-term operation of the grinding machine 10, the wear of the internal parts makes the surface grinding precision Y predicted by the grinding prediction model and the surface grinding precision Y that can be obtained by the actual grinding of the grinding machine 10 have errors. By updating the prediction The model can make the surface grinding precision Y predicted by the intelligent ultrasonic-assisted grinding processing system 100 closer to the actual grinding precision.

藉此,本發明之智慧型超音波輔助研磨加工系統100透過研磨預測模型預測不同加工參數的組合所產生的表面研磨精度 Y,並計算出愈得到表面研磨精度 Y之最佳加工參數。有效減少試誤法所花費的龐大材料及成本,使不具備經驗的操作者也能根據欲達成的表面研磨精度 Y設定對應的最佳加工參數,並對工件進行研磨或拋光處理。 Thereby, the intelligent ultrasonic-assisted polishing processing system 100 of the present invention predicts the surface polishing accuracy Y generated by the combination of different machining parameters through the polishing prediction model, and calculates the optimal machining parameters to obtain the surface polishing accuracy Y. It can effectively reduce the huge material and cost of trial and error method, so that the unexperienced operator can set the corresponding optimal processing parameters according to the surface grinding accuracy Y to be achieved, and grind or polish the workpiece.

請參照第1圖至第5圖,第4圖係繪示本發明第二實施例之智慧型超音波輔助研磨加工方法200之流程示意圖;第5圖係繪示第4圖之智慧型超音波輔助研磨加工方法200之動態分群差分演算規則S22之流程示意圖。如圖所示,智慧型超音波輔助研磨加工方法200用以預測工件經研磨後之表面研磨精度 Y。此智慧型超音波輔助研磨加工方法200包含加工數據記錄步驟S10、加工精度預測步驟S20、加工參數優化步驟S30、更新數據收集步驟S40及研磨步驟S50。 Please refer to FIG. 1 to FIG. 5, FIG. 4 is a schematic flow chart of the intelligent ultrasonic-assisted grinding method 200 according to the second embodiment of the present invention; FIG. 5 is the intelligent ultrasonic wave of FIG. 4 A schematic flowchart of the dynamic grouping difference calculation rule S22 of the auxiliary grinding method 200 . As shown in the figure, the intelligent ultrasonic-assisted grinding method 200 is used to predict the surface grinding accuracy Y after the workpiece is ground. The intelligent ultrasonic-assisted grinding method 200 includes a processing data recording step S10, a processing accuracy prediction step S20, a processing parameter optimization step S30, an update data collection step S40, and a grinding step S50.

加工數據記錄步驟S10係將研磨機台10之複數加工數據記錄於資料庫20。The processing data recording step S10 records the plurality of processing data of the grinding machine table 10 in the database 20 .

加工精度預測步驟S20係依據區間二型模糊類神經網路模型S21對此些加工數據進行訓練,並建立研磨預測模型,其中區間二型模糊類神經網路模型S21經由動態分群差分演算規則S22調整而產生表面研磨精度 Y。加工精度預測步驟S20透過加工精度預測模組310執行。區間二型模糊類神經網路模型S21透過區間二型模糊類神經網路320執行,動態分群差分演算規則S22透過動態分群差分演算單元330執行。 The processing accuracy prediction step S20 is to train the processing data according to the interval type 2 fuzzy neural network model S21, and establish a grinding prediction model, wherein the interval type 2 fuzzy neural network model S21 is adjusted by the dynamic grouping difference calculation rule S22 And produce surface grinding precision Y. The machining accuracy prediction step S20 is performed by the machining accuracy prediction module 310 . The interval type 2 fuzzy neural network model S21 is executed by the interval type 2 fuzzy neural network 320 , and the dynamic group difference calculation rule S22 is executed by the dynamic group difference calculation unit 330 .

動態分群差分演算規則S22包含初始化子步驟S221、適應閥值計算子步驟S222、分群子步驟S223、突變子步驟S224、交換子步驟S225及選擇子步驟S226。The dynamic grouping difference calculation rule S22 includes an initialization sub-step S221, an adaptive threshold calculation sub-step S222, a grouping sub-step S223, a mutation sub-step S224, an exchange sub-step S225, and a selection sub-step S226.

