TWI766781B - A precision machining compensation method for finding non-symmetric edge - Google Patents

A precision machining compensation method for finding non-symmetric edge Download PDF

Info

Publication number
TWI766781B
TWI766781B TW110127927A TW110127927A TWI766781B TW I766781 B TWI766781 B TW I766781B TW 110127927 A TW110127927 A TW 110127927A TW 110127927 A TW110127927 A TW 110127927A TW I766781 B TWI766781 B TW I766781B
Authority
TW
Taiwan
Prior art keywords
point
boundary
boundary point
points
precision machining
Prior art date
Application number
TW110127927A
Other languages
Chinese (zh)
Other versions
TW202304619A (en
Inventor
陳宗龍
Original Assignee
倍騰國際股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 倍騰國際股份有限公司 filed Critical 倍騰國際股份有限公司
Priority to TW110127927A priority Critical patent/TWI766781B/en
Priority to CN202111479085.2A priority patent/CN115673448A/en
Application granted granted Critical
Publication of TWI766781B publication Critical patent/TWI766781B/en
Publication of TW202304619A publication Critical patent/TW202304619A/en

Links

Images

Landscapes

  • Numerical Control (AREA)

Abstract

The method of present invention comprises: a model constructing step, a target generating step, a mold placing step, a mold measuring step, a deviation acquiring step and a parameter acquiring step. Wherein a bounding box and a plurality of simulated boundary points are generated on a 3D model by an electronic device and the simulated boundary points contacts the bounding box and the 3D model; a physical mold are touched by a contacting probe to generate a plurality of contacting points after a precision processing machine receives the simulated boundary points, so that a simulated corner point and a deviation value are calculated from the contacting points. The contact probe of the precision processing machine will contact the physical mold several times according to the deviation value and the simulated boundary points, so as a center point of the physical mold is calculated by the precision processing machine. Furthermore, a plurality of calculating corner points are calculated according to the simulated corner points and the bounding box by precision processing machine.

Description

精密加工的非對稱尋邊補正方法Asymmetric Edge-finding Compensation Method for Precision Machining

本發明有關於一種精密自動加工的尋邊方法,特別是指一種在放電加工前對非對稱模具尋邊的座標補正方法。 The invention relates to an edge-finding method for precise automatic machining, in particular to a coordinate correction method for edge-finding an asymmetric mold before electrical discharge machining.

傳統的物件加工技術多採用車床、銑床、鑽床、鉋床或是磨床等機械加工方式,然而,當產品規格被要求到精密等級時,產品加工的生產設備限制將會因此大幅增加。由於多數產業除了產品精密化之外,生產自動化亦是未來加工生產設備的趨勢。 Traditional object processing technologies mostly use mechanical processing methods such as lathes, milling machines, drilling machines, planers or grinders. However, when product specifications are required to be precise, the production equipment limitations for product processing will be greatly increased. In addition to product precision in most industries, production automation is also the trend of future processing and production equipment.

習知精密化作業多是採用非傳統切削方式的放電加工(Electrical Discharge Machining,EDM),放電加工主要是利用電極在極靠近加工工件的情況下,施加電壓而產生火花放電現象,並利用該現象發生時所產生的高溫來熔融切削加工工件,藉以達到高硬度材料的精密加工。 Conventional precision operations are mostly electrical discharge machining (EDM) using non-traditional cutting methods. EDM mainly uses electrodes that are very close to the workpiece to apply a voltage to generate spark discharges, and use this phenomenon. The high temperature generated when it occurs is used to melt and cut the workpiece, so as to achieve precision machining of high-hardness materials.

惟,影響放電加工精密度的主要因素在於實際加工參數的選用以及座標誤差的補正,其中,物件實際加工是根據電極尺寸、工件材料、表面粗細度等條件以及操作者的經驗,決定程式寫法與所使用的放電加工參數(放電波形,電壓,伺服參數,…等)。 However, the main factors affecting the precision of electric discharge machining lie in the selection of actual machining parameters and the correction of coordinate errors. The actual machining of the object is based on the electrode size, workpiece material, surface thickness and other conditions as well as the operator's experience. EDM parameters used (discharge waveform, voltage, servo parameters, ... etc.).

此外,為了能提高加工的正確性與精密度,需要在放電加工機進行切削前確認刀具原點至工件邊緣的座標設定,因此,通常需要進行一尋邊作業來進行誤差值的補正。 In addition, in order to improve the accuracy and precision of machining, it is necessary to confirm the coordinate setting of the tool origin to the workpiece edge before cutting by the electric discharge machine. Therefore, an edge finding operation is usually required to correct the error value.

傳統的尋邊補正作業是透過移動尋邊用的探針來碰觸工作台上的一方型治具,藉以取得一移動距離來求得誤差值。傳統探針的移動是先由工具機帶動探針朝向該方型治具快速進給,使得探針停止在接近該方型模具的邊緣,後續再透過人工手輪來進行微調,讓探針接觸到該方型治具,藉以取得相關座標來進行補正。然而,傳統人工操作的方式,除了造成誤差檢測的時間拉長之外,檢測出的數值準確性也會因為人工操作而有誤差的可能,進而得到錯誤的補正值,輕者降低加工的精密度,嚴重者影響到加工件的良率。 The traditional edge-finding correction operation is to move the probe for edge-finding to touch the square jig on the worktable, so as to obtain a moving distance to obtain the error value. The movement of the traditional probe is firstly driven by the machine tool to rapidly feed the probe towards the square fixture, so that the probe stops close to the edge of the square mold, and then fine-tunes it through the manual handwheel to make the probe touch Go to the square jig to obtain the relevant coordinates for correction. However, in the traditional manual operation method, in addition to prolonging the error detection time, the accuracy of the detected numerical value may also be inaccurate due to manual operation, and then the wrong correction value can be obtained, which reduces the precision of the processing. , In severe cases, it will affect the yield of processed parts.

本發明的主要目的在於提供一種工具機的自動尋邊補正方法,讓非對稱模具的尋邊工作能夠快速完成,使得加工誤差值自動受到補正,藉以節省加工時間並能減少錯誤發生的情況。 The main purpose of the present invention is to provide an automatic edge-finding correction method for a machine tool, so that the edge-finding work of an asymmetric mold can be completed quickly, so that the machining error value is automatically corrected, thereby saving processing time and reducing the occurrence of errors.

