TWM607654U - Intelligent ultrasonic grinding and polishing aided system - Google Patents

Intelligent ultrasonic grinding and polishing aided system Download PDF

Info

Publication number
TWM607654U
TWM607654U TW109213794U TW109213794U TWM607654U TW M607654 U TWM607654 U TW M607654U TW 109213794 U TW109213794 U TW 109213794U TW 109213794 U TW109213794 U TW 109213794U TW M607654 U TWM607654 U TW M607654U
Authority
TW
Taiwan
Prior art keywords
module
grinding
processing
accuracy
sub
Prior art date
Application number
TW109213794U
Other languages
Chinese (zh)
Inventor
林正堅
張鈞淯
林鑫佑
蔡明義
黃守正
Original Assignee
國立勤益科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立勤益科技大學 filed Critical 國立勤益科技大學
Priority to TW109213794U priority Critical patent/TWM607654U/en
Publication of TWM607654U publication Critical patent/TWM607654U/en

Links

Images

Abstract

本新型提供一種智慧型超音波輔助研磨加工系統,包含研磨機台、資料庫以及處理器。資料庫記錄研磨機台之複數加工數據。處理器包含加工精度預測模組及加工參數優化模組。加工精度預測模組接收資料庫之加工數據,並依據區間二型模糊類神經網路對加工數據進行訓練並建立研磨預測模型,並產生表面研磨精度。加工參數優化模組計算出對應表面研磨精度之最佳加工參數。研磨機台依據最佳加工參數研磨工件。藉此,有效減少試誤法所花費的龐大材料及成本,使不具備經驗的操作者也能研磨出具有理想研磨精度的工件。The model provides an intelligent ultrasonic assisted grinding and processing system, which includes a grinding machine, a database and a processor. The database records the plural processing data of the grinding machine. The processor includes a machining accuracy prediction module and a machining parameter optimization module. The machining accuracy prediction module receives the machining data from the database, and trains the machining data according to the interval-type fuzzy neural network, establishes a grinding prediction model, and generates surface grinding accuracy. The processing parameter optimization module calculates the best processing parameters corresponding to the surface grinding accuracy. The grinding machine grinds the workpiece according to the best processing parameters. In this way, the huge material and cost of trial and error method are effectively reduced, so that inexperienced operators can also grind workpieces with ideal grinding accuracy.

Description

智慧型超音波輔助研磨加工系統Intelligent ultrasonic assisted grinding processing system

本新型是關於一種研磨加工系統,特別是關於一種智慧型超音波輔助研磨加工系統。This model relates to a grinding processing system, in particular to an intelligent ultrasonic assisted grinding processing system.

於現有研磨拋光加工技術中,加工材料、加工磨棒、拋光刀具及拋光材料的選擇會產生不同的加工精度、表面粗糙度及研磨拋光時間。研磨拋光加工主要依賴個人經驗來設定加工的參數,若欲對未接觸過的材料進行研磨拋光,則無法精確的設定加工參數。In the existing grinding and polishing processing technology, the selection of processing materials, processing grinding rods, polishing tools and polishing materials will produce different processing accuracy, surface roughness and grinding and polishing time. Grinding and polishing processing mainly relies on personal experience to set processing parameters. If you want to grind and polish materials that have not been touched, you cannot set the processing parameters accurately.

由此可知,目前市場上缺乏一種可根據使用者需求設定預期的表面粗糙值計算最佳加工參數的研磨加工系統,故相關業者均在尋求其解決之道。It can be seen that there is currently a lack of a grinding processing system in the market that can set the expected surface roughness value to calculate the best processing parameters according to the needs of users, so the relevant industry is seeking its solution.

因此本新型之目的在於提供一種智慧型超音波輔助研磨加工系統,其根據先前記錄之加工數據建立研磨預測模型而產生表面研磨精度,並計算出對應表面研磨精度之最佳加工參數。Therefore, the purpose of the present invention is to provide an intelligent ultrasonic-assisted grinding processing system, which establishes a grinding prediction model based on the previously recorded processing data to generate surface grinding accuracy, and calculates the best processing parameters corresponding to the surface grinding accuracy.

依據本新型的結構態樣之一實施方式提供一種智慧型超音波輔助研磨加工系統,用以預測工件經研磨後之表面研磨精度。智慧型超音波輔助研磨加工系統包含研磨機台、資料庫及處理器。資料庫訊號連接研磨機台,並記錄研磨機台之複數加工數據。處理器訊號連接研磨機台及資料庫,並包含加工精度預測模組及加工參數優化模組。加工精度預測模組接收資料庫之此些加工數據,加工精度預測模組依據區間二型模糊類神經網路對此些加工數據進行訓練並建立研磨預測模型,區間二型模糊類神經網路經由動態分群差分演算單元調整而產生表面研磨精度。加工參數優化模組訊號連接加工精度預測模組並接收表面研磨精度,加工參數優化模組依據優化單元針對此些加工數據優化而計算出對應表面研磨精度之複數最佳加工參數。研磨機台依據此些最佳加工參數研磨工件。According to an embodiment of the structural aspect of the present invention, an intelligent ultrasonic-assisted grinding processing system is provided to predict the surface grinding accuracy of a workpiece after grinding. The intelligent ultrasonic-assisted grinding processing system includes a grinding machine, a database and a processor. The database signal is connected to the grinding machine and records the plural processing data of the grinding machine. The processor signal is connected to the grinding machine and the database, and includes a processing accuracy prediction module and a processing parameter optimization module. The processing accuracy prediction module receives these processing data from the database, and the processing accuracy prediction module trains these processing data and establishes a grinding prediction model based on the interval type 2 fuzzy neural network. The interval type 2 fuzzy neural network passes Dynamic clustering difference calculation unit is adjusted to produce surface polishing accuracy. The processing parameter optimization module signal is connected to the processing accuracy prediction module and receives the surface grinding accuracy. The processing parameter optimization module optimizes the processing data according to the optimization unit to calculate a plurality of optimal processing parameters corresponding to the surface grinding accuracy. The grinding machine grinds the workpiece according to these optimal processing parameters.

藉此,使不具備經驗的操作者也能根據欲達成的表面研磨精度設定對應表面研磨精度的最佳加工參數,並對工件進行研磨或拋光處理。In this way, operators with no experience can also set the best processing parameters corresponding to the surface grinding accuracy according to the surface grinding accuracy to be achieved, and perform grinding or polishing treatment on the workpiece.