初始化子步驟S221將高斯平均值、高斯標準差、高斯位移量及線性函數權重編碼為一個體,其中區間二型模糊類神經網路模型S21更包含複數個體。初始化子步驟S221透過初始化子模組331執行。The initialization sub-step S221 encodes the Gaussian mean value, the Gaussian standard deviation, the Gaussian displacement amount and the linear function weight into an individual, wherein the interval type II fuzzy neural network model S21 further includes a plurality of individuals. The initialization sub-step S221 is performed by the initialization sub-module 331 .

適應閥值計算子步驟S222計算各個體之距離閥值及適應閥值,並定義複數群體之複數領袖。適應閥值計算子步驟S222透過適應閥值計算子模組332執行。The adaptive threshold calculation sub-step S222 calculates the distance threshold and the adaptive threshold of each individual, and defines the plural leaders of the plural groups. The adaptive threshold calculation sub-step S222 is performed by the adaptive threshold calculation sub-module 332 .

分群子步驟S223係依據各個體之距離閥值及適應閥值將此些個體分為此些群體。分群子步驟S223透過分群子模組333執行。The sub-step S223 of grouping is to divide the individuals into these groups according to the distance threshold and adaptation threshold of each individual. The grouping sub-step S223 is performed by the grouping sub-module 333 .

突變子步驟S224依據萊維飛行策略自其中一領袖及此些領袖之最佳領袖產生突變向量。突變子步驟S224透過突變子模組334執行。The mutation sub-step S224 generates mutation vectors from one of the leaders and the best leader of these leaders according to the Levi flight strategy. The mutation sub-step S224 is performed by the mutation sub-module 334 .

交換子步驟S225將突變向量進行交換運算並產生試驗向量。交換子步驟S225透過交換子模組335執行。The swap sub-step S225 performs a swap operation on the mutation vector and generates a test vector. The exchange sub-step S225 is performed by the exchange sub-module 335 .

選擇子步驟S226係將試驗向量及最佳領袖進行比較並選擇保留適應閥值最大者而成為表面研磨精度 Y。選擇子步驟S226透過選擇子模組336執行。 The selection sub-step S226 compares the test vector and the best leader, and selects the one with the largest remaining adaptation threshold value to be the surface grinding accuracy Y . The selection sub-step S226 is performed by the selection sub-module 336 .

加工參數優化步驟S30係依據優化規則針對加工數據優化而計算出對應表面研磨精度 Y之複數最佳加工參數。加工參數優化步驟S30透過加工參數優化模組340執行。其中優化規則對各加工數據之複數加工參數及表面研磨精度 Y進行運算而計算出對應表面研磨精度 Y之最佳加工參數。 The machining parameter optimization step S30 is to optimize the machining data according to the optimization rule to calculate a plurality of optimal machining parameters corresponding to the surface grinding precision Y. The process parameter optimization step S30 is performed by the process parameter optimization module 340 . The optimization rule calculates the optimal processing parameters corresponding to the surface grinding precision Y by calculating the complex processing parameters of each processing data and the surface grinding precision Y.

更新數據收集步驟S40係收集表面研磨精度 Y及此些最佳加工參數而形成更新數據組,並依據更新數據組更新研磨預測模型而產生更新預測模型。更新數據收集步驟S40透過更新數據收集模組360執行。 The update data collection step S40 is to collect the surface polishing accuracy Y and these optimal processing parameters to form an update data set, and update the grinding prediction model according to the update data set to generate an update prediction model. The update data collection step S40 is performed by the update data collection module 360 .

研磨步驟S50係驅動研磨機台10依據此些最佳加工參數研磨工件。The grinding step S50 is to drive the grinding machine 10 to grind the workpiece according to the optimal processing parameters.

藉此,本發明之智慧型超音波輔助研磨加工方法200透過研磨預測模型預測不同加工參數的組合所產生的表面研磨精度 Y,並計算出愈得到表面研磨精度 Y之最佳加工參數。有效減少試誤法所花費的龐大材料及成本,使不具備經驗的操作者也能根據欲達成的表面研磨精度 Y設定對應的最佳加工參數,並對工件進行研磨或拋光處理。 Thereby, the intelligent ultrasonic-assisted grinding method 200 of the present invention predicts the surface grinding precision Y generated by the combination of different processing parameters through the grinding prediction model, and calculates the best processing parameters to obtain the surface grinding precision Y. It can effectively reduce the huge material and cost of trial and error method, so that the unexperienced operator can set the corresponding optimal processing parameters according to the surface grinding accuracy Y to be achieved, and grind or polish the workpiece.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be determined by the scope of the appended patent application.