本發明的次要目的在於採用電子裝置的3D模型配合精密加工機的接觸式探球來進行誤差值檢測,無論是全部3D模型的整體補正資料或是一部份3D模型的局部補正資料皆可依據需求來進行選擇,且精密加工機的機內補正或是CMM的機外補正皆可採用,大幅提升自動尋邊補正的準確性。 The secondary purpose of the present invention is to use the 3D model of the electronic device and the contact ball probe of the precision machining machine to detect the error value, whether it is the overall correction data of the whole 3D model or the local correction data of a part of the 3D model. It can be selected according to the needs, and the on-machine correction of the precision machining machine or the external correction of the CMM can be used, which greatly improves the accuracy of automatic edge-finding correction.

為實現前述目的,本發明精密加工的非對稱尋邊補正方法,包含:一模型建立步驟、一標的生成步驟、一模具放置步驟、一模具實測步驟、一誤差取得步驟、一參數取得步驟以及一座標補償步驟。 In order to achieve the foregoing purpose, the asymmetric edge finding and correction method for precision machining of the present invention includes: a model establishment step, a target generation step, a mold placement step, a mold measurement step, an error obtaining step, a parameter obtaining step and a step. Coordinate compensation steps.

該模型建立步驟是由一電子裝置取得一3D圖檔,該3D圖檔包含一直角規模型以及一3D模型,該直角規模型具有一座標原點,該3D模型具有多數個對齊於直角規模型的模型基準邊。 In the model building step, an electronic device obtains a 3D image file, the 3D image file includes a rectangular scale model and a 3D model, the rectangular scale model has an origin of coordinates, and the 3D model has a plurality of alignments with the rectangular scale model the model base edge.

該標的生成步驟是透過該電子裝置在該3D模型產生一邊界盒以及複數模擬邊界點,其中,該邊界盒的一邊角能選擇性地對齊該座標原點,該等模擬邊界點必須同時位於該邊界盒及該3D模型兩者的表面。 The object generating step is to generate a bounding box and a plurality of simulated boundary points in the 3D model through the electronic device, wherein a corner of the bounding box can be selectively aligned with the coordinate origin, and the simulated boundary points must be located at the same time. Both the bounding box and the surface of this 3D model.

該模具放置步驟是在一精密加工機的一直角規放置一相同於該3D模型形狀的實體模具,並由該精密加工機校正該實體模具的位置,使得該實體模具的多數實體基準邊分別平行於該直角規的複數座標軸。 The mold placing step is to place a solid mold with the same shape as the 3D model on a square of a precision machining machine, and correct the position of the solid mold by the precision machining machine, so that most of the solid reference sides of the solid mold are parallel to each other. complex axes of the square.

該模具實測步驟是讓該精密加工機依據一第一安全值以及一部份的該等模擬邊界點在該實體模具的外側分別產生複數個實際檢測點,該精密加工機的一接觸式探球將由該等實際檢測點的位置分別移動至接觸該實體模具,使得該精密加工機取得一第一接觸點、一第二接觸點以及一第三接觸點。 The mold testing step is to make the precision processing machine generate a plurality of actual detection points on the outside of the physical mold according to a first safety value and a part of the simulated boundary points. The positions of the actual detection points are respectively moved to contact the physical mold, so that the precision machining machine obtains a first contact point, a second contact point and a third contact point.

該誤差取得步驟是讓該電子裝置依據該第一接觸點、該第二接觸點以及該第三接觸點來演算出該實體模具的一模擬邊角點以及一介於該模擬邊角點以及該座標原點的誤差值,並由該誤差值以及該等模擬邊界點演算出複數個檢測邊界點;其中,該檢測邊界點是由一第二安全值、該誤差值以及該等模擬邊界點三者所演算出。 The error obtaining step is for the electronic device to calculate a simulated corner point of the physical mold and a point between the simulated corner point and the coordinate according to the first contact point, the second contact point and the third contact point The error value of the origin, and a plurality of detection boundary points are calculated from the error value and the simulated boundary points; wherein, the detection boundary point is determined by a second safety value, the error value and the simulated boundary points. calculated.

該參數取得步驟是讓該精密加工機的該接觸式探球依據該等檢測邊界點來檢測該實體模具,使得該精密加工機取得複數個位於該實體模具各表面的實際邊界點,該精密加工機依據該等實際邊界點取得該實體模具的一中心 點。除此之外,該精密加工機亦可依據該模擬邊角點及該邊界盒取得該實體模具的複數演算邊角點。 The parameter obtaining step is to allow the contact ball probe of the precision machining machine to detect the solid mold according to the detection boundary points, so that the precision machining machine obtains a plurality of actual boundary points located on each surface of the solid mold, and the precision machining The machine obtains a center of the physical mold according to the actual boundary points point. Besides, the precision machining machine can also obtain the complex arithmetic corner points of the solid mold according to the simulated corner points and the bounding box.

該座標補償步驟是讓該精密加工機依據該中心點、該模擬邊角點以及該等演算邊角點來重新設定一加工原點。 The coordinate compensation step is for the precision machining machine to reset a machining origin according to the center point, the simulated corner point and the calculated corner points.

於一較佳實施利中,該邊界盒被成形為一最大邊界盒來包覆整個3D模型,或是一局部邊界盒來包覆該3D模型的一局部構件;其中,該邊界盒具有一底表面、一頂表面、一第一側表面、一第二側表面、一第三側表面以及一第四側表面,該第一側表面與該第二側表面相鄰於該座標原點,該第三側表面位於該第一側表面的相反側,而該第四側表面位於該第二側表面的相反側。 In a preferred embodiment, the bounding box is shaped as a maximal bounding box to enclose the entire 3D model, or a partial bounding box to enclose a partial component of the 3D model; wherein the bounding box has a bottom. surface, a top surface, a first side surface, a second side surface, a third side surface and a fourth side surface, the first side surface and the second side surface are adjacent to the coordinate origin, the The third side surface is located on the opposite side of the first side surface, and the fourth side surface is located on the opposite side of the second side surface.

該等模擬邊界點包含一第一邊界點、一第二邊界點、一第三邊界點、一第四邊界點以及一第五邊界點,該第一邊界點位於該頂表面,該第二邊界點位於該第一側表面,該第三邊界點位於該第二側表面,該第四邊界點位於該第三側表面,該第五邊界點位於該第四側表面。 The simulated boundary points include a first boundary point, a second boundary point, a third boundary point, a fourth boundary point and a fifth boundary point, the first boundary point is located on the top surface, the second boundary point The point is located on the first side surface, the third boundary point is located on the second side surface, the fourth boundary point is located on the third side surface, and the fifth boundary point is located on the fourth side surface.