前述實施方式之其他實施例如下:前述區間二型模糊類神經網路包含第一層、第二層、第三層、第四層及第五層。第一層存有此些加工數據。第二層將此些加工數據進行模糊化運算,並計算出區間二型模糊集合。第三層對區間二型模糊集合進行累乘運算。第四層對區間二型模糊集合及線性函數權重進行降階運算,並計算出一型模糊集合。第五層對一型模糊集合進行解模糊運算,並計算出表面研磨精度。區間二型模糊集合包含高斯平均值、高斯標準差及高斯位移量。Other examples of the foregoing embodiment are as follows: the foregoing interval-type 2 fuzzy neural network includes a first layer, a second layer, a third layer, a fourth layer, and a fifth layer. These processing data are stored in the first layer. The second layer performs fuzzification operations on these processed data, and calculates the interval type-2 fuzzy set. The third layer performs cumulative multiplication on the interval type-2 fuzzy set. The fourth layer performs a reduction operation on the interval type 2 fuzzy set and the linear function weight, and calculates the type 1 fuzzy set. The fifth layer performs defuzzification operations on a fuzzy set, and calculates the surface grinding accuracy. The interval type 2 fuzzy set includes Gaussian mean value, Gaussian standard deviation and Gaussian displacement.

前述實施方式之其他實施例如下:前述動態分群差分演算單元包含初始化子模組、適應閥值計算子模組、分群子模組、突變子模組、交換子模組及選擇子模組。初始化子模組將高斯平均值、高斯標準差、高斯位移量及線性函數權重編碼為一個體,其中區間二型模糊類神經網路更包含複數個體。適應閥值計算子模組,訊號連接初始化子模組,並計算各個體之距離閥值及適應閥值,並定義複數群體之複數領袖。分群子模組訊號連接適應閥值計算子模組,並依據各個體之距離閥值及適應閥值將此些個體分為此些群體。突變子模組訊號連接分群子模組,並依據萊維飛行策略自其中一領袖及此些領袖之最佳領袖產生突變向量。交換子模組訊號連接突變子模組,交換子模組係將突變向量進行交換運算並產生試驗向量。選擇子模組訊號連接交換子模組,選擇子模組係將試驗向量及最佳領袖進行比較並選擇保留適應閥值最大者而成為表面研磨精度。Other examples of the foregoing embodiment are as follows: the foregoing dynamic clustering differential calculation unit includes an initialization sub-module, an adaptive threshold calculation sub-module, a clustering sub-module, a mutation sub-module, an exchange sub-module, and a selection sub-module. The initialization sub-module encodes the Gaussian average, Gaussian standard deviation, Gaussian displacement, and linear function weights into one body, and the interval-type 2 fuzzy neural network further includes plural individuals. The adaptive threshold calculation sub-module, the signal is connected to the initialization sub-module, and the distance threshold and the adaptive threshold of each body are calculated, and the plural leaders of the plural groups are defined. The grouping sub-module signals are connected to the adaptive threshold calculation sub-module, and these individuals are divided into these groups according to the distance threshold and the adaptive threshold of each body. The mutation sub-module signal is connected to the grouping sub-modules, and a mutation vector is generated from one of the leaders and the best leader of these leaders according to the Levi flight strategy. The exchange sub-module signal is connected to the mutation sub-module, and the exchange sub-module performs exchange operations on the mutation vector and generates a test vector. Select the sub-module signal to connect to the exchange sub-module. The selected sub-module compares the test vector and the best leader and selects the one that retains the largest adaptive threshold to become the surface polishing accuracy.

前述實施方式之其他實施例如下:前述優化單元對各加工數據之複數加工參數及表面研磨精度進行運算而計算出對應表面研磨精度之此些最佳加工參數。Other examples of the foregoing embodiment are as follows: the foregoing optimization unit calculates the complex processing parameters and surface polishing accuracy of each processing data to calculate these optimal processing parameters corresponding to the surface polishing accuracy.

前述實施方式之其他實施例如下:前述處理器更包含更新數據收集模組。更新數據收集模組訊號連接加工精度預測模組及加工參數優化模組,更新數據收集模組收集表面研磨精度及此些最佳加工參數而形成更新數據組。加工精度預測模組依據更新數據收集模組所形成之更新數據組更新研磨預測模型而產生更新預測模型。Other examples of the foregoing embodiment are as follows: the foregoing processor further includes an update data collection module. The updated data collection module signals are connected to the processing accuracy prediction module and the processing parameter optimization module, and the updated data collection module collects surface grinding accuracy and these optimal processing parameters to form an updated data set. The machining accuracy prediction module updates the grinding prediction model based on the updated data set formed by the updated data collection module to generate an updated prediction model.

請一併參閱第1圖至第3圖。第1圖係繪示本新型第一實施例之智慧型超音波輔助研磨加工系統100之方塊示意圖;第2圖係繪示第1圖之智慧型超音波輔助研磨加工系統100之區間二型模糊類神經網路320之示意圖;及第3圖係繪示第1圖之智慧型超音波輔助研磨加工系統100之動態分群差分演算單元330之方塊示意圖。智慧型超音波輔助研磨加工系統100用以預測工件經研磨後之表面研磨精度 Y,並包含研磨機台10、資料庫20及處理器30。其中資料庫20訊號連接研磨機台10,並記錄研磨機台10之複數加工數據。處理器30訊號連接研磨機台10及資料庫20。具體而言,研磨機台10可為三軸CNC銑床,資料庫20可為記憶體,處理器30可為中央處理器(Central Processing Unit;CPU),但本新型不以此為限。 Please refer to Figures 1 to 3 together. Fig. 1 is a block diagram of the intelligent ultrasonic-assisted grinding and processing system 100 of the first embodiment of the present invention; Fig. 2 is a block diagram of the intelligent ultrasonic-assisted grinding and processing system 100 in Fig. 1 The schematic diagram of the similar neural network 320; and FIG. 3 is a block diagram of the dynamic grouping difference calculation unit 330 of the intelligent ultrasonic-assisted grinding processing system 100 of FIG. 1. The intelligent ultrasonic assisted grinding processing system 100 is used to predict the surface grinding accuracy Y of the workpiece after grinding, and includes a grinding machine 10, a database 20 and a processor 30. Among them, the signal of the database 20 is connected to the grinding machine 10, and the plural processing data of the grinding machine 10 are recorded. The processor 30 signals to connect the grinding machine 10 and the database 20. Specifically, the grinding machine 10 may be a three-axis CNC milling machine, the database 20 may be a memory, and the processor 30 may be a central processing unit (CPU), but the present invention is not limited to this.

