TWI766760B - Reactor system coupled to an energy emitter control circuit - Google Patents
Reactor system coupled to an energy emitter control circuit Download PDFInfo
- Publication number
- TWI766760B TWI766760B TW110126106A TW110126106A TWI766760B TW I766760 B TWI766760 B TW I766760B TW 110126106 A TW110126106 A TW 110126106A TW 110126106 A TW110126106 A TW 110126106A TW I766760 B TWI766760 B TW I766760B
- Authority
- TW
- Taiwan
- Prior art keywords
- microwave energy
- plasma
- microwave
- fewg
- energy source
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 169
- 238000006243 chemical reaction Methods 0.000 claims abstract description 124
- 239000002994 raw material Substances 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 239000000843 powder Substances 0.000 claims abstract description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 156
- 239000000463 material Substances 0.000 claims description 134
- 239000002245 particle Substances 0.000 claims description 111
- 229910052799 carbon Inorganic materials 0.000 claims description 92
- 229910021389 graphene Inorganic materials 0.000 claims description 44
- 230000005284 excitation Effects 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 13
- 230000004044 response Effects 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 11
- 238000001246 colloidal dispersion Methods 0.000 claims description 10
- 238000010494 dissociation reaction Methods 0.000 claims description 9
- 230000005593 dissociations Effects 0.000 claims description 8
- 239000012141 concentrate Substances 0.000 claims description 5
- 239000012071 phase Substances 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 3
- 239000007790 solid phase Substances 0.000 claims description 2
- 230000000704 physical effect Effects 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 129
- 239000007789 gas Substances 0.000 description 175
- 230000005855 radiation Effects 0.000 description 31
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 30
- 239000011852 carbon nanoparticle Substances 0.000 description 28
- 238000012545 processing Methods 0.000 description 25
- 238000012993 chemical processing Methods 0.000 description 24
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 23
- 229910003472 fullerene Inorganic materials 0.000 description 23
- 241000894007 species Species 0.000 description 20
- 238000009826 distribution Methods 0.000 description 19
- 239000010410 layer Substances 0.000 description 19
- 230000004888 barrier function Effects 0.000 description 18
- 239000001257 hydrogen Substances 0.000 description 18
- 229910052739 hydrogen Inorganic materials 0.000 description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 16
- 239000002243 precursor Substances 0.000 description 16
- 239000000835 fiber Substances 0.000 description 15
- 238000005549 size reduction Methods 0.000 description 15
- 238000001069 Raman spectroscopy Methods 0.000 description 14
- 239000003575 carbonaceous material Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 14
- 239000002105 nanoparticle Substances 0.000 description 14
- 230000001276 controlling effect Effects 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 238000011144 upstream manufacturing Methods 0.000 description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 11
- 229930195733 hydrocarbon Natural products 0.000 description 11
- 230000007704 transition Effects 0.000 description 11
- 238000000137 annealing Methods 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 10
- 239000010439 graphite Substances 0.000 description 10
- 150000002430 hydrocarbons Chemical class 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 10
- 238000000576 coating method Methods 0.000 description 9
- 230000005684 electric field Effects 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000001237 Raman spectrum Methods 0.000 description 8
- 230000001186 cumulative effect Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 235000013305 food Nutrition 0.000 description 8
- 239000004215 Carbon black (E152) Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 238000002955 isolation Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 230000007935 neutral effect Effects 0.000 description 7
- 230000010355 oscillation Effects 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000003917 TEM image Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 229910021387 carbon allotrope Inorganic materials 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910001868 water Inorganic materials 0.000 description 6
- 229920000049 Carbon (fiber) Polymers 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910003481 amorphous carbon Inorganic materials 0.000 description 5
- 239000004917 carbon fiber Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 238000000197 pyrolysis Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 150000001335 aliphatic alkanes Chemical class 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 150000001345 alkine derivatives Chemical class 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000002048 multi walled nanotube Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 238000012805 post-processing Methods 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000002077 nanosphere Substances 0.000 description 2
- 229910052756 noble gas Inorganic materials 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000004227 thermal cracking Methods 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- -1 but not limited to Chemical compound 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 208000018459 dissociative disease Diseases 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical group C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000003701 mechanical milling Methods 0.000 description 1
- 239000002113 nanodiamond Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32201—Generating means
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
- C01B32/186—Preparation by chemical vapour deposition [CVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32311—Circuits specially adapted for controlling the microwave discharge
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/20—Graphite
- C01B32/205—Preparation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Plasma Technology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
本揭露內容大體上係關於用於產生碳粒子之反應器,且更特定而言,係關於耦合於電路之反應器,該電路經組配以所界定脈衝頻率或工作循環將微波能量傳播至反應器中以用於輸出碳粒子。 The present disclosure relates generally to reactors for producing carbon particles, and more particularly, to reactors coupled to circuits configured to propagate microwave energy to the reaction at a defined pulse frequency or duty cycle in the device for the output of carbon particles.
例如,諸如磁控管或速調管之微波發射裝置可經組配以輸出呈微波能量形式之電磁(EM)輻射。為謹慎地控制輸出微波能量之輸出功率位準,積體電路可耦合於此類微波發射裝置,以控制微波能量源以具有各種頻率之離散脈衝及工作循環輸出微波能量。此電路可設計成用於特定範圍之脈衝頻率、工作循環、形狀及輸出功率位準;然而,在傳統微波發射裝置及反應器設計中遇到的挑戰實際上限制總操作範圍。鑒於相對較慢之上升或下降時間可能負面地影響可切換信號之速率,脈衝信號之所觀測到上升及下降時間可為所觀測到之實例限制。又,電路可遞送至磁控管之功率亦可影響磁控管之輸出功率位準。謹慎控制及考慮電路設計之最佳化及其與各種反應器設計之整合可提供關於反應器產物輸出之益處。 For example, microwave emitting devices such as magnetrons or klystrons can be configured to output electromagnetic (EM) radiation in the form of microwave energy. To carefully control the output power level of the output microwave energy, an integrated circuit can be coupled to such a microwave transmitter to control the microwave energy source to output microwave energy in discrete pulses and duty cycles with various frequencies. This circuit can be designed for a specific range of pulse frequencies, duty cycles, shapes, and output power levels; however, challenges encountered in conventional microwave launcher and reactor designs actually limit the overall operating range. The observed rise and fall times of pulsed signals may be observed instance limitations, given that relatively slow rise or fall times may negatively affect the rate of switchable signals. Also, the power that the circuit can deliver to the magnetron can also affect the output power level of the magnetron. Careful control and consideration of optimization of circuit design and its integration with various reactor designs can provide benefits with regard to reactor product output.
本揭露內容之系統、方法及裝置各自具有若干創新態樣,其中無單一者僅負責本文中所揭露之所要屬性。 The systems, methods, and devices of the present disclosure each have several innovative aspects, no single one of which is solely responsible for the desired attributes disclosed herein.
本揭露內容中描述之標的物的一個新穎態樣可實施於一種包括經組配以產生微波能量之微波能量源的反應器系統中。該微波能量源具有接通狀態及斷開狀態。控制電路耦合於微波能量源且包括輸出以產生控制信號,該控制信號經組配以至少部分地調整微波能量之脈衝頻率。電壓產生器經組配以在斷開狀態期間將非零電壓施加至微波能量源,其中非零電壓之頻率及工作循環係基於控制信號之頻率及工作循環。場增強波導(FEWG)耦合於微波能量源且包括具有沿著FEWG之長度降低的橫截面積之場增強區。場增強區包括經組配以接收供應氣體之供應氣體入口,經組配以回應於藉由微波能量激發供應氣體而產生電漿之反應區,經組配以將原材料注入至反應區中之製程入口,及經組配以基於電漿內之供應氣體與原材料之部分的混合物而輸出含碳粉末之出口。 One novel aspect of the subject matter described in this disclosure can be implemented in a reactor system including a microwave energy source configured to generate microwave energy. The microwave energy source has an on state and an off state. A control circuit is coupled to the microwave energy source and includes an output to generate a control signal configured to at least partially adjust the pulse frequency of the microwave energy. The voltage generator is configured to apply a non-zero voltage to the microwave energy source during the off state, wherein the frequency and duty cycle of the non-zero voltage is based on the frequency and duty cycle of the control signal. A field enhancement waveguide (FEWG) is coupled to the microwave energy source and includes a field enhancement region having a decreasing cross-sectional area along the length of the FEWG. The field enhancement zone includes a supply gas inlet configured to receive a supply gas, a reaction zone configured to generate a plasma in response to excitation of the supply gas by microwave energy, and a process configured to inject raw materials into the reaction zone An inlet, and an outlet configured to output a carbonaceous powder based on a mixture of a portion of the supply gas and raw materials within the plasma.
在一些實施中,反應器系統可包括經組配以收集含碳粉末之收集器。場增強區可經組配以集中微波能量。反應區可經組配以回應於藉由經集中微波能量激發供應氣體而對電漿進行自點火。含碳粉末之物理性質或化學性質中之一或多者可至少部分地基於脈衝頻率。在一些態樣中,非零電壓可具有在大約20奈秒與50奈秒之間的範圍內之上升時間,且非零電壓可具有在大約20奈秒與約50奈秒之間的範圍內之下降時間。 In some implementations, the reactor system can include a collector configured to collect the carbonaceous powder. Field enhancement regions can be configured to concentrate microwave energy. The reaction zone can be configured to self-ignite the plasma in response to excitation of the supply gas by concentrated microwave energy. One or more of the physical or chemical properties of the carbonaceous powder may be based, at least in part, on the pulse frequency. In some aspects, the non-zero voltage can have a rise time in a range between about 20 nanoseconds and 50 nanoseconds, and the non-zero voltage can have a rise time in a range between about 20 nanoseconds and about 50 nanoseconds the fall time.
在一些實施中,微波能量之脈衝頻率可進一步至少部分地基於非零電壓。控制電路亦可包括經組配以調整供應氣體之解離的燈絲。微波能量之功率位準可至少部分地基於非零電壓。微波能量源包括磁控管、速調管或行進波管放大器(TWTA)中之任一或多者。控制電路可包括脈衝開關,脈衝開關包括串聯 耦合於電壓供應與接地電位之間的第一雙極主動開關及第二雙極主動開關。在一些態樣中,供應氣體可包括烴類。含碳粉末可包括含碳粒子、膠態分散液或多個固體粒子中之任一或多者。 In some implementations, the pulse frequency of the microwave energy can be further based, at least in part, on a non-zero voltage. The control circuit may also include a filament configured to adjust the dissociation of the supply gas. The power level of the microwave energy can be based, at least in part, on a non-zero voltage. The microwave energy source includes any one or more of a magnetron, a klystron, or a traveling wave tube amplifier (TWTA). The control circuit may include a pulse switch including a series connection A first bipolar active switch and a second bipolar active switch are coupled between the voltage supply and ground potential. In some aspects, the supply gas can include hydrocarbons. The carbonaceous powder may include any one or more of carbonaceous particles, a colloidal dispersion, or a plurality of solid particles.
在一些實施中,反應器系統可包括經組配以將氣相材料及固相材料與含碳粉末分離之氣體/固體分離器。FEWG可經組配以產生微波能量源之一或多個條件量測。含碳粉末可包括多個石墨烯片。FEWG可經組配以大體上正交角度將多個石墨烯片彼此融合。FEWG經組配以藉由將供應氣體選擇性地流動至反應區中來調整FEWG內所產生之電漿的長度。反應區可經組配以包含在大約1atm之壓力下的混合物。在一些態樣中,反應器系統可包括經組配以控制FEWG內之溫度的溫度控制單元。 In some implementations, the reactor system can include a gas/solid separator configured to separate gas phase and solid phase materials from carbonaceous powders. The FEWG can be configured to generate one or more conditional measurements of a microwave energy source. The carbonaceous powder may include a plurality of graphene sheets. The FEWG can be assembled to fuse multiple graphene sheets with each other at substantially orthogonal angles. The FEWG is configured to adjust the length of the plasma generated within the FEWG by selectively flowing the supply gas into the reaction zone. The reaction zone can be configured to contain the mixture at a pressure of about 1 atm. In some aspects, the reactor system can include a temperature control unit configured to control the temperature within the FEWG.
本揭露內容中描述之標的物的另一新穎態樣可實施為一種方法,其可包括:自微波能量源產生微波能量;產生控制信號,該控制信號經組配以調整微波能量之脈衝頻率來控制微波能量源;在微波能量源之斷開狀態期間將非零電壓施加至微波能量源,非零電壓經組配以調整控制信號之頻率及工作循環;回應於藉由微波能量激發供應氣體而產生電漿;將原材料注入至電漿中;形成基於電漿內之供應氣體與原材料之部分之組合的混合物;及基於藉由微波能量激發混合物而輸出含碳粉末。在一些態樣中,該方法可包括對非零電壓進行脈衝,脈衝式非零電壓具有在大約20奈秒與50奈秒之間的上升時間。 Another novel aspect of the subject matter described in this disclosure can be implemented as a method that can include: generating microwave energy from a microwave energy source; generating a control signal configured to adjust a pulse frequency of the microwave energy to Control the microwave energy source; apply a non-zero voltage to the microwave energy source during the off state of the microwave energy source, the non-zero voltage is configured to adjust the frequency and duty cycle of the control signal; in response to excitation of the supply gas by the microwave energy A plasma is generated; a raw material is injected into the plasma; a mixture is formed based on the combination of a supply gas within the plasma and a portion of the raw material; and a carbonaceous powder is output based on excitation of the mixture by microwave energy. In some aspects, the method may include pulsing the non-zero voltage, the pulsed non-zero voltage having a rise time between about 20 nanoseconds and 50 nanoseconds.
本揭露內容中描述之標的物的另一新穎態樣可被實施為一種方法,其可包括:控制烴類物種及原材料中之任一或多者的溫度及壓力;藉由微波能量源產生微波能量,微波能量源包括輸出以產生控制信號;藉由所傳播微波能量激發烴類物種來對電漿進行點火;基於所傳播微波能量將電漿內之烴類物種裂解成多個較小含碳物種;及基於多個較小含碳物種與原材料之混合物產生含 碳粉末。在一些態樣中,該方法可包括對較小含碳物種中之任一或多者進行一或多個後處理操作。 Another novel aspect of the subject matter described in this disclosure can be implemented as a method that can include: controlling the temperature and pressure of any one or more of a hydrocarbon species and a raw material; generating microwaves by a microwave energy source energy, the microwave energy source includes an output to generate a control signal; ignites the plasma by exciting hydrocarbon species by the propagated microwave energy; cracks the hydrocarbon species in the plasma into a plurality of smaller carbonaceous species based on the propagated microwave energy species; and based on a mixture of a plurality of smaller carbon-containing species with raw materials carbon powder. In some aspects, the method can include performing one or more post-processing operations on any one or more of the smaller carbon-containing species.
本揭露內容中所描述之標的物之一或多個實施之細節在附圖及以下描述中闡明。其他特徵、態樣及優勢將自該描述、圖式及申請專利範圍變得顯而易見。應注意,以下圖式之相對尺寸可未按比例繪製。 The details of one or more implementations of the subject matter described in this disclosure are set forth in the accompanying drawings and the description below. Other features, aspects and advantages will become apparent from the description, drawings and claims. It should be noted that the relative dimensions of the following figures may not be drawn to scale.
122:習知低頻率切換電路機制 122: Known Low Frequency Switching Circuit Mechanism
124:習知低功率切換電路 124: conventional low power switching circuit
126:高功率及高頻率切換機制 126: High power and high frequency switching mechanism
140:微波發射器控制電路 140: Microwave transmitter control circuit
141,804,904,1004:微波能量源 141,804,904,1004: Microwave Energy Sources
142:高電壓控制電路 142: High voltage control circuit
143:燈絲控制電路 143: Filament control circuit
144:脈衝式高電壓輸出 144: Pulsed high voltage output
145:元件 145: Components
200:特性圖 200:Characteristics
201:哈崔曲線,特性曲線 201: Hatrey curve, characteristic curve
202:哈爾截止曲線,特性曲線 202: Haar cutoff curve, characteristic curve
203:截止區 203: Deadline
204:傳導區或模式 204: Conductive area or mode
205:振盪區 205: Oscillation Zone
206:「接通」操作點 206: "On" operating point
207:「斷開」操作點 207: "Disconnect" operating point
208,209:尺寸 208, 209: Dimensions
300:控制信號跡線 300: Control signal trace
301:第二跡線,輸出電流或功率跡線 301: Second trace, output current or power trace
400:先前技術控制電壓跡線 400: Prior Art Control Voltage Trace
401:第二跡線,先前技術輸出電流或功率跡線 401: Second trace, prior art output current or power trace
402:回應滯後 402: Response lag
500:示意圖,微波發射器控制電路 500: Schematic, Microwave Transmitter Control Circuit
501:電壓輸入 501: Voltage input
502:電力供應電路 502: Power Supply Circuit
503:脈衝產生器 503: Pulse Generator
504:高電壓控制器 504: High Voltage Controller
505:高電壓電力供應(HVPS)變壓器 505: High Voltage Power Supply (HVPS) Transformers
506:倍壓器 506: Voltage Doubler
507:脈衝開關 507: Pulse switch
508:燈絲控制器 508: Filament Controller
509:燈絲隔離變壓器 509: Filament Isolation Transformer
510:主控制開關 510: Main control switch
511:高電壓控制開關 511: High Voltage Control Switch
512:燈絲控制開關 512: Filament control switch
513:泵/風扇控制開關 513: Pump/Fan Control Switch
514:冷卻泵或風扇 514: Cooling Pump or Fan
515:變壓器 515: Transformer
516:繼電器 516: Relay
517:繼電器控制器 517: Relay Controller
518:電位計 518: Potentiometer
519,520:電容器 519,520: Capacitors
521,522,529,530,603:二極體 521, 522, 529, 530, 603: Diodes
523:高壓側電阻器 523: High side resistor
524:低壓側電阻器 524: Low Side Resistor
525:高壓側雙極主動開關 525: High-voltage side bipolar active switch
526:低壓側雙極主動開關 526: Low-voltage side bipolar active switch
527,528:開關驅動器 527, 528: Switch Drivers
531:電抗組件 531: Reactance Components
600:上升時間調整網路 600: Rise time adjustment network
601:電感器 601: Inductor
602,604:電阻器 602, 604: Resistors
700A,700B,1800A,1800B:操作 700A, 700B, 1800A, 1800B: Operation
702A,704A,706A,708A,710A,712A,702B,704B,706B,708B,1602,1604,1606,1608,1802A,1802B,1804A,1806A,1808A,1810A,1812A,1814A:區塊 Blocks
800:習知微波化學處理系統 800: Conventional Microwave Chemical Processing System
801:反應腔室 801: Reaction Chamber
802:氣體入口 802: Gas inlet
803,903,1003,1103,1205,1303:出口 803, 903, 1003, 1103, 1205, 1303: Export
805:波導 805: Waveguide
806,906,1006:微波電漿 806, 906, 1006: Microwave Plasma
807,1307,1407:微波發射器電路 807, 1307, 1407: Microwave Transmitter Circuits
808,908b,1011a,1011b:製程材料 808, 908b, 1011a, 1011b: Process Materials
809,909,1009,1201,1409:微波能量 809, 909, 1009, 1201, 1409: Microwave energy
900,1000,1500:反應器系統 900, 1000, 1500: Reactor Systems
901,1001:反應區 901, 1001: Reaction Zone
902:供應氣體及/或製程材料入口 902: Supply gas and/or process material inlet
905,1005,1102,1305,1405,1505:場增強波導(FEWG) 905, 1005, 1102, 1305, 1405, 1505: Field Enhanced Waveguide (FEWG)
907,1007:微波電路 907, 1007: Microwave Circuits
908a:供應氣體及/或製程材料 908a: Supply Gases and/or Process Materials
910,911:壓力障壁 910, 911: Pressure Barrier
912:壓力吹出埠 912: Pressure blow out port
1002,1302,1402,1502:供應氣體入口 1002, 1302, 1402, 1502: Supply gas inlets
1008a,1008b:供應氣體 1008a, 1008b: Supply gas
1010,1310,1410:製程材料入口 1010, 1310, 1410: Process material entry
1101,1304,1404,1504:微波能量產生器 1101, 1304, 1404, 1504: Microwave Energy Generators
1202:歧管波導,網路波導 1202: Manifold Waveguide, Network Waveguide
1203:FEWG之場增強區 1203: FEWG Field Enhancement Zone
1204:FEWG之較小橫截面積反應區 1204: Smaller cross-sectional area reaction zone of FEWG
1300:微波氣體處理系統 1300: Microwave Gas Handling Systems
1320:前驅氣體 1320: Precursor Gas
1330:第一分離之組分 1330: First isolated components
1332:第二分離之組分 1332: Second Separated Components
1340:導管 1340: Catheter
1400:微波處理系統 1400: Microwave Processing System
1420:金屬燈絲 1420: Metal Filament
1506:電漿 1506: Plasma
1509:一般方向 1509: General Orientation
1520:電子源 1520: Electron Source
1530:能量源,電極 1530: Energy Source, Electrode
1600:流程圖 1600: Flowchart
1702:多壁球形富勒烯(MWSF) 1702: Multi-Walled Spherical Fullerene (MWSF)
1704:石墨烯層 1704: Graphene Layer
1706,1710,1714,1720:質量基準累積粒度分佈 1706, 1710, 1714, 1720: Mass-Based Cumulative Particle Size Distribution
1708,1716,1722:質量粒度分佈 1708, 1716, 1722: Mass particle size distribution
1712:質量基準粒度分佈 1712: Mass Benchmark Particle Size Distribution
1718,1724:數目基準累積粒度分佈 1718, 1724: Number-Based Cumulative Particle Size Distribution
1730:3D碳材料,3D碳生長 1730: 3D Carbon Materials, 3D Carbon Growth
1731,1732:纖維 1731, 1732: Fiber
1734:邊緣平面 1734: Edge Plane
1735:纖維表面 1735: Fiber Surface
1736:基底平面 1736: basal plane
a,b:尺寸 a,b: size
L:長度 L: length
LA,LB,L0:長度,部分 L A , L B , L 0 : length, part
L1:長度,部分,電漿區 L 1 : length, section, plasma area
L2:長度,部分,反應長度,反應區 L 2 : length, section, reaction length, reaction zone
+out:DC驅動電壓 +out: DC drive voltage
G:接地 G: Ground
L:電壓線 L: Voltage line
N:中性極,中性電位 N: neutral pole, neutral potential
圖1A描繪根據一些實施的其中可在遞送功率範圍及/或切換頻率範圍內切換控制電路(諸如燈絲)功率之各種域。 1A depicts various domains in which control circuit (such as filament) power can be switched over a range of delivered power and/or a range of switching frequencies, according to some implementations.
圖1B展示根據一些實施的實例電路(諸如微波發射器控制電路)之簡化示意圖。 IB shows a simplified schematic diagram of an example circuit, such as a microwave transmitter control circuit, according to some implementations.
圖2展示根據一些實施的操作電壓與磁控管產生之磁場的對照比較之簡化圖。 2 shows a simplified diagram of a comparative comparison of operating voltage and magnetic field produced by a magnetron, according to some implementations.
圖3展示根據一些實施的圖1B中所示之實例微波發射器控制電路的測試結果之簡化圖。 3 shows a simplified graph of test results for the example microwave transmitter control circuit shown in FIG. IB, according to some implementations.
圖4展示根據一些實施的先前技術微波發射器控制電路之測試結果的簡化圖。 4 shows a simplified graph of test results of a prior art microwave transmitter control circuit according to some implementations.
圖5展示根據一些實施的圖1B中所示之實例電路的圖式。 5 shows a diagram of the example circuit shown in FIG. IB, according to some implementations.