該等檢測邊界點是由該第一邊界點、該第二邊界點、該第三邊界點、該第四邊界點以及該第五邊界點分別配合該誤差值所演算出來;而該等實際檢測點是由該第一邊界點、該第二邊界點、該第三邊界點分別配合該第一安全值所演算出來。 The detection boundary points are calculated from the first boundary point, the second boundary point, the third boundary point, the fourth boundary point and the fifth boundary point respectively in combination with the error value; and the actual detection The point is calculated from the first boundary point, the second boundary point, and the third boundary point in combination with the first safety value.

該中心點的一Z軸座標是由一對應該第一邊界點的第一實際邊界點以及該座標原點所演算出來,該中心點的一X軸座標是由一對應該第二邊界點的第二實際邊界點以及一對應該第四邊界點的第四實際邊界點所演算出,而該中心點的一Y軸座標是由一對應該第三邊界點的第三實際邊界點以及一對應該第五邊界點的第五實際邊界點所演算出。 A Z-axis coordinate of the center point is calculated by a pair of the first actual boundary point corresponding to the first boundary point and the coordinate origin, and an X-axis coordinate of the center point is calculated by a pair of the second boundary point. The second actual boundary point and a pair of fourth actual boundary points corresponding to the fourth boundary point are calculated, and a Y-axis coordinate of the center point is calculated by a pair of third actual boundary points corresponding to the third boundary point and a pair of It should be calculated from the fifth actual boundary point of the fifth boundary point.

本發明的特點在於精密加工機的事前校正以及座標轉換,可以由本發明方法來自動補正加工的誤差值,藉以節省加工時間並能減少錯誤發生的情況,並能適用在精密加工機的機內補正或是CMM的機外補正,大幅提升自動尋邊補正的準確性以及使用便利性。 The present invention is characterized in that the pre-correction and coordinate conversion of the precision machining machine can automatically correct the error value of machining by the method of the present invention, thereby saving machining time and reducing the occurrence of errors, and can be applied to the in-machine correction of the precision machining machine. Or the off-machine correction of CMM, which greatly improves the accuracy of automatic edge-finding correction and the convenience of use.

1:電子裝置 1: Electronic device

10:直角規模型 10: Right-angle scale type

101:第一板片 101: The first plate

102:第二板片 102: Second plate

11:3D模型 11: 3D Models

111:主體 111: Subject

112:柱體 112: Cylinder

113:模型基準邊 113: Model base edge

2:精密加工機 2: Precision processing machine

20:實體模具 20: Solid mold

201:實體基準邊 201: Solid datum edge

202:實體基準邊 202: Solid base edge

21:直角規 21: Right Angle Ruler

22:接觸式探球 22: Contact Scouting

23:中心點 23: Center Point

3:邊界盒 3: Bounding Box

31:頂表面 31: Top surface

32:第一側表面 32: First side surface

33:第二側表面 33: Second side surface

34:第三側表面 34: Third side surface

35:第四側表面 35: Fourth side surface

4:模擬邊界點 4: Simulate boundary points

41:第一邊界點 41: First boundary point

42:第二邊界點 42: Second boundary point

43:第三邊界點 43: Third Boundary Point

44:第四邊界點 44: Fourth Boundary Point

45:第五邊界點 45: Fifth Boundary Point

46:第六邊界點 46: Sixth Boundary Point

47:第七邊界點 47: Seventh Boundary Point

48:第八邊界點 48: Eighth Boundary Point

5:實際檢測點 5: Actual detection point

51:第一實際檢測點 51: The first actual detection point

52:第二實際檢測點 52: The second actual detection point

53:第三實際檢測點 53: The third actual detection point

61:第一接觸點 61: The first point of contact

62:第二接觸點 62: Second Contact Point

63:第三接觸點 63: The third point of contact

7:模擬邊角點 7: Simulate corner points

8:檢測邊界點 8: Detect boundary points

81:第一檢測邊界點 81: The first detection boundary point

82:第二檢測邊界點 82: Second detection boundary point

83:第三檢測邊界點 83: The third detection boundary point

84:第四檢測邊界點 84: Fourth detection boundary point

85:第五檢測邊界點 85: Fifth detection boundary point

9:實際邊界點 9: Actual boundary point

91:第一實際邊界點 91: First actual boundary point

92:第二實際邊界點 92: Second actual boundary point

93:第三實際邊界點 93: Third actual boundary point

94:第四實際邊界點 94: Fourth Practical Boundary Point

95:第五實際邊界點 95: Fifth Actual Boundary Point

S1:模型建立步驟 S1: Model building step

S2:標的生成步驟 S2: target generation step

S3:模具放置步驟 S3: Mold placement step

S4:模具實測步驟 S4: Mold test step

S5:誤差取得步驟 S5: Error acquisition step

S6:參數取得步驟 S6: Parameter acquisition step

S7:座標補償步驟 S7: Coordinate compensation step

圖1為本發明精密加工的非對稱尋邊補正方法的流程圖;圖2為圖1模型建立步驟的示意圖;圖3A至圖3C為圖1標的生成步驟第一較佳實施例的示意圖;圖4A至圖4B為圖1模具放置步驟的示意圖;圖5A至圖5C為圖1模具實測步驟的示意圖;圖6A至圖6B為圖1誤差取得步驟的示意圖;圖7A至圖7C為圖1參數取得步驟的示意圖;以及圖8A及圖8B為圖1標的生成步驟第二較佳實施例的示意圖。 Fig. 1 is the flow chart of the asymmetric edge-finding correction method of precision machining of the present invention; Fig. 2 is the schematic diagram of the model establishment step of Fig. 1; Fig. 3A to Fig. 3C are the schematic diagrams of the first preferred embodiment of the generation step of Fig. 4A to 4B are schematic diagrams of the mold placement steps in FIG. 1; FIGS. 5A to 5C are schematic diagrams of the actual measurement steps of the mold in FIG. 1; FIGS. 6A to 6B are schematic diagrams of the error acquisition steps in FIG. 1; A schematic diagram of the obtaining step; and FIGS. 8A and 8B are schematic diagrams of a second preferred embodiment of the generating step of the icon in FIG. 1 .