處理器30包含加工精度預測模組310、加工參數優化模組340。加工精度預測模組310接收資料庫20之加工數據,並依據區間二型模糊類神經網路320對加工數據進行訓練並建立研磨預測模型,區間二型模糊類神經網路320經由動態分群差分演算單元330調整而產生表面研磨精度 Y。加工參數優化模組340訊號連接加工精度預測模組310並接收表面研磨精度 Y。具體而言,加工數據包含複數加工參數及對應精度值,加工參數包含加工材料、鑽石號數、線速度、進給速度、切削深度、切削寬度及超音波功率,但本新型不以此為限。 The processor 30 includes a processing accuracy prediction module 310 and a processing parameter optimization module 340. The processing accuracy prediction module 310 receives the processing data of the database 20, and trains the processing data and establishes a grinding prediction model according to the interval type 2 fuzzy neural network 320. The interval type 2 fuzzy neural network 320 is calculated by dynamic clustering and difference calculation. The unit 330 is adjusted to produce a surface polishing accuracy Y. The processing parameter optimization module 340 signals the processing accuracy prediction module 310 and receives the surface grinding accuracy Y. Specifically, processing data includes multiple processing parameters and corresponding accuracy values. Processing parameters include processing material, diamond number, linear speed, feed speed, cutting depth, cutting width and ultrasonic power, but this new model is not limited to this .

區間二型模糊類神經網路320包含第一層Layer1、第二層Layer2、第三層Layer3、第四層Layer4及第五層Layer5。第一層Layer1存有加工數據,將加工數據作為區間二型模糊類神經網路320之輸入值 X 1~ X n傳送至第二層Layer2;第二層Layer2將加工數據進行模糊化運算,並計算出區間二型模糊集合;第三層Layer3對區間二型模糊集合進行累乘運算;第四層Layer4對區間二型模糊集合及線性函數權重進行降階運算,並計算出一型模糊集合;第五層Layer5對一型模糊集合進行解模糊運算,並計算出表面研磨精度 Y,其中區間二型模糊集合包含高斯平均值、高斯標準差及高斯位移量。 The interval type 2 fuzzy neural network 320 includes a first layer Layer1, a second layer Layer2, a third layer Layer3, a fourth layer Layer4, and a fifth layer Layer5. The first layer Layer1 stores the processing data, and the processing data is sent to the second layer Layer2 as the input values X 1 ~ X n of the interval type 2 fuzzy neural network 320; the second layer Layer2 performs the fuzzy calculation on the processing data, and Calculate the interval type 2 fuzzy set; the third layer Layer 3 performs cumulative multiplication operation on the interval type 2 fuzzy set; the fourth layer Layer 4 performs the order reduction operation on the interval type 2 fuzzy set and the linear function weight, and calculates the type 1 fuzzy set; The fifth layer, Layer5, performs defuzzification operations on the first-type fuzzy set and calculates the surface polishing accuracy Y. The interval-type second-type fuzzy set includes Gaussian average, Gaussian standard deviation and Gaussian displacement.

加工精度預測模組310更透過動態分群差分演算單元330調整區間二型模糊類神經網路320中的參數。參數包含高斯平均值、高斯標準差、高斯位移量及線性函數權重。動態分群差分演算單元330包含初始化子模組331、適應閥值計算子模組332、分群子模組333、突變子模組334、交換子模組335以及選擇子模組336。The machining accuracy prediction module 310 further adjusts the parameters in the interval type-2 fuzzy neural network 320 through the dynamic clustering difference calculation unit 330. Parameters include Gaussian mean, Gaussian standard deviation, Gaussian displacement and linear function weight. The dynamic grouping difference calculation unit 330 includes an initialization sub-module 331, an adaptive threshold calculation sub-module 332, a grouping sub-module 333, a mutation sub-module 334, an exchange sub-module 335, and a selection sub-module 336.

初始化子模組331將高斯平均值、高斯標準差、高斯位移量及線性函數權重編碼為一個體,其中區間二型模糊類神經網路320更包含複數個體。The initialization sub-module 331 encodes the Gaussian mean value, Gaussian standard deviation, Gaussian displacement, and linear function weight into one body, where the interval-type 2 fuzzy neural network 320 further includes plural individuals.

適應閥值計算子模組332訊號連接初始化子模組331,適應閥值計算子模組332計算各個體之距離閥值及適應閥值,並定義複數群體之複數領袖。詳細地說,適應閥值計算子模組332將此些個體的群組編號初始值設為0,並將所有個體根據其適應閥值排序。排序後自群體編號為0的個體中將適應閥值最高的個體設定為領袖,並將群體編號更新為

Figure 02_image001
,然後計算距離閥值(
Figure 02_image003
)及適應閥值(
Figure 02_image005
),其計算規則如式(1)到式(4)所示:
Figure 02_image007
尚未被分群              (1);
Figure 02_image009
(2);
Figure 02_image011
尚未被分群              (3);
Figure 02_image013
(4); 其中D代表維度,NP為個體總數,
Figure 02_image001
為組別,
Figure 02_image015
則代表第
Figure 02_image001
群的領袖,
Figure 02_image017
代表當前的個體,NI代表當前個體中群組編號為0的個體總數。 The adaptive threshold calculation sub-module 332 is signaled to connect to the initialization sub-module 331, and the adaptive threshold calculation sub-module 332 calculates the distance threshold and the adaptive threshold of each body, and defines the plural leaders of the plural groups. In detail, the adaptation threshold calculation sub-module 332 sets the initial value of the group numbers of these individuals to 0, and sorts all individuals according to their adaptation thresholds. After sorting, the individual with the highest adaptation threshold is set as the leader from the individuals whose group number is 0, and the group number is updated to
Figure 02_image001
, And then calculate the distance threshold (
Figure 02_image003
) And adaptation threshold (
Figure 02_image005
), the calculation rules are as shown in formula (1) to formula (4):
Figure 02_image007
Not yet grouped (1);
Figure 02_image009
(2);
Figure 02_image011
Not yet grouped (3);
Figure 02_image013
(4); where D represents the dimension, NP is the total number of individuals,
Figure 02_image001
Is the group,
Figure 02_image015
Represents the first
Figure 02_image001
The leader of the group,
Figure 02_image017
Represents the current individual, and NI represents the total number of individuals whose group number is 0 in the current individual.