圖6展示根據一些實施的適於與圖1B及圖5中所示之實例電路一起合併及/或使用的上升時間調整網路電路之圖式。 6 shows a diagram of a rise time adjustment network circuit suitable for incorporation and/or use with the example circuits shown in FIGS. 1B and 5, according to some implementations.
圖7A為根據一些實施的藉由電路產生脈衝式微波輻射之方法的流程圖。 7A is a flowchart of a method of generating pulsed microwave radiation by an electrical circuit, according to some implementations.
圖7B為根據一些實施的交替地連接脈衝式電壓輸出之方法的流程圖。 7B is a flowchart of a method of alternately connecting pulsed voltage outputs in accordance with some implementations.
圖8A展示根據一些實施的習知微波化學處理系統之豎直橫截面。 8A shows a vertical cross-section of a conventional microwave chemical processing system according to some implementations.
圖8B及圖8C展示根據一些實施的波導(諸如場增強波導,FEWG)之實例幾何形狀及尺寸。 8B and 8C show example geometries and dimensions of waveguides, such as field enhancement waveguides, FEWGs, according to some implementations.
圖9展示根據一些實施的反應器(諸如耦合於微波能量源之反應器)之豎直橫截面。 9 shows a vertical cross-section of a reactor, such as a reactor coupled to a microwave energy source, according to some implementations.
圖10展示根據其他實施的微波氣體處理系統之簡化豎直橫截面。 10 shows a simplified vertical cross-section of a microwave gas processing system according to other implementations.
圖11A、圖11B、圖11C及圖11D展示根據一些實施的具有多個場增強波導及多個微波能量源之微波化學處理系統之方塊圖。 11A, 11B, 11C, and 11D show block diagrams of a microwave chemical processing system with multiple field enhancement waveguides and multiple microwave energy sources, according to some implementations.
圖12A及圖12B展示根據一些實施的其中多個場增強波導耦合於一個微波能量產生器之微波化學處理系統之簡化圖式。 12A and 12B show simplified diagrams of a microwave chemical processing system in which multiple field-enhancing waveguides are coupled to a microwave energy generator, according to some implementations.
圖13展示根據一些實施的具有前驅氣體輸入之微波氣體處理系統之豎直橫截面。 13 shows a vertical cross-section of a microwave gas processing system with precursor gas input, according to some implementations.
圖14展示根據一些實施的具有燈絲之反應器(諸如耦合於微波能量源之反應器)的豎直橫截面。 14 shows a vertical cross-section of a reactor with a filament, such as a reactor coupled to a microwave energy source, according to some implementations.
圖15展示根據一些實施的包括電子源及一對電極中之任一或多者的反應器(諸如耦合於微波能量源之反應器)的豎直橫截面。 15 shows a vertical cross-section of a reactor including an electron source and any one or more of a pair of electrodes, such as a reactor coupled to a microwave energy source, according to some implementations.
圖16展示根據一些實施的用於供應微波輻射(諸如微波能量)以激勵及/或激發供應氣體並基於經激發供應氣體產生電漿的實例方法之實例流程圖。 16 shows an example flow diagram of an example method for supplying microwave radiation, such as microwave energy, to excite and/or excite a supply gas and generate plasma based on the excited supply gas, according to some implementations.
圖17A至圖17Y描繪根據一些實施的在其他材料上方生長之結構化碳、各種碳奈米粒子、各種碳基聚集體及各種三維含碳集合體。 17A-17Y depict structured carbon, various carbon nanoparticles, various carbon-based aggregates, and various three-dimensional carbon-containing aggregates grown over other materials, according to some implementations.
圖18A為根據一些實施的輸出含碳粉末之方法的流程圖。 18A is a flow diagram of a method of outputting carbonaceous powder, according to some implementations.
圖18B為根據一些實施的對非零電壓進行脈衝之方法的流程圖。 18B is a flowchart of a method of pulsing a non-zero voltage according to some implementations.
現將參考所揭露發明之實施,該所揭露發明之一或多個實例在附圖中加以說明。各實例藉助於本發明技術之解釋來提供,而非作為本發明技術之限制。實際上,熟習此項技術者將顯而易見,可在不脫離本發明技術之範疇之情況下對本發明技術進行修改及變化。例如,作為一個實施例之部分所說明或描述之特徵可與另一實施例一起使用,以得到再一實施例。因此,本發明標的物意欲涵蓋在所附申請專利範圍及其等效物之範疇內的所有此類修改及變化。 Reference will now be made to implementations of the disclosed invention, one or more examples of which are illustrated in the accompanying drawings. The examples are provided by way of explanation of the techniques of the present invention, and not as limitations of the techniques of the present invention. Indeed, it will be apparent to those skilled in the art that modifications and variations of the present technology can be made without departing from the scope of the present technology. For example, features illustrated or described as part of one embodiment can be used with another embodiment to yield yet another embodiment. Accordingly, the inventive subject matter is intended to cover all such modifications and variations as come within the scope of the appended claims and their equivalents.
本發明系統及方法之實施例可用於諸如藉由電路控制微波能量源提供脈衝式微波能量,以用於使用本文中所揭露之微波電漿化學處理技術自原材料產生包括碳之粒子。在一些實施中,原材料可為氣體、液體或膠態分散液。在一些其他實施中,原材料可為或包括含碳粒子、膠態分散液或多個固體粒子中之任一或多者。在一些態樣中,可將原材料處理成波導之反應區中的分離之組分。在一些實施中,波導可為場增強波導,其不僅允許處理相對較大量之原材料,且亦充當反應腔室,在該反應腔室內可回應於藉由微波能量激發供應氣體而產生電漿(亦稱為電漿環境)。 Embodiments of the systems and methods of the present invention may be used to provide pulsed microwave energy, such as by a circuit-controlled microwave energy source, for generating particles including carbon from raw materials using the microwave plasma chemical processing techniques disclosed herein. In some implementations, the starting material can be a gaseous, liquid, or colloidal dispersion. In some other implementations, the starting material can be or include any one or more of carbon-containing particles, a colloidal dispersion, or a plurality of solid particles. In some aspects, the raw material can be processed into separate components in the reactive region of the waveguide. In some implementations, the waveguides can be field-enhanced waveguides that not only allow relatively large quantities of raw materials to be processed, but also serve as reaction chambers in which plasma (also known as plasma) can be generated in response to excitation of a supply gas by microwave energy. called the plasma environment).
此與習知系統形成對比,習知系統可能不提供藉由電路控制之脈衝式微波能量及/或使用與波導分離且不同的石英腔室來集中脈衝式微波能量,以在電漿環境內激發含碳供應氣體與原材料之混合物。在習知系統中,石英腔室壁上之微粒堆積會妨礙微波能量穿過石英腔室壁,藉此降低此類習知系統可處理原材料之效率。更特定而言,電路可耦合於微波能量源,其中電路可產生可控制微波能量源之脈衝式電壓輸出。例如,脈衝式電壓輸出可使得微波能量源產生可沿著截面漸變波導傳播之脈衝式微波能量,在該波導中脈衝式微波能量之集 中程序與截面漸變程度成比例。波導亦充當反應腔室,其中輸入含碳供應氣體(諸如甲烷,CH4)可與諸如矽或其他金屬之額外原材料組合,並在曝露於經集中且脈衝式微波能量後經激發,微波能量亦使得供應氣體中之一些點火且產生電漿。藉由經集中且脈衝式微波能量在電漿環境內激發供應氣體與原材料之混合物。結果,本文中所揭露之反應器系統可在電漿內處理供應氣體與原材料之混合物以輸出含碳粉末之效率得到增強。此外,波導自身未必易受其腔室壁之內向表面上的微粒堆積影響,此僅為藉由本文中所揭露之標的物之各種態樣實現的優勢之一個實例。 This is in contrast to conventional systems, which may not provide pulsed microwave energy controlled by electrical circuits and/or use a separate and distinct quartz chamber from the waveguide to concentrate the pulsed microwave energy for excitation within a plasma environment A mixture of carbon-containing supply gas and raw materials. In conventional systems, particle buildup on the walls of the quartz chamber can prevent microwave energy from passing through the walls of the quartz chamber, thereby reducing the efficiency with which such conventional systems can process raw materials. More specifically, the circuit can be coupled to a microwave energy source, wherein the circuit can generate a pulsed voltage output that can control the microwave energy source. For example, a pulsed voltage output may cause a microwave energy source to generate pulsed microwave energy that propagates along a graded waveguide where the concentration of pulsed microwave energy in the waveguide is proportional to the degree of cross-section grade. The waveguide also acts as a reaction chamber where an input carbon-containing supply gas (such as methane, CH4 ) can be combined with additional raw materials such as silicon or other metals and excited after exposure to concentrated and pulsed microwave energy, which also Some of the supply gases are ignited and a plasma is generated. The mixture of supply gas and raw material is excited within a plasma environment by concentrated and pulsed microwave energy. As a result, the efficiency with which the reactor systems disclosed herein can process a mixture of supply gas and raw materials within a plasma to output carbonaceous powders is enhanced. Furthermore, the waveguide itself is not necessarily susceptible to particle buildup on the inward facing surfaces of its chamber walls, which is but one example of the advantages realized by the various aspects of the subject matter disclosed herein.
如本文中所使用,術語「場增強波導」(FEWG)係指具有第一橫截面積及第二橫截面積之波導,其中第二橫截面積小於第一橫截面積且相比第一橫截面積較遠離微波能量源。橫截面積之降低藉由集中微波能量而增強場,其中波導之尺寸設定為維持正使用之特定微波頻率之傳播。FEWG之第二橫截面積沿著形成FEWG之反應區的反應長度延伸。在FEWG之第一橫截面積與第二橫截面積之間存在場增強區。在一些態樣中,場增強區可以連續方式(諸如線性地或非線性地)或急劇方式(諸如經由一或多個離散步驟)改變橫截面積。在一些態樣中,FEWG內之壓力為自0.1atm至10atm,或自0.5atm至10atm,或自0.9atm至10atm,或大於0.1atm,或大於0.5atm,或大於0.9atm。 As used herein, the term "field-enhanced waveguide" (FEWG) refers to a waveguide having a first cross-sectional area and a second cross-sectional area, wherein the second cross-sectional area is smaller than the first cross-sectional area and compared to the first cross-sectional area. The cross-sectional area is farther away from the microwave energy source. The reduction in cross-sectional area enhances the field by concentrating microwave energy, where the waveguide is sized to maintain propagation at the particular microwave frequency being used. The second cross-sectional area of the FEWG extends along the reaction length of the reaction zone forming the FEWG. There is a field enhancement region between the first cross-sectional area and the second cross-sectional area of the FEWG. In some aspects, the field enhancement region may vary in cross-sectional area in a continuous manner (such as linearly or non-linearly) or abruptly (such as via one or more discrete steps). In some aspects, the pressure within the FEWG is from 0.1 atm to 10 atm, or from 0.5 atm to 10 atm, or from 0.9 atm to 10 atm, or greater than 0.1 atm, or greater than 0.5 atm, or greater than 0.9 atm.
本揭露內容之微波電漿化學處理反應器可包括供應氣體流動至其中之一或多個供應氣體入口及輸入材料流動至其中之一或多個製程入口,或可與該一或多個供應氣體入口及一或多個製程入口相關聯。供應氣體及製程入口位於反應區中或反應區上游,且供應氣體用於在反應區中產生電漿。供應氣體流量可為自1slm(標準公升/分鐘)至1000slm,或自2slm至1000slm,或自5slm至1000slm,或大於1slm,或大於2slm,或大於5slm。製程材料為氣體,且 流動速率為自1slm(標準公升/分鐘)至1000slm,或自2slm至1000slm,或自5slm至1000slm,或大於1slm,或大於2slm,或大於5slm。製程材料為液體,或膠態分散液且流動速率為自供應氣體流量之小於1%至大於100%。 Microwave plasma chemical processing reactors of the present disclosure may include a supply gas flow to one or more supply gas inlets and an input material flow to one or more process inlets, or may be combined with the one or more supply gas inlets An entry is associated with one or more process entries. A supply gas and a process inlet are located in or upstream of the reaction zone, and the supply gas is used to generate a plasma in the reaction zone. The supply gas flow can be from 1 slm (standard liters per minute) to 1000 slm, or from 2 slm to 1000 slm, or from 5 slm to 1000 slm, or greater than 1 slm, or greater than 2 slm, or greater than 5 slm. The process material is a gas, and The flow rate is from 1 slm (standard liters per minute) to 1000 slm, or from 2 slm to 1000 slm, or from 5 slm to 1000 slm, or greater than 1 slm, or greater than 2 slm, or greater than 5 slm. The process material is a liquid, or a colloidal dispersion, and the flow rate is less than 1% to greater than 100% of the flow rate of the supplied gas.
本揭露內容之微波電漿化學處理反應器可具有單個微波能量產生器,其為耦合於一個或多於一個FEWG之微波能量源。所揭露反應器可具有耦合於多於一個FEWG之多於一個微波能量產生器。微波能量為連續波或脈衝式微波能量。微波能量產生器功率為自1kW至100kW。所揭露反應器可具有多於一個反應區,其連接在一起且具有一個或多於一個自其收集分離之組分之出口。所揭露反應器可包含包括歧管配置及網路配置的具有不同幾何形狀之多個FEWG。本文中將更全面地描述此等幾何形狀。 The microwave plasma chemical processing reactor of the present disclosure may have a single microwave energy generator, which is a microwave energy source coupled to one or more than one FEWG. The disclosed reactor can have more than one microwave energy generator coupled to more than one FEWG. The microwave energy is continuous wave or pulsed microwave energy. The microwave energy generator power is from 1 kW to 100 kW. The disclosed reactors may have more than one reaction zone connected together and having one or more outlets from which the separated components are collected. The disclosed reactors can include multiple FEWGs with different geometries including manifold configurations and network configurations. These geometries are described more fully herein.
本揭露內容之所揭露反應器具有帶有壁之反應區,且供應氣體及製程入口穿過壁向反應區提供供應氣體(用於產生微波電漿)及輸入材料。可存在以受控質量分數穿過壁向反應區提供供應氣體及輸入材料的多個供應氣體及製程入口。以受控質量分數穿過壁向反應區提供供應氣體及輸入材料可減輕分離之組分在反應區壁上之沈積。 The disclosed reactors of the present disclosure have a reaction zone with walls, and supply gas and process inlets provide supply gas (for microwave plasma generation) and input materials to the reaction zone through the walls. There may be multiple supply gas and process inlets that provide supply gas and input materials to the reaction zone at controlled mass fractions through the wall. Providing supply gas and input materials to the reaction zone at controlled mass fractions across the walls can mitigate deposition of separated components on the walls of the reaction zone.
對烴類氣體之微波電漿化學處理可使用各種技術,包括對微波能量進行脈衝以控制電漿之能量。控制電漿能量之能力使得能夠在烴類氣體轉化成特定分離之組分時選擇一或多個反應路徑。脈衝式微波能量可用於控制電漿之能量,此係因為電漿點火時所產生的短壽命高能物種可在各新脈衝開始時重新產生。電漿能量經控制為具有比習知技術低的平均離子能量,但處於充分高的位準以使得目標化學反應能夠在高氣體流量及高壓力下發生。 Various techniques can be used for microwave plasma chemical treatment of hydrocarbon gases, including pulsing microwave energy to control the energy of the plasma. The ability to control the plasma energy enables the selection of one or more reaction paths in the conversion of hydrocarbon gases into specific separated components. Pulsed microwave energy can be used to control the energy of the plasma because the short-lived energetic species produced when the plasma ignites can be regenerated at the beginning of each new pulse. The plasma energy is controlled to have a lower average ion energy than the prior art, but at a sufficiently high level to enable the target chemical reaction to occur at high gas flow and high pressure.
已開發出使用脈衝式微波能量之微波電漿化學處理系統,其控制電漿之能量且具有超過90%之極高裂解效率。然而,此等習知系統在電漿內使 用低於1標準公升/分鐘(slm)之低流動速率及較小氣體體積,結果為生產速率較低且生產成本較高。此等習知系統無法在使用高頻微波脈衝(諸如高於大約100Hz)時增大電漿內之氣體流動速率及氣體體積,此係因為當使用較大體積及高氣體流量時,電漿無法充分快速地點火以跟上脈衝。 Microwave plasma chemical processing systems using pulsed microwave energy have been developed, which control the energy of the plasma and have a very high pyrolysis efficiency of over 90%. However, these conventional systems use With low flow rates below 1 standard liter per minute (slm) and smaller gas volumes, the result is lower production rates and higher production costs. These conventional systems cannot increase the gas flow rate and gas volume within the plasma when using high frequency microwave pulses (such as above about 100 Hz) because the plasma cannot increase the gas flow rate and gas volume within the plasma when using larger volumes and high gas flow rates Fire fast enough to keep up with the pulse.
能量發射器控制電路Energy Transmitter Control Circuit
微波產生磁控管在各種應用中提供效用。大體而言,藉由導引在自直流電激發後自燈絲發射之電子,磁控管產生經調諧微波信號。使用磁性「B」場導引電子,該磁性「B」場使所發射電子在磁控管環中之空腔上方渦旋。隨著電子在空腔中之開口上方渦旋,可發射微波信號。可藉由變化磁控管內之空腔的形狀及大小以及定位及定向在一範圍內調諧微波信號之頻率。 Microwave generating magnetrons provide utility in a variety of applications. In general, a magnetron generates a tuned microwave signal by directing electrons emitted from a filament after excitation from a direct current. The electrons are guided using a magnetic "B" field that vortexes the emitted electrons over the cavity in the magnetron ring. As the electrons swirl over the opening in the cavity, a microwave signal can be emitted. The frequency of the microwave signal can be tuned over a range by varying the shape and size and positioning and orientation of the cavity within the magnetron.
因而,所發射微波信號可經調諧(諸如針對功率位準調諧、針對頻率調諧、針對信號形狀調諧),以適應許多不同領域中之應用。例如,經調諧至水分子之諧振頻率的所發射微波信號可用於加熱置放於微波爐中之食物中之水。在微波爐應用中,微波信號中之能量用於加熱食物或飲料,且藉由加熱水消耗之功率係在幾百瓦特之範圍內。食物之受控加熱係藉由對微波信號之微波能量進行脈衝來完成。此脈衝藉由例如(1)在第一受控持續時間內,接通至磁控管之直流電以便將能量施加於食物;接著(2)在第二受控持續時間內,斷開至磁控管之直流電以允許食物經由分子振動及旋轉而吸收(諸如分配)能量來促進緩慢且均勻的加熱(諸如不使食物變乾或不燃燒食物),因此將熱傳遞至所加熱食物中。 Thus, the transmitted microwave signal can be tuned (such as tuned for power level, tuned for frequency, tuned for signal shape) to suit applications in many different fields. For example, an emitted microwave signal tuned to the resonant frequency of water molecules can be used to heat water in food placed in a microwave oven. In microwave oven applications, the energy in the microwave signal is used to heat food or beverages, and the power consumed by heating water is in the range of several hundred watts. Controlled heating of the food is accomplished by pulsing the microwave energy of the microwave signal. This pulse is accomplished by, for example, (1) switching on the direct current to the magnetron for a first controlled duration to apply energy to the food; then (2) switching off to the magnetron for a second controlled duration Direct current to the tube to allow the food to absorb (such as distribute) energy via molecular vibration and rotation promotes slow and uniform heating (such as without drying out or burning the food), thus transferring heat into the heated food.
微波磁控管用於許多其他應用中,該等應用中之一些需要較高功率及較高接通/斷開速率。在一些情況下,此等其他應用需要極高功率及極高接通/斷開速率。當使用微波磁控管以將能量施加於待退火之材料的樣品時,以合 理時間量(諸如幾分鐘或更少)來加熱樣品所需之磁控管功率可比用於加熱食物之功率高得多(諸如在數千瓦特之範圍中),且接通/斷開速率快得多(諸如在10KHz至25KHz之範圍中)。 Microwave magnetrons are used in many other applications, some of which require higher power and higher on/off rates. In some cases, these other applications require extremely high power and extremely high on/off rates. When a microwave magnetron is used to apply energy to a sample of the material to be annealed, the The magnetron power required to heat the sample for an amount of time (such as a few minutes or less) can be much higher than the power used to heat food (such as in the range of several kilowatts), and the on/off rate is fast Much more (such as in the range of 10KHz to 25KHz).
在一實例中,當微波磁控管用於在微波電漿反應器中產生電漿時,取決於各種因素,將製程氣體解離成離子所需之能量甚至比用於退火材料之能量高(諸如在數萬瓦特之範圍中),且控制電子溫度所需之接通/斷開速率甚至更快(諸如在25KHz至100KHz之範圍中)。產生製程氣體之經解離成分的穩定電漿羽對接通/斷開速率及工作循環極其敏感。此外,需要在大氣(諸如低成本)環境中執行解離進一步複雜化了在製程氣體反應器中產生穩定電漿羽。 In one example, when a microwave magnetron is used to generate a plasma in a microwave plasma reactor, depending on various factors, the energy required to dissociate the process gas into ions is even higher than the energy used to anneal the material (such as in the range of tens of thousands of watts), and the on/off rate required to control the temperature of the electrons is even faster (such as in the range of 25KHz to 100KHz). The stable plasma plume that produces the dissociated components of the process gas is extremely sensitive to on/off rates and duty cycles. Furthermore, the need to perform dissociation in an atmospheric (such as low cost) environment further complicates the generation of stable plasma plumes in process gas reactors.
不幸地,可遞送數萬瓦特的功率之電力供應器不會自「接通」快速地切換至「斷開」(或自「斷開」切換至「接通」)。此無法快速地自高功率「接通」狀態切換至低或零功率「斷開」限制了精細地調諧或控制微波信號之能力。繼而,無法控制微波信號限制了控制退火之能力及/或限制了控制製程氣體之解離的動力學之能力。需要用於控制至燈絲之高功率電流之技術,使得可實現用於控制退火製程及/或用於控制製程氣體之解離之動力學所需的高功率及高頻率切換能力。應注意,儘管電子控制電路之實施例應經描述成與微波能量源一起使用,但可以其他頻率使用電子電路,諸如任何頻率之磁控管。 Unfortunately, power supplies that can deliver tens of thousands of watts of power do not switch from "on" to "off" (or from "off" to "on") as quickly. This inability to quickly switch from a high power "on" state to a low or zero power "off" limits the ability to finely tune or control the microwave signal. In turn, the inability to control the microwave signal limits the ability to control the annealing and/or the ability to control the kinetics of dissociation of the process gas. Techniques for controlling high power current to the filament are needed so that the high power and high frequency switching capabilities required for controlling the annealing process and/or for controlling the kinetics of dissociation of the process gases can be achieved. It should be noted that although the embodiment of the electronic control circuit should be described as being used with a microwave energy source, the electronic circuit may be used at other frequencies, such as a magnetron of any frequency.
圖1A呈現其中燈絲功率在寬功率範圍內接通及斷開且其中燈絲功率在寬切換頻率範圍內切換之各種機制。圖之橫座標涵蓋自約2KHz至約30KHz之切換頻率範圍。圖之縱座標涵蓋自若干瓦特至大於30千瓦之範圍。此外,真空環境機制及大氣環境機制分別疊加至圖之左側及右側上。判定用於進行製程(諸如選擇真空環境或大氣環境)之機制係基於特定製程或應用。例如,真空環境對於氣體解離、材料退火、材料沈積、蝕刻及各種功能化目的可為較佳的,而 對於產生電漿或電漿自由基、或熱解、或燒結、或退火,大氣機制可為較佳的。 Figure 1A presents various mechanisms in which the filament power is switched on and off over a wide range of powers and in which the filament power is switched over a wide range of switching frequencies. The abscissa of the graph covers the switching frequency range from about 2KHz to about 30KHz. The ordinate of the graph covers the range from several watts to greater than 30 kilowatts. In addition, the vacuum environment mechanism and the atmospheric environment mechanism are superimposed on the left and right sides of the figure, respectively. Determining the mechanism used to conduct the process, such as selecting a vacuum or atmospheric environment, is based on a particular process or application. For example, a vacuum environment may be preferred for gas dissociation, material annealing, material deposition, etching, and various functionalization purposes, while Atmospheric mechanisms may be preferred for generating plasma or plasma radicals, or pyrolysis, or sintering, or annealing.