茲為便於更進一步對本發明之構造、使用及其特徵有更深一層明確、詳實的認識與瞭解,爰舉出較佳實施例,配合圖式詳細說明如下: For the convenience of further understanding and understanding of the structure, use and characteristics of the present invention, a preferred embodiment is given, and the detailed description is as follows in conjunction with the drawings:

本發明精密加工的非對稱尋邊補正方法乃是應用在一安裝有3D繪圖軟體的電子裝置1以及一進行模具加工的精密加工機2,讓精密加工機2能將電子裝置1上面設定的一模型座標資料轉換成一實際工作台上的一加工座標,該精密加工機2可應用在CNC加工、車床、銑床、鑽床、磨床、線切割加工、放電加工和離子切割等。 The asymmetric edge-finding correction method for precision machining of the present invention is applied to an electronic device 1 installed with a 3D drawing software and a precision machining machine 2 for mold machining, so that the precision machining machine 2 can make a setting on the electronic device 1 . The model coordinate data is converted into a machining coordinate on an actual workbench. The precision machining machine 2 can be used in CNC machining, lathes, milling machines, drilling machines, grinding machines, wire cutting, electrical discharge machining, and ion cutting.

請參閱圖1所示,本發明非對稱尋邊補正方法包含:一模型建立步驟S1、一標的生成步驟S2、一模具放置步驟S3、一模具實測步驟S4、一誤差取得步驟S5、一參數取得步驟S6以及一座標補償步驟S7,其中,該模型建立步驟S1、該標的生成步驟S2以及該誤差取得步驟S5都是在該電子裝置1上進行,而該模具放置步驟S3、該模具實測步驟S4、該參數取得步驟S6以及該座標補償步驟S7都是在該精密加工機2上進行。 Please refer to FIG. 1 , the asymmetric edge-finding correction method of the present invention includes: a model establishment step S1, a target generation step S2, a mold placement step S3, a mold measurement step S4, an error acquisition step S5, and a parameter acquisition step S5. Step S6 and coordinate compensation step S7, wherein, the model establishment step S1, the target generation step S2 and the error acquisition step S5 are all performed on the electronic device 1, and the mold placement step S3, the mold measurement step S4 , the parameter acquisition step S6 and the coordinate compensation step S7 are both performed on the precision machining machine 2 .

請參閱圖2所示,該模型建立步驟S1是先在該3D繪圖軟體繪製一具有座標參數的3D圖檔,再讓該電子裝置1取得該3D圖檔,其中,該3D圖檔包含一直角規模型10以及一3D模型11。如圖所示,該直角規模型10具有朝向X軸方向以及Y軸方向分別水平延伸的一第一板片101以及一第二板片102,且該第一板片101與該第二板片102之間的一內側交界點被設定為一座標原點;該3D模型11具有一呈現矩形體樣態的主體111以及位於該主體111右側間隔排列的複數個柱體112,其中,該主體111具有多數個與該直角規模型10接觸的模型基準邊113。 Please refer to FIG. 2 , the model creation step S1 is to first draw a 3D drawing file with coordinate parameters in the 3D drawing software, and then let the electronic device 1 obtain the 3D drawing file, wherein the 3D drawing file includes a right angle A scale model 10 and a 3D model 11 . As shown in the figure, the right-angle scale model 10 has a first plate 101 and a second plate 102 extending horizontally toward the X-axis direction and the Y-axis direction, respectively, and the first plate 101 and the second plate An inner boundary point between 102 is set as the origin of a coordinate; the 3D model 11 has a main body 111 in a rectangular shape and a plurality of pillars 112 arranged at intervals on the right side of the main body 111 , wherein the main body 111 There are a plurality of model reference edges 113 in contact with the rectangular scale model 10 .

請參閱圖3A所示,該標的生成步驟S2是在該電子裝置1取得該3D圖檔之後對該3D模型11進行演算,使得該3D模型11產生一邊界盒3,且該邊界盒3的一邊角對齊該座標原點。如圖所示,該邊界盒3可以是一種包覆該主體111及該等柱體112的最大邊界盒,使得整個3D模型11受到包覆;然而,此僅方便舉例說明之用,亦即該邊界盒3可以是另一種僅包覆該主體111的局部邊界盒(圖未示),使得該3D模型11的一局部構件受到包覆,除此之外,該局部邊界盒亦可針對不同3D模型11的形狀,使得所有的邊角都可以不對齊該座標原點。 Referring to FIG. 3A , the object generation step S2 is to perform calculation on the 3D model 11 after the electronic device 1 obtains the 3D image file, so that the 3D model 11 generates a bounding box 3 , and one side of the bounding box 3 The corners are aligned to the origin of this coordinate. As shown in the figure, the bounding box 3 can be a maximum bounding box that wraps the main body 111 and the cylinders 112, so that the entire 3D model 11 is wrapped; however, this is only for the convenience of illustration, that is, the The bounding box 3 can be another local bounding box (not shown) that only covers the main body 111, so that a partial component of the 3D model 11 is covered. Besides, the partial bounding box can also be used for different 3D models. Model 11 is shaped so that all corners can be misaligned with this coordinate origin.

如圖所示,該邊界盒3具有一底表面、一頂表面31、一第一側表面32、一第二側表面33、一第三側表面34以及一第四側表面35,該第一側表面32 與該第二側表面33相鄰於該座標原點,該第三側表面34位於該第一側表面32的相反側,而該第四側表面35位於該第二側表面33的相反側。 As shown, the bounding box 3 has a bottom surface, a top surface 31 , a first side surface 32 , a second side surface 33 , a third side surface 34 and a fourth side surface 35 . side surface 32 The second side surface 33 is adjacent to the coordinate origin, the third side surface 34 is located on the opposite side of the first side surface 32 , and the fourth side surface 35 is located on the opposite side of the second side surface 33 .