分群子模組333訊號連接適應閥值計算子模組332,並依據各個體之距離閥值及適應閥值將此些個體分為此些群體。具體而言,分群子模組333計算各群體編號為0的個體與各領袖的距離差(

Figure 02_image019
)及適應值差(
Figure 02_image021
),並判斷未分群的個體之群體編號,距離差(
Figure 02_image019
)及適應值差(
Figure 02_image021
)的計算規則如式(5)、式(6)所示:
Figure 02_image023
(5);
Figure 02_image025
(6); 若
Figure 02_image027
Figure 02_image029
,則表示個體
Figure 02_image017
與第
Figure 02_image001
群的領袖
Figure 02_image015
是相似的,將
Figure 02_image017
的群組編號更新為
Figure 02_image001
,所有個體皆有組別後,分群子模組333終止執行。 The grouping sub-module 333 signals the adaptive threshold calculation sub-module 332, and divides the individuals into these groups according to the distance threshold and the adaptive threshold of each body. Specifically, the grouping submodule 333 calculates the distance difference between the individual whose group number is 0 and each leader (
Figure 02_image019
) And fitness difference (
Figure 02_image021
), and judge the group number of the ungrouped individuals, and the distance difference (
Figure 02_image019
) And fitness difference (
Figure 02_image021
The calculation rules of) are shown in formulas (5) and (6):
Figure 02_image023
(5);
Figure 02_image025
(6); if
Figure 02_image027
And
Figure 02_image029
, It means the individual
Figure 02_image017
And
Figure 02_image001
Leader of the group
Figure 02_image015
Is similar, will
Figure 02_image017
Updated to
Figure 02_image001
After all individuals have groups, the grouping sub-module 333 terminates execution.

突變子模組334訊號連接分群子模組333,並依據萊維飛行策略自其中一領袖及此些領袖之最佳領袖中產生突變向量。詳細地說,突變子模組334之結合萊維飛行策略之突變規則如式(7)、式(8)、式(9)、式(10)所示:

Figure 02_image031
(7);
Figure 02_image033
(8);
Figure 02_image035
(9);
Figure 02_image037
(10); 其中
Figure 02_image039
為突變向量,
Figure 02_image041
為最佳領袖,
Figure 02_image043
為所有群組中隨機選取的其中一領袖,F為突變權重因子,
Figure 02_image045
為萊維飛行策略,
Figure 02_image047
為萊維飛行策略之飛行指數,
Figure 02_image049
Figure 02_image051
為具有均值
Figure 02_image053
Figure 02_image055
的常態隨機分布。突變子模組334藉由結合萊維飛行策略,將最佳領袖設為基準向量,並加入兩個隨機個體的差異向量,使得突變後的突變向量圍繞著最好的個體。 The mutation sub-module 334 is connected to the grouping sub-module 333 by a signal, and generates a mutation vector from one of the leaders and the best leader of these leaders according to the Levi flight strategy. In detail, the mutation rules of the mutation sub-module 334 combined with Levi's flight strategy are shown in formula (7), formula (8), formula (9), and formula (10):
Figure 02_image031
(7);
Figure 02_image033
(8);
Figure 02_image035
(9);
Figure 02_image037
(10); where
Figure 02_image039
Is the mutation vector,
Figure 02_image041
As the best leader,
Figure 02_image043
Is one of the leaders randomly selected in all groups, F is the mutation weighting factor,
Figure 02_image045
For Levi’s flight strategy,
Figure 02_image047
Is the flight index of Levi's flight strategy,
Figure 02_image049
with
Figure 02_image051
Mean
Figure 02_image053
versus
Figure 02_image055
The normal random distribution. The mutation sub-module 334 combines the Levi flight strategy to set the best leader as the reference vector and adds the difference vector of two random individuals, so that the mutation vector after the mutation surrounds the best individual.

交換子模組335訊號連接突變子模組334,係將突變向量做交換運算並產生試驗向量。交換子模組335依據一交換規則將每一個突變向量與對應的目標向量進行交換運算,並產生一個新的試驗向量,交換運算之規則如式(11)所示:

Figure 02_image057
(11); 其中
Figure 02_image059
為試驗向量;
Figure 02_image061
為突變向量;
Figure 02_image063
為目標向量;
Figure 02_image065
為每個維度對應的隨機值,其值為0到1之間的亂數;CR為交換率。若交換率CR愈大,則試驗向量與突變向量的相似度愈高;若交換率CR愈小,則試驗向量與突變向量的相似度愈低。 The exchange sub-module 335 signals the mutation sub-module 334 to perform exchange operations on the mutation vector and generate a test vector. The exchange sub-module 335 exchanges each mutation vector with the corresponding target vector according to an exchange rule, and generates a new test vector. The exchange operation rule is shown in formula (11):
Figure 02_image057
(11); where
Figure 02_image059
Is the test vector;
Figure 02_image061
Is the mutation vector;
Figure 02_image063
Is the target vector;
Figure 02_image065
It is the random value corresponding to each dimension, and its value is a random number between 0 and 1; CR is the exchange rate. If the exchange rate CR is larger, the similarity between the test vector and the mutation vector is higher; if the exchange rate CR is smaller, the similarity between the test vector and the mutation vector is lower.

選擇子模組336訊號連接交換子模組335,係將試驗向量、最佳領袖進行比較並選擇保留適應閥值最大者而成為表面研磨精度 Y。具體而言,選擇子模組336利用適應閥值評估試驗向量是否能成為表面研磨精度 Y,其選擇公式如式(12)所示:

Figure 02_image067
(12); 其中
Figure 02_image069
為選擇後的目標向量;
Figure 02_image071
為試驗向量;
Figure 02_image073
為當前的目標向量;
Figure 02_image075
為試驗向量的適應值差;
Figure 02_image077
為當前的目標向量的適應值差。 The signal of the selection sub-module 336 is connected to the exchange sub-module 335, which compares the test vector and the best leader and selects the one that retains the largest adaptive threshold to become the surface polishing accuracy Y. Specifically, the selection sub-module 336 uses the adaptive threshold to evaluate whether the test vector can become the surface polishing accuracy Y , and its selection formula is shown in equation (12):
Figure 02_image067
(12); where
Figure 02_image069
Is the selected target vector;
Figure 02_image071
Is the test vector;
Figure 02_image073
Is the current target vector;
Figure 02_image075
Is the fitness value difference of the test vector;
Figure 02_image077
Is the fitness value difference of the current target vector.