10:研磨機台 20:資料庫 30:處理器 100:智慧型超音波輔助研磨加工系統 200:智慧型超音波輔助研磨加工方法 310:加工精度預測模組 320:區間二型模糊類神經網路 330:動態分群差分演算單元 331:初始化子模組 332:適應閥值計算子模組 333:分群子模組 334:突變子模組 335:交換子模組 336:選擇子模組 340:加工參數優化模組 350:優化單元 360:更新數據收集模組 S10:加工數據記錄步驟 S20:加工精度預測步驟 S21:區間二型模糊類神經網路模型 S22:動態分群差分演算規則 S221:初始化子步驟 S222:適應閥值計算子步驟 S223:分群子步驟 S224:突變子步驟 S225:交換子步驟 S226:選擇子步驟 S30:加工參數優化步驟 S40:更新數據收集步驟 S50:研磨步驟 Layer1:第一層 Layer2:第二層 Layer3:第三層 Layer4:第四層 Layer5:第五層 X 1,X n:輸入值 Y:表面研磨精度 10: Grinding machine 20: Database 30: Processor 100: Intelligent ultrasonic-assisted grinding and processing system 200: Intelligent ultrasonic-assisted grinding and processing method 310: Machining accuracy prediction module 320: Interval type II fuzzy neural network 330: Dynamic grouping and difference calculation unit 331: Initialization sub-module 332: Adaptation threshold calculation sub-module 333: Grouping sub-module 334: Mutation sub-module 335: Swap sub-module 336: Selection sub-module 340: Processing parameters Optimization module 350: Optimization unit 360: Update data collection module S10: Processing data recording Step S20: Machining accuracy prediction Step S21: Interval type II fuzzy neural network model S22: Dynamic grouping difference calculation rule S221: Initialization sub-step S222 : adaptive threshold calculation sub-step S223: grouping sub-step S224: mutation sub-step S225: exchange sub-step S226: selection sub-step S30: processing parameter optimization step S40: update data collection step S50: grinding step Layer1: first layer Layer2: The second layer Layer3: the third layer Layer4: the fourth layer Layer5: the fifth layer X 1 , X n : input value Y: surface grinding accuracy

第1圖係繪示本發明第一實施例之智慧型超音波輔助研磨加工系統之方塊示意圖; 第2圖係繪示第1圖之智慧型超音波輔助研磨加工系統之區間二型模糊類神經網路之示意圖; 第3圖係繪示第1圖之智慧型超音波輔助研磨加工系統之動態分群差分演算單元之方塊示意圖; 第4圖係繪示本發明第二實施例之智慧型超音波輔助研磨加工方法之流程示意圖;及 第5圖係繪示第4圖之智慧型超音波輔助研磨加工方法之動態分群差分演算規則之流程示意圖。 FIG. 1 is a schematic block diagram of an intelligent ultrasonic-assisted grinding system according to a first embodiment of the present invention; Fig. 2 is a schematic diagram of the interval type 2 fuzzy neural network of the intelligent ultrasonic-assisted polishing system of Fig. 1; Fig. 3 is a block diagram of the dynamic grouping and differential computing unit of the intelligent ultrasonic-assisted grinding system of Fig. 1; FIG. 4 is a schematic flow chart showing the intelligent ultrasonic-assisted grinding method according to the second embodiment of the present invention; and FIG. 5 is a schematic flowchart of the dynamic grouping and difference calculation rule of the intelligent ultrasonic-assisted grinding method of FIG. 4 .