請參閱圖3B及圖3C所示第一較佳實施例,在該邊界盒3產生之後,可由該繪圖軟體自動產生或是使用者手動選擇複數模擬邊界點4,其中,所有模擬邊界點4必須同時位於該邊界盒3及該3D模型11兩者的表面;如圖所示,該等模擬邊界點4包含一第一邊界點41、一第二邊界點42、一第三邊界點43、一第四邊界點44以及一第五邊界點45,該第一邊界點41位於該頂表面31,該第二邊界點42位於該第一側表面32,該第三邊界點43位於該第二側表面33,該第四邊界點44位於該第三側表面34,該第五邊界點45位於該第四側表面35。 Please refer to the first preferred embodiment shown in FIG. 3B and FIG. 3C , after the bounding box 3 is generated, a plurality of simulated boundary points 4 can be automatically generated by the drawing software or manually selected by the user, wherein all simulated boundary points 4 must be It is located on both the surface of the bounding box 3 and the 3D model 11 at the same time; as shown in the figure, the simulated boundary points 4 include a first boundary point 41 , a second boundary point 42 , a third boundary point 43 , a A fourth boundary point 44 and a fifth boundary point 45, the first boundary point 41 is located on the top surface 31, the second boundary point 42 is located on the first side surface 32, the third boundary point 43 is located on the second side On the surface 33 , the fourth boundary point 44 is located on the third side surface 34 , and the fifth boundary point 45 is located on the fourth side surface 35 .

請參閱圖4A所示,該模具放置步驟S3是在該精密加工機2放置一相同於該3D模型11形狀的實體模具20,其中,該精密加工機2具有一直角規21、一校正裝置(圖未示)、一接觸式探球22,且該實體模具20被放置在該直角規21旁。 Referring to FIG. 4A, the mold placing step S3 is to place a solid mold 20 with the same shape as the 3D model 11 in the precision machining machine 2, wherein the precision machining machine 2 has a right angle 21, a calibration device ( Not shown), a contact ball 22, and the solid mold 20 is placed beside the right angle 21.

由於該實體模具20在透過人力或是機械來進行放置時,多少都會產生歪斜的偏差,因此,請參閱圖4B所示,在該實體模具20放置完成後,該精密加工機2將會透過該校正裝置來移動該實體模具20的位置,使得該實體模具20的兩實體基準邊201、202分別平行於該直角規21的座標X、Y軸。 Since the physical mold 20 is placed manually or mechanically, there will be some skewed deviation. Therefore, please refer to FIG. 4B , after the physical mold 20 is placed, the precision machining machine 2 will pass through the The correcting device is used to move the position of the solid mold 20 , so that the two solid reference sides 201 and 202 of the solid mold 20 are respectively parallel to the coordinate X and Y axes of the right angle 21 .

請參閱圖5A所示,該模具實測步驟S4是讓該精密加工機2取得一第一安全值以及鄰近該座標原點的該第一邊界點41、該第二邊界點42以及該第三邊界點43,其中,該第一安全值可在該電子裝置1輸入,使得該第一安全值以及該等模擬邊界點4一併被傳輸至該精密加工機2,又或者是在該精密加工機2上直接輸入該第一安全值;後續該精密加工機2將會依據該第一安全值以及三個模 擬邊界點4在該實體模具20的外側分別產生複數個實際檢測點5,該等實際檢測點5包含一第一實際檢測點51、一第二實際檢測點52以及一第三實際檢測點53。 Please refer to FIG. 5A , the mold measurement step S4 is for the precision machining machine 2 to obtain a first safety value and the first boundary point 41 , the second boundary point 42 and the third boundary adjacent to the coordinate origin Point 43, wherein the first safety value can be input at the electronic device 1, so that the first safety value and the simulated boundary points 4 are transmitted to the precision machining machine 2, or the precision machining machine 2 directly input the first safety value; then the precision machining machine 2 will follow the first safety value and the three modes The pseudo-boundary points 4 respectively generate a plurality of actual detection points 5 on the outside of the physical mold 20 , and the actual detection points 5 include a first actual detection point 51 , a second actual detection point 52 and a third actual detection point 53 .

請參閱圖5B及5C所示,該精密加工機2的該接觸式探球22將會先移動到該第一實際檢測點51位置,由該第一實際檢測點51沿者一Z軸方向朝向該實體模具20直線移動,後續再移動至該第二實際檢測點52位置,由該第二實際檢測點52沿著一Y軸方向朝向該實體模具20直線移動,最後,再移動至該第三實際檢測點53,再由該第三實際檢測點53沿著一X軸方向朝向該實體模具20直線移動。 Please refer to FIGS. 5B and 5C , the contact probe 22 of the precision machining machine 2 will first move to the position of the first actual detection point 51 , and from the first actual detection point 51 along a Z-axis direction The physical mold 20 moves linearly, and then moves to the position of the second actual detection point 52, from which the second actual detection point 52 moves linearly toward the physical mold 20 along a Y-axis direction, and finally, moves to the third actual detection point 52. The actual detection point 53 is then moved linearly toward the physical mold 20 along an X-axis direction from the third actual detection point 53 .

該精密加工機2在Z軸方向接觸該實體模具20的頂表面31來形成一第一接觸點61,該精密加工機2在Y軸方向接觸該實體模具20的第一側表面32來形成一第二接觸點62,而該精密加工機2在X軸方向接觸該實體模具20的第二側表面33來形成一第三接觸點63,使得該精密加工機2取得該實體模具20位於該實際工作台的多個真實座標點位置。 The precision machining machine 2 contacts the top surface 31 of the solid mold 20 in the Z-axis direction to form a first contact point 61 , and the precision machining machine 2 contacts the first side surface 32 of the solid mold 20 in the Y-axis direction to form a first contact point 61 . The second contact point 62, and the precision machining machine 2 contacts the second side surface 33 of the physical mold 20 in the X-axis direction to form a third contact point 63, so that the precision machining machine 2 obtains that the physical mold 20 is located in the actual mold 20. Multiple real coordinate point locations for the workbench.

請參閱圖6A所示,該誤差取得步驟S5是讓該電子裝置1取得該精密加工機2所產生該第一接觸點61、該第二接觸點62以及該第三接觸點63的座標資料,再由該電子裝置1來演算出該實體模具20的一模擬邊角點7以及一介於該模擬邊角點7以及該座標原點的誤差值,其中,該模擬邊角點7並未與該實體模具20接觸,且該誤差值乃包含一X軸誤差以及一Y軸誤差。 Please refer to FIG. 6A , the error obtaining step S5 is for the electronic device 1 to obtain the coordinate data of the first contact point 61 , the second contact point 62 and the third contact point 63 generated by the precision machining machine 2 , Then, the electronic device 1 calculates a simulated corner point 7 of the physical mold 20 and an error value between the simulated corner point 7 and the coordinate origin, wherein the simulated corner point 7 is not related to the The physical mold 20 is in contact, and the error value includes an X-axis error and a Y-axis error.