如可看出,習知低頻率切換電路機制122僅擴展至約10KHz,且僅在真空機制中。又,如可看出,所展示習知低功率切換電路124僅擴展至約20KHz,而高功率及高頻率切換機制126涵蓋自約20KHz及高於20KHz之切換範圍。如上文所指示,需要以一方式控制至燈絲之高功率電流,使得可實現用於控制退火及/或用於控制製程氣體之解離之動力學的高功率及高頻率切換能力。
As can be seen, the conventional low frequency switching circuit mechanism 122 only extends to about 10KHz, and only in the vacuum mechanism. Also, as can be seen, the conventional low power switching circuit 124 shown extends only to about 20KHz, while the high power and high
微波信號產生設備大體上包括磁控管或速調管,或行進波導,或另一微波能量源。電子電路控制電力(諸如直流電)至微波信號產生設備之遞送。此電子電路可經組配成二個組件:(1)用以控制高電壓電力之組件,及(2)用以控制電力至燈絲之脈衝式遞送之組件。 Microwave signal generating devices generally include magnetrons or klystrons, or traveling waveguides, or another source of microwave energy. Electronic circuitry controls the delivery of electrical power, such as direct current, to the microwave signal generating device. This electronic circuit can be assembled into two components: (1) a component to control the high voltage power, and (2) a component to control the pulsed delivery of power to the filament.
如圖1B中所示,根據一些實施例,微波發射器控制電路140包括磁控管或速調管、行進波導,或其他微波能量源141,高電壓控制電路142,及燈絲控制電路143,以及為簡單起見未展示之其他可能電路組件。微波發射器控制電路140為相對較低成本、低複雜性設計,其允許用於以輸出功率位準之相對較寬範圍對微波能量源141進行脈衝之相對較快上升及下降時間。此外,微波發射器控制電路140提供對藉由微波能量源產生之脈衝式微波輻射之脈衝頻率以及脈衝工作循環的精細控制。高電壓控制電路142大體上包括用於產生高電壓之高電壓電力電子設備(高電壓產生器)及用於自所產生高電壓產生脈衝式高電壓輸出144之脈衝開關(如下文參考圖5所描述)。燈絲控制電路143大體上包括用於在145處產生燈絲電流之燈絲隔離變壓器及任擇的燈絲控制器(如下文參考圖5所描述)。脈衝式高電壓輸出144經施加至微波能量源141之高電壓組件,且145處之燈絲電流經施加至微波能量源141之燈絲;藉此使得微波能量源141產生或發射微波輻射(諸如在約915MHz下,或在或在約2.45GHz下,或在或在
約5.8GHz下)。另外,脈衝式高電壓輸出144之脈衝本質將微波能量源141脈衝或切換為接通及斷開,或使其在高功率位準與低功率位準之間進行脈衝或切換;藉此使得微波能量源141在經脈衝成接通及斷開時間歇性地產生或發射微波輻射。
As shown in FIG. 1B , according to some embodiments, microwave
微波能量源141(且因此所發射微波輻射)之接通/斷開脈衝係以大體上取決於微波發射器控制電路140之特定應用的操作功率位準、脈衝頻率及脈衝工作循環來進行。另外,微波能量源141(且因此所發射微波輻射)之接通/斷開脈衝係以允許用於操作功率位準、脈衝頻率及脈衝工作循環之不同範圍的相對較寬的多種組合(從而允許在多種不同應用中使用微波發射器控制電路140(諸如用於產生電漿或電漿自由基,或用於熱解、燒結、退火等等))及/或涉及各種類型的材料之相對較快上升及下降時間來進行。可針對特定應用藉由上升時間調整網路電路以高電壓控制電路142之輸出來減緩、調諧或調整上升及下降時間,如下文關於圖6所描述。
The on/off pulsing of the microwave energy source 141 (and thus the emitted microwave radiation) is performed at operating power levels, pulse frequencies, and pulse duty cycles that generally depend on the particular application of the microwave
大體而言,微波發射器控制電路140允許約100瓦特至250千瓦或自250千瓦至約500千瓦或自約500千瓦至1兆瓦之微波輻射功率位準、約5Hz至100kHz之脈衝頻率,及約5%至100%之脈衝工作循環。較多特定操作參數大體上取決於其中正使用微波發射器控制電路140之特定應用。此類應用之非限制性清單可包括各種類型的氣體或分子之熱解、裂解或轉化、各種類型的材料之退火、各種類型的材料之燒結、奈米金剛石之形成、碳奈米洋蔥之形成,及基於電漿之材料合成等。特定操作參數亦大體上取決於磁控管、速調管、行進波導,或微波發射器控制電路140控制的其他微波產生或其他微波能量源之類型。
In general, microwave
圖2針對典型磁控管展示操作電壓相對於磁場及其與電子雲端行為之對應性的一般化特性圖200。特性圖200可說明圖1B之微波發射器控制電
路140能夠如何實現上文所提及之操作參數範圍。下部線表示「哈崔曲線(Hartree curve)」201,且上部線表示「哈爾截止曲線(Hull cutoff curve)」202。此等特性曲線201及202具有用於不同磁控管之不同值,因此未展示用於單元之絕對值。然而,任何給定磁控管之操作模式大體上取決於磁控管之操作電壓及磁場相對於特性曲線201及202之大體位置。例如,在哈崔曲線201下方,磁控管大體上在截止區203中,其中磁控管既不傳導亦不振盪,因此其不在截止區203中產生微波輻射。在哈爾截止曲線202上方或左側,磁控管大體上在傳導區或模式204中,其中電流流過磁控管,但其並不在振盪,因此其不在此區204中產生微波輻射。在哈崔曲線201與哈爾截止曲線202之間,磁控管大體上在振盪區205中,其中磁控管具有電流流動且在振盪,因此其在亦被稱作哈崔區之此振盪區205中產生微波輻射。在振盪區205內之不同操作位置或點處,磁控管大體上以不同功率輸出及/或不同效率操作。例如,在振盪區205內但接近哈崔曲線201之操作點處,磁控管在振盪,但幾乎不產生任何微波輻射。另一方面,進一步前往振盪區205之中間,磁控管大體上取決於總操作功率位準而產生明顯位準的微波輻射。
FIG. 2 shows a generalized
圖1B之微波發射器控制電路140以一方式操作,使得微波能量源141之接通/斷開循環或脈衝使得微波能量源141分別在接通時間及斷開時間期間在「接通」操作點206與「斷開」操作點207之間循環。「接通」點206正好在哈崔曲線201上方且實質上在振盪區205內,如大體上藉由相對於哈崔曲線201之尺寸208指示,使得微波能量源141以顯著功率位準且以相對較高效率振盪且產生微波輻射。另一方面,「斷開」點207以非零電壓位準僅略微在哈崔曲線201下方且幾乎不在截止區203內,如大體上藉由相對於哈崔曲線201之尺寸209所指示,使得微波能量源141不在振盪或產生微波輻射。
The microwave
然而,即使微波能量源141輸出功率此時斷開,但由於保持操作電壓之非零電壓位準,至微波能量源141之功率在「斷開」點207處未完全地斷開。實際上,在斷開時間期間,一些非零位準的功率或電壓仍在「斷開」點207處經施加至微波能量源141。亦即,當脈衝式微波輻射斷開時,方法包括在振盪區下方將微波能量源保持在非零電壓位準下。
However, even though the
在斷開時間期間維持此低位準的功率或電壓允許磁控管快速返回至完全接通的操作功率,諸如在極短時間週期(諸如約20至約50奈秒之上升時間)內在「接通」點206處。將微波能量源141僅略微維持或保持為在振盪區205外部及下方(諸如略微在哈崔曲線201下方或略微在截止區203內)之此概念在本文中被稱作「醞釀」,其中微波能量源141以僅在「接通」條件外部且該微波能量源可自其極快速轉變為完全接通位準之功率或電壓位準「醞釀」。此技術可用於一些實施例中以用於脈衝式微波輻射之脈衝塑形。例如,脈衝形狀可為三角形、梯形或三角形之經修勻版本,梯形或方形脈衝。可藉由微波發射器控制電路140以精細程度控制脈衝形狀。例如,脈衝形狀可係基於電漿羽之一組所要性質,該等所要性質又係基於針對特定應用(諸如針對熱解、燒結、退火等)之調節。
Maintaining this low level of power or voltage during the off time allows the magnetron to quickly return to fully on operating power, such as "on" within a very short period of time, such as a rise time of about 20 to about 50 nanoseconds ” at
在斷開時間期間維持微波能量源之醞釀功率位準不同於將至微波能量源之功率完全轉變為斷開之製程或系統,此係由於相較於當微波能量源必須自下部完全斷開點開始時,當微波能量源可自醞釀功率位準開始時,轉變至「接通」點所需之時間及功率顯著較少。快速地自醞釀點轉變至「接通」點之能力允許微波能量源之高頻率脈衝。另外,此醞釀技術不同於將微波能量源保持在振盪區205內之製程或系統。此外,當使用本文中所論述之醞釀技術時可能的較快上升時間及當使用本文中所論述之中止技術時可能的較快下降時間幫助防止在電漿中出現電弧或不穩定性。 Maintaining the brewing power level of the microwave energy source during the off time is different from a process or system that converts the power to the microwave energy source completely to off, as compared to when the microwave energy source must be completely disconnected from the lower point Initially, when the microwave energy source can start from the brewing power level, the time and power required to transition to the "on" point is significantly less. The ability to rapidly transition from the brewing point to the "on" point allows high frequency pulses of the microwave energy source. Additionally, this incubation technique differs from a process or system that maintains a source of microwave energy within the oscillating region 205 . Furthermore, the faster rise times possible when using the incubation techniques discussed herein and the faster fall times possible when using the abort techniques discussed herein help prevent arcing or instability in the plasma.
圖3說明微波發射器控制電路140之實例的測試結果。控制信號跡線300展示經施加至微波能量源之相對較高脈衝式控制電壓的操作,且第二跡線301展示微波能量源之所得輸出電流或功率之效能。用於控制信號跡線300之轉變處之上升及下降時間為約40奈秒。輸出電流或功率跡線301之快速反應展示了上升/下降轉變處之較大初始尖峰,但其在所涉及之時間間隔下為無關緊要的,且輸出電流或功率跡線301之上升/下降時間與控制信號跡線300之上升/下降時間具有類似次序(諸如約100奈秒或更少)。
FIG. 3 illustrates test results for an example of the microwave
圖4說明實例先前技術微波發射器控制電路之測試結果。跡線400展示經施加至磁控管之相對較高脈衝式控制電壓之操作,且第二跡線401展示磁控管之所得輸出電流或功率之效能。用於控制電壓跡線400之上升及下降時間為約4毫秒。
4 illustrates test results of an example prior art microwave transmitter control circuit.
圖3中所提供之跡線300及301相比於圖4之跡線400及401以精細得多的水平解析度展示,但其豎直解析度大約相同。若圖3的跡線300及301以圖4之水平解析度呈現,則微波能量源之輸出電流或功率跡線301之初始上升/下降轉變尖峰將不可見。實際上,輸出電流或功率跡線301將呈現為近乎完美的方波,諸如無明顯的上升/下降時間、尖峰或振鈴。然而,相比而言,先前技術輸出電流或功率跡線401展示顯著的回應滯後402及顯而易見的振鈴。另外,先前技術控制電壓跡線400展現明顯的振鈴。對比而言,用於本發明實施例之微波能量源的控制信號跡線300幾乎不具有可見的振鈴,即使在圖3之精細得多的水平解析度下亦不具有可見振鈴。
The
圖5展示根據一些實施例的可為圖1B之微波發射器控制電路140之一個實例的實例示意圖500。微波發射器控制電路500展示為包括微波能量源141、高電壓控制電路142、燈絲控制電路143、電壓輸入501、電力供應電路502
及脈衝產生器503,以及為簡單起見未在下文描述或未在此示意圖中展示之其他可能電路組件。高電壓控制電路142大體上包括高電壓控制器504、高電壓電力供應(HVPS)變壓器505、倍壓器506及脈衝開關507,以及為簡單起見在下文描述或未展示之其他可能電路組件。燈絲控制電路143大體上包括任擇的燈絲控制器508及燈絲隔離變壓器509,以及為簡單起見未展示之其他可能電路組件。其他實施例可包括其他組件或組件之配置以在微波能量源141之操作中實現類似結果(諸如微處理器可用於代替高電壓控制器504以控制提供至脈衝開關507之波形)。
FIG. 5 shows an example schematic diagram 500 that may be one example of the microwave
微波發射器控制電路500經由電壓線L、中性極N及接地G(諸如接地電位)在電壓輸入501處接收適當輸入AC電壓(諸如120伏特AC)。主控制開關510連接至電壓線L以控制接通及斷開至微波發射器控制電路500之輸入AC電壓。主控制開關510將輸入AC電壓自電壓線L提供至電力供應電路502。主控制開關510經由額外控制開關(諸如高電壓控制開關511、燈絲控制開關512、泵/風扇控制開關513)自電壓線L提供輸入AC電壓。當控制開關510、511、512及513閉合時,來自電壓線L之AC電壓經供應至高電壓控制器504、燈絲控制電路143及冷卻泵或風扇514。中性電位N經直接施加至高電壓控制器504、HVPS變壓器505、電力供應電路502及燈絲控制電路143。
Microwave
高電壓控制器504大體上包括變壓器515、繼電器516、繼電器控制器517及電位計518,以及為簡單起見未展示之其他可能電路組件。高電壓控制器504大體上控制提供至HVPS變壓器505之電壓。為了產生用於HVPS變壓器505之電壓,繼電器516(諸如固態零交叉繼電器)經由高電壓控制開關511接收輸入AC電壓,且在繼電器控制器517之控制下,將輸入AC電壓縮減或截至原始波形之某一百分比(諸如正弦波之5%至10%),以形成經縮減或經截波之
正弦AC電壓。經縮減波形可低至原始波形之0%且高達原始波形之100%,但在一些實施例中,實際工作循環範圍大體上取決於HVPS變壓器505之性質及微波能量源141進行操作之電壓。電位計518之設定判定穿過繼電器516之輸入AC電壓的原始波形之百分比。變壓器515接收輸入AC電壓及中性極N以產生電壓(諸如24伏特)來為繼電器控制器517供電。
HVPS變壓器505(諸如升壓變壓器)接收中性極N及經截波AC電壓。藉由此電壓,HVPS變壓器505產生中間高電壓(諸如自約零伏特至約10,000伏特)。中間高電壓之位準係基於通過繼電器516之輸入AC電壓之原始正弦波的百分比,該百分比係藉由設定電位計518來調整。中間高電壓之波形係藉由HVPS變壓器505平均化。
A
如所展示,倍壓器506大體上包括彼此連接且連接至接地之電容器519、電容器520以及二極體521及二極體522。倍壓器506接收藉由HVPS變壓器505產生的中間高電壓並使其倍增以形成高電壓(諸如約3至15千伏,此取決於用於微波能量源141之輸出功率要求)。高電壓穿過高壓側電阻器523至脈衝開關507之高壓側輸入或高電壓連接點,以按各脈衝提供至微波能量源141。
As shown,
電力供應電路502為接收輸入AC電壓、中性極N及接地之任何適當的AC-DC功率轉換器。電力供應電路502產生DC驅動電壓(+out)。脈衝產生器503將信號提供至脈衝開關507。
脈衝產生器503為能夠產生可改變的脈衝控制信號之任何適當內部或外部函數產生器。脈衝控制信號處於上文所提及之所要頻率及工作循環下,以按適合於特定應用之脈衝頻率、工作循環、形狀及輸出功率位準產生微波功率。在一些實施例中,脈衝產生器503係藉由電腦、類比輸入手動地控制,或藉由其他適當控制技術控制,以便設定脈衝控制信號之頻率及工作循環。
脈衝開關507連接至電力供應電路502以接收DC驅動電壓(+out),且連接至脈衝產生器503以接收脈衝控制信號。脈衝開關507亦連接至高壓側電阻器523以接收藉由倍壓器506提供之高電壓,且經由低壓側電阻器524進一步連接至接地路徑。脈衝開關507為任何適當的切換裝置,且可包括真空繼電器、功率MOSFET、IGBT或其他開關組件。例如,可購自德國克朗伯格的Behlke Power Electronics公司之HTS-GSM切換模組系列或其他適當的推挽電路可用於脈衝開關507。
The
脈衝開關507大體上包括高壓側雙極主動開關525及低壓側雙極主動開關526以及對應的開關驅動器(諸如開關驅動器527及開關驅動器528)。在一些實施例中,雙極主動開關為對於開關點具有相對一致的滯後之相對敏感半導體或真空管開關。在一些實施例中,雙極主動開關525及雙極主動開關526兩者均串聯連接在高電壓連接與接地連接(諸如高電壓導體與接地導體)之間。脈衝式高電壓輸出144係自雙極主動開關之間的節點產生,使得雙極主動開關525將正電力供應提供至微波能量源141,而雙極主動開關526快速地將電力分流回至較低位準。
The
DC驅動電壓(+out)為開關驅動器527及528供電。開關驅動器527及528分別驅動雙極主動開關525及526。雙極主動開關525及526係根據自脈衝產生器503接收之脈衝控制信號之頻率及工作循環而接通及斷開。高壓側開關驅動器527產生相較於低壓側開關驅動器528之驅動信號反相的驅動信號,使得雙極主動開關525及526以互補方式被啟動及去啟動。二極體529(自高壓側高電壓輸入連接至脈衝開關507之脈衝式高電壓輸出)及二極體530(經由電阻器524自脈衝式高電壓輸出連接至低壓側或接地連接)為脈衝開關507提供電氣保護。
The DC drive voltage (+out) powers switch
當雙極主動開關525閉合時,雙極主動開關526斷開,且高電壓快速在脈衝式高電壓輸出(諸如脈衝式高電壓輸出144)處經施加至如上文所描述之微波能量源141,以使得微波能量源141開始振盪且產生微波輻射。將高電壓直接施加至微波能量源141在上文相對於圖3所描述的微波能量源141之電流或功率輸出中引起快速上升回應(諸如約20至50奈秒之範圍,或約40奈秒之值)。由於高電壓位準之對應調整,設定電位計518會調整電流或功率輸出位準。
When bipolar
當雙極主動開關526閉合時,雙極主動開關525斷開,且脈衝開關507之脈衝式高電壓輸出經由直接至接地之電阻器524連接至接地連接。以此方式,輸出電壓快速分流至低電壓位準(藉由電阻器524及電抗組件531判定)。輸出電壓之此快速分流及其對應快速中止對循環的電子雲之影響在本文中被稱作「中止技術」。在一些實施例中,前述「中止技術」係使用電抗組件531來實施,該電抗組件跨越電阻器524引入電容槽(諸如電荷槽)及/或電感負載。替代地,在一些實施例中,電抗組件531係直接跨越雙極主動開關525及526的輸出置放。在一些實施例中,除了電抗組件531之外或代替該電抗組件使用相對較小的電力供應組件,以將雙極主動開關525與526之間的節點處之電壓保持在醞釀位準。
When bipolar
微波能量源141在其產生微波時在其內部以循環電子雲之形式此時仍具有潛在的功率。此潛在功率經分流至低位準以快速中止循環電子雲,藉此在上文關於圖3所描述的微波能量源141之電流或功率輸出中引起快速下降回應(諸如約20至50奈秒之範圍,或約40奈秒之值)。因此,當雙極主動開關525及526經反覆脈衝為接通及斷開以交替地在高電壓連接與相對較低電壓位準之間來回連接脈衝式高電壓輸出時,在脈衝式高電壓輸出144處產生脈衝式高電壓。亦即,脈衝式電壓輸出經由第二雙極主動開關分流至接地,該脈衝式電壓輸
出能夠在磁控管環之空腔中使循環電子雲崩潰,因此將中斷微波能量的產生。脈衝式高電壓具有基於自脈衝產生器503接收之脈衝控制信號的頻率及工作循環之頻率及工作循環。
The
燈絲隔離變壓器509將電力提供至微波能量源141之燈絲。對於不具有燈絲控制器508之實施例,燈絲隔離變壓器509係直接藉由自電壓輸入501接收之輸入AC電壓經驅動。如上文所描述,微波能量源141之輸出電流或功率位準係取決於經由脈衝開關507接收之高電壓(及其脈衝頻率及脈衝工作循環)及燈絲電流或受該高電壓及該燈絲電流控制。因此,在不具有燈絲控制器508的此情況下,微波能量源141之輸出電流或功率位準係僅受經由脈衝開關507接收之高電壓控制,此係由於燈絲電流係恆定的。對於具有燈絲控制器508之實施,經施加至燈絲隔離變壓器509之AC電壓可藉由燈絲控制器508調整或控制。在此情況下,燈絲控制器508控制至微波能量源141之燈絲的電流或電壓之量,藉此提供對微波能量源141之輸出電流或功率位準的額外、相對粗略的控制。對燈絲電流之控制可使圖2中之「接通」點206的位置位移。
電子電路包括產生高電壓之高電壓產生器、產生具有頻率及工作循環之脈衝控制信號之脈衝產生器及脈衝開關。電子電路可與產生各種頻率之能量的能量源,諸如微波能量源一起使用。在關於微波能量之實施中,電子電路充當微波能量源之微波發射器控制電路,其中微波能量源在接收脈衝式高電壓時產生脈衝式微波輻射,且其中脈衝式微波輻射之功率位準取決於脈衝式高電壓之電壓位準、頻率及工作循環。脈衝開關可具有第一雙極主動開關、第二雙極主動開關、高電壓連接、接地連接、脈衝輸入及脈衝式電壓輸出。第一雙極主動開關及第二雙極主動開關串聯連接在高電壓連接與接地連接之間。高電壓連接係連接至高電壓產生器以接收高電壓。接地連接係連接至接地電位。脈衝式電壓 輸出係連接於第一雙極主動開關與第二雙極主動開關之間。脈衝輸入連接至脈衝產生器以接收脈衝控制信號。當第一雙極主動開關及第二雙極主動開關反覆地經脈衝為接通及斷開以交替地在高電壓連接與接地連接之間來回連接脈衝式電壓輸出時,在脈衝式電壓輸出處產生脈衝式高電壓。脈衝式高電壓之頻率及工作循環係基於脈衝控制信號之頻率及工作循環。 The electronic circuit includes a high voltage generator that generates a high voltage, a pulse generator and a pulse switch that generate a pulse control signal with frequency and duty cycle. Electronic circuits can be used with energy sources that generate energy at various frequencies, such as microwave energy sources. In implementations relating to microwave energy, the electronic circuit acts as a microwave transmitter control circuit for a microwave energy source that generates pulsed microwave radiation upon receiving a pulsed high voltage, and wherein the power level of the pulsed microwave radiation depends on Voltage level, frequency and duty cycle of pulsed high voltage. The pulse switch may have a first bipolar active switch, a second bipolar active switch, a high voltage connection, a ground connection, a pulse input, and a pulsed voltage output. The first bipolar active switch and the second bipolar active switch are connected in series between the high voltage connection and the ground connection. The high voltage connection is connected to the high voltage generator to receive the high voltage. The ground connection is connected to ground potential. pulsed voltage The output is connected between the first bipolar active switch and the second bipolar active switch. The pulse input is connected to the pulse generator to receive the pulse control signal. When the first bipolar active switch and the second bipolar active switch are repeatedly pulsed on and off to alternately connect the pulsed voltage output back and forth between the high voltage connection and the ground connection, at the pulsed voltage output Generates pulsed high voltage. The frequency and duty cycle of the pulsed high voltage are based on the frequency and duty cycle of the pulsed control signal.