100:智慧型超音波輔助研磨加工系統 10:研磨機台 20:資料庫 30:處理器 310:加工精度預測模組 320:區間二型模糊類神經網路 330:動態分群差分演算單元 340:加工參數優化模組 350:優化單元 360:更新數據收集模組 100: Intelligent ultrasonic-assisted grinding and processing system 10: Grinding machine table 20:Database 30: Processor 310: Machining accuracy prediction module 320: Interval Type II Fuzzy Neural Networks 330: Dynamic grouping difference calculation unit 340: Processing parameter optimization module 350: Optimization Unit 360: Update data collection module

Claims (8)

一種智慧型超音波輔助研磨加工系統,用以預測一工件經研磨後之一表面研磨精度,該智慧型超音波輔助研磨加工系統包含:一研磨機台;一資料庫,訊號連接該研磨機台,並記錄該研磨機台之複數加工數據;以及一處理器,訊號連接該研磨機台及該資料庫,該處理器包含:一加工精度預測模組,接收該資料庫之該些加工數據,該加工精度預測模組依據一區間二型模糊類神經網路對該些加工數據進行訓練並建立一研磨預測模型,該區間二型模糊類神經網路經由一動態分群差分演算單元調整而產生該表面研磨精度;一加工參數優化模組,訊號連接該加工精度預測模組並接收該表面研磨精度,該加工參數優化模組依據一優化單元針對該些加工數據優化而計算出對應該表面研磨精度之複數最佳加工參數;及一更新數據收集模組,訊號連接該加工精度預測模組及該加工參數優化模組,該更新數據收集模組收集該表面研磨精度及該些最佳加工參數而形成一更新數據組;其中,該研磨機台依據該些最佳加工參數研磨該工件,該加工精度預測模組依據該更新數據收集模組所形成之該更新數據組更新該研磨預測模型而產生一更新預測模 型。 An intelligent ultrasonic-assisted grinding processing system is used to predict the surface grinding accuracy of a workpiece after grinding. The intelligent ultrasonic-assisted grinding processing system comprises: a grinding machine; a database, the signal is connected to the grinding machine , and record the plurality of processing data of the grinding machine; and a processor, the signal is connected to the grinding machine and the database, the processor includes: a processing accuracy prediction module, receiving the processing data of the database, The machining accuracy prediction module trains the machining data according to an interval type 2 fuzzy neural network and establishes a grinding prediction model, and the interval type 2 fuzzy neural network is adjusted by a dynamic group difference arithmetic unit to generate the Surface grinding precision; a processing parameter optimization module, the signal is connected to the processing precision prediction module and receives the surface grinding precision, and the processing parameter optimization module calculates the corresponding surface grinding precision according to the optimization of the processing data by an optimization unit a plurality of optimal processing parameters; and an update data collection module, the signal is connected to the processing accuracy prediction module and the processing parameter optimization module, the updated data collection module collects the surface grinding accuracy and the best processing parameters to obtain An update data set is formed; wherein, the grinding machine grinds the workpiece according to the optimal processing parameters, and the machining accuracy prediction module is generated by updating the grinding prediction model according to the update data set formed by the update data collection module An update forecast model type. 如請求項1所述之智慧型超音波輔助研磨加工系統,其中該區間二型模糊類神經網路包含:一第一層,存有該些加工數據;一第二層,將該些加工數據進行一模糊化運算,並計算出一區間二型模糊集合;一第三層,對該區間二型模糊集合進行一累乘運算;一第四層,對該區間二型模糊集合及一線性函數權重進行一降階運算,並計算出一一型模糊集合;及一第五層,對該一型模糊集合進行一解模糊運算,並計算出該表面研磨精度;其中,該區間二型模糊集合包含一高斯平均值、一高斯標準差及一高斯位移量。 The intelligent ultrasonic-assisted grinding and processing system according to claim 1, wherein the interval type II fuzzy neural network comprises: a first layer, storing the processing data; a second layer, storing the processing data Perform a fuzzification operation, and calculate an interval type 2 fuzzy set; a third layer, perform a cumulative multiplication operation on the interval type 2 fuzzy set; a fourth layer, the interval type 2 fuzzy set and a linear function The weights are subjected to a first-order reduction operation, and a type-1 fuzzy set is calculated; and a fifth layer, a de-fuzzification operation is performed on the type-1 fuzzy set, and the surface grinding accuracy is calculated; wherein, the interval type-2 fuzzy set Contains a Gaussian mean, a Gaussian standard deviation and a Gaussian shift. 