請參閱圖6B所示,後續,該電子裝置1將再把該第一邊界點41、該第二邊界點42、該第三邊界點43、該第四邊界點44以及該第五邊界點45分別結合該誤差值以及一第二安全值來進行演算,藉以產生與該實體模具20間隔設 置的一第一檢測邊界點81、一第二檢測邊界點82、一第三檢測邊界點83、一第四檢測邊界點84以及一第五檢測邊界點85。 Please refer to FIG. 6B , in the following, the electronic device 1 will further assign the first boundary point 41 , the second boundary point 42 , the third boundary point 43 , the fourth boundary point 44 and the fifth boundary point 45 The calculation is carried out in combination with the error value and a second safety value, so as to generate a setting distance from the physical mold 20. A first detection boundary point 81 , a second detection boundary point 82 , a third detection boundary point 83 , a fourth detection boundary point 84 and a fifth detection boundary point 85 are located.

請參閱圖7A所示,該參數取得步驟S6是讓該精密加工機2取得該第一檢測邊界點81、該第二檢測邊界點82、該第三檢測邊界點83、該第四檢測邊界點84以及該第五檢測邊界點85後,由該接觸式探球22依序由該第一檢測邊界點81、該第二檢測邊界點82、該第三檢測邊界點83、該第四檢測邊界點84以及該第五檢測邊界點85進行移動接觸檢測,使得該實體模具20的各表面分別產生一第一實際邊界點91、一第二實際邊界點92、一第三實際邊界點93、一第四實際邊界點94以及一第五實際邊界點95。 Please refer to FIG. 7A , the parameter obtaining step S6 is for the precision machining machine 2 to obtain the first detection boundary point 81 , the second detection boundary point 82 , the third detection boundary point 83 , and the fourth detection boundary point 84 and the fifth detection boundary point 85, the first detection boundary point 81, the second detection boundary point 82, the third detection boundary point 83, and the fourth detection boundary point are sequentially detected by the contact ball 22. Point 84 and the fifth detection boundary point 85 are subjected to moving contact detection, so that each surface of the physical mold 20 generates a first actual boundary point 91, a second actual boundary point 92, a third actual boundary point 93, a A fourth actual boundary point 94 and a fifth actual boundary point 95 .

請參閱圖7B所示,該精密加工機2將會分別演算X軸、Y軸以及Z軸的座標資料來演算出該實體模具20的一中心點23,其中,該Z軸座標資料是由該第一實際邊界點91及該座標原點的Z軸座標參數所演算出來,該Y軸座標資料是由該第二實際邊界點92以及該第四實際邊界點94的兩Y軸座標參數相加後平均,該X軸座標資料是由該第三實際邊界點93以及該第五實際邊界點95的兩X軸座標參數相加後平均,如此即可將該中心點23的三軸數據準確取得。 Please refer to FIG. 7B , the precision machining machine 2 will calculate the coordinate data of the X-axis, the Y-axis and the Z-axis respectively to calculate a center point 23 of the physical mold 20, wherein the Z-axis coordinate data is calculated by the The first actual boundary point 91 and the Z-axis coordinate parameters of the coordinate origin are calculated, and the Y-axis coordinate data is obtained by adding the two Y-axis coordinate parameters of the second actual boundary point 92 and the fourth actual boundary point 94. After averaging, the X-axis coordinate data is averaged by adding the two X-axis coordinate parameters of the third actual boundary point 93 and the fifth actual boundary point 95, so that the three-axis data of the center point 23 can be accurately obtained. .

請參閱圖7C所示,除此之外,該精密加工機2亦會依據該模擬邊角點7及該邊界盒3自行演算出該實體模具20的複數演算邊角點71,使得該等演算邊角點71以及該模擬邊角點7分別為在該邊界盒3的八個角落位置。 Please refer to FIG. 7C . In addition, the precision machining machine 2 will automatically calculate the complex calculation corner points 71 of the physical mold 20 according to the simulated corner points 7 and the bounding box 3 , so that the calculation The corner points 71 and the simulated corner points 7 are located at the eight corner positions of the bounding box 3 respectively.

最後,該座標補償步驟S7是讓該精密加工機2依據該中心點23、該模擬邊角點7以及該等演算邊角點71來重新設定一加工原點(圖未示)。 Finally, the coordinate compensation step S7 is for the precision machining machine 2 to reset a machining origin (not shown) according to the center point 23 , the simulated corner points 7 and the calculated corner points 71 .

請參閱圖8A及圖8B所示,於第二較佳實施例中,差異在於該等模擬邊界點4更包含一第六邊界點46、一第七邊界點47以及一第八邊界點48,該第 六邊界點46位於該頂表面31,該第七邊界點47位於該第一側表面32,該第八邊界點48位於該第二側表面33。 8A and 8B, in the second preferred embodiment, the difference is that the simulated boundary points 4 further include a sixth boundary point 46, a seventh boundary point 47 and an eighth boundary point 48, the Six boundary points 46 are located on the top surface 31 , the seventh boundary point 47 is located on the first side surface 32 , and the eighth boundary point 48 is located on the second side surface 33 .

其中,該第一邊界點41、該第二邊界點42以及該第三邊界點43是用來產生該等實際檢測點5,而該第四邊界點44、該第五邊界點45、該第六邊界點46、該第七邊界點47以及該第八邊界點48則是用來產生該等檢測邊界點8。不像第一較佳實施例的該第一邊界點41、該第二邊界點42以及該第三邊界點43是被用來兩次計算,而分別產生為複數個實際邊界點9以及複數個檢測邊界點8。 The first boundary point 41 , the second boundary point 42 and the third boundary point 43 are used to generate the actual detection points 5 , and the fourth boundary point 44 , the fifth boundary point 45 , the The six boundary points 46 , the seventh boundary point 47 and the eighth boundary point 48 are used to generate the detection boundary points 8 . Unlike the first preferred embodiment, the first boundary point 41 , the second boundary point 42 and the third boundary point 43 are used for two calculations, and are respectively generated as a plurality of actual boundary points 9 and a plurality of Detect boundary point 8.