加工參數優化模組340依據優化單元350針對加工數據優化而計算出對應表面研磨精度 Y之最佳加工參數。優化單元350對各加工數據之複數加工參數及表面研磨精度 Y進行運算而計算出對應表面研磨精度 Y之此些最佳加工參數。優化單元350之計算規則如式(13)、式(14)所示:

Figure 02_image079
(13);
Figure 02_image081
(14); 其中
Figure 02_image083
是ith粒子的速度;
Figure 02_image085
是當前粒子的位置;
Figure 02_image087
是粒子本身的最佳解;
Figure 02_image089
是整個族群的最佳解;
Figure 02_image091
為慣性權重;
Figure 02_image093
為認知係數;
Figure 02_image095
為社會係數;
Figure 02_image097
Figure 02_image099
為介於0到1之間的隨機亂數。 The processing parameter optimization module 340 calculates the best processing parameters corresponding to the surface grinding accuracy Y according to the optimization unit 350 for processing data optimization. The optimization unit 350 performs calculations on the complex processing parameters and surface polishing accuracy Y of each processing data to calculate these optimal processing parameters corresponding to the surface polishing accuracy Y. The calculation rules of the optimization unit 350 are shown in equations (13) and (14):
Figure 02_image079
(13);
Figure 02_image081
(14); where
Figure 02_image083
Is the velocity of the ith particle;
Figure 02_image085
Is the position of the current particle;
Figure 02_image087
Is the best solution of the particle itself;
Figure 02_image089
Is the best solution for the entire ethnic group;
Figure 02_image091
Is the weight of inertia;
Figure 02_image093
Is the cognitive coefficient;
Figure 02_image095
Is the social coefficient;
Figure 02_image097
and
Figure 02_image099
It is a random random number between 0 and 1.

研磨機台10依據加工參數優化模組340所計算之最佳加工參數研磨工件。The grinding machine 10 grinds the workpiece according to the optimal processing parameters calculated by the processing parameter optimization module 340.

處理器30更包含更新數據收集模組360,更新數據收集模組360訊號連接加工精度預測模組310及加工參數優化模組340。更新數據收集模組360收集表面研磨經度及最佳加工參數而形成更新數據組。加工精度預測模組310依據更新數據收集模組360所形成之更新數據組更新研磨預測模型而產生更新預測模型。詳細地說,隨著研磨機台10長時間的運作,內部零件的磨耗使得研磨預測模型所預測之表面研磨精度 Y與研磨機台10實際研磨可獲得之表面研磨精度 Y有誤差,透過更新預測模型可使智慧型超音波輔助研磨加工系統100所預測之表面研磨精度 Y與實際的研磨精度更加接近。 The processor 30 further includes an update data collection module 360, the update data collection module 360 signals the connection processing accuracy prediction module 310 and the processing parameter optimization module 340. The update data collection module 360 collects the surface grinding longitude and the best processing parameters to form an update data set. The machining accuracy prediction module 310 updates the grinding prediction model according to the update data set formed by the update data collection module 360 to generate an updated prediction model. In detail, with the long-term operation of the grinding machine 10, the wear of internal parts makes the surface grinding accuracy Y predicted by the grinding prediction model differ from the surface grinding accuracy Y obtained by the actual grinding of the grinding machine 10. By updating the forecast The model can make the surface polishing accuracy Y predicted by the intelligent ultrasonic-assisted polishing processing system 100 closer to the actual polishing accuracy.

藉此,本新型之智慧型超音波輔助研磨加工系統100透過研磨預測模型預測不同加工參數的組合所產生的表面研磨精度 Y,並計算出愈得到表面研磨精度 Y之最佳加工參數。有效減少試誤法所花費的龐大材料及成本,使不具備經驗的操作者也能根據欲達成的表面研磨精度 Y設定對應的最佳加工參數,並對工件進行研磨或拋光處理。 Thereby, the intelligent ultrasonic-assisted grinding processing system 100 of the present invention predicts the surface grinding accuracy Y generated by the combination of different processing parameters through the grinding prediction model, and calculates the best processing parameters for obtaining the surface grinding accuracy Y. Effectively reduce the huge material and cost of the trial and error method, so that inexperienced operators can also set the corresponding optimal processing parameters according to the surface grinding accuracy Y to be achieved, and grind or polish the workpiece.

請參照第1圖至第5圖,第4圖係繪示本新型第二實施例之智慧型超音波輔助研磨加工方法200之流程示意圖;第5圖係繪示第4圖之智慧型超音波輔助研磨加工方法200之動態分群差分演算規則S22之流程示意圖。如圖所示,智慧型超音波輔助研磨加工方法200用以預測工件經研磨後之表面研磨精度 Y。此智慧型超音波輔助研磨加工方法200包含加工數據記錄步驟S10、加工精度預測步驟S20、加工參數優化步驟S30、更新數據收集步驟S40及研磨步驟S50。 Please refer to Figures 1 to 5. Figure 4 is a schematic diagram showing the flow of the intelligent ultrasonic-assisted grinding and processing method 200 according to the second embodiment of the present invention; Figure 5 shows the intelligent ultrasonic in Figure 4 The schematic flow diagram of the dynamic grouping difference calculation rule S22 of the auxiliary grinding processing method 200. As shown in the figure, the intelligent ultrasonic-assisted grinding processing method 200 is used to predict the surface grinding accuracy Y of the workpiece after grinding. The intelligent ultrasonic-assisted grinding processing method 200 includes a processing data recording step S10, a processing accuracy prediction step S20, a processing parameter optimization step S30, an update data collection step S40, and a grinding step S50.

加工數據記錄步驟S10係將研磨機台10之複數加工數據記錄於資料庫20。The processing data recording step S10 is to record the plural processing data of the grinding machine 10 in the database 20.

加工精度預測步驟S20係依據區間二型模糊類神經網路模型S21對此些加工數據進行訓練,並建立研磨預測模型,其中區間二型模糊類神經網路模型S21經由動態分群差分演算規則S22調整而產生表面研磨精度 Y。加工精度預測步驟S20透過加工精度預測模組310執行。區間二型模糊類神經網路模型S21透過區間二型模糊類神經網路320執行,動態分群差分演算規則S22透過動態分群差分演算單元330執行。 The processing accuracy prediction step S20 is based on the interval 2 fuzzy neural network model S21 to train these processing data and establish a grinding prediction model, where the interval 2 fuzzy neural network model S21 is adjusted by the dynamic clustering difference calculation rule S22 And produce the surface grinding precision Y. The processing accuracy prediction step S20 is executed by the processing accuracy prediction module 310. The interval 2 fuzzy neural network model S21 is executed by the interval 2 fuzzy neural network 320, and the dynamic grouping difference calculation rule S22 is executed by the dynamic grouping difference calculation unit 330.