微波發射器控制電路包括微波能量源、產生高電壓之高電壓產生器、產生具有頻率及工作循環之脈衝控制信號之脈衝產生器,及脈衝開關。微波能量源在接收脈衝式高電壓時產生脈衝式微波輻射,其中脈衝式微波輻射之功率位準取決於脈衝式高電壓之電壓位準、頻率及工作循環。脈衝開關具有第一雙極主動開關、第二雙極主動開關、高電壓連接、接地連接、脈衝輸入及脈衝式電壓輸出。第一雙極主動開關及第二雙極主動開關串聯連接在高電壓連接與接地連接之間。高電壓連接係連接至高電壓產生器以接收高電壓。接地連接係連接至接地電位。脈衝式電壓輸出係連接於第一雙極主動開關與第二雙極主動開關之間。脈衝輸入連接至脈衝產生器以接收脈衝控制信號。當第一雙極主動開關及第二雙極主動開關經反覆脈衝為接通及斷開以交替地在高電壓連接與接地連接之間來回連接脈衝式電壓輸出時,在脈衝式電壓輸出處以20至50奈秒之上升及下降時間產生脈衝式高電壓。脈衝式高電壓之頻率及工作循環係基於脈衝控制信號之頻率及工作循環。當脈衝式微波輻射經脈衝為斷開時,在振盪區下方將微波能量源保持在非零電壓位準。脈衝式電壓輸出係經由第二雙極主動開關經分流至接地電位,脈衝式電壓輸出能夠使循環電子雲崩潰。 The microwave transmitter control circuit includes a microwave energy source, a high voltage generator for generating high voltage, a pulse generator for generating a pulse control signal with frequency and duty cycle, and a pulse switch. The microwave energy source generates pulsed microwave radiation when receiving the pulsed high voltage, wherein the power level of the pulsed microwave radiation depends on the voltage level, frequency and duty cycle of the pulsed high voltage. The pulse switch has a first bipolar active switch, a second bipolar active switch, a high voltage connection, a ground connection, a pulse input and a pulsed voltage output. The first bipolar active switch and the second bipolar active switch are connected in series between the high voltage connection and the ground connection. The high voltage connection is connected to the high voltage generator to receive the high voltage. The ground connection is connected to ground potential. The pulsed voltage output is connected between the first bipolar active switch and the second bipolar active switch. The pulse input is connected to the pulse generator to receive the pulse control signal. When the first bipolar active switch and the second bipolar active switch are repeatedly pulsed on and off to alternately connect the pulsed voltage output back and forth between the high voltage connection and the ground connection, at the pulsed voltage output with 20 A pulsed high voltage is generated with rise and fall times of up to 50 nanoseconds. The frequency and duty cycle of the pulsed high voltage are based on the frequency and duty cycle of the pulsed control signal. When the pulsed microwave radiation is pulsed off, the microwave energy source is maintained at a non-zero voltage level below the oscillating region. The pulsed voltage output is shunted to ground potential via a second bipolar active switch, and the pulsed voltage output can collapse the circulating electron cloud.
設備包含經組配以產生具有電壓位準之高電壓且產生具有頻率及工作循環之脈衝控制信號的電子電路。電子電路亦經組配以藉由脈衝開關自高電壓及脈衝控制信號產生脈衝式高電壓,脈衝式高電壓具有電壓位準、頻率及工 作循環,脈衝開關具有第一雙極主動開關、第二雙極主動開關、高電壓連接、接地連接、脈衝輸入及脈衝式電壓輸出,其中第一雙極主動開關及第二雙極主動開關串聯連接在高電壓連接與接地連接之間,高電壓連接接收高電壓,接地連接係連接至接地電位,脈衝式電壓輸出係連接於第一雙極主動開關與第二雙極主動開關之間,脈衝輸入接收脈衝控制信號,且當第一雙極主動開關及第二雙極主動開關反覆地經脈衝為接通及斷開以交替地在高電壓連接與接地連接之間來回連接脈衝式電壓輸出時在脈衝式電壓輸出處產生脈衝式高電壓。電子電路亦經組配以產生具有功率位準之脈衝式微波輻射,該功率位準取決於電壓位準、頻率及工作循環。 The apparatus includes electronic circuits configured to generate high voltages with voltage levels and to generate pulsed control signals with frequency and duty cycle. The electronic circuit is also configured to generate a pulsed high voltage from a high voltage and a pulsed control signal by means of a pulse switch. The pulsed high voltage has voltage level, frequency and power In a cycle, the pulse switch has a first bipolar active switch, a second bipolar active switch, a high voltage connection, a ground connection, a pulse input and a pulsed voltage output, wherein the first bipolar active switch and the second bipolar active switch are connected in series Connected between the high voltage connection and the ground connection, the high voltage connection receives the high voltage, the ground connection is connected to the ground potential, the pulsed voltage output is connected between the first bipolar active switch and the second bipolar active switch, the pulse The input receives a pulsed control signal and when the first bipolar active switch and the second bipolar active switch are repeatedly pulsed on and off to alternately connect the pulsed voltage output back and forth between the high voltage connection and the ground connection A pulsed high voltage is generated at the pulsed voltage output. The electronic circuits are also configured to generate pulsed microwave radiation with a power level that depends on the voltage level, frequency and duty cycle.
設備包括能量源、在高電壓連接上產生高電壓之高電壓產生器、產生具有脈衝控制頻率及脈衝控制工作循環之脈衝控制信號之脈衝產生器,及脈衝開關。能量源可為例如微波能量源。能量源在接收脈衝式高電壓時產生脈衝式輻射(諸如微波輻射),其中脈衝式輻射之功率位準取決於脈衝式高電壓之電壓位準、頻率及工作循環。脈衝開關具有第一雙極主動開關、第二雙極主動開關、高電壓連接、接地連接、脈衝輸入及脈衝式電壓輸出。當高電壓連接處之電壓自較高電壓轉變至較低電壓時,脈衝式微波輻射之功率位準在約20奈秒至約50奈秒之範圍內自較高功率位準轉變至較低功率位準(諸如自第一功率位準轉變至低於第一功率位準之第二功率位準)。 The equipment includes an energy source, a high voltage generator to generate high voltage on the high voltage connection, a pulse generator to generate a pulse control signal with a pulse control frequency and a pulse control duty cycle, and a pulse switch. The energy source may be, for example, a microwave energy source. The energy source generates pulsed radiation (such as microwave radiation) when receiving a pulsed high voltage, wherein the power level of the pulsed radiation depends on the voltage level, frequency and duty cycle of the pulsed high voltage. The pulse switch has a first bipolar active switch, a second bipolar active switch, a high voltage connection, a ground connection, a pulse input and a pulsed voltage output. When the voltage at the high voltage connection transitions from the higher voltage to the lower voltage, the power level of the pulsed microwave radiation transitions from the higher power level to the lower power in the range of about 20 nanoseconds to about 50 nanoseconds level (such as a transition from a first power level to a second power level lower than the first power level).
圖6展示用於針對微波發射器控制電路140之應用調諧脈衝式高電壓輸出144之上升及下降時間之任擇的上升時間調整網路600,該微波發射器控制電路具有例如需要一些額外上升時間之反應器或化學物質。上升時間調整網路600大體上包括電感器601、電阻器602及串聯二極體/電阻器(603/604)之平行配置,其可減緩脈衝式高電壓輸出144之上升及下降時間。因此,上升時間
調整網路600可經置放於脈衝開關507與微波能量源之間,以在控制信號跡線300之方波的轉變中形成較可控之斜率,以便平滑化或縮減尖峰或振鈴,及在圖3中所示之輸出電流或功率跡線301之轉變中形成曲線。以此方式,上升時間調整網路600平滑化振鈴,或在輸出電流或功率跡線301中提供經控制上升時間以平滑化或以其他方式來對總體波形進行塑形。
FIG. 6 shows an optional rise
圖7A展示描繪用於產生脈衝式微波輻射之方法的實例操作700A之說明性流程圖。在一些實施中,操作700A可為可藉由本發明所揭露之電路中的任一或多者執行的操作中之一或多者的實例,諸如微波發射器控制電路140大體上展示為包括圖5中呈現之微波能量源141。在區塊702A處,微波發射器控制電路140可施加具有電壓位準之高電壓。在區塊704A處,微波發射器控制電路140可產生具有頻率及工作循環之脈衝控制信號。在區塊706A處,微波發射器控制電路140可藉由脈衝開關自高電壓及脈衝控制信號產生脈衝式高電壓。在區塊708A處,微波發射器控制電路140可在高電壓連接與接地連接之間串聯連接第一雙極主動開關及第二雙極主動開關。在區塊710A處,微波發射器控制電路140可在第一雙極主動開關與第二雙極主動開關之間連接脈衝式電壓輸出,其中脈衝輸入接收脈衝控制信號。在區塊712A處,微波發射器控制電路140可產生具有取決於電壓位準、頻率及工作循環之功率位準的脈衝式微波輻射。
7A shows an illustrative flowchart depicting
圖7B展示描繪用於在高電壓連接與接地連接之間交替地連接脈衝式電壓輸出之方法的實例操作700B之說明性流程圖。在一些實施中,操作700B可為操作700A的部分及/或藉由本發明所揭露之電路中的任一或多者執行的操作中之一或多者的實例,諸如微波發射器控制電路140大體上展示為包括圖5中呈現之微波能量源141。在區塊702B處,當脈衝式電壓輸出連接於第一雙極主動開關與第二雙極主動開關之間時,微波發射器控制電路140接收脈衝
控制信號。在區塊704B處,微波發射器控制電路140在脈衝式電壓輸出處產生脈衝式高電壓。在區塊706B處,微波發射器控制電路140反覆地將第一雙極主動開關及第二雙極主動開關脈衝為接通及斷開。在區塊708B處,微波發射器控制電路140交替地在高電壓連接與接地連接之間連接脈衝式電壓輸出。
7B shows an illustrative flowchart depicting
微波化學處理系統Microwave Chemical Processing System
微波發射器控制電路140大體上展示為包括圖5中呈現之微波能量源141,其可與本發明所揭露之波導及/或反應器系統中之任一或多者耦合以控制在整個波導中脈衝及/或傳播之微波能量來輸出含碳粉末。關於波導及/或反應器系統,微波電漿可在供應氣體及/或製程材料中產生,且電漿中之能量足以自製程材料分子形成分離之組分。微波能量源耦合於FEWG,電漿係沿著FEWG之電漿區而產生,且製程材料係藉由電漿沿著FEWG中之反應長度而分離成組分。如在習知方法中,微波能量直接耦合至電漿中而不經由介電壁耦合。微波電漿可在供應氣體及/或製程材料中產生,且電漿中之能量足以自製程材料分子形成分離之組分。微波能量源耦合於FEWG,電漿係沿著FEWG之電漿區而產生,且製程材料係藉由電漿沿著FEWG中之反應長度而分離成組分。如在習知方法中,微波能量直接耦合至電漿中而不經由介電壁耦合。
Microwave
圖8A說明習知微波化學處理系統800。如所示,微波化學處理系統800大體上包括反應腔室801、經組配以接收流動至反應腔室中之製程材料808的一或多個氣體入口802、經組配以收集來自反應腔室801之分離之產物的一或多個出口803,及經由波導805耦合於反應腔室的微波能量源804,以及為簡單起見未展示之其他元件。微波能量809在反應腔室801中產生微波電漿806且提供能量以供發生反應。微波發射器電路807可將自微波能量源804發射之微波能量809控制為連續波或脈衝式微波能量。在給出正確條件的情況下,電漿
中之能量將足以自製程材料分子形成分離之組分。
FIG. 8A illustrates a conventional microwave
具有場增強波導(FEWG)之微波化學處理反應器Microwave Chemical Processing Reactor with Field Enhanced Waveguide (FEWG)
如圖8B中所示,波導之最寬尺寸被稱為「a」尺寸,且判定操作頻率之範圍。最窄尺寸判定波導之功率處置能力且被稱為「b」尺寸。本揭露內容之FEWG有效地傳遞微波頻率電磁能量。本揭露內容之FEWG由導電材料構成且可為矩形、圓形或橢圓形橫截面。 As shown in Figure 8B, the widest dimension of the waveguide is referred to as the "a" dimension and determines the range of operating frequencies. The narrowest dimension determines the power handling capability of the waveguide and is referred to as the "b" dimension. The FEWGs of the present disclosure efficiently transfer microwave frequency electromagnetic energy. The FEWGs of the present disclosure are composed of conductive materials and can be rectangular, circular, or oval in cross-section.
圖8C展示FEWG之場增強區的實例,其中最寬尺寸「a」保持恆定以便有效地傳輸選定頻率之微波能量,且較窄尺寸「b」沿著FEWG之長度經縮減以便集中微波能量密度。圖8C描繪尺寸「b」之線性降低;然而,尺寸「b」之降低可為非線性的(諸如拋物線形、雙曲線形等),具有沿著長度之不同降低速率(諸如線性降低、一個區段中之線性及另一區段中之非線性的不同斜率),或包含降低尺寸「b」之長度的突然步驟。所揭露組配或實施可適用於駐波系統(其中峰值保持在同一位置處)及行進波系統(其中峰值可移動)兩者。 8C shows an example of a field enhancement region of a FEWG where the widest dimension "a" remains constant to efficiently transmit microwave energy at selected frequencies, and the narrower dimension "b" is reduced along the length of the FEWG to concentrate the microwave energy density. Figure 8C depicts a linear decrease in dimension "b"; however, the decrease in dimension "b" may be non-linear (such as parabolic, hyperbolic, etc.) with different rates of decrease along the length (such as linear decrease, a region Linear in one segment and nonlinear in another segment), or include abrupt steps that reduce the length of dimension "b". The disclosed arrangements or implementations are applicable to both standing wave systems (in which the peaks remain at the same location) and traveling wave systems (in which the peaks can move).
圖9展示反應器系統900,其中FEWG耦合於微波能量產生器(諸如微波能量源),電漿係自FEWG之電漿區中的供應氣體產生,且FEWG之反應長度充當反應區以將製程材料分離成分離之組分。圖10展示另一反應器系統1000,其中FEWG耦合於微波能量產生器(諸如微波能量源),電漿係自FEWG之電漿區中的供應氣體產生,且FEWG之反應長度充當反應區以將製程材料分離成分離之組分。圖9之反應器系統900及圖10之反應器系統1000分別不具有在場增強波導之場增強區與反應區之間的介電障壁。對比而言,習知系統之反應區經圍封於諸如先前解釋之石英腔室的介電障壁內。微波能量之傳播方向平行於供應氣體及/或製程材料之大部分流動,且微波能量進入在產生分離之組分的FEWG部分之上游的波導。
9 shows a
如圖9中所示,反應器系統900包括FEWG 905、經組配以接收流動至FEWG 905中的供應氣體及/或製程材料908a之一或多個入口902,及耦合於FEWG 905之微波能量源904,以及為簡單起見未展示的其他元件。可等效於或類似於微波發射器控制電路140之微波電路907大體上展示為包括圖5中所呈現之微波能量源141,其控制來自微波能量源904之微波能量909經脈衝的脈衝頻率。來自微波能量源904之微波能量909為連續波。
As shown in FIG. 9,
FEWG 905具有長度L。FEWG 905的具有長度LA(圖9及圖10中所示)之部分相比FEWG的具有長度LB(圖9及圖10中所示)之部分較接近微波能量產生器。在整個本揭露內容中,FEWG之不同部分將藉由表示FEWG之某一部分的具有下標之大寫字母L(諸如LA、L0、LB、L1、L2)描述,且同義地,FEWG之不同部分的長度亦將藉由表示FEWG之某一部分的長度的具有下標之大寫字母L(諸如LA、L0、LB、L1、L2)描述。
FEWG在長度LB中之橫截面積小於FEWG在長度LA中之橫截面積。FEWG L0之長度位於FEWG之長度LA與LB之間,且具有沿著微波能量傳播之路徑降低之橫截面積。FEWG沿著長度L0之橫截面積可以連續方式降低。FEWG沿著長度L0之橫截面積在長度LA與LB之間線性地降低。FEWG沿著長度L0之橫截面積可在長度LA與LB之間非線性地降低,諸如拋物線形、雙曲線形、以指數方式或對數方式降低。FEWG沿著長度L0之橫截面積在長度LA與LB之間以急劇方式降低,諸如經由一或多個離散步驟降低。 The cross-sectional area of the FEWG in the length LB is less than the cross-sectional area of the FEWG in the length LA. The length of FEWG L 0 lies between the lengths LA and LB of the FEWG and has a reduced cross-sectional area along the path of microwave energy propagation. The cross-sectional area of the FEWG along the length L 0 may decrease in a continuous manner. The cross - sectional area of the FEWG along length Lo decreases linearly between lengths LA and LB. The cross-sectional area of the FEWG along length L 0 may decrease non - linearly, such as parabolically, hyperbolically, exponentially, or logarithmically, between lengths LA and LB. The cross-sectional area of the FEWG along length L 0 decreases in a sharp manner between lengths LA and LB, such as through one or more discrete steps.
橫截面積降低用以集中電場,因此增大微波能量密度,同時相較於習知系統仍提供可形成電漿之大量區域。當使用2.45GHz之微波能量頻率時,FEWG之具有長度LB(圖9及圖10中所示)之部分可具有尺寸為0.75吋乘3.4吋之矩形橫截面。此橫截面積相比電漿產生面積大體上小於一平方吋之習知系統
大得多。FEWG 905之不同部分的尺寸根據微波頻率而設定,以便適當地充當波導。例如,對於橢圓波導,針對2.1至2.7GHz,橫截面尺寸可為5.02吋乘2.83吋。
The cross-sectional area is reduced to concentrate the electric field, thus increasing the microwave energy density, while still providing a large area in which plasma can be formed compared to conventional systems. When using a microwave energy frequency of 2.45 GHz, the portion of the FEWG having length LB (shown in Figures 9 and 10) may have a rectangular cross-section measuring 0.75 inches by 3.4 inches. This cross-sectional area is much larger than conventional systems where the plasma generation area is substantially less than one square inch. The different parts of the
在習知氣體處理系統中,諸如如上文所描述小於一平方吋的可形成電漿之有限區約束可發生氣體反應之體積。又,在習知系統中,微波能量經由窗(通常為石英)進入反應腔室。在此等系統中,介電材料(諸如微粒碳)在處理期間塗佈於窗上,從而使得隨時間推移之功率遞送降低。若此等分離之組分吸收微波能量,則此可高度成問題,此係因為其可防止微波能量耦合至反應腔室中以產生電漿。 In conventional gas processing systems, a limited area, such as less than one square inch, from which a plasma can form, confines the volume in which gas reactions can occur, such as described above. Also, in conventional systems, microwave energy enters the reaction chamber through a window (usually quartz). In these systems, a dielectric material, such as particulate carbon, is coated on the window during processing, resulting in reduced power delivery over time. This can be highly problematic if these separated components absorb microwave energy because it prevents the coupling of microwave energy into the reaction chamber to generate plasma.
因此,發生產生自氣體反應之諸如碳粒子的副產物之快速堆積,且限制處理設備之運行時間。微波化學處理反應器900可在不使用反應區中之窗的情況下經設計;亦即,使用能量自反應上游進入之並行傳播/氣體流動系統。結果,較多能量及功率可自微波能量源耦合至電漿中。相較於習知系統中之有限反應腔室體積,波導內缺少窗及較大體積極大地減少了引起有限運行時間之粒子堆積問題,因此改良微波處理系統之生產效率。
As a result, a rapid build-up of by-products such as carbon particles from gaseous reactions occurs and limits the operating time of the processing equipment. Microwave
圖9中之微波能量909在FEWG 905之長度的具有長度L1(圖9及圖10中所示)之電漿區內在供應氣體及/或製程材料中產生微波電漿906。具有長度L1之電漿區位於FEWG LB之部分內,其中橫截面積小於,且微波能量密度高於長度LA。不同於製程材料之供應氣體用以產生微波電漿906。供應氣體可為例如氫氣、氦氣、諸如氬氣之稀有氣體,或多於一種類型之氣體的混合物。供應氣體可與製程材料相同,其中製程材料為自其產生分離之組分的材料。
供應氣體及/或製程材料入口902可位於FEWG LB之部分的上游,或位於FEWG L0之部分內,或位於FEWG LA之部分內,或位於FEWG LA之部
分的上游。FEWG L1之部分自在供應氣體及/或製程材料908a進入FEWG之位置的下游沿著FEWG之位置延伸至FEWG之末端,或至供應氣體及/或製程材料之入口與FEWG 905之末端之間的位置。FEWG L1之部分自供應氣體及/或製程材料908a進入FEWG處延伸至FEWG之末端,或至供應氣體及/或製程材料之入口與FEWG之末端之間的位置。
The supply gas and/or
所產生電漿906提供能量以供在FEWG 905之具有反應長度L2之反應區901內的製程材料908b中發生反應。反應區L2自製程材料908a進入FEWG 905處延伸至FEWG 905之末端,或至製程材料之入口與FEWG 905之末端之間的位置。在給出正確條件的情況下,電漿906中之能量將足以自製程材料分子形成分離之組分。一或多個出口903經組配以在FEWG之反應區部分下游收集來自FEWG 905的分離之產物,在該反應區部分處在製程材料908b中發生反應。在圖9中所示之實例中,微波能量909之傳播方向平行於大部分供應氣體及/或製程材料流908b,且微波能量909在FEWG之產生分離之組分的反應區901上游進入FEWG 905。
The generated
對微波能量透明之壓力障壁910可在微波能量源904內位於微波能量源之出口附近,或在微波能量源904與FEWG中產生之電漿906之間的其他位置處。此壓力障壁910可充當防止電漿至微波能量源904中之潛在回流的安全措施。電漿並不在壓力障壁自身處形成;實際上,壓力障壁僅為機械障壁。可製成壓力障壁之材料的一些實例為石英、乙烯四氟乙烯(ETFE)、其他塑膠或陶瓷。可存在二個壓力障壁910及911,其中一個或二個壓力障壁910及911係在微波能量源904內位於微波能量源之出口附近,或在微波能量源904與FEWG中產生之電漿906之間的其他位置處。壓力障壁911可相比壓力障壁910較接近FEWG中之電漿906,且在壓力障壁911失效之情況下,在壓力障壁910與911
之間存在壓力吹出埠912。
The
電漿背擋(未展示)可包括於系統中以防止電漿傳播至微波能量源904或供應氣體及/或製程材料入口902。電漿背擋可為具有孔以允許微波能量穿過電漿背擋但防止大部分電漿物種穿過之陶瓷或金屬過濾器。大部分電漿物種將無法通過電漿背擋,此係因為孔將具有高縱橫比,且電漿物種在撞擊孔之側壁時將重組。電漿背擋位於部分L0與L1之間,或在部分L1之上游且在入口902(在入口902在部分L0內的實施例中)及微波能量源904之下游的部分L0內。
A plasma backstop (not shown) may be included in the system to prevent the propagation of plasma to the
再次參考圖10,反應器系統1000大體上包括FEWG 1005、經組配以接收流動至FEWG 1005中之供應氣體1008a的一或多個供應氣體入口1002、經組配以接收製程材料1011a之一或多個製程材料入口1010,及耦合於FEWG 1005之微波能量源1004,以及為簡單起見未展示之其他元件。製程材料入口1010之位置在供應氣體入口1002之位置的下游,其中下游界定於微波能量傳播之方向上。
Referring again to FIG. 10, the
微波電路1007可控制來自微波能量源1004之微波能量1009經脈衝的脈衝頻率。來自微波能量源1004之微波能量可為連續波。類似於圖9中所示之實施例,圖10中之FEWG 1005具有部分LA、L0、LB、L1、L2,其中部分LB具有小於LA之橫截面積的橫截面積,部分L0具有在部分LA與LB之間的降低之橫截面積,L1為產生電漿之部分,且L2為係反應區之部分。
微波能量1009在FEWG 1005之長度L的電漿區L1內在供應氣體1008b中產生微波電漿1006。部分L1可自在供應氣體1008a進入FEWG 1005之位置的下游沿著FEWG 1005之位置延伸至FEWG 1005之末端,或至供應氣體之入口與FEWG 1005之末端之間的位置。部分L1可自供應氣體1008a進入FEWG 1005處延伸至FEWG 1005之末端,或至供應氣體之入口與FEWG 1005
之末端之間的位置。一或多個額外製程材料入口1010經組配以接收在供應氣體入口1002下游之第二組位置處流動至FEWG中的製程材料。所產生電漿1006提供能量以供在FEWG 1005之具有反應長度L2之反應區1001內發生反應。
部分L2可自製程材料1011a進入FEWG 1005處延伸至FEWG 1005之末端,或至製程材料之入口與FEWG 1005之末端之間的位置。在給出正確條件的情況下,電漿中之能量將足以自製程材料分子形成分離之組分。一或多個出口1003經組配以在發生反應之部分1001下游收集來自FEWG 1005的分離之產物。在圖10中所示之實例系統1000中,微波能量1009之傳播方向平行於大部分供應氣流1008b及製程材料流1011b,且微波能量1009在FEWG的產生分離之組分的反應部分1001上游進入FEWG 1005。
Portion L2 may extend from where the
對微波能量透明之一或多個壓力障壁可在微波能量源1004內位於微波能量源之出口附近,或在微波能量源1004與FEWG中產生之電漿1006之間的其他位置處(類似於上文所描述且在圖9中所描繪之內容)。可存在二個壓力障壁,且在FEWG中較接近電漿1006之障壁失效的情況下,在壓力障壁之間可存在壓力吹出埠。
One or more pressure barriers that are transparent to microwave energy can be located within
反應區L2之壁可經組配,使得供應氣體入口及製程材料入口穿過FEWG之壁向反應區提供供應氣體及製程材料。例如,壁可具有充當次級供應氣體入口之一系列孔,供應氣體及/或製程材料可穿過該等入口插入至FEWG中,或供應及/或製程材料可透過壁,或壁可為多孔的。穿過壁向反應區提供供應氣體及輸入材料可藉由接近於壁形成蝕刻掉經沈積材料之反應電漿而減輕分離之組分在反應區壁上之沈積。 The walls of the reaction zone L2 can be configured such that the supply gas inlet and the process material inlet pass through the walls of the FEWG to supply the reaction zone with the supply gas and process materials. For example, the wall may have a series of holes that act as secondary supply gas inlets through which supply gas and/or process material may be inserted into the FEWG, or the supply and/or process material may be permeable through the wall, or the wall may be porous of. Providing the supply gas and input material to the reaction zone through the walls can alleviate deposition of the separated components on the reaction zone walls by forming a reactive plasma close to the walls that etch away the deposited material.