S1:模型建立步驟 S1: Model building step

S2:標的生成步驟 S2: target generation step

S3:模具放置步驟 S3: Mold placement step

S4:模具實測步驟 S4: Mold test step

S5:誤差取得步驟 S5: Error acquisition step

S6:參數取得步驟 S6: Parameter acquisition step

S7:座標補償步驟 S7: Coordinate compensation step

Claims (6)

一種精密加工的非對稱尋邊補正方法,包含:一模型建立步驟,由一電子裝置取得一3D圖檔,該3D圖檔包含一直角規模型以及一3D模型,該直角規模型具有一座標原點,該3D模型具有多數個對齊於直角規模型的模型基準邊;一標的生成步驟,透過該電子裝置在該3D模型產生一邊界盒以及複數模擬邊界點,其中,該等模擬邊界點同時位於該邊界盒及該3D模型兩者的表面,該邊界盒具有一底表面、一頂表面、一第一側表面、一第二側表面、一第三側表面以及一第四側表面,該第一側表面與該第二側表面相鄰於該座標原點,該第三側表面位於該第一側表面的相反側,而該第四側表面位於該第二側表面的相反側;該等模擬邊界點包含一第一邊界點、一第二邊界點、一第三邊界點、一第四邊界點以及一第五邊界點,該第一邊界點位於該頂表面,該第二邊界點位於該第一側表面,該第三邊界點位於該第二側表面,該第四邊界點位於該第三側表面,該第五邊界點位於該第四側表面;一模具放置步驟,在一精密加工機的一直角規放置一相同於該3D模型形狀的實體模具,並由該精密加工機校正該實體模具的位置,使得該實體模具的多數實體基準邊分別平行於該直角規的複數座標軸;一模具實測步驟,該精密加工機依據一第一安全值以及一部份的該等模擬邊界點在該實體模具的外側分別產生複數個實際檢測點,該精密加工機的一接觸式探球將由該等實際檢測點的位置分別移動至接觸該實體模具,使得該精密加工機取得一第一接觸點、一第二接觸點以及一第三接觸點; 一誤差取得步驟,該電子裝置依據該第一接觸點、該第二接觸點以及該第三接觸點來演算出該實體模具的一模擬邊角點以及一介於該模擬邊角點以及該座標原點的誤差值,並由該誤差值以及該等模擬邊界點演算出複數個檢測邊界點,其中,該等檢測邊界點是由該第一邊界點、該第二邊界點、該第三邊界點、該第四邊界點以及該第五邊界點分別配合該誤差值所演算出來;而該等實際檢測點是由該第一邊界點、該第二邊界點、該第三邊界點分別配合該第一安全值所演算出來;以及一參數取得步驟,該精密加工機的該接觸式探球依據該等檢測邊界點來檢測該實體模具,使得該精密加工機取得複數個位於該實體模具各表面的實際邊界點,該精密加工機依據該等實際邊界點取得該實體模具的一中心點。 An asymmetric edge-finding correction method for precision machining, comprising: a model building step, obtaining a 3D image file from an electronic device, the 3D image file including a rectangular scale model and a 3D model, the rectangular scale model has a coordinate origin point, the 3D model has a plurality of model reference edges aligned with the rectangular scale model; a target generation step generates a bounding box and a plurality of simulated boundary points in the 3D model through the electronic device, wherein the simulated boundary points are located at the same time Surfaces of both the bounding box and the 3D model, the bounding box has a bottom surface, a top surface, a first side surface, a second side surface, a third side surface and a fourth side surface, the first side surface One side surface and the second side surface are adjacent to the coordinate origin, the third side surface is located on the opposite side of the first side surface, and the fourth side surface is located on the opposite side of the second side surface; the The simulated boundary points include a first boundary point, a second boundary point, a third boundary point, a fourth boundary point and a fifth boundary point, the first boundary point is located on the top surface, and the second boundary point is located at the first side surface, the third boundary point is located on the second side surface, the fourth boundary point is located on the third side surface, the fifth boundary point is located on the fourth side surface; a mold placing step, a precision A square of the processing machine places a solid mold with the same shape as the 3D model, and the precision machining machine corrects the position of the solid mold, so that most of the solid reference sides of the solid mold are respectively parallel to the plural coordinate axes of the right angle; In a mold measurement step, the precision processing machine generates a plurality of actual detection points on the outer side of the physical mold according to a first safety value and a part of the simulated boundary points. A contact probe of the precision processing machine will be determined by The positions of the actual detection points are respectively moved to contact the physical mold, so that the precision machining machine obtains a first contact point, a second contact point and a third contact point; In an error obtaining step, the electronic device calculates a simulated corner point of the physical mold and a distance between the simulated corner point and the coordinate origin according to the first contact point, the second contact point and the third contact point The error value of the point, and a plurality of detection boundary points are calculated from the error value and the simulated boundary points, wherein the detection boundary points are determined by the first boundary point, the second boundary point, and the third boundary point. , the fourth boundary point and the fifth boundary point are calculated according to the error value respectively; and the actual detection points are calculated by the first boundary point, the second boundary point and the third boundary point respectively matching the first boundary point A safety value is calculated; and a parameter acquisition step, the contact ball probe of the precision machining machine detects the solid mold according to the detection boundary points, so that the precision machining machine obtains a plurality of parameters located on each surface of the solid mold Actual boundary points, the precision machining machine obtains a center point of the entity mold according to the actual boundary points. 如請求項1所述精密加工的非對稱尋邊補正方法,其中,該邊界盒被成形為一最大邊界盒來包覆整個3D模型,或是一局部邊界盒來包覆該3D模型的一局部構件。 The asymmetric edge-finding correction method for precision machining as claimed in claim 1, wherein the bounding box is formed into a maximum bounding box to cover the entire 3D model, or a partial bounding box to cover a part of the 3D model member. 如請求項1所述精密加工的非對稱尋邊補正方法,其中,該中心點的一Z軸座標是由一對應該第一邊界點的第一實際邊界點以及該座標原點所演算出來,該中心點的一X軸座標是由一對應該第二邊界點的第二實際邊界點以及一對應該第四邊界點的第四實際邊界點所演算出,而該中心點的一Y軸座標是由一對應該第三邊界點的第三實際邊界點以及一對應該第五邊界點的第五實際邊界點所演算出。 The asymmetric edge-finding correction method for precision machining according to claim 1, wherein a Z-axis coordinate of the center point is calculated from a pair of the first actual boundary point corresponding to the first boundary point and the coordinate origin, An X-axis coordinate of the center point is calculated by a pair of second actual boundary points corresponding to the second boundary point and a pair of fourth actual boundary points corresponding to the fourth boundary point, and a Y-axis coordinate of the center point is calculated by a pair of third actual boundary points corresponding to the third boundary point and a pair of fifth actual boundary points corresponding to the fifth boundary point. 如請求項1所述精密加工的非對稱尋邊補正方法,其中,在該參數取得步驟中,該精密加工機依據該模擬邊角點及該邊界盒取得該實體模具的複數演算邊角點。 The asymmetric edge finding correction method for precision machining as claimed in claim 1, wherein, in the parameter obtaining step, the precision machining machine obtains the complex arithmetic corner points of the solid mold according to the simulated corner points and the bounding box. 如請求項1所述精密加工的非對稱尋邊補正方法,其中,在該誤差取得步驟中,該檢測邊界點是由一第二安全值、該誤差值以及該等模擬邊界點三者所演算出。 The asymmetric edge-finding correction method for precision machining as claimed in claim 1, wherein, in the error obtaining step, the detection boundary point is calculated by a second safety value, the error value and the simulated boundary points out. 如請求項1所述精密加工的非對稱尋邊補正方法,其中,該方法進一步包含一座標補償步驟,該精密加工機依據該中心點、該模擬邊角點以及該等演算邊角點來重新設定一加工原點。The asymmetric edge-finding correction method for precision machining as claimed in claim 1, wherein the method further comprises a coordinate compensation step, the precision machining machine recalculates the center point, the simulated corner point and the calculated corner points Set a machining origin.
TW110127927A 2021-07-29 2021-07-29 A precision machining compensation method for finding non-symmetric edge TWI766781B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110127927A TWI766781B (en) 2021-07-29 2021-07-29 A precision machining compensation method for finding non-symmetric edge
CN202111479085.2A CN115673448A (en) 2021-07-29 2021-12-06 Asymmetric edge searching and correcting method for precision machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110127927A TWI766781B (en) 2021-07-29 2021-07-29 A precision machining compensation method for finding non-symmetric edge