動態分群差分演算規則S22包含初始化子步驟S221、適應閥值計算子步驟S222、分群子步驟S223、突變子步驟S224、交換子步驟S225及選擇子步驟S226。The dynamic grouping difference calculation rule S22 includes an initialization sub-step S221, an adaptive threshold calculation sub-step S222, a grouping sub-step S223, a mutation sub-step S224, an exchange sub-step S225, and a selection sub-step S226.

初始化子步驟S221將高斯平均值、高斯標準差、高斯位移量及線性函數權重編碼為一個體,其中區間二型模糊類神經網路模型S21更包含複數個體。初始化子步驟S221透過初始化子模組331執行。The initialization sub-step S221 encodes the Gaussian mean value, Gaussian standard deviation, Gaussian displacement, and linear function weight into one body, where the interval-type 2 fuzzy neural network model S21 further includes plural individuals. The initialization sub-step S221 is performed through the initialization sub-module 331.

適應閥值計算子步驟S222計算各個體之距離閥值及適應閥值,並定義複數群體之複數領袖。適應閥值計算子步驟S222透過適應閥值計算子模組332執行。The adaptive threshold calculation sub-step S222 calculates the distance threshold and the adaptive threshold of each body, and defines the plural leaders of the plural groups. The adaptive threshold calculation sub-step S222 is executed through the adaptive threshold calculation sub-module 332.

分群子步驟S223係依據各個體之距離閥值及適應閥值將此些個體分為此些群體。分群子步驟S223透過分群子模組333執行。The grouping sub-step S223 is to divide the individuals into these groups according to the distance threshold and adaptation threshold of each individual. The grouping sub-step S223 is performed by the grouping sub-module 333.

突變子步驟S224依據萊維飛行策略自其中一領袖及此些領袖之最佳領袖產生突變向量。突變子步驟S224透過突變子模組334執行。The mutation sub-step S224 generates a mutation vector from one of the leaders and the best leader of these leaders according to the Levi flight strategy. The mutation sub-step S224 is executed by the mutation sub-module 334.

交換子步驟S225將突變向量進行交換運算並產生試驗向量。交換子步驟S225透過交換子模組335執行。The exchange sub-step S225 performs an exchange operation on the mutation vector and generates a test vector. The exchange sub-step S225 is performed through the exchange sub-module 335.

選擇子步驟S226係將試驗向量及最佳領袖進行比較並選擇保留適應閥值最大者而成為表面研磨精度 Y。選擇子步驟S226透過選擇子模組336執行。 The selection sub-step S226 is to compare the test vector and the best leader and select the one that retains the largest adaptive threshold to become the surface polishing accuracy Y. The selection sub-step S226 is executed through the selection sub-module 336.

加工參數優化步驟S30係依據優化規則針對加工數據優化而計算出對應表面研磨精度 Y之複數最佳加工參數。加工參數優化步驟S30透過加工參數優化模組340執行。其中優化規則對各加工數據之複數加工參數及表面研磨精度 Y進行運算而計算出對應表面研磨精度 Y之最佳加工參數。 The processing parameter optimization step S30 is to optimize the processing data according to the optimization rules to calculate the plural optimal processing parameters corresponding to the surface grinding accuracy Y. The processing parameter optimization step S30 is executed through the processing parameter optimization module 340. The optimization rule calculates the multiple processing parameters of each processing data and the surface grinding accuracy Y to calculate the best processing parameters corresponding to the surface grinding accuracy Y.

更新數據收集步驟S40係收集表面研磨精度 Y及此些最佳加工參數而形成更新數據組,並依據更新數據組更新研磨預測模型而產生更新預測模型。更新數據收集步驟S40透過更新數據收集模組360執行。 The update data collection step S40 is to collect the surface grinding accuracy Y and these optimal processing parameters to form an update data group, and update the grinding prediction model according to the update data group to generate an update prediction model. The update data collection step S40 is performed through the update data collection module 360.

研磨步驟S50係驅動研磨機台10依據此些最佳加工參數研磨工件。The grinding step S50 is to drive the grinding machine 10 to grind the workpiece according to these optimal processing parameters.

藉此,本新型之智慧型超音波輔助研磨加工方法200透過研磨預測模型預測不同加工參數的組合所產生的表面研磨精度 Y,並計算出愈得到表面研磨精度 Y之最佳加工參數。有效減少試誤法所花費的龐大材料及成本,使不具備經驗的操作者也能根據欲達成的表面研磨精度 Y設定對應的最佳加工參數,並對工件進行研磨或拋光處理。 Thereby, the intelligent ultrasonic-assisted grinding processing method 200 of the present invention predicts the surface grinding accuracy Y generated by the combination of different processing parameters through the grinding prediction model, and calculates the best processing parameters for obtaining the surface grinding accuracy Y. Effectively reduce the huge material and cost of the trial and error method, so that inexperienced operators can also set the corresponding optimal processing parameters according to the surface grinding accuracy Y to be achieved, and grind or polish the workpiece.

雖然本新型已以實施方式揭露如上,然其並非用以限定本新型,任何熟習此技藝者,在不脫離本新型之精神和範圍內,當可作各種之更動與潤飾,因此本新型之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone who is familiar with this technique can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be subject to the definition of the attached patent application scope.