可存在穿過FEWG之壁向反應區L2提供供應氣體及輸入材料的多個供應氣體及製程入口。可存在經組配以穿過FEWG壁向反應區L2提供受控 質量分數之供應氣體及輸入材料的多個供應氣體及製程入口。以受控質量分數將供應氣體及製程材料引入至FEWG中可更有效地蝕刻掉沈積在反應區中之FEWG壁上的任何材料。 There may be multiple supply gas and process inlets that provide supply gas and input materials to reaction zone L2 through the walls of the FEWG . There may be multiple supply gas and process inlets configured to provide controlled mass fractions of supply gas and input materials to reaction zone L2 through the FEWG walls. Introducing the supply gas and process materials into the FEWG at controlled mass fractions can more efficiently etch away any material deposited on the walls of the FEWG in the reaction zone.
如上文所描述,FEWG(諸如圖9中之905及圖10中之1005)具有總長度L、總長度的一部分LA及一部分LB,其中LB之橫截面積小於LA之橫截面積、沿其產生電漿的部分L1,及製程材料沿其轉化成分離之組分的總長度之一部分L2。波導之總長度L可為自1cm至1000cm。波導之長度L0可為自1cm至100cm。波導之長度L1可為自1cm至100cm。波導之長度L2可為自1cm至1000cm。波導之長度L可為自30cm至60cm。波導之長度L0可為自10cm至40cm。波導之長度L1可為自10cm至30cm。波導之長度L2可為自5cm至20cm。對於2.45GHz之微波頻率,FEWG長度LA之部分為自例如0吋至10吋,但長度可根據所使用微波頻率發生變化。FEWG長度LB之部分為自例如10吋至20吋,其將取決於諸如氣體流動速度及微波功率之因素。 As described above, a FEWG (such as 905 in FIG. 9 and 1005 in FIG. 10 ) has an overall length L , a portion of the overall length LA, and a portion LB, where the cross - sectional area of LB is less than the cross - sectional area of LA , the portion L 1 along which the plasma is generated, and the portion L 2 along which the process material is converted into the total length of the separated components. The total length L of the waveguide can be from 1 cm to 1000 cm. The length L 0 of the waveguide can be from 1 cm to 100 cm. The length L1 of the waveguide can be from 1 cm to 100 cm. The length L 2 of the waveguide can be from 1 cm to 1000 cm. The length L of the waveguide can be from 30 cm to 60 cm. The length L 0 of the waveguide can be from 10 cm to 40 cm. The length L1 of the waveguide can be from 10 cm to 30 cm. The length L 2 of the waveguide can be from 5 cm to 20 cm. For a microwave frequency of 2.45 GHz, the portion of the FEWG length LA is from, for example, 0 inches to 10 inches, but the length can vary depending on the microwave frequency used. The portion of the FEWG length LB is from, for example, 10 inches to 20 inches, which will depend on factors such as gas flow velocity and microwave power.
例如,較高氣體流動速度將擴展反應區長度。長度L1為波導之長度L的超過10%,或超過20%,或超過30%或超過40%或超過50%,或超過60%,或超過70%,或超過80%,或自10%至90%,或自20%至80%,或自30%至70%,長度L2為波導之長度L的超過5%,或超過10%,或超過15%或超過20%,或超過25%或超過30%,或超過35%,或超過40%,或超過45%,或超過50%,或超過55%,或超過60%,或自1%至90%,或自1%至70%,或自1%至50%,或自10%至50%,或自10%至40%,或自20%至40%。 For example, higher gas flow rates will extend the length of the reaction zone. The length L 1 is more than 10%, or more than 20%, or more than 30%, or more than 40%, or more than 50%, or more than 60%, or more than 70%, or more than 80%, or more than 10% of the length L of the waveguide to 90%, or from 20% to 80%, or from 30% to 70%, the length L 2 is more than 5% of the length L of the waveguide, or more than 10%, or more than 15% or more than 20%, or more than 25% % or more than 30%, or more than 35%, or more than 40%, or more than 45%, or more than 50%, or more than 55%, or more than 60%, or from 1% to 90%, or from 1% to 70% %, or from 1% to 50%, or from 10% to 50%, or from 10% to 40%, or from 20% to 40%.
FEWG 905及1005可經組配以維持自0.1atm至10atm,或自0.5atm至10atm,或自0.9atm至10atm,或大於0.1atm,或大於0.5atm,或大於0.9atm之壓力。在許多習知系統中,微波化學處理係在真空下操作。然而,在
電漿在FEWG內產生之本發明實施例中,在正壓環境中操作有助於防止所產生電漿饋送回至微波能量源中,例如如圖9及圖10中所描繪。
FEWG 905及1005在長度LB內可具有尺寸為0.75吋乘3.4吋之矩形橫截面,以對應於2.45GHz之微波能量頻率。對於其他微波頻率,LB之其他尺寸係可能的,且取決於波導模式,此等橫截面尺寸可為自3至6吋。FEWG 905及1005在長度LA內可具有尺寸為1.7吋乘3.4吋之矩形橫截面,以例如對應於2.45GHz之微波能量頻率。對於其他微波頻率,LA之其他尺寸係可能的。FEWG 905及1005可由任何固有導電材料或具有充分導電塗層以傳播大於90%之傳入功率的材料製成。FEWG材料之一些實例為金屬材料、具有導電塗層之金屬材料、陶瓷材料、具有導電塗層之陶瓷材料、不鏽鋼、塗佈有導電層(諸如Al、Ni、Au或Ni/Au合金)之不鏽鋼、具有鋁襯裡之不鏽鋼,或塗佈有導電層之陶瓷材料。 FEWG 905 and 1005 may have a rectangular cross-section with dimensions of 0.75 inches by 3.4 inches within length LB to correspond to a microwave energy frequency of 2.45 GHz. For other microwave frequencies, other dimensions of LB are possible, and depending on the waveguide mode, these cross-sectional dimensions can be from 3 to 6 inches. FEWG 905 and 1005 may have a rectangular cross-section within length LA with dimensions of 1.7 inches by 3.4 inches to correspond, for example, to a microwave energy frequency of 2.45 GHz. Other dimensions of LA are possible for other microwave frequencies . FEWG 905 and 1005 can be made of any inherently conductive material or material with a sufficiently conductive coating to transmit greater than 90% of the incoming power. Some examples of FEWG materials are metallic materials, metallic materials with conductive coatings, ceramic materials, ceramic materials with conductive coatings, stainless steel, stainless steel coated with conductive layers such as Al, Ni, Au or Ni/Au alloys , Stainless steel with aluminum lining, or ceramic material coated with conductive layer.
值得注意地,FEWG 905及1005可充當產生電漿且發生製程材料反應之腔室,而非具有如習知系統中之單獨波導及石英反應腔室。使FEWG 905及1005充當反應器腔室提供了可發生氣體反應的大得多之體積(諸如至多1000L)。此使得能夠處理製程材料之高流動速率,但不受如習知系統中發生的碳微粒之堆積限制。例如,穿過入口902及1010至各別FEWG 905、1005中的製程材料流動速率可為自1slm(標準公升/分鐘)至1000slm,或自2slm至1000slm,或自5slm至1000slm,或大於1slm,或大於2slm,或大於5slm。穿過入口902及1002至各別FEWG 905及1005中的供應氣體流動速率可例如為自1slm至1000slm,或自2slm至1000slm,或自5slm至1000slm,或大於1slm,或大於2slm,或大於5slm。取決於引起充分電漿密度(諸如二次電子發射係數)之氣體電漿性質,流量可為自1slm至1000slm且壓力至多為14atm。
Notably,
製程材料(替代地稱為原材料)可為穿過製程材料入口提供至FEWG 905及1005中的液體。可用作製程材料之液體之一些實例為水、烷烴、烯烴、炔烴、芳族烴、(諸如烷烴、烯烴、炔烴或芳族烴之)飽和及不飽和烴、乙醇、甲醇、異丙醇(諸如異丙醇)或其混合物(諸如乙醇/甲醇之50/50混合物)。上文所列之液體製程材料可產生碳及氫之分離之組分。液體之流動速率可為進入反應器之供應氣體流的百分比,諸如自0.001%至1000%,或自0.001%至100%,或自0.001%至10%,或自0.001%至1%,或自0.001%至0.1%,或自0.01%至1000%,或自0.01%至100%,或自0.01%至10%,或自0.01%至1%,或自0.01%至0.1%。
Process materials (alternatively referred to as raw materials) may be liquids provided into the
製程材料可為穿過製程材料入口提供至FEWG 905及1005中的膠態分散液(諸如懸浮於液體或氣體中之固體粒子的混合物)。例如,膠態分散液可包括含碳粒子。可用作製程材料之膠態分散液之一些實例為與液體或氣體混合的來自第16族、第14族、第10族、第9族、第5族、第2族、第1族之固體粒子、其合金及其混合物。上文所列固體粒子可與液體混合,液體諸如水、烷烴、烯烴、炔烴、芳族烴、(諸如烷烴、烯烴、炔烴或芳族烴之)飽和及不飽和烴、乙醇、甲醇、異丙醇或其混合物(諸如乙醇/甲醇之50/50混合物)。
The process material can be a colloidal dispersion (such as a mixture of solid particles suspended in a liquid or gas) that is provided into the
氣體之實例為第1族及第15至18族,以及無機化合物(諸如第14族氫化物)。可由上文所列之膠態分散製程材料產生的分離之組分之一些實例為以有機材料塗佈之固體無機材料(諸如塗佈有石墨烯之矽),及具有有機/無機材料之夾層的複合材料(諸如具有囊封塗佈有額外無機層之矽之碳層的矽芯)。膠態分散液之流動速率可為進入反應器之供應氣體流的百分比,諸如自0.001%至1000%,或自0.001%至100%,或自0.001%至10%,或自0.001%至1%,或自0.001%至0.1%,或自0.01%至1000%,或自0.01%至100%,或自0.01%至10%,
或自0.01%至1%,或自0.01%至0.1%。
Examples of gases are
製程材料可為氣體。製程材料可為烴氣,諸如C2H2、C2H4、C2H6。製程材料可為甲烷,且分離之組分為氫及奈米微粒碳。製程材料可為具有水之二氧化碳,且分離之組分為氧、碳及水。製程材料為H2S,且分離之組分可包括氫氣及硫。製程材料不包含二氧化碳。製程材料可為基於氣體之複合材料,例如SiH4、三甲基鋁(TMA)、三甲基鎵(TMG)、甲基丙烯酸縮水甘油酯(GMA)、SF6,以及半導體行業中用於沈積及蝕刻金屬及介電質之其他材料。 The process material can be a gas. Process materials may be hydrocarbon gases such as C2H2 , C2H4 , C2H6 . The process material can be methane, and the separated components are hydrogen and nanoparticle carbon. The process material may be carbon dioxide with water, and the separated components are oxygen, carbon and water. The process material is H2S, and the separated components may include hydrogen and sulfur. Process materials do not contain carbon dioxide. Process materials may be gas-based composites such as SiH4 , trimethylaluminum (TMA), trimethylgallium (TMG), glycidyl methacrylate (GMA), SF6 , and in the semiconductor industry for deposition and other materials for etching metals and dielectrics.
分離之組分中之一者為奈米微粒碳,諸如但不限於碳黑、碳奈米洋蔥(CNO)、頸縮CNO、碳奈米球、石墨、熱解石墨、石墨烯、石墨烯奈米粒子、石墨烯片、富勒烯、混合富勒烯、單壁奈米管以及多壁奈米管。此等奈米微粒碳中之一或多者可在特定製程運行期間產生。分離之組分可包含聚結之奈米微粒碳,其亦可描述為聚集粒子。在一些情況下,聚結或聚集粒子包含許多奈米微粒碳粒子。聚結或聚集粒子可包含奈米微粒碳粒子且平均直徑大於50微米、或大於100微米、或大於200微米、或大於300微米、或大於500微米、或大於1000微米、或為自1至1000微米、或自10微米至1000微米、或自100微米至1000微米、或自100微米至500微米。 One of the isolated components is nanoparticulate carbon such as, but not limited to, carbon black, carbon nanoonion (CNO), necked CNO, carbon nanospheres, graphite, pyrolytic graphite, graphene, graphene nanospheres Rice particles, graphene sheets, fullerenes, hybrid fullerenes, single-wall nanotubes, and multi-wall nanotubes. One or more of these nanoparticulate carbons may be produced during a particular process run. The isolated components may comprise agglomerated nanoparticulate carbon, which may also be described as aggregated particles. In some cases, the agglomerated or aggregated particles comprise many nanoparticulate carbon particles. Agglomerated or aggregated particles may comprise nanoparticulate carbon particles and have an average diameter greater than 50 microns, or greater than 100 microns, or greater than 200 microns, or greater than 300 microns, or greater than 500 microns, or greater than 1000 microns, or from 1 to 1000 microns, or from 10 microns to 1000 microns, or from 100 microns to 1000 microns, or from 100 microns to 500 microns.
調諧微波化學處理系統中之微波能量Tuning Microwave Energy in Microwave Chemical Processing Systems
不同製程材料需要不同量之能量以反應成不同的分離之組分。在本揭露內容中,可藉由改變電漿之平均能量來選擇可用反應路徑。耦合於電漿之微波能量可為脈衝式的,且藉由控制微波能量脈衝持續時間及頻率、工作循環、形狀及時間平均輸出功率位準來選擇電漿之平均能量,且因此選擇反應路徑。調諧微波化學處理系統中之微波能量的額外細節揭露於美國專利9,812,295中,該專利由本申請案之受讓人擁有且以全文引用的方式併入本文中。 Different process materials require different amounts of energy to react into different discrete components. In the present disclosure, the available reaction paths can be selected by changing the average energy of the plasma. The microwave energy coupled to the plasma can be pulsed, and the average energy of the plasma, and thus the reaction path, is selected by controlling the microwave energy pulse duration and frequency, duty cycle, shape, and time-averaged output power level. Additional details of tuning microwave energy in microwave chemical processing systems are disclosed in US Patent 9,812,295, which is owned by the assignee of the present application and is incorporated herein by reference in its entirety.
可藉由改變脈衝週期、藉由選擇脈衝頻率以實現所要電漿能量而控制電漿中之平均能量。另外,可藉由控制工作循環來控制電漿之平均能量。此可藉由考慮時間平均輸入功率及脈衝週期兩者皆保持恆定且工作循環發生變化之情況來理解。當微波能量接通時,較短工作循環將增大耦合至腔室中之功率的量值。此為有利的,因為相對較低量之功率(諸如時間平均功率)可用於自反應路徑產生反應產物,將不可能在連續波中以相同功率促進該產生。 The average energy in the plasma can be controlled by varying the pulse period, by selecting the pulse frequency to achieve the desired plasma energy. In addition, the average energy of the plasma can be controlled by controlling the duty cycle. This can be understood by considering the case where both the time-averaged input power and the pulse period are kept constant and the duty cycle varies. Shorter duty cycles will increase the amount of power coupled into the chamber when the microwave energy is turned on. This is advantageous because a relatively low amount of power, such as time-averaged power, can be used to generate reaction products from the reaction path, it would not be possible to promote this generation at the same power in a continuous wave.
可藉由控制輸入至電漿中之時間平均功率來選擇反應路徑。例如,若工作循環及脈衝頻率保持恆定,且輸入至微波產生器中之功率增大,則電漿之能量將增大。藉助於另一實例,若工作循環及脈衝頻率保持恆定,且功率更有效地耦合至反應腔室中,則電漿之能量將增大。 The reaction path can be selected by controlling the time-averaged power input into the plasma. For example, if the duty cycle and pulse frequency are kept constant and the power input to the microwave generator is increased, the energy of the plasma will increase. By way of another example, if the duty cycle and pulse frequency are kept constant, and the power is more efficiently coupled into the reaction chamber, the energy of the plasma will increase.
可藉由控制微波能量脈衝之形狀來選擇反應路徑。微波脈衝可為矩形波,其中在微波接通時,功率在脈衝週期之持續時間期間係恆定的。在微波功率接通時,脈衝功率在脈衝週期之持續時間期間可能並不恆定。微波脈衝為三角形波,或梯形波,或不同波輪廓。電漿可被稱為在高能量物種以較高分數存在之時間週期期間(諸如在電漿達到平衡之前的脈衝開始時)擴散。微波能量可在電漿擴散之時間週期內增大,此增大了電漿中之高能量物種的時間平均分數。如上文所描述,調諧脈衝頻率、工作循環及脈衝形狀可使得能夠針對給定時間平均輸入功率在電漿內產生較高分率之較高能量物種。較高能量物種可允許否則在能量上將不利之額外反應路徑。 The reaction path can be selected by controlling the shape of the microwave energy pulse. The microwave pulses may be rectangular waves, where the power is constant for the duration of the pulse period when the microwaves are on. When the microwave power is on, the pulse power may not be constant during the duration of the pulse period. Microwave pulses are triangular waves, or trapezoidal waves, or different wave profiles. Plasma may be referred to as diffusing during periods of time in which high energy species are present in higher fractions, such as at the beginning of a pulse before the plasma reaches equilibrium. The microwave energy can increase over the time period of plasma diffusion, which increases the time-averaged fraction of high energy species in the plasma. As described above, tuning the pulse frequency, duty cycle, and pulse shape can enable the generation of a higher fraction of higher energy species within the plasma for a given time-averaged input power. Higher energy species may allow additional reaction pathways that would otherwise be energetically disadvantaged.
可藉由將甲烷(CH4)用作待分離成氫及奈米微粒碳的實例製程材料來進一步理解上文技術。通常,需要4至6eV來解離甲烷(CH4);然而,電漿能量通常在初始點火能量尖峰之後穩定在大約1.5eV下。藉由對微波進行脈衝,平均電漿能量(諸如時間平均電漿能量)經維持在較高位準下,其中脈衝之頻率及 持續時間控制平均電漿能量。特定而言,可控制諸如頻率及工作循環之脈衝參數以提供4至6eV之平均電漿能量來選擇甲烷之特定解離反應。對微波能量進行脈衝之另一優勢為能量較多地分佈在其中輸入微波之腔室中。 The above techniques can be further understood by using methane ( CH4 ) as an example process material to be separated into hydrogen and nanoparticulate carbon. Typically, 4 to 6 eV is required to dissociate methane (CH 4 ); however, the plasma energy typically stabilizes at about 1.5 eV after the initial ignition energy spike. By pulsing the microwaves, the average plasma energy, such as the time-averaged plasma energy, is maintained at a higher level, where the frequency and duration of the pulses control the average plasma energy. In particular, pulse parameters such as frequency and duty cycle can be controlled to provide an average plasma energy of 4 to 6 eV to select specific dissociation reactions of methane. Another advantage of pulsing microwave energy is that the energy is more distributed in the chamber into which the microwaves are input.
在習知系統中,在平衡時,電漿在腔室中朝向微波輸入位置形成緻密電離物種層,其吸收傳入之微波能量且因此防止其他微波能量較深地滲透至腔室中。本揭露內容之高頻脈衝在較大時間分數內將電漿維持在非平衡狀態下且緻密電離物種層在較小時間分數內存在,此允許微波能量較深地滲透至腔室中且電漿在腔室內之較大體積中產生。更大體而言,在本揭露內容之各種實施例中,在脈衝週期之整個持續時間內的電漿之平均能量可為自0.9eV至20eV,或自0.9eV至10eV,或自1.5eV至20eV,或自1.5eV至10eV,或大於0.9eV,或大於1.5eV。電漿能量經調諧至之特定值將取決於正利用之製程材料的類型。 In conventional systems, at equilibrium, the plasma forms a dense layer of ionized species in the chamber towards the location of the microwave input, which absorbs incoming microwave energy and thus prevents other microwave energy from penetrating deeper into the chamber. The high frequency pulses of the present disclosure maintain the plasma in a non-equilibrium state for a larger time fraction and a dense layer of ionized species exists for a smaller time fraction, which allows the microwave energy to penetrate deeper into the chamber and the plasma Produced in a larger volume within the chamber. More generally, in various embodiments of the present disclosure, the average energy of the plasma over the entire duration of the pulse period may be from 0.9 eV to 20 eV, or from 0.9 eV to 10 eV, or from 1.5 eV to 20 eV , or from 1.5eV to 10eV, or greater than 0.9eV, or greater than 1.5eV. The particular value to which the plasma energy is tuned will depend on the type of process material being utilized.