如請求項2所述之智慧型超音波輔助研磨加工系統,其中該動態分群差分演算單元包含:一初始化子模組,將該高斯平均值、該高斯標準差、該高斯位移量及該線性函數權重編碼為一個體,其中該區間二型模糊類神經網路更包含複數該個體;一適應閥值計算子模組,訊號連接該初始化子模組,並計算各該個體之一距離閥值及一適應閥值,並定義複數群體之複數領袖;一分群子模組,訊號連接該適應閥值計算子模組,並依 據各該個體之該距離閥值及該適應閥值將該些個體分為該些群體;一突變子模組,訊號連接該分群子模組,並依據一萊維飛行策略自其中一該領袖及該些領袖之一最佳領袖產生一突變向量;一交換子模組,訊號連接該突變子模組,係將該突變向量進行一交換運算並產生一試驗向量;及一選擇子模組,訊號連接該交換子模組,係將該試驗向量及該最佳領袖進行比較並選擇保留該適應閥值最大者而成為該表面研磨精度。 The intelligent ultrasonic-assisted polishing system as claimed in claim 2, wherein the dynamic grouping and difference calculation unit comprises: an initialization sub-module, the Gaussian mean value, the Gaussian standard deviation, the Gaussian displacement and the linear function The weight is encoded as an individual, wherein the interval type II fuzzy neural network further includes a plurality of the individual; an adaptive threshold calculation sub-module, the signal is connected to the initialization sub-module, and calculates a distance threshold and An adaptation threshold, and defines the plural leaders of the plural groups; a sub-group sub-module, the signal is connected to the adaptation threshold calculation sub-module, and according to The individuals are divided into the groups according to the distance threshold and the adaptation threshold of each individual; a mutant sub-module, the signal is connected to the grouping sub-module, and according to a Levi flight strategy from one of the leaders and one of the leaders, the best leader, generates a mutation vector; a swap sub-module, the signal is connected to the mutation sub-module to perform a swap operation on the mutation vector and generate a test vector; and a selection sub-module, The signal is connected to the exchange sub-module, the test vector is compared with the best leader, and the one with the largest adaptation threshold is selected to be the surface grinding accuracy. 如請求項3所述之智慧型超音波輔助研磨加工系統,其中該優化單元對各該加工數據之複數加工參數及該表面研磨精度進行運算而計算出對應該表面研磨精度之該些最佳加工參數。 The intelligent ultrasonic-assisted grinding processing system according to claim 3, wherein the optimization unit calculates the optimal processing corresponding to the surface grinding precision by calculating the complex processing parameters of the processing data and the surface grinding precision parameter. 一種智慧型超音波輔助研磨加工方法,用以預測一工件經研磨後之一表面研磨精度,該智慧型超音波輔助研磨加工方法包含:一加工數據記錄步驟,係將一研磨機台之複數加工數據記錄於一資料庫;一加工精度預測步驟,係依據一區間二型模糊類神經網路模型對該些加工數據進行訓練,並建立一研磨預測模型,其中該區間二型模糊類神經網路模型經由一動態分群差分 演算規則調整而產生該表面研磨精度;一加工參數優化步驟,係依據一優化規則針對該些加工數據優化而計算出對應該表面研磨精度之複數最佳加工參數;一研磨步驟,係驅動該研磨機台依據該些最佳加工參數研磨該工件;以及一更新數據收集步驟,係收集該表面研磨精度及該些最佳加工參數而形成一更新數據組,並依據該更新數據組更新該研磨預測模型而產生一更新預測模型。 An intelligent ultrasonic-assisted grinding processing method is used to predict the surface grinding accuracy of a workpiece after grinding. The intelligent ultrasonic-assisted grinding processing method comprises: a processing data recording step of processing a plurality of grinding machines The data is recorded in a database; a processing accuracy prediction step is to train the processing data according to an interval type II fuzzy neural network model, and establish a grinding prediction model, wherein the interval type II fuzzy neural network model via a dynamic group difference The calculation rule is adjusted to generate the surface grinding precision; a processing parameter optimization step is to optimize the processing data according to an optimization rule to calculate a plurality of optimal processing parameters corresponding to the surface grinding precision; a grinding step is to drive the grinding The machine grinds the workpiece according to the optimal processing parameters; and an update data collection step collects the surface grinding accuracy and the optimal processing parameters to form an updated data set, and updates the grinding prediction according to the updated data set model to generate an updated prediction model. 