Publications (2)

Publication Number Publication Date
TWI766781B true TWI766781B (en) 2022-06-01
TW202304619A TW202304619A (en) 2023-02-01

Family

ID=83103768

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110127927A TWI766781B (en) 2021-07-29 2021-07-29 A precision machining compensation method for finding non-symmetric edge

Country Status (2)

Country Link
CN (1) CN115673448A (en)
TW (1) TWI766781B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020189319A1 (en) * 2001-03-02 2002-12-19 Mitutoyo Corporation Method of calibrating measuring machines
JP2006289524A (en) * 2005-04-06 2006-10-26 Fanuc Ltd Workpiece placement error measuring device
TWI389764B (en) * 2010-03-30 2013-03-21 Fanuc Ltd Machine tool with function for setting up a measurement reference point of a work
CN103328154A (en) * 2011-01-24 2013-09-25 三菱电机株式会社 Error measurement device and error measurement method
TWI433256B (en) * 2006-12-22 2014-04-01 Alphasem Gmbh Method of calibrating x-y positioning of positioning tool and device with such positioning tool
TW201432401A (en) * 2013-02-04 2014-08-16 Hon Hai Prec Ind Co Ltd System and method of measuring computer numerical control probe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020189319A1 (en) * 2001-03-02 2002-12-19 Mitutoyo Corporation Method of calibrating measuring machines
JP2006289524A (en) * 2005-04-06 2006-10-26 Fanuc Ltd Workpiece placement error measuring device
TWI433256B (en) * 2006-12-22 2014-04-01 Alphasem Gmbh Method of calibrating x-y positioning of positioning tool and device with such positioning tool
TWI389764B (en) * 2010-03-30 2013-03-21 Fanuc Ltd Machine tool with function for setting up a measurement reference point of a work
CN103328154A (en) * 2011-01-24 2013-09-25 三菱电机株式会社 Error measurement device and error measurement method
TW201432401A (en) * 2013-02-04 2014-08-16 Hon Hai Prec Ind Co Ltd System and method of measuring computer numerical control probe

Also Published As

Publication number Publication date
TW202304619A (en) 2023-02-01
CN115673448A (en) 2023-02-03

Similar Documents

Publication Publication Date Title
US9506736B2 (en) Measurement system
US10732604B2 (en) System and method for virtually calibrating a computer numeric controlled machine to compensate for surface distortions
TW201432401A (en) System and method of measuring computer numerical control probe
TWI754888B (en) Calibrating method and calibrating system
CN114654303B (en) Method for correcting deviation of positioning accuracy of machine tool
US9302345B2 (en) Laser machining calibration method
CN105397549A (en) Zero searching method of machine tool machined hole surface workpiece
JP2023553266A (en) Measuring object for verifying geometric deviation of 3-axis machine tool, 3-axis machine tool, and method for correcting geometric deviation of 3-axis machine tool
JP5272598B2 (en) Method for specifying jig coordinates of machining apparatus and machining apparatus using the method
CN107900781B (en) Calibration device and calibration method for contact type online detection system of lathe
JP2011206862A (en) Method of positioning rotary tool in multishaft processing machine
KR101960171B1 (en) Method for correcting of pivot of 5 axis equipment
JP2008268118A (en) Method and device for measuring shape
TWI766781B (en) A precision machining compensation method for finding non-symmetric edge
US11243062B2 (en) Position measurement method and position measurement system of object in machine tool, and computer-readable recording medium
KR101809244B1 (en) Five-axis cnc machine calibration method using calibration jig
JP2023035004A (en) Calculation method of corrected parameter of motion error in machine tool and machine tool
CN108332642A (en) A kind of right-angle head accuracy checking method
JP2013011443A (en) Calibration method for shape measuring probe
TWI645274B (en) Work piece processing method and processing system thereof
JP5437693B2 (en) Automatic correction value measurement method for spindle or attachment spindle
TWM490934U (en) Scraping device applying robot arm having multiple degrees of freedom
CN110896593B (en) Method for manufacturing circuit board and drilling machine
US20230384076A1 (en) Calibration master installing jig and measuring method for calibration master in machine tool
KR101823052B1 (en) Method of measuring workpiece for correction of cnc machine job