在上文所描述之微波處理系統中,微波能量源藉由微波發射器電路(諸如圖9中之907及圖10中之1007)控制,微波發射器電路可將自源發射之微波能量控制為連續波或脈衝式微波能量。微波發射器電路可經由使用磁控管,諸如在915MHz、2.45GHz或5.8GHz下產生微波能量。為了控制微波能量之脈衝輸出功率,微波發射器電路可以各種頻率及工作循環對磁控管進行脈衝。各微波發射器電路設計成用於特定範圍之脈衝頻率、工作循環、形狀及脈衝輸出功率位準,其中對此等參數之特定值的選擇用於調諧製程材料中之化學反應路徑。 In the microwave processing system described above, the microwave energy source is controlled by a microwave transmitter circuit (such as 907 in FIG. 9 and 1007 in FIG. 10 ), which can control the microwave energy emitted from the source as Continuous wave or pulsed microwave energy. Microwave transmitter circuits can generate microwave energy via the use of magnetrons, such as at 915MHz, 2.45GHz, or 5.8GHz. In order to control the pulsed output power of the microwave energy, the microwave transmitter circuit can pulse the magnetron at various frequencies and duty cycles. Each microwave transmitter circuit is designed for a specific range of pulse frequencies, duty cycles, shapes, and pulse output power levels, wherein the selection of specific values for these parameters is used to tune the chemical reaction paths in the process materials.
微波控制電路可實現自500Hz至1000kHz,或自1kHz至1000kHz,或自10kHz至1000kHz,或自40kHz至80kHz,或自60kHz至70kHz,或大於10kHz,或大於50kHz,或大於100kHz之脈衝頻率。微波發射源可以自1至100kW,或自1kW至500kW,或自1kW至1MW,或自10kW至5 MW,或大於10kW,或大於100kW,或大於500kW,或大於1MW,或大於2MW之時間平均功率發射連續波或脈衝式微波能量。脈衝週期具有微波功率接通之第一持續時間,及微波能量斷開或處於比第一持續時間期間低之功率的第二持續時間。第二持續時間可長於第一持續時間。用於給定系統之最佳工作循環取決於許多因素,包括微波功率、脈衝頻率及脈衝形狀。工作循環(諸如微波能量接通之脈衝週期的分數,其表示為百分比)可為自1%至99%,或自1%至95%,或自10%至95%,或自20%至80%,或自50%至95%,或自1%至50%,或自1%至40%,或自1%至30%,或自1%至20%,或自1%至10%,或小於99%,或小於95%,或小於80%,或小於60%,或小於50%,或小於40%,或小於30%,或小於20%,或小於10%。 The microwave control circuit can realize the pulse frequency from 500Hz to 1000kHz, or from 1kHz to 1000kHz, or from 10kHz to 1000kHz, or from 40kHz to 80kHz, or from 60kHz to 70kHz, or more than 10kHz, or more than 50kHz, or more than 100kHz. The microwave emission source can be from 1 to 100kW, or from 1kW to 500kW, or from 1kW to 1MW, or from 10kW to 5 MW, or greater than 10kW, or greater than 100kW, or greater than 500kW, or greater than 1MW, or greater than 2MW of time-averaged power to transmit continuous wave or pulsed microwave energy. The pulse period has a first duration in which the microwave power is on, and a second duration in which the microwave energy is off or at a lower power than during the first duration. The second duration may be longer than the first duration. The optimal duty cycle for a given system depends on many factors, including microwave power, pulse frequency, and pulse shape. The duty cycle (fraction of the pulse period such as microwave energy on, expressed as a percentage) can be from 1% to 99%, or from 1% to 95%, or from 10% to 95%, or from 20% to 80% %, or from 50% to 95%, or from 1% to 50%, or from 1% to 40%, or from 1% to 30%, or from 1% to 20%, or from 1% to 10%, or less than 99%, or less than 95%, or less than 80%, or less than 60%, or less than 50%, or less than 40%, or less than 30%, or less than 20%, or less than 10%.
具有多個場增強波導之微波化學處理反應器Microwave Chemical Processing Reactor with Multiple Field Enhanced Waveguides
圖11A至圖11D展示表示本揭露內容之微波化學處理系統之實施例的方塊圖,其中多個FEWG耦合於一或多個微波能量產生器(諸如微波能量源)。此等實施例中之FEWG可共用上文所描述系統之一些或所有特徵。此等實施例中之供應氣體及製程材料輸入亦可共用上文所描述特徵中之一些或全部。各FEWG可具有反應區。電漿可由FEWG中之每一者中的電漿區中之供應氣體產生,且FEWG中之每一者的反應長度充當反應區以將製程材料分離成分離之組分。反應區可連接在一起,且微波化學處理系統具有用於分離之組分的一個出口。反應區可連接在一起,且微波化學處理系統具有用於分離之組分的多於一個出口。各反應區可具有用於分離之組分的其自身之出口。 11A-11D show block diagrams representing embodiments of microwave chemical processing systems of the present disclosure in which multiple FEWGs are coupled to one or more microwave energy generators, such as microwave energy sources. The FEWGs in these embodiments may share some or all of the features of the systems described above. Supply gas and process material inputs in these embodiments may also share some or all of the features described above. Each FEWG may have a reaction zone. Plasma can be generated from a supply gas in a plasma region in each of the FEWGs, and the reaction length of each of the FEWGs acts as a reaction region to separate process materials into separate components. The reaction zones can be connected together, and the microwave chemical processing system has one outlet for the separated components. The reaction zones can be connected together and the microwave chemical processing system has more than one outlet for the separated components. Each reaction zone may have its own outlet for the separated components.
圖11A展示存在耦合於多個FEWG 1102之一個微波能量產生器1101,且FEWG之反應區皆連接在一起以使得存在收集分離之組分的單個出口1103之實施例。圖11B展示存在耦合於多個FEWG 1102之一個微波能量產生器
1101,且一些FEWG之反應區連接在一起以使得存在收集分離之組分的多於一個出口1103之實施例。圖11C展示存在耦合於多個FEWG 1102之多於一個微波能量產生器1101,且FEWG之反應區皆連接在一起以使得存在收集分離之組分的單個出口1103之實施例。圖11D展示存在耦合於多個FEWG 1102之多於一個微波能量產生器1101,且一些FEWG之反應區連接在一起以使得存在收集分離之組分的多於一個出口1103之實施例。
Figure 11A shows an embodiment in which there is one
圖11A至圖11D出於說明性目的描繪6個FEWG,但在實際實施中可少於或大於6個FEWG。例如,可存在耦合於各微波能量產生器之1至10個FEWG。來自多於一個微波產生器之微波能量可使用功率合併器經合併,且接著經合併微波能量可耦合至多於一個FEWG中。自此功率合併器發射之微波能量可極大且可耦合至許多FEWG中(諸如超過10個)。多工可用以將微波能量耦合至來自單個微波能量源之多個FEWG中。 11A-11D depict 6 FEWGs for illustrative purposes, but may be less or more than 6 FEWGs in an actual implementation. For example, there may be 1 to 10 FEWGs coupled to each microwave energy generator. Microwave energy from more than one microwave generator can be combined using a power combiner, and then the combined microwave energy can be coupled into more than one FEWG. The microwave energy emitted from this power combiner can be very large and can be coupled into many FEWGs (such as more than 10). Multiplexing can be used to couple microwave energy into multiple FEWGs from a single microwave energy source.
在一個實例中,多工係分時多工,此意謂能量在一個時刻自微波能量源耦合至一組FEWG中,且開關用以在稍後時刻將能量引導至一組不同FEWG中。開關可用於隨時間推移在來自單個微波能量源之多組FEWG(諸如超過2個,或超過5個,或超過10個)之間循環能量,其中各組FEWG可包含多個FEWG(諸如超過2個,或超過5個,或自1至10個)。圖11B描繪二個出口,且圖11D描繪三個出口,但在其他FEWG陣列組配中可存在多於二個或三個出口,其中(例如)各FEWG可具有收集分離之組分的其自身之出口。存在收集分離之組分的1個出口至10個出口。圖11B及圖11D描繪連接至各出口中之3個FEWG,但少於或大於3個FEWG可連接至各出口中,且各FEWG可具有收集分離之組分的其自身之出口。圖11C及圖11D描繪二個微波能量產生器,但存在超過2個微波能量產生器。可存在一起連接至收集分離之組分的各出口的1個 FEWG至10個FEWG。 In one example, multiplexing is time division multiplexing, which means that energy is coupled from a microwave energy source into a set of FEWGs at one time, and switches are used to direct energy into a different set of FEWGs at a later time. The switch may be used to cycle energy over time between sets of FEWGs (such as more than 2, or more than 5, or more than 10) from a single microwave energy source, where each set of FEWGs may contain multiple FEWGs (such as more than 2 , or more than 5, or from 1 to 10). Figure 11B depicts two outlets, and Figure 11D depicts three outlets, but there may be more than two or three outlets in other FEWG array configurations, where, for example, each FEWG may have its own collection of separated components the export. There are 1 to 10 outlets for collecting the separated components. 11B and 11D depict 3 FEWGs connected to each outlet, but fewer or more than 3 FEWGs may be connected to each outlet, and each FEWG may have its own outlet that collects the separated components. 11C and 11D depict two microwave energy generators, but there are more than two microwave energy generators. There may be 1 of each outlet connected together to collect the separated components FEWG to 10 FEWG.
圖12A及圖12B展示本揭露內容之微波化學處理系統之實施例,其中多個FEWG使用不同幾何形狀耦合於一個微波能量產生器(諸如微波能量源)。此等實施例中之FEWG可共用上文所描述系統之一些或所有特徵。此等實施例中之供應氣體及製程材料輸入亦可共用上文所描述特徵中之一些或全部。各FEWG可具有反應區。電漿可由FEWG中之每一者中的電漿區中之供應氣體產生,且FEWG中之每一者的反應長度充當反應區以將製程材料分離成分離之組分。反應區可連接在一起,且微波化學處理系統具有用於分離之組分的一個出口。反應區可連接在一起,且微波化學處理系統具有用於分離之組分的多於一個出口。各反應區可具有用於分離之組分的其自身之出口。 12A and 12B show embodiments of the microwave chemical processing system of the present disclosure in which FEWGs are coupled to a microwave energy generator (such as a microwave energy source) using different geometries. The FEWGs in these embodiments may share some or all of the features of the systems described above. Supply gas and process material inputs in these embodiments may also share some or all of the features described above. Each FEWG may have a reaction zone. Plasma can be generated from a supply gas in a plasma region in each of the FEWGs, and the reaction length of each of the FEWGs acts as a reaction region to separate process materials into separate components. The reaction zones can be connected together, and the microwave chemical processing system has one outlet for the separated components. The reaction zones can be connected together and the microwave chemical processing system has more than one outlet for the separated components. Each reaction zone may have its own outlet for the separated components.
圖12A展示其中存在耦合於多個FEWG之一個微波能量產生器的歧管幾何形狀。微波能量1201耦合於歧管波導1202,且接著耦合至多個FEWG中。微波能量進入各FEWG之較大橫截面積區段,接著進入FEWG之場增強區1203,且接著耦合至FEWG之較小橫截面積反應區1204中。在圖12A中所描繪之實施例中,所有FEWG均連接在一起,使得存在收集分離之組分的單個出口1205。
12A shows a manifold geometry in which there is a microwave energy generator coupled to one of the FEWGs.
圖12B展示存在耦合於多個FEWG之一個微波能量產生器的網路幾何形狀。微波能量1201耦合於網路波導1202,且接著耦合至多個FEWG中。特定網路波導尺寸取決於正使用之微波頻率。微波能量進入各FEWG之較大橫截面積區段,接著進入FEWG之場增強區1203,且接著耦合至FEWG之較小橫截面積反應區1204中。在圖12B中所描繪之實施中,所有FEWG均連接在一起,使得存在收集分離之組分的單個出口1205。
Figure 12B shows a network geometry with one microwave energy generator coupled to one of the FEWGs.
儘管圖12A及圖12B描繪以歧管或網路幾何形狀耦合於5個 FEWG的一個微波能量產生器,但在其他實施中,可存在其他合適數目或例項之微波能量產生器。來自多於一個微波產生器之微波能量可使用功率合併器經合併,且接著經合併微波能量可以歧管或網路幾何形狀耦合至多於一個FEWG中。自此功率合併器發射之微波能量可極大,且可以歧管或網路幾何形狀耦合至許多FEWG(諸如超過10個)中。可存在以歧管或網路幾何形狀耦合於各微波能量產生器之1個FEWG至10個FEWG。 Although Figures 12A and 12B depict a manifold or network geometry coupled to five One microwave energy generator for the FEWG, but in other implementations there may be other suitable numbers or instances of microwave energy generators. Microwave energy from more than one microwave generator can be combined using a power combiner, and then the combined microwave energy can be coupled into more than one FEWG in a manifold or network geometry. The microwave energy emitted from this power combiner can be extremely large and can be coupled into many FEWGs (such as more than 10) in a manifold or network geometry. There may be 1 to 10 FEWGs coupled to each microwave energy generator in a manifold or network geometry.
類似地,儘管圖12A及圖12B描繪一個出口,但在其他實施中,可存在其他合適數目或例項之出口。可存在收集來自以歧管或網路幾何形狀耦合於微波能量產生器之FEWG的分離之組分的1個出口至10個出口。類似地,儘管圖12A及圖12B描繪耦合於多個FEWG之一個微波能量產生器,但在其他實施中,可存在其他合適數目或例項之微波能量產生器。可存在一起連接至各出口中的1個FEWG至10個FEWG,該出口收集來自以歧管或網路幾何形狀耦合於微波能量產生器之FEWG的分離之組分。 Similarly, although Figures 12A and 12B depict one outlet, in other implementations, other suitable numbers or instances of outlets may be present. There may be 1 to 10 outlets collecting the separated components from the FEWG coupled to the microwave energy generator in manifold or grid geometry. Similarly, although FIGS. 12A and 12B depict one microwave energy generator coupled to one of a plurality of FEWGs, in other implementations, other suitable numbers or instances of microwave energy generators may be present. There may be 1 FEWG to 10 FEWGs connected together in each outlet that collects the separated components from the FEWG coupled to the microwave energy generator in a manifold or network geometry.
在一些實施中,在歧管或網路幾何形狀波導1202與FEWG之場增強區1203之間可存在孔隙。此等孔隙之尺寸經調適以有效地將來自歧管或網路幾何形狀波導1202之微波能量耦合至FEWG之場增強區1203。此等孔隙之尺寸為不同大小以在FEWG之所有耦合場增強區1203之間平衡來自歧管或網路幾何形狀波導1202之微波能量傳輸。
In some implementations, there may be voids between the manifold or
在一些實施中,歧管或網路幾何形狀波導1202之尺寸可經調適,使得其形成諧振腔且在歧管或網路幾何形狀波導1202內存在微波能量之駐波。微波能量之駐波可經調諧以有效地將微波能量耦合至FEWG之耦合場增強區1203中之每一者中。
In some implementations, the dimensions of the manifold or
在一些實施中,可存在自歧管或網路幾何形狀波導1202至FEWG
之場增強區1203的受控洩漏,以有效地分佈耦合至FEWG之反應區1204中之每一者中的微波能量之量。控制自歧管或網路幾何形狀波導1202至FEWG之場增強區1203的洩漏且有效地分佈耦合至FEWG之反應區1204中之每一者中的微波能量之量的一些設計實例為:改變波導之橫截面及/或長度;在歧管或網路幾何形狀波導1202與FEWG之場增強區1203之間使用孔隙;改變歧管或網路幾何形狀波導1202與FEWG之場增強區1203之間的定向之角度;在歧管或網路幾何形狀波導內或FEWG內使用燈絲、點源、電極及/或磁體(如下文將進一步詳細論述);及此等設計特徵中的兩者或更多者之組合。
In some implementations, there may be
具有場增強波導之微波化學處理反應器中的額外特徵Additional Features in Microwave Chemical Processing Reactors with Field Enhanced Waveguides
除了具有FEWG之微波處理系統的上文特徵之外,現將論述可用於上文所描述系統中的其他特徵。圖6說明具有FEWG之微波製程系統,其中在一或多個前驅氣體中產生電漿,其中前驅氣體插入在製程材料流動至FEWG之反應區中的位置之上游。前驅氣體藉由添加具有各種游離電位之物種而改良裂解效率。亦即,不同氣體具有不同電離能量,其為自原子或分子移除電子所需之能量的量。另外,各種氣體具有不同對生(每離子可產生多少電子)及二次電子發射性質(帶電粒子轟擊表面時之電子發射)。因此,在本揭露內容中,可利用前驅氣體之使用來影響電漿之能量。 In addition to the above features of microwave processing systems with FEWGs, other features that may be used in the systems described above will now be discussed. 6 illustrates a microwave processing system with a FEWG in which a plasma is generated in one or more precursor gases inserted upstream of where the process material flows into the reaction zone of the FEWG. The precursor gas improves the cracking efficiency by adding species with various free potentials. That is, different gases have different ionization energies, which is the amount of energy required to remove electrons from atoms or molecules. In addition, various gases have different opposite (how many electrons can be generated per ion) and secondary electron emission properties (electron emission when charged particles bombard the surface). Thus, in the present disclosure, the use of precursor gases may be utilized to affect the energy of the plasma.
圖13展示微波氣體處理系統1300,其包括微波能量產生器(諸如微波能量源)1304、FEWG 1305及微波發射器電路1307,其可類似或等效於大體上展示為包括圖5中呈現之微波能量源141的微波發射器控制電路140。為了清楚起見,相較於先前圖,圖13之圖式為簡化圖式。供應氣體入口1302接收補充供應氣體(未展示)以在波導中產生電漿之前驅氣體1320。在各種實施例中,前驅氣體1320可包括氫氣、氬氣、氦氣或各種惰性氣體中之一或多者。製程材料
入口1310經組配以接收待反應之製程材料。
13 shows a microwave
製程材料之分離之組分中之一或多者可再循環回至進入FEWG 1305之供應氣體及/或製程材料中。對於並非系統之所要輸出產物之前驅氣體(諸如處理甲烷時之氬氣前驅氣體),在後處理步驟中自出口1303輸出之分離之組分1330及1332移除前驅氣體。如圖13中所示,FEWG 1305中之氣體反應產生分離之組分1330及1332。例如,對於甲烷作為製程材料,第一分離之組分1330可為碳,且第二分離之組分1332可為H2氣體(其在出口1303處經收集之前自原子氫H+經重組)。
One or more of the separated components of the process material may be recycled back into the supply gas and/or process material entering the
替代地,第一分離之組分1330可為CH2且第二分離之組分1332可為氫氣H2。分離之組分1332經由返回至供應氣體入口1302之導管1340再循環回至FEWG 1305中。經再循環分離之組分1332因此用作前驅氣體1320。儘管將所產生分離之組分返回至反應系統中可能看起來反常,但該等組分之再循環向電漿添加能量,且亦可有助於製程材料之熱裂解,此係因為經再循環組分在氣體處理期間已經加熱。例如,對於產生總共150至200slm H2之製程,分離之組分1332可為再循環回至FEWG 1305中之2至10slm H2。如藉由諸如製程材料之流動速率及/或需要添加至製程中以起始目標化學路徑之能量的量之因素所判定,可再循環分離之組分1332之其他量或部分。
Alternatively, the first
為起始前述化學路徑,一或多個微波能量源可經組配以在微波化學處理反應器內引發化學反應。 To initiate the aforementioned chemical pathways, one or more microwave energy sources can be configured to initiate chemical reactions within the microwave chemical treatment reactor.
供應氣體中之一些或全部包含製程材料之一或多個經再循環分離之組分。例如,供應氣體可為氫氣,且製程材料可為經反應以形成氫及碳之甲烷,且由甲烷產生之氫之至少一部分可經再循環並用作供應氣體。再循環所產生氫有益地改良整個氣體處理之效率,此係因為由氫形成之電漿在裂解製程材料分 子中之烴鍵方面高度有效。另外,經再循環H2已在高溫下,且因此需要較少能量輸入以實現熱裂解能量。供應氣體為由外部源提供之H2,經再循環H2經添加至該供應氣體。所產生電漿可為氫電漿。 Some or all of the supply gas contains one or more of the recycled separated components of the process material. For example, the supply gas can be hydrogen, and the process material can be methane that is reacted to form hydrogen and carbon, and at least a portion of the hydrogen produced from the methane can be recycled and used as the supply gas. Recycling the hydrogen produced beneficially improves the efficiency of the overall gas treatment because the plasma formed from the hydrogen is highly efficient in cracking the hydrocarbon bonds in the molecules of the process material. Additionally, the recycled H2 is already at high temperature, and thus requires less energy input to achieve thermal cracking energy. The supply gas is H2 provided by an external source to which recycled H2 is added. The generated plasma may be hydrogen plasma.