如請求項5所述之智慧型超音波輔助研磨加工方法,其中該區間二型模糊類神經網路模型包含:一第一層,存有該些加工數據;一第二層,將該些加工數據進行一模糊化運算,並計算出一區間二型模糊集合;一第三層,對該區間二型模糊集合進行一累乘運算;一第四層,對該區間二型模糊集合及一線性函數權重進行一降階運算,並計算出一一型模糊集合;及一第五層,對該一型模糊集合進行一解模糊運算,並計算出該表面研磨精度;其中該區間二型模糊集合包含一高斯平均值、一高斯標準差及一高斯位移量。 The intelligent ultrasonic-assisted grinding method according to claim 5, wherein the interval type II fuzzy neural network model comprises: a first layer, storing the processing data; a second layer, processing the processing data The data is subjected to a fuzzification operation, and an interval type 2 fuzzy set is calculated; a third layer, a cumulative multiplication operation is performed on the interval type 2 fuzzy set; a fourth layer, the interval type 2 fuzzy set and a linear The function weight performs a first-order reduction operation, and calculates a type-1 fuzzy set; and a fifth layer, performs a de-fuzzification operation on the type-1 fuzzy set, and calculates the surface grinding accuracy; wherein the interval type-2 fuzzy set Contains a Gaussian mean, a Gaussian standard deviation and a Gaussian shift. 如請求項6所述之智慧型超音波輔助研磨加 工方法,其中該動態分群差分演算規則包含:一初始化子步驟,將該高斯平均值、該高斯標準差、該高斯位移量及該線性函數權重編碼為一個體,其中該區間二型模糊類神經網路模型更包含複數該個體;一適應閥值計算子步驟,計算各該個體之一距離閥值及一適應閥值,並定義複數群體之複數領袖;一分群子步驟,係依據各該個體之該距離閥值及該適應閥值將該些個體分為該些群體;一突變子步驟,依據一萊維飛行策略自其中一該領袖及該些領袖之一最佳領袖產生一突變向量;一交換子步驟,係將該突變向量進行一交換運算並產生一試驗向量;及一選擇子步驟,係將該試驗向量及該最佳領袖進行比較並選擇保留該適應閥值最大者而成為該表面研磨精度。 The intelligent ultrasonic-assisted grinding machine as described in claim 6 The engineering method, wherein the dynamic grouping difference algorithm includes: an initialization sub-step, encoding the Gaussian mean value, the Gaussian standard deviation, the Gaussian displacement amount and the linear function weight into a body, wherein the interval type II fuzzy neural network The network model further includes a plurality of the individuals; an adaptation threshold calculation sub-step, calculates a distance threshold and an adaptation threshold for each of the individuals, and defines the plurality of leaders of the plurality of groups; a group sub-step is based on each of the individuals the distance threshold and the adaptation threshold divide the individuals into the groups; a mutation substep generating a mutation vector from one of the leaders and the best one of the leaders according to a Levi flight strategy; A swap sub-step is to perform a swap operation on the mutation vector to generate a test vector; and a selection sub-step is to compare the test vector with the best leader and select the one that retains the largest adaptation threshold to become the test vector Surface grinding accuracy. 如請求項7所述之智慧型超音波輔助研磨加工方法,其中該優化規則對各該加工數據之複數加工參數及該表面研磨精度進行運算而計算出對應該表面研磨精度之該些最佳加工參數。 The intelligent ultrasonic-assisted polishing method as claimed in claim 7, wherein the optimization rule calculates the optimal machining corresponding to the surface polishing accuracy by calculating the complex machining parameters of the machining data and the surface polishing accuracy. parameter.
TW109136301A 2020-10-20 2020-10-20 Intelligent ultrasonic grinding and polishing aided system and method thereof TWI767368B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109136301A TWI767368B (en) 2020-10-20 2020-10-20 Intelligent ultrasonic grinding and polishing aided system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109136301A TWI767368B (en) 2020-10-20 2020-10-20 Intelligent ultrasonic grinding and polishing aided system and method thereof