10:研磨機台 20:資料庫 30:處理器 100:智慧型超音波輔助研磨加工系統 200:智慧型超音波輔助研磨加工方法 310:加工精度預測模組 320:區間二型模糊類神經網路 330:動態分群差分演算單元 331:初始化子模組 332:適應閥值計算子模組 333:分群子模組 334:突變子模組 335:交換子模組 336:選擇子模組 340:加工參數優化模組 350:優化單元 360:更新數據收集模組 S10:加工數據記錄步驟 S20:加工精度預測步驟 S21:區間二型模糊類神經網路模型 S22:動態分群差分演算規則 S221:初始化子步驟 S222:適應閥值計算子步驟 S223:分群子步驟 S224:突變子步驟 S225:交換子步驟 S226:選擇子步驟 S30:加工參數優化步驟 S40:更新數據收集步驟 S50:研磨步驟 Layer1:第一層 Layer2:第二層 Layer3:第三層 Layer4:第四層 Layer5:第五層 X 1,X n:輸入值 Y:表面研磨精度 10: Grinding machine 20: Database 30: Processor 100: Intelligent ultrasonic-assisted grinding and processing system 200: Intelligent ultrasonic-assisted grinding and processing method 310: Machining accuracy prediction module 320: Interval type 2 fuzzy neural network 330: Dynamic clustering differential calculation unit 331: Initialization sub-module 332: Adaptive threshold calculation sub-module 333: Clustering sub-module 334: Mutation sub-module 335: Exchange sub-module 336: Selection sub-module 340: Processing parameters Optimization module 350: Optimization unit 360: Update data collection module S10: Processing data recording step S20: Processing accuracy prediction step S21: Interval type 2 fuzzy neural network model S22: Dynamic clustering difference calculation rule S221: Initialization sub-step S222 : Adaptive threshold calculation sub-step S223: clustering sub-step S224: mutation sub-step S225: exchange sub-step S226: selection sub-step S30: processing parameter optimization step S40: update data collection step S50: grinding step Layer1: first layer Layer2: The second layer Layer3: the third layer Layer4: the fourth layer Layer5: the fifth layer X 1 , X n : input value Y: surface polishing accuracy

第1圖係繪示本新型第一實施例之智慧型超音波輔助研磨加工系統之方塊示意圖; 第2圖係繪示第1圖之智慧型超音波輔助研磨加工系統之區間二型模糊類神經網路之示意圖; 第3圖係繪示第1圖之智慧型超音波輔助研磨加工系統之動態分群差分演算單元之方塊示意圖; 第4圖係繪示本新型第二實施例之智慧型超音波輔助研磨加工方法之流程示意圖;及 第5圖係繪示第4圖之智慧型超音波輔助研磨加工方法之動態分群差分演算規則之流程示意圖。 Figure 1 is a block diagram of the intelligent ultrasonic-assisted grinding and processing system according to the first embodiment of the present invention; Figure 2 is a schematic diagram showing the interval-type fuzzy neural network of the intelligent ultrasonic-assisted grinding and processing system in Figure 1; Figure 3 is a block diagram of the dynamic grouping differential calculation unit of the intelligent ultrasonic-assisted grinding and processing system of Figure 1; Fig. 4 is a schematic flow chart of the intelligent ultrasonic-assisted grinding and processing method according to the second embodiment of the present invention; and Fig. 5 is a schematic flow chart of the dynamic grouping difference calculation rule of the intelligent ultrasonic-assisted grinding processing method in Fig. 4.

100:智慧型超音波輔助研磨加工系統 100: Intelligent ultrasonic assisted grinding and processing system

10:研磨機台 10: Grinding machine

20:資料庫 20: Database

30:處理器 30: processor

310:加工精度預測模組 310: Machining accuracy prediction module

320:區間二型模糊類神經網路 320: Interval Type 2 Fuzzy Neural Network

330:動態分群差分演算單元 330: Dynamic clustering difference calculation unit

340:加工參數優化模組 340: Processing parameter optimization module

350:優化單元 350: optimization unit

360:更新數據收集模組 360: Update the data collection module

Claims (5)