圖14說明具有FEWG及燈絲之微波處理系統1400。在一些實施中,微波處理系統1400包括微波能量產生器(諸如微波能量源)1404、FEWG 1405及微波發射器電路1407。微波能量1409係由微波能量源1404供應,以在FEWG 1405之長度L的向下方向上傳播。在此實施例中,供應氣體入口1402置放於部分L0之入口附近,而非置放於部分L1(諸如電漿區)之入口處。一或多個金屬燈絲1420置放於FEWG 1405內以有助於電漿之點火及/或電漿內之較高能量物種之激發。在此實施中,金屬燈絲1420在供應氣體入口1402之下游,在FEWG L1之電漿區部分(具有比較接近微波能量產生器之FEWG小的橫截面積)的入口附近。
Figure 14 illustrates a
燈絲1420可位於FEWG 1405之總長度L的部分L1內之其他位置處,其中L1為如關於先前實施例所描述的波導中形成電漿之區。燈絲1420位於FEWG之部分L1內且在製程材料入口1410之上游,使得其將位於發生反應且可用反應物種塗佈燈絲之部分L2(諸如圖9中所示之長度L2)外部。燈絲1420之存在可藉由提供點火位點,藉由聚焦微波能量1409之電場來降低電漿點火電壓。另外,燈絲1420可變得經加熱且經由熱離子發射來發射電子,此進一步有助於降低電漿點火電壓。儘管在此實施例中將燈絲1420說明為單個電線,但燈絲1420可採用其他組配,諸如線圈或多個燈絲。燈絲1420可為鎢。燈絲可經主動激勵(供電)或可係被動的。燈絲1420可為鄰近於加熱器線圈之鋨燈絲(諸如經組配為極板或線圈或其他形狀)。燈絲1420可為電感線圈之領域中的亞鐵材料。在主動組件(諸如加熱源組件)位於FEWG 1405外部且正經加熱之燈絲材料在FEWG
1405內部的情況下,主動地加熱燈絲1420。
圖15展示反應器系統1500,其中能量源1530大體上沿著FEWG 1505的邊延伸及/或可類似地與本文中所揭露之FEWG中的任一或多者一起定位。在一些實施中,能量源1530可體現為一或多個電極,或沿著縱向延伸穿過FEWG 1505之中心的共同豎直軸線定向之一個或成對共面電極。各對電極可包含正電極(被稱為「陰極」)及負電極(被稱為「陽極」)。如本文中大體上所理解及所參考,「電極」意指用於與電路之非金屬部分接觸的電導體。替代或除了併入有一或多個電極之能量源1530之組配之外,能量源可體現為(或以其他方式併入)電子槍,其指一些真空管中產生具有精確動能之較窄經準直電子束的電組件。此電子槍組配可包括若干構成部分,諸如熱陰極,其經加熱以經由熱離子發射產生電子流;電極,其產生電場以聚焦電子束(諸如未乃耳特圓柱);及一或多個陽極電極,其加速且進一步聚焦射束。
15 shows a
此外,除了所論述組配之外或替代該等組配,能量源可經組配為提供熱能(作為熱量)之傳遞以用於液體及黏稠流體材料(諸如由供應氣體入口1502提供之供應氣體及/或製程輸入材料,在一些實施中,製程輸入材料亦可流過供應氣體入口1502)之超速加熱的流動加熱器及/或反應器。在一些實施中,能量源1530可獨立於圖13之經再循環前驅氣體1320、圖14之燈絲1420或圖15之電子源1520使用或與前述各者之任何組合一起使用。系統1500可包括一或多組能量源1530,其中能量源1530中之任一或多者可經組配以將能量(諸如呈熱及/或電磁能形式,以及其他形式之能量)供應至電漿1506。能量源1530在體現為側接FEWG 1505之一對帶相反電荷共面電極(諸如圖15中所示之共面電極)時可經組配以在FEWG 1505之總長度L的部分L1內產生電場。L1係指如上文所描述的FEWG中形成電漿之區。能量源1530(在體現為側接FEWG 1505之一
對帶相反電荷共面電極時)可經激勵至特定電壓以將電漿1506內之氣態及/或基於電漿之物種(其在接收來自能量源1530之能量時變得帶電)加速至所要程度,因此准許精確控制電漿1506之能量位準(量測為溫度或某一其他類型之能量量測)。
Furthermore, in addition to or in lieu of the configurations discussed, the energy source can be configured to provide the transfer of thermal energy (as heat) for liquid and viscous fluid materials such as the supply gas provided by the
此實施之能量源1530可經組配以在連續波微波能量輸入(如由例如微波處理系統1500所提供)情況下起作用,且在與脈衝式微波輸入組合使用時亦係有效的。例如,在具有電極且使用連續提供之微波能量之習知系統中,位於能量源1530之間的電漿1506將傾向於以平衡狀態定位在那裏。電漿1506可屏蔽(指至少部分阻擋或以其他方式阻礙)對由能量源1530產生之電場(諸如在體現為一對共面電極時)的曝露,此又可限制能量源1530向電漿1506添加能量之能力。對比而言,當所供應微波為脈衝式微波時,電漿1506可在整個處理時間之較大部分內以非平衡狀態存在(指不處於熱力學平衡之電漿,因為電子溫度比諸如離子及中性物之重物種之溫度熱很多)。結果,電漿1506可在整個處理時間之其餘部分內以平衡狀態存在,且因此將在整個處理時間之較小分數內屏蔽由能量源1530產生之電場。
The energy source 1530 of this implementation can be configured to function with continuous wave microwave energy input (as provided, for example, by microwave processing system 1500), and is also effective when used in combination with pulsed microwave input. For example, in a conventional system having electrodes and using continuously provided microwave energy, the
如圖15中所示,能量源1530可獨立於圖13之經再循環前驅氣體1320、圖14之燈絲1420或圖15之電子源1520使用或與前述各者組合使用。系統1500包含向電漿添加能量之一或多組電極1530。電極經組配以在FEWG 1505之總長度L的部分L1內產生電場,其中L1為如上文所描述的FEWG中形成電漿之區。能量源1530在圖15中展示為一對帶相反電荷共面電極,該等電極係在FEWG 1505的產生電漿1506之部分之外部上且在該部分之相對側上,但其他能量源類型係可能的(諸如包括加熱器之熱能源)。電極可經激勵至特定電壓以將電漿內之帶電物種加速至所要程度,因此控制電漿能量。此實施例之電極可與連續
波微波能量(諸如自微波能量產生器1504在一般方向1509上施加之微波能量)一起使用,且在與脈衝式微波輸入組合時尤其有效。在具有電極及連續微波能量之習知系統中,電極之間的電漿將以平衡狀態定位(諸如在電極附近)且屏蔽來自電極之電場,此限制電極向電漿添加能量之能力。然而,當微波經脈衝時,電漿將在較大時間分數內以非平衡狀態存在且將在較小時間分數內屏蔽電極之電場。
As shown in Figure 15, the energy source 1530 may be used independently of or in combination with the
本揭露內容之微波處理系統將包括磁體(未展示)以約束反應區中之電漿且降低用於產生電漿之點火電壓。磁體為永久性的或為電磁體。磁體可經定位成使得電漿密度分佈可受控制。磁體將增大部分L1中之電漿密度,此將改良藉由電漿分離製程材料之效率。FEWG內之局部阻抗係使用燈絲、點源、電極及/或磁體經調適。燈絲、點源、電極及/或磁體用於增大FEWG之反應區內的密度電漿。 The microwave processing system of the present disclosure will include magnets (not shown) to confine the plasma in the reaction zone and reduce the ignition voltage for generating the plasma. Magnets are permanent or electromagnets. The magnets can be positioned such that the plasma density distribution can be controlled. The magnets will increase the plasma density in portion L1, which will improve the efficiency of separation of process materials by plasma. The local impedance within the FEWG is adapted using filaments, point sources, electrodes and/or magnets. Filaments, point sources, electrodes, and/or magnets are used to increase the density plasma within the reaction zone of the FEWG.
如先前所描述,耦合於包含反應區之FEWG的微波能量產生器以及脈衝式微波能量、高氣體流量(諸如大於5slm)、較大電漿體積(諸如至多1000L)、高壓(諸如大於0.1atm或大於0.9atm,或大於2atm)、在各脈衝開始時有助於電漿點火之燈絲或電子源,及/或進一步向電漿添加能量之電極可在低能量輸入要求情況下實現有成本效益的高生產率化學氣體處理系統。 As previously described, a microwave energy generator coupled to the FEWG containing the reaction zone and pulsed microwave energy, high gas flow (such as greater than 5 slm), larger plasma volume (such as up to 1000 L), high pressure (such as greater than 0.1 atm or Greater than 0.9 atm, or greater than 2 atm), a filament or electron source to aid in the ignition of the plasma at the beginning of each pulse, and/or electrodes to further add energy to the plasma can be cost-effective at low energy input requirements High productivity chemical gas treatment system.
具有上文特徵之微波處理系統以某種方式經組配,使得在FEWG自身內產生電漿且將製程材料分離成組分,諸如圖9、圖10、圖11A至圖11D、圖12A及圖12B、圖13、圖14及圖15中所描繪之實例。在此類系統中,微波能量在產生分離之組分的反應上游進入系統,且因此分離之組分在反應器之微波進入窗上堆積且在微波能量可產生電漿之前吸收微波能量的問題得以緩解。FEWG的產生分離之組分的部分充當反應腔室,且穿過反應腔室之供應氣流及/或製程材料流平行於FEWG中之微波能量的傳播方向。微波能量在FEWG之充 當產生分離之組分的反應腔室的部分上游進入FEWG。 A microwave processing system with the above features is configured in such a way that a plasma is generated within the FEWG itself and the process material is separated into components, such as Figures 9, 10, 11A-11D, 12A, and 12A Examples depicted in 12B, 13, 14, and 15. In such systems, the microwave energy enters the system upstream of the reaction that produces the separated components, and thus the problem of the separated components building up on the microwave entry window of the reactor and absorbing the microwave energy before it can generate a plasma is solved ease. The portion of the FEWG that produces the separated components acts as a reaction chamber, and the supply gas flow and/or process material flow through the reaction chamber is parallel to the direction of propagation of microwave energy in the FEWG. Charging of microwave energy in FEWG When the portion of the reaction chamber that produces the separated components enters the FEWG upstream.
氣體再循環、燈絲及電子源可用於具有利用連續波(CW)微波能量之FEWG之微波氣體處理系統中。在具有CW微波能量之組配中,氣體再循環、燈絲及電子源將仍有利於改良系統之氣體處理效率、降低電漿之點火電壓及控制電漿之密度分佈。儘管FEWG中之反應區具有較大體積,但分離之組分仍可在產生分離之組分之反應的下游黏附於FEWG之壁。儘管此並不防止電漿產生,但其仍表示系統中之生產損失及污染源。因此,供應氣體及製程材料之氣流可設計成在沈積區域附近產生電漿以移除沈積於波導壁(或反應腔室壁)上之分離之產物。在一些實施中,供應氣體及/或製程材料之額外入口可經組配以將氣體引導至沈積區域以移除沈積於波導壁(或反應腔室壁)上之分離之產物。 Gas recirculation, filament and electron sources can be used in microwave gas processing systems with FEWGs utilizing continuous wave (CW) microwave energy. In a configuration with CW microwave energy, the gas recirculation, filament and electron source will still be beneficial to improve the gas processing efficiency of the system, reduce the ignition voltage of the plasma and control the density distribution of the plasma. Despite the larger volume of the reaction zone in the FEWG, the separated components can still adhere to the walls of the FEWG downstream of the reactions that produce the separated components. Although this does not prevent plasma generation, it still represents a loss of production and a source of contamination in the system. Therefore, the gas flow of the supply gas and process materials can be designed to generate a plasma near the deposition area to remove separate products deposited on the waveguide walls (or reaction chamber walls). In some implementations, additional inlets supplying gases and/or process materials can be configured to direct the gases to the deposition area to remove separated products deposited on the waveguide walls (or reaction chamber walls).
微波氣體處理之方法Method of microwave gas treatment
圖16為表示在藉由FEWG之高效率氣體反應中使用化學控制進行氣體之微波處理的方法的實例流程圖1600。在區塊1602中,經由具有一長度之FEWG供應微波能量,其中微波能量在沿著FEWG之方向上傳播。微波能量可為脈衝式微波能量或連續波。微波能量係以小於100kW,或自1kW至100kW,或自1kW至500kW,或自1kW至1kW,或自10kW至5kW,或大於10kW,或大於100kW,或大於500kW,或大於1MW,或大於2MW之時間平均功率供應至FEWG中。FEWG內之壓力為至少0.1個大氣壓,諸如自0.9atm至10atm。在區塊1604中,在沿著FEWG之長度的第一位置處將供應氣體提供至FEWG中,其中大部分供應氣體在微波能量傳播之方向上流動。在區塊1606中,在FEWG之長度的至少一部分中在供應氣體中產生電漿。可在第一位置下游的第二位置處將製程材料添加至FEWG中。大部分製程材料可以大於5slm之流動速率在微波傳播方向上流動。 16 is an example flow diagram 1600 illustrating a method for microwave processing of gases using chemical control in high efficiency gas reactions by FEWG. In block 1602, microwave energy is supplied through the FEWG having a length where the microwave energy propagates in a direction along the FEWG. The microwave energy can be pulsed microwave energy or continuous wave. Microwave energy is less than 100kW, or from 1kW to 100kW, or from 1kW to 500kW, or from 1kW to 1kW, or from 10kW to 5kW, or more than 10kW, or more than 100kW, or more than 500kW, or more than 1MW, or more than 2MW The time-averaged power is supplied to the FEWG. The pressure within the FEWG is at least 0.1 atmosphere, such as from 0.9 atm to 10 atm. In block 1604, supply gas is provided into the FEWG at a first location along the length of the FEWG, with the majority of the supply gas flowing in the direction of microwave energy propagation. In block 1606, a plasma is generated in the supply gas in at least a portion of the length of the FEWG. Process material may be added to the FEWG at a second location downstream of the first location. Most process materials can flow in the direction of microwave propagation at flow rates greater than 5 slm.
任擇地,在區塊1608中,控制電漿之平均能量以將製程材料轉化成分離之組分。平均能量可為例如0.8eV至20eV。可控制脈衝頻率,其中脈衝頻率大於500Hz。例如,微波能量之脈衝頻率可為自500Hz至1000kHz。除了脈衝頻率之外或代替脈衝頻率,可控制脈衝式微波能量之工作循環,其中工作循環小於50%。 Optionally, in block 1608, the average energy of the plasma is controlled to convert process materials into separate components. The average energy may be, for example, 0.8 eV to 20 eV. The pulse frequency can be controlled, wherein the pulse frequency is greater than 500Hz. For example, the pulse frequency of microwave energy can be from 500 Hz to 1000 kHz. In addition to or instead of the pulse frequency, the duty cycle of the pulsed microwave energy can be controlled, wherein the duty cycle is less than 50%.
應注意,圖16之操作可以除所示序列以外之序列執行。例如,可在與區塊1604相同之點處添加製程氣體;亦即,在產生電漿之區塊之前在區塊1604中添加製程氣體。在另一實例中,區塊1606中之電漿能量控制可結合區塊1608中之電漿產生來執行。可藉由不同形式之能量輸入來控制餘輝中之條件。作為一個特定實例,可藉由微波能量控制餘輝條件。此微波能量可直接用以擴展電漿羽或加熱區中之粒子。此特徵使電漿擴展,藉此適應對粒子在電漿中耗費之時間的調諧。此特徵進一步有助於控制整個此區中之粒子的氣相化學反應、粒子充電及粒子加熱過程。對此等參數之控制引發對粒子形態學之控制。替代地,可選擇此區中之能量源,使得並不形成電漿,且替代地粒子經加熱,從而引發對粒子溫度之直接控制。此又允許控制生長動力學且因此控制粒子之形態學。沿著FEWG之長度定位的能量源之並置及使用的一個實施如關於圖15所展示及論述。 It should be noted that the operations of Figure 16 may be performed in sequences other than those shown. For example, the process gas may be added at the same point as block 1604; that is, the process gas may be added in block 1604 prior to the block where the plasma is generated. In another example, plasma energy control in block 1606 may be performed in conjunction with plasma generation in block 1608. Conditions in the afterglow can be controlled by different forms of energy input. As a specific example, afterglow conditions can be controlled by microwave energy. This microwave energy can be used directly to expand the plasma plume or particles in the heating zone. This feature expands the plasma, thereby accommodating tuning of the time the particles spend in the plasma. This feature further aids in controlling the gas phase chemical reaction, particle charging and particle heating processes of the particles throughout this region. Control over these parameters leads to control over particle morphology. Alternatively, the energy source in this zone can be selected such that no plasma is formed, and instead the particles are heated, resulting in direct control of the particle temperature. This in turn allows control of the growth kinetics and thus the morphology of the particles. One implementation of the juxtaposition and use of energy sources positioned along the length of the FEWG is as shown and discussed with respect to FIG. 15 .
結構化碳、各種碳奈米粒子、各種含碳聚集體Structured carbon, various carbon nanoparticles, various carbon-containing aggregates
圖17A至圖17Y描繪在其他材料上方生長之結構化碳、各種碳奈米粒子、各種含碳聚集體及各種三維含碳結構。與藉由習知系統及方法可實現的較低均勻性、較不規則及較低純度粒子形成對比,碳奈米粒子及聚集體之特徵可在於:高「均勻性」,諸如所要碳同素異形體之高質量分數;高度「規則性」,諸如低濃度之缺陷;及/或高「純度」,諸如低濃度之元素雜質。 17A-17Y depict structured carbon, various carbon nanoparticles, various carbon-containing aggregates, and various three-dimensional carbon-containing structures grown over other materials. Carbon nanoparticles and aggregates can be characterized by high "uniformity", such as desired carbon isotopes, in contrast to the less uniform, more irregular, and less pure particles achievable by conventional systems and methods High mass fraction of isoforms; high "regularity", such as low concentrations of defects; and/or high "purity", such as low concentrations of elemental impurities.
使用本文中所描述方法產生之奈米粒子可包含多壁球形富勒烯(MWSF)或連接式MWSF且具有較高均勻性,諸如石墨烯與MWSF之比率為自20%至80%;高度規則性,諸如ID/IG比率為自0.95至1.05之拉曼簽名;及高純度,諸如碳與除氫以外之其他元素之比率大於99.9%。使用本文中所描述方法產生之奈米粒子可包含MWSF或連接式MWSF,且MWSF並不包含由除碳以外之雜質元素構成之芯。在一些情況下,使用本文中所描述方法產生之粒子為包含上文所描述奈米粒子的聚集體,該等奈米粒子具有較大直徑,諸如大於10μm。 Nanoparticles produced using the methods described herein can comprise multi-wall spherical fullerenes (MWSF) or linked MWSF and have high homogeneity, such as graphene to MWSF ratios from 20% to 80%; highly regular Properties, such as Raman signatures with ID/IG ratios from 0.95 to 1.05; and high purity, such as carbon to elements other than hydrogen ratios greater than 99.9%. Nanoparticles produced using the methods described herein may comprise MWSF or linked MWSF, and the MWSF does not comprise a core composed of impurity elements other than carbon. In some cases, the particles produced using the methods described herein are aggregates comprising the nanoparticles described above, the nanoparticles having larger diameters, such as greater than 10 μm.
習知方法已用於產生包含具有高度規則性之多壁球形富勒烯的粒子,但習知方法產生具有多種缺點之碳產物。例如,高溫合成技術使得粒子具有許多碳同素異形體之混合物,且因此具有低均勻性,諸如富勒烯與其他碳同素異形體之比率小於20%,及/或較小粒度,諸如在一些情況下小於1μm或小於100nm。使用催化劑之方法產生包括催化劑元素之產物,且因此亦具有低純度,諸如碳與其他元素之比率小於95%。此等不當性質亦常常引起所得碳粒子之不當電性質,諸如小於1000S/m之電導率。 Conventional methods have been used to produce particles comprising multiwall spherical fullerenes with a high degree of regularity, but conventional methods produce carbon products with various disadvantages. For example, high temperature synthesis techniques result in particles having a mixture of many carbon allotropes, and thus low homogeneity, such as a ratio of fullerenes to other carbon allotropes of less than 20%, and/or smaller particle sizes, such as in In some cases less than 1 μm or less than 100 nm. Processes using catalysts produce products that include catalyst elements, and are therefore also of low purity, such as a carbon to other element ratio of less than 95%. These improper properties also often lead to improper electrical properties of the resulting carbon particles, such as electrical conductivity of less than 1000 S/m.
本文中所描述之碳奈米粒子及聚集體之特徵在於指示結構之高度規則性及均勻性的拉曼光譜法。本文中所描述之均勻規則及/或純碳奈米粒子及聚集體係使用如下文所描述之反應器及方法所產生。額外優勢及/或改良亦將自以下揭露內容變得顯而易見。 The carbon nanoparticles and aggregates described herein are characterized by Raman spectroscopy that indicates a high degree of regularity and uniformity of structure. The uniform regular and/or pure carbon nanoparticles and aggregated systems described herein are produced using the reactors and methods described below. Additional advantages and/or improvements will also become apparent from the following disclosure.
定義definition
術語「石墨烯」意指呈一個原子形成各頂點之二維原子級六方晶格形式之碳的同素異形體。石墨烯中之碳原子經sp2鍵結。另外,當使用532nm激發雷射時,石墨烯具有具二個主峰值之拉曼光譜:大約1580cm-1處之G模式及大約1350cm-1處之D模式。 The term "graphene" means an allotrope of carbon in the form of a two-dimensional atomic-scale hexagonal lattice with one atom forming each vertex. The carbon atoms in graphene are bonded by sp 2 . In addition, graphene has a Raman spectrum with two main peaks: a G mode at about 1580 cm-1 and a D mode at about 1350 cm-1 when a 532 nm excitation laser is used.
術語「富勒烯」意指呈中空球、橢球、管或其他形狀形式之碳之分子。球形富勒烯亦可稱為巴克敏斯特富勒烯或巴克球。圓柱形富勒烯亦可稱為碳奈米管。富勒烯在結構上類似於石墨,石墨由經鍵聯六邊形環之堆疊石墨烯薄片構成。富勒烯亦可包含五邊形(或有時七邊形)環。 The term "fullerene" means a molecule of carbon in the form of a hollow sphere, ellipsoid, tube or other shape. Spherical fullerenes are also known as buckminster fullerenes or buckyballs. Cylindrical fullerenes can also be called carbon nanotubes. Fullerenes are structurally similar to graphite, which consists of stacked graphene sheets linked by hexagonal rings. Fullerenes may also contain pentagonal (or sometimes heptagonal) rings.
術語「多壁富勒烯」指代具有多個同心層之富勒烯。例如,多壁奈米管(MWNT)包含多個石墨烯軋製層(同心管)。多壁球形富勒烯(MWSF)包含多個同心富勒烯球。 The term "multi-walled fullerene" refers to a fullerene having multiple concentric layers. For example, multi-wall nanotubes (MWNTs) contain multiple rolled layers of graphene (concentric tubes). Multiwall spherical fullerenes (MWSFs) contain multiple concentric fullerene spheres.
術語「奈米粒子」指代量測為自1nm至989nm之粒子。奈米粒子可包括一或多個結構特徵,諸如晶體結構、缺陷濃度等,及一或多種類型之原子。奈米粒子可為任何形狀,包括但不限於球形形狀、類球形形狀、啞鈴形狀、圓柱形形狀、細長圓柱形類型形狀、矩形稜柱形狀、圓盤形狀、電線形狀、不規則形狀、緻密形狀(諸如幾乎不具有空隙)、多孔形狀(諸如具有許多空隙)等。 The term "nanoparticle" refers to particles measuring from 1 nm to 989 nm. Nanoparticles can include one or more structural features, such as crystal structure, defect concentration, etc., and one or more types of atoms. Nanoparticles can be of any shape, including but not limited to spherical shapes, spheroid-like shapes, dumbbell shapes, cylindrical shapes, elongated cylindrical type shapes, rectangular prism shapes, disc shapes, wire shapes, irregular shapes, dense shapes ( such as having few voids), porous shapes such as having many voids, and the like.
術語「聚集體」指代藉由凡得瓦爾力、藉由共價鍵、藉由離子鍵、藉由金屬鍵或藉由其他物理或化學相互作用連接在一起之多個奈米粒子。聚集體之大小可顯著不同,但一般大於約500nm。 The term "aggregate" refers to a plurality of nanoparticles linked together by Van der Waals forces, by covalent bonds, by ionic bonds, by metallic bonds, or by other physical or chemical interactions. The size of the aggregates can vary considerably, but is generally greater than about 500 nm.
如本文中所描述,碳奈米粒子包括二個或多於二個連接式多壁球形富勒烯(MWSF)及塗佈連接式MWSF之石墨烯層。如本文中所描述,碳奈米粒子包括二個或多於二個連接式多壁球形富勒烯(MWSF)及塗佈連接式MWSF之石墨烯層,其中MWSF並不包含由除碳以外之雜質元素構成之芯。如本文中所描述,碳奈米粒子包括二個或多於二個連接式多壁球形富勒烯(MWSF)及塗佈連接式MWSF之石墨烯層,其中MWSF在中心處並不包含空隙,諸如大於大約0.5nm,或大於大約1nm之無碳原子空間。如與較不規則、非均勻、非晶碳粒子之球形成對比,連接式MWSF可由sp2混成碳原子之同心規則球形成。 As described herein, carbon nanoparticles include two or more than two linked multi-wall spherical fullerenes (MWSFs) and graphene layers coated with linked MWSFs. As described herein, carbon nanoparticles include two or more than two linked multi-wall spherical fullerenes (MWSFs) and graphene layers coated with linked MWSFs, wherein the MWSFs do not contain any material other than carbon. The core composed of impurity elements. As described herein, the carbon nanoparticle includes two or more than two linked multi-wall spherical fullerenes (MWSF) and a graphene layer coating the linked MWSF, wherein the MWSF does not contain voids at the center, Such as greater than about 0.5 nm, or greater than about 1 nm of carbon-free space. As contrasted to spheres of more irregular, non-uniform, amorphous carbon particles, linked MWSFs can be formed from concentric regular spheres of sp2 mixed carbon atoms.
包含連接式MWSF之奈米粒子的平均直徑可在自5至500nm,或自5至250nm,或自5至100nm,或自5至50nm,或自10至500nm,或自10至250nm,或自10至100nm,或自10至50nm,或自170至500nm,或自170至250nm,或自170至100nm,或自50至500nm,或自50至250nm,或自50至100nm之範圍內。 Nanoparticles comprising linked MWSF can have an average diameter ranging from 5 to 500 nm, or from 5 to 250 nm, or from 5 to 100 nm, or from 5 to 50 nm, or from 10 to 500 nm, or from 10 to 250 nm, or from 10 to 100 nm, or from 10 to 50 nm, or from 170 to 500 nm, or from 170 to 250 nm, or from 170 to 100 nm, or from 50 to 500 nm, or from 50 to 250 nm, or from 50 to 100 nm.