Publications (2)

Publication Number Publication Date
TW202217629A TW202217629A (en) 2022-05-01
TWI767368B true TWI767368B (en) 2022-06-11

Family

ID=82558795

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109136301A TWI767368B (en) 2020-10-20 2020-10-20 Intelligent ultrasonic grinding and polishing aided system and method thereof

Country Status (1)

Country Link
TW (1) TWI767368B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104484715A (en) * 2014-11-28 2015-04-01 江苏大学 Neural network and particle swarm optimization algorithm-based building energy consumption predicting method
CN106845136A (en) * 2017-02-21 2017-06-13 上海大学 A kind of needle-valve body crush and grind accuracy prediction method based on SVMs
CN108898214A (en) * 2018-06-29 2018-11-27 山东师范大学 A kind of online sequence data prediction technique and device
CN110020712A (en) * 2019-03-26 2019-07-16 浙江大学 A kind of optimization population BP neural network forecast method and system based on cluster
TWM597429U (en) * 2020-03-18 2020-06-21 百德機械股份有限公司 Tool wear prediction system using evolutionary fuzzy neural network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104484715A (en) * 2014-11-28 2015-04-01 江苏大学 Neural network and particle swarm optimization algorithm-based building energy consumption predicting method
CN106845136A (en) * 2017-02-21 2017-06-13 上海大学 A kind of needle-valve body crush and grind accuracy prediction method based on SVMs
CN108898214A (en) * 2018-06-29 2018-11-27 山东师范大学 A kind of online sequence data prediction technique and device
CN110020712A (en) * 2019-03-26 2019-07-16 浙江大学 A kind of optimization population BP neural network forecast method and system based on cluster
TWM597429U (en) * 2020-03-18 2020-06-21 百德機械股份有限公司 Tool wear prediction system using evolutionary fuzzy neural network

Also Published As

Publication number Publication date
TW202217629A (en) 2022-05-01

Similar Documents

Publication Publication Date Title
Jayabal et al. Optimization of thrust force, torque, and tool wear in drilling of coir fiber-reinforced composites using Nelder–Mead and genetic algorithm methods
Pimenov et al. Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth
Zuperl et al. Optimization of cutting conditions during cutting by using neural networks
Benardos et al. Predicting surface roughness in machining: a review
Pan et al. New insights into the methods for predicting ground surface roughness in the age of digitalisation
US9367060B2 (en) Intelligent optimization method and system therefor
Mahdavinejad et al. Optimization of milling parameters using artificial neural network and artificial immune system
CN104615077A (en) Efficient energy-saving optimizing method for numerical control milling processing process parameters based on Taguchi method
Vasanth et al. A neural network model to predict surface roughness during turning of hardened SS410 steel
El-Mounayri et al. Optimization of CNC ball end milling: a neural network-based model
Quintana et al. Prediction, monitoring and control of surface roughness in high-torque milling machine operations
Nandi et al. Design of a genetic-fuzzy system to predict surface finish and power requirement in grinding
Amouzgar et al. Radial basis functions with a priori bias as surrogate models: A comparative study
Elhami et al. Application of GONNS to predict constrained optimum surface roughness in face milling of high-silicon austenitic stainless steel
TWI767368B (en) Intelligent ultrasonic grinding and polishing aided system and method thereof
Chakraborti et al. Digital twin: multi-dimensional model reduction method for performance optimization of the virtual entity
TWM607654U (en) Intelligent ultrasonic grinding and polishing aided system
Abolghasema et al. Optimization of machining parameters for product quality and productivity in turning process of aluminum
Bhuiyan et al. Optimization of cutting parameters in turning process
Fan et al. Model and optimize the magnetic composite fluid (MCF) polishing process with machine learning modeling and intelligent optimization algorithm
Nandi et al. Automatic design of fuzzy logic controller using a genetic algorithm—to predict power requirement and surface finish in grinding
Krimpenis et al. Rough milling optimisation for parts with sculptured surfaces using genetic algorithms in a Stackelberg game
Hsieh et al. Multi-pass progressive tool path planning in five-axis flank milling by particle swarm optimisation
CN113569453B (en) Migration method of digital twin product model oriented to processing
Deepak Optimization of milling operation using genetic and PSO algorithm