一種智慧型超音波輔助研磨加工系統,用以預測一工件經研磨後之一表面研磨精度,該智慧型超音波輔助研磨加工系統包含: 一研磨機台; 一資料庫,訊號連接該研磨機台,並記錄該研磨機台之複數加工數據;以及 一處理器,訊號連接該研磨機台及該資料庫,該處理器包含: 一加工精度預測模組,接收該資料庫之該些加工數據,該加工精度預測模組依據一區間二型模糊類神經網路對該些加工數據進行訓練並建立一研磨預測模型,該區間二型模糊類神經網路經由一動態分群差分演算單元調整而產生該表面研磨精度;及 一加工參數優化模組,訊號連接該加工精度預測模組並接收該表面研磨精度,該加工參數優化模組依據一優化單元針對該些加工數據優化而計算出對應該表面研磨精度之複數最佳加工參數; 其中,該研磨機台依據該些最佳加工參數研磨該工件。 An intelligent ultrasonic-assisted grinding and processing system for predicting the surface grinding accuracy of a workpiece after grinding. The intelligent ultrasonic-assisted grinding and processing system includes: A grinding machine; A database, the signal is connected to the grinding machine, and the plural processing data of the grinding machine are recorded; and A processor with signals connected to the grinding machine and the database, and the processor includes: A processing accuracy prediction module receives the processing data from the database, and the processing accuracy prediction module trains the processing data according to an interval 2 fuzzy neural network and establishes a grinding prediction model. The interval 2 The type fuzzy neural network is adjusted by a dynamic clustering difference calculation unit to produce the surface polishing accuracy; and A processing parameter optimization module, the signal is connected to the processing accuracy prediction module and receives the surface grinding accuracy, and the processing parameter optimization module calculates the optimal complex number corresponding to the surface grinding accuracy according to an optimization unit for the optimization of the processing data Processing parameters; Wherein, the grinding machine grinds the workpiece according to the optimal processing parameters. 如請求項1所述之智慧型超音波輔助研磨加工系統,其中該區間二型模糊類神經網路包含: 一第一層,存有該些加工數據; 一第二層,將該些加工數據進行一模糊化運算,並計算出一區間二型模糊集合; 一第三層,對該區間二型模糊集合進行一累乘運算; 一第四層,對該區間二型模糊集合及一線性函數權重進行一降階運算,並計算出一一型模糊集合;及 一第五層,對該一型模糊集合進行一解模糊運算,並計算出該表面研磨精度; 其中,該區間二型模糊集合包含一高斯平均值、一高斯標準差及一高斯位移量。 The intelligent ultrasonic-assisted grinding and processing system according to claim 1, wherein the interval type 2 fuzzy neural network includes: The first layer contains the processing data; A second layer, perform a fuzzification operation on the processed data, and calculate an interval two-type fuzzy set; A third layer, a cumulative multiplication operation is performed on the interval type-2 fuzzy set; A fourth layer, perform a reduction operation on the interval type 2 fuzzy set and a linear function weight, and calculate a type one fuzzy set; and A fifth layer, to perform a defuzzification operation on the one-type fuzzy set, and calculate the surface grinding accuracy; Among them, the interval type 2 fuzzy set includes a Gaussian mean value, a Gaussian standard deviation, and a Gaussian displacement. 如請求項2所述之智慧型超音波輔助研磨加工系統,其中該動態分群差分演算單元包含: 一初始化子模組,將該高斯平均值、該高斯標準差、該高斯位移量及該線性函數權重編碼為一個體,其中該區間二型模糊類神經網路更包含複數該個體; 一適應閥值計算子模組,訊號連接該初始化子模組,並計算各該個體之一距離閥值及一適應閥值,並定義複數群體之複數領袖; 一分群子模組,訊號連接該適應閥值計算子模組,並依據各該個體之該距離閥值及該適應閥值將該些個體分為該些群體; 一突變子模組,訊號連接該分群子模組,並依據一萊維飛行策略自其中一該領袖及該些領袖之一最佳領袖產生一突變向量; 一交換子模組,訊號連接該突變子模組,係將該突變向量進行一交換運算並產生一試驗向量;及 一選擇子模組,訊號連接該交換子模組,係將該試驗向量及該最佳領袖進行比較並選擇保留該適應閥值最大者而成為該表面研磨精度。 The intelligent ultrasonic-assisted grinding and processing system according to claim 2, wherein the dynamic grouping difference calculation unit includes: An initialization sub-module, encoding the Gaussian average value, the Gaussian standard deviation, the Gaussian displacement, and the linear function weight into a volume, wherein the interval type-2 fuzzy neural network further includes a plurality of the individuals; An adaptation threshold calculation sub-module, the signal is connected to the initialization sub-module, and a distance threshold and an adaptation threshold of each individual are calculated, and the plural leaders of plural groups are defined; A grouping sub-module, the signal is connected to the adaptive threshold calculation sub-module, and the individuals are divided into the groups according to the distance threshold and the adaptive threshold of each individual; A mutation sub-module, a signal is connected to the grouping sub-module, and a mutation vector is generated from one of the leaders and the best leader of one of the leaders according to a Levi flight strategy; An exchange sub-module, the signal is connected to the mutation sub-module, the mutation vector is subjected to an exchange operation and a test vector is generated; and A selection sub-module, a signal is connected to the exchange sub-module, and the test vector is compared with the best leader and the one with the largest adaptive threshold is selected to be retained as the surface polishing accuracy. 如請求項3所述之智慧型超音波輔助研磨加工系統,其中該優化單元對各該加工數據之複數加工參數及該表面研磨精度進行運算而計算出對應該表面研磨精度之該些最佳加工參數。The intelligent ultrasonic-assisted grinding and processing system according to claim 3, wherein the optimization unit calculates the plural processing parameters of each processing data and the surface grinding accuracy to calculate the optimal processing corresponding to the surface grinding accuracy parameter. 如請求項1所述之智慧型超音波輔助研磨加工系統,其中該處理器更包含: 一更新數據收集模組,訊號連接該加工精度預測模組及該加工參數優化模組,該更新數據收集模組收集該表面研磨精度及該些最佳加工參數而形成一更新數據組; 其中,該加工精度預測模組依據該更新數據收集模組所形成之該更新數據組更新該研磨預測模型而產生一更新預測模型。 The intelligent ultrasonic-assisted grinding and processing system according to claim 1, wherein the processor further includes: An update data collection module, signaled to connect the processing accuracy prediction module and the processing parameter optimization module, the update data collection module collects the surface grinding accuracy and the best processing parameters to form an update data set; Wherein, the machining accuracy prediction module updates the grinding prediction model according to the update data set formed by the update data collection module to generate an update prediction model.
TW109213794U 2020-10-20 2020-10-20 Intelligent ultrasonic grinding and polishing aided system TWM607654U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109213794U TWM607654U (en) 2020-10-20 2020-10-20 Intelligent ultrasonic grinding and polishing aided system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109213794U TWM607654U (en) 2020-10-20 2020-10-20 Intelligent ultrasonic grinding and polishing aided system

Publications (1)

Publication Number Publication Date
TWM607654U true TWM607654U (en) 2021-02-11

Family

ID=75782461

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109213794U TWM607654U (en) 2020-10-20 2020-10-20 Intelligent ultrasonic grinding and polishing aided system

Country Status (1)

Country Link
TW (1) TWM607654U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI800958B (en) * 2021-10-22 2023-05-01 財團法人工業技術研究院 Monitoring system for processing quality and method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI800958B (en) * 2021-10-22 2023-05-01 財團法人工業技術研究院 Monitoring system for processing quality and method thereof

Similar Documents

Publication Publication Date Title
Pan et al. New insights into the methods for predicting ground surface roughness in the age of digitalisation
Benardos et al. Predicting surface roughness in machining: a review
Zuperl et al. Optimization of cutting conditions during cutting by using neural networks
US9367060B2 (en) Intelligent optimization method and system therefor
CN111563301A (en) Thin-wall part milling parameter optimization method
Mahdavinejad et al. Optimization of milling parameters using artificial neural network and artificial immune system
Vasanth et al. A neural network model to predict surface roughness during turning of hardened SS410 steel
Shaik Optimal selection of operating parameters in end milling of Al-6061 work materials using multi-objective approach
CN110647943A (en) Cutting tool wear monitoring method based on evolutionary data cluster analysis
Krol et al. Modeling of spindle node dynamics using the spectral analysis method
TWM607654U (en) Intelligent ultrasonic grinding and polishing aided system
Nandi et al. Design of a genetic-fuzzy system to predict surface finish and power requirement in grinding
Pattnaik et al. Multi objective optimization of EDM process parameters using fuzzy TOPSIS method
Abolghasema et al. Optimization of machining parameters for product quality and productivity in turning process of aluminum
Wang et al. Performance-based predictive models and optimization methods for turning operations and applications: Part 3—optimum cutting conditions and selection of cutting tools
TWI767368B (en) Intelligent ultrasonic grinding and polishing aided system and method thereof
Xie et al. A generic evolutionary ensemble learning framework for surface roughness prediction in manufacturing
Hsieh et al. Multi-pass progressive tool path planning in five-axis flank milling by particle swarm optimisation
Krimpenis et al. Rough milling optimisation for parts with sculptured surfaces using genetic algorithms in a Stackelberg game
CN113569453B (en) Migration method of digital twin product model oriented to processing
Karpat et al. Swarm-intelligent neural network system (SINNS) based multi-objective optimization of hard turning
Mondal et al. ANN-FPA Based Modelling and Optimization of Drilling Burrs Using RSM and GA
Natarajan et al. Artificial neural network based machining operation selection for prismatic components
Lan Fuzzy parametric deduction for material removal rate optimization
Alagumurthi WORK ROLL GRINDING–MODELING AND OPTIMIZATION USING ARTIFICIAL NEURAL NETWORK AND GENETIC ALGORITHM