本文中所描述之碳奈米粒子可形成聚集體,其中許多奈米粒子聚集在一起以形成較大單位。碳聚集體可包括多個碳奈米粒子。跨越碳聚集體之直徑可在自10至500μm,或自50至500μm,或自100至500μm,或自250至500μm,或自10至250μm,或自10至100μm,或自10至50μm之範圍內。如上文所界定,聚集體可由多個碳奈米粒子形成。聚集體可包含連接式MWSF。聚集體包含連接式MWSF,其具有高均勻性量度,諸如石墨烯與MWSF之比率為自20%至80%;高度規則性,諸如ID/IG比率為自0.95至1.05之拉曼簽名;及高純度,諸如大於99.9%之碳。 The carbon nanoparticles described herein can form aggregates, in which many nanoparticles are aggregated together to form larger units. The carbon aggregates can include a plurality of carbon nanoparticles. The diameter across the carbon aggregates can range from 10 to 500 μm, or from 50 to 500 μm, or from 100 to 500 μm, or from 250 to 500 μm, or from 10 to 250 μm, or from 10 to 100 μm, or from 10 to 50 μm Inside. As defined above, aggregates may be formed from a plurality of carbon nanoparticles. Aggregates may comprise linked MWSFs. Aggregates comprise linked MWSFs with high homogeneity measures, such as graphene to MWSF ratios ranging from 20% to 80%; high regularity, such as Raman signatures with ID/IG ratios ranging from 0.95 to 1.05; and high Purity, such as greater than 99.9% carbon.
產生尤其具有上文所描述範圍中之直徑的碳奈米粒子之聚集體的一個益處為相比小於500nm之粒子或粒子聚集體,更易於收集大於10μm之粒子聚集體。易於收集降低了碳奈米粒子之生產中所使用之製造設備的成本且增大了碳奈米粒子之產率。另外,大小大於10μm之粒子相較於處置較小奈米粒子之風險造成較少安全問題,諸如由於吸入較小奈米粒子之潛在健康及安全風險。因此,較低健康及安全風險進一步降低了製造成本。 One benefit of producing aggregates of carbon nanoparticles, especially with diameters in the ranges described above, is that particle aggregates larger than 10 μm are easier to collect than particles or particle aggregates smaller than 500 nm. Ease of collection reduces the cost of manufacturing equipment used in the production of carbon nanoparticles and increases the yield of carbon nanoparticles. In addition, particles larger than 10 μm in size pose fewer safety concerns than the risks of handling smaller nanoparticles, such as potential health and safety risks due to inhalation of smaller nanoparticles. Thus, lower health and safety risks further reduce manufacturing costs.
碳奈米粒子之石墨烯與MWSF之比率可為自10%至90%,或自10%至80%,或自10%至60%,或自10%至170%,或自10%至20%,或自20%至170%,或自20%至90%,或自170%至90%,或自60%至90%,或自80%至90%。碳聚集體之石墨烯與MWSF之比率為自10%至90%,或自10%至80%, 或自10%至60%,或自10%至170%,或自10%至20%,或自20%至170%,或自20%至90%,或自170%至90%,或自60%至90%,或自80%至90%。碳奈米粒子之石墨烯與連接式MWSF之比率為自10%至90%,或自10%至80%,或自10%至60%,或自10%至170%,或自10%至20%,或自20%至170%,或自20%至90%,或自170%至90%,或自60%至90%,或自80%至90%。碳聚集體之石墨烯與連接式MWSF之比率為自10%至90%,或自10%至80%,或自10%至60%,或自10%至170%,或自10%至20%,或自20%至170%,或自20%至90%,或自170%至90%,或自60%至90%,或自80%至90%。 The ratio of graphene to MWSF of carbon nanoparticle can be from 10% to 90%, or from 10% to 80%, or from 10% to 60%, or from 10% to 170%, or from 10% to 20% %, or from 20% to 170%, or from 20% to 90%, or from 170% to 90%, or from 60% to 90%, or from 80% to 90%. The ratio of graphene to MWSF of the carbon aggregate is from 10% to 90%, or from 10% to 80%, or from 10% to 60%, or from 10% to 170%, or from 10% to 20%, or from 20% to 170%, or from 20% to 90%, or from 170% to 90%, or from 60% to 90%, or from 80% to 90%. The ratio of graphene to linked MWSF of carbon nanoparticle is from 10% to 90%, or from 10% to 80%, or from 10% to 60%, or from 10% to 170%, or from 10% to 20%, or from 20% to 170%, or from 20% to 90%, or from 170% to 90%, or from 60% to 90%, or from 80% to 90%. The ratio of graphene to linked MWSF of carbon aggregates is from 10% to 90%, or from 10% to 80%, or from 10% to 60%, or from 10% to 170%, or from 10% to 20% %, or from 20% to 170%, or from 20% to 90%, or from 170% to 90%, or from 60% to 90%, or from 80% to 90%.
拉曼光譜法可用於表徵用於區分其分子結構之碳同素異形體。例如,可使用拉曼光譜法表徵石墨烯以判定諸如規則性/不規則性、邊緣及晶界、厚度、層數目、摻雜、應變及熱導率之資訊。亦已使用拉曼光譜法表徵MWSF以判定MWSF之規則度。 Raman spectroscopy can be used to characterize carbon allotropes used to differentiate their molecular structures. For example, Raman spectroscopy can be used to characterize graphene to determine information such as regularity/irregularity, edges and grain boundaries, thickness, number of layers, doping, strain, and thermal conductivity. The MWSF has also been characterized using Raman spectroscopy to determine the regularity of the MWSF.
拉曼光譜法可用於表徵MWSF或連接式MWSF之結構。拉曼光譜中之主峰值為G模式及D模式。G模式係歸因於sp2混成碳網路中之碳原子的振動,且D模式與具有缺陷之六邊形碳環之呼吸相關。在一些情況下,可存在缺陷,但在拉曼光譜中不可偵測到該等缺陷。例如,若所呈現結晶結構相對於基底平面正交,則D峰值將展示增大。替代地,若呈現有相對於基底平面平行之完全平面表面,則D峰值將為零。 Raman spectroscopy can be used to characterize the structure of MWSF or linked MWSF. The main peaks in the Raman spectrum are G mode and D mode. The G mode is ascribed to the vibrations of carbon atoms in the sp 2 mixed carbon network, and the D mode is associated with the respiration of defective hexagonal carbon rings. In some cases, defects may be present but not detectable in Raman spectroscopy. For example, if the presented crystalline structure is orthogonal with respect to the plane of the substrate, the D peak will exhibit an increase. Alternatively, if a perfectly planar surface parallel to the plane of the substrate is present, the D peak will be zero.
當使用532nm入射光時,拉曼G模式對於平面石墨通常在1582cm-1處,然而對於MWSF或連接式MWSF可向下位移(諸如降至1565cm-1或降至1580cm-1)。在MWSF或連接式MWSF之拉曼光譜中在大約1350cm-1處觀測到D模式。D模式峰值與G模式峰值之強度之比率(諸如ID/IG)與MWSF之規則度相關,其中較低ID/IG指示較高規則度。接近或低於1之ID/IG指示相 對較高規則度,且大於1.1之ID/IG指示較低規則度。 When using 532 nm incident light, the Raman G mode is typically at 1582 cm-1 for planar graphite, but can be shifted downward (such as down to 1565 cm-1 or down to 1580 cm-1) for MWSF or linked MWSF. The D mode is observed at approximately 1350 cm-1 in the Raman spectrum of MWSF or linked MWSF. The ratio of the intensity of the D-mode peak to the G-mode peak, such as ID/IG, is related to the regularity of the MWSF, with lower ID/IG indicating higher regularity. ID/IG indication phase near or below 1 For a higher degree of regularity, an ID/IG greater than 1.1 indicates a lower degree of regularity.
如本文中所描述,包含MWSF或連接式MWSF之碳奈米粒子或碳聚集體具有拉曼光譜,其中當使用532nm入射光時,第一拉曼峰值在約1350cm 1處且第二拉曼峰值在約1580cm 1處。本文中所描述之奈米粒子或聚集體的第一拉曼峰值之強度與第二拉曼峰值之強度的比率(諸如ID/IG)在自0.95至1.05,或自0.9至1.1,或自0.8至1.2,或自0.9至1.2,或自0.8至1.1,或自0.5至1.5,或小於1.5,或小於1.2,或小於1.1,或小於1,或小於0.95,或小於0.9,或小於0.8之範圍內。
As described herein, carbon nanoparticles or carbon aggregates comprising MWSF or linked MWSF have a Raman spectrum with a first Raman peak at about 1350 cm and a second Raman peak when 532 nm incident light is used At about
如上文所界定,包含MWSF或連接式MWSF之碳聚集體具有高純度。包含MWSF或連接式MWSF之碳聚集體之碳與金屬之比率大於99.99%,或大於99.95%,或大於99.9%,或大於99.8%,或大於99.5%,或大於99%。碳聚集體之碳與其他元素之比率大於99.99%,或大於99.95%,或大於99.9%,或大於99.5%,或大於99%,或大於90%,或大於80%,或大於70%,或大於60%。碳聚集體之碳與其他元素(除了氫以外)之比率大於99.99%,或大於99.95%,或大於99.9%,或大於99.8%,或大於99.5%,或大於99%,或大於90%,或大於80%,或大於70%,或大於60%。 As defined above, carbon aggregates comprising MWSF or linked MWSF are of high purity. The carbon-to-metal ratio of carbon aggregates comprising MWSF or linked MWSF is greater than 99.99%, or greater than 99.95%, or greater than 99.9%, or greater than 99.8%, or greater than 99.5%, or greater than 99%. The ratio of carbon to other elements in carbon aggregates is greater than 99.99%, or greater than 99.95%, or greater than 99.9%, or greater than 99.5%, or greater than 99%, or greater than 90%, or greater than 80%, or greater than 70%, or greater than 60%. The ratio of carbon to other elements (other than hydrogen) of carbon aggregates is greater than 99.99%, or greater than 99.95%, or greater than 99.9%, or greater than 99.8%, or greater than 99.5%, or greater than 99%, or greater than 90%, or More than 80%, or more than 70%, or more than 60%.
如上文所界定,包含MWSF或連接式MWSF之碳聚集體具有高比表面積。碳聚集體之布厄特(BET)比表面積為自10至200m2/g,或自10至100m2/g,或自10至50m2/g,或自50至200m2/g,或自50至100m2/g,或自10至1000m2/g。 As defined above, carbon aggregates comprising MWSF or linked MWSF have a high specific surface area. The Beuett (BET) specific surface area of carbon aggregates is from 10 to 200m2/g, or from 10 to 100m2/g, or from 10 to 50m2/g, or from 50 to 200m2/g, or from 50 to 100m2/ g, or from 10 to 1000m2/g.
如上文所界定,包含MWSF或連接式MWSF之碳聚集體具有高電導率。如上文所界定,包含MWSF或連接式MWSF之碳聚集體經壓縮成集結粒,且集結粒具有大於500S/m,或大於1000S/m,或大於2000S/m,或大於 3000S/m,或大於17000S/m,或大於5000S/m,或大於10000S/m,或大於20000S/m,或大於30000S/m,或大於170000S/m,或大於50000S/m,或大於60000S/m,或大於70000S/m,或自500S/m至100000S/m,或自500S/m至1000S/m,或自500S/m至10000S/m,或自500S/m至20000S/m,或自500S/m至100000S/m,或自1000S/m至10000S/m,或自1000S/m至20000S/m,或自10000至100000S/m,或自10000S/m至80000S/m,或自500S/m至10000S/m之電導率。 As defined above, carbon aggregates comprising MWSF or linked MWSF have high electrical conductivity. As defined above, carbon aggregates comprising MWSF or linked MWSF are compressed into agglomerates, and the agglomerates have greater than 500 S/m, or greater than 1000 S/m, or greater than 2000 S/m, or greater than 3000S/m, or more than 17000S/m, or more than 5000S/m, or more than 10000S/m, or more than 20000S/m, or more than 30000S/m, or more than 170000S/m, or more than 50000S/m, or more than 60000S/ m, or greater than 70000S/m, or from 500S/m to 100000S/m, or from 500S/m to 1000S/m, or from 500S/m to 10000S/m, or from 500S/m to 20000S/m, or from 500S/m to 100000S/m, or from 1000S/m to 10000S/m, or from 1000S/m to 20000S/m, or from 10000 to 100000S/m, or from 10000S/m to 80000S/m, or from 500S/ Conductivity from m to 10000S/m.
在一些情況下,集結粒之密度為大約1g/cm3,或大約1.2g/cm3,或大約1.5g/cm3,或大約2g/cm3,或大約2.2g/cm3,或大約2.5g/cm3,或大約3g/cm3。另外,已執行測試,其中已在2000psi及12000psi之壓縮度以及800℃及1000℃之退火溫度下形成碳聚集體材料之經壓縮集結粒。較高壓縮度及/或較高退火溫度大體上產生具有較高電導率程度之集結粒,包括在121710.0S/m至13173.3S/m之範圍內的電導率。 In some cases, the agglomerates have a density of about 1 g/cm3, or about 1.2 g/cm3, or about 1.5 g/cm3, or about 2 g/cm3, or about 2.2 g/cm3, or about 2.5 g/cm3, or About 3g/cm3. Additionally, tests have been performed in which compressed agglomerates of carbon aggregate material have been formed at compressions of 2000 psi and 12000 psi and annealing temperatures of 800°C and 1000°C. Higher degrees of compression and/or higher annealing temperatures generally produce agglomerated grains with higher degrees of electrical conductivity, including electrical conductivities in the range of 121710.0 S/m to 13173.3 S/m.
在後處理之前或之後,本文中所描述之碳奈米粒子及聚集體用於各種應用。此類應用包括但不限於運輸應用(諸如汽車及卡車輪胎、耦接件、安裝件、彈性o形環、軟管、密封劑、索環等)及工業應用(諸如橡膠添加劑、聚合材料之官能化添加劑、環氧樹脂之添加劑等)。 Before or after post-processing, the carbon nanoparticles and aggregates described herein are used in various applications. Such applications include, but are not limited to, transportation applications (such as car and truck tires, couplings, mounts, elastic o-rings, hoses, sealants, grommets, etc.) and industrial applications (such as rubber additives, functional chemical additives, epoxy resin additives, etc.).
圖17A及圖17B展示經砷合成碳奈米粒子之透射電子顯微鏡(TEM)影像。圖17A(在第一放大率下)及圖17B(在第二放大率下)之碳奈米粒子包含連接式多壁球形富勒烯1702(MWSF),其中石墨烯層1704塗佈連接式MWSF。在此實例中,由於相對較短諧振時間,MWSF與石墨烯同素異形體之比率大約為80%。圖17A中之MWSF的直徑為大約5nm至10nm,且在使用上文所描述條件情況下,直徑可為5nm至500nm。跨越MWSF之平均直徑在自
5nm至500nm,或自5nm至250nm,或自5nm至100nm,或自5nm至50nm,或自10nm至500nm,或自10nm至250nm,或自10nm至100nm,或自10nm至50nm,或自40nm至500nm,或自40nm至250nm,或自40nm至100nm,或自50nm至500nm,或自50nm至250nm,或自50nm至100nm之範圍內。在此過程中未使用催化劑,且因此不存在包含污染物之中心晶種。此實例中所產生之聚集粒子之粒度為大約10μm至100μm,或大約10μm至500μm。
17A and 17B show transmission electron microscopy (TEM) images of arsenic-synthesized carbon nanoparticles. The carbon nanoparticles of Figures 17A (at first magnification) and 17B (at second magnification) comprise linked multi-wall spherical fullerenes 1702 (MWSF) with
圖17C展示此實例中之經砷合成聚集體在532nm入射光情況下獲得之拉曼光譜。此實例中所產生之聚集體的ID/IG為大約0.99至1.03,從而指示聚集體係由具有高規則度之碳同素異形體構成。 Figure 17C shows the Raman spectrum obtained with incident light at 532 nm for the arsenic-synthesized aggregates in this example. The ID/IG of the aggregates produced in this example was about 0.99 to 1.03, indicating that the aggregated system was composed of carbon allotropes with a high degree of regularity.
圖17D及圖17E展示在藉由在球磨機中研磨而進行大小縮減之後的碳奈米粒子之實例TEM影像。以3分鐘逆時針研磨步驟、接著6分鐘空閒步驟、接著3分鐘順時針研磨步驟、接著6分鐘空閒步驟之循環進行球磨。研磨步驟係使用1700rpm之旋轉速度來執行。研磨介質為氧化鋯且大小在0.1mm至10mm範圍內。總大小縮減處理時間為60分鐘至120分鐘。在大小縮減之後,此實例中所產生之聚集粒子具有大約1μm至5μm之粒度。大小縮減之後的碳奈米粒子為連接式MWSF,其中石墨烯層塗佈連接式MWSF。 17D and 17E show example TEM images of carbon nanoparticles after size reduction by milling in a ball mill. Ball milling was performed in a cycle of a 3 minute counterclockwise grinding step, followed by a 6 minute idle step, followed by a 3 minute clockwise grinding step, followed by a 6 minute idle step. The grinding step was performed using a rotational speed of 1700 rpm. The grinding media was zirconia and ranged in size from 0.1 mm to 10 mm. The total size reduction processing time was 60 minutes to 120 minutes. After size reduction, the aggregated particles produced in this example had a particle size of about 1 μm to 5 μm. The carbon nanoparticle after size reduction is a linked MWSF, wherein the graphene layer coats the linked MWSF.
圖17F展示在大小縮減之後在532nm入射光情況下自此等聚集體獲得之拉曼光譜。此實例中之聚集粒子在大小縮減之後的ID/IG為大約1.017。另外,在大小縮減之後的粒子具有大約40m2/g至50m2/g之布厄特(BET)比表面積。 Figure 17F shows the Raman spectra obtained from these aggregates with incident light at 532 nm after size reduction. The ID/IG of the aggregated particles in this example after size reduction was about 1.017. In addition, the particles after size reduction have a Beuett (BET) specific surface area of about 40 m2/g to 50 m2/g.
此樣品中所產生之聚集體的純度係使用質譜分析及x射線螢光(XRF)光譜分析來量測。在16個不同批次中量測的碳與除氫以外之其他元素的 比率為99.86%至99.98%,平均為99.917%之碳。 The purity of the aggregates produced in this sample was measured using mass spectrometry and x-ray fluorescence (XRF) spectroscopy. Carbon and elements other than hydrogen measured in 16 different batches The ratio is 99.86% to 99.98%, with an average of 99.917% carbon.
在此實例中,前驅材料為甲烷,其以1slm至5slm流動。在此等流動速率及工具幾何形狀之情況下,反應腔室中氣體之諧振時間為大約20秒至30秒,且碳粒子產生速率為大約20g/hr。關於此處理系統之其他細節可見於標題為「CRACKING OF A PROCESS GAS」的先前所提及美國專利9,862,602中。 In this example, the precursor material is methane, which flows at 1 slm to 5 slm. At these flow rates and tool geometries, the resonance time of the gas in the reaction chamber was about 20 to 30 seconds, and the carbon particle generation rate was about 20 g/hr. Additional details regarding this processing system can be found in the previously mentioned US Patent 9,862,602 entitled "CRACKING OF A PROCESS GAS".
圖17G、圖17H及圖17I展示此實例之經砷合成碳奈米粒子之TEM影像。碳奈米粒子包含連接式多壁球形富勒烯(MWSF),其中石墨烯層塗佈連接式MWSF。由於相對較長諧振時間允許較厚或較多石墨烯層塗佈MWSF,此實例中之多壁富勒烯與石墨烯同素異形體之比率為大約30%。在此過程中未使用催化劑,且因此不存在包含污染物之中心晶種。此實例中所產生之經砷合成聚集粒子之粒度為大約10μm至500μm。圖17J展示來自此實例之聚集體的拉曼光譜。此實例中之經砷合成粒子之拉曼簽名指示塗佈經砷合成材料中之MWSF的較厚石墨烯層。另外,經砷合成粒子具有大約90m2/g至100m2/g之布厄特(BET)比表面積。 17G, 17H, and 17I show TEM images of arsenic-synthesized carbon nanoparticles of this example. The carbon nanoparticles comprise linked multi-wall spherical fullerenes (MWSFs) with a graphene layer coating the linked MWSFs. Since the relatively long resonance time allows thicker or more graphene layers to coat the MWSF, the ratio of multi-wall fullerenes to graphene allotropes in this example is about 30%. No catalyst is used in this process, and therefore there are no central seeds containing contaminants. The particle size of the arsenic-synthesized aggregated particles produced in this example was about 10 μm to 500 μm. Figure 17J shows the Raman spectrum of the aggregate from this example. The Raman signature of the arsenic-synthesized particles in this example indicates a thicker graphene layer coating the MWSF in the arsenic-synthesized material. In addition, the arsenic-synthesized particles have a Beuett (BET) specific surface area of about 90 m2/g to 100 m2/g.
圖17K及圖17L展示此實例之碳奈米粒子的TEM影像。特定而言,影像描繪藉由在球磨機中研磨而執行大小縮減之後的碳奈米粒子。大小縮減製程條件與關於前述圖17G至圖17J所描述之彼等條件相同。在大小縮減之後,此實例中所產生之聚集粒子具有大約1μm至5μm之粒度。TEM影像展示在大小縮減之後可觀測到埋入石墨烯塗層中之連接式MWSF。圖17M展示在大小縮減之後在532nm入射光情況下自此實例之聚集體獲得之拉曼光譜。在大小縮減之後,此實例中之聚集粒子之ID/IG大約為1,從而指示埋入經砷合成之石墨烯塗層中之連接式MWSF在大小縮減之後變得在拉曼中可偵測到,且規則性良好。在大小縮減之後的粒子具有大約90m2/g至100m2/g之布厄特(BET)比表面積。 17K and 17L show TEM images of carbon nanoparticles of this example. Specifically, the images depict carbon nanoparticles after size reduction by milling in a ball mill. The size reduction process conditions are the same as those described with respect to Figures 17G-17J previously. After size reduction, the aggregated particles produced in this example had a particle size of about 1 μm to 5 μm. TEM images show that connected MWSFs embedded in the graphene coating can be observed after size reduction. Figure 17M shows the Raman spectrum obtained from the aggregate of this example with 532 nm incident light after size reduction. After size reduction, the ID/IG of the aggregated particles in this example is about 1, indicating that the connected MWSF embedded in the arsenic-synthesized graphene coating becomes detectable in Raman after size reduction , and the regularity is good. The particles after size reduction have a Beuett (BET) specific surface area of about 90 m2/g to 100 m2/g.
圖17N為在第一放大率下展示石墨及石墨烯同素異形體的碳聚集體之掃描電子顯微鏡(SEM)影像。圖17O為在第二放大率下展示石墨及石墨烯同素異形體的碳聚集體之SEM影像。層狀石墨烯清楚地展示於碳之變形(褶皺)內。碳同素異形體之3D結構亦為可見的。 Figure 17N is a scanning electron microscope (SEM) image at first magnification showing carbon aggregates of graphite and graphene allotropes. Figure 17O is an SEM image at a second magnification showing carbon aggregates of graphite and graphene allotropes. Layered graphene is clearly displayed within the deformations (folds) of the carbon. The 3D structure of the carbon allotropes is also visible.
圖17N及圖17O之碳粒子的粒度分佈展示於圖17P中。質量基準累積粒度分佈1706對應於圖中之左側y軸(Q3(x)[%])。質量粒度分佈1708之直方圖對應於圖中之右側軸線(dQ3(x)[%])。中值粒度為大約33μm。第10百分位粒度為大約9μm,且第90百分位粒度為大約103μm。粒子之質量密度為大約10g/L。
The particle size distributions of the carbon particles of Figures 17N and 17O are shown in Figure 17P. The mass-based cumulative
自多級反應器捕獲之碳粒子之粒度分佈展示於圖17Q中。質量基準累積粒度分佈1714對應於圖中之左側y軸(Q3(x)[%])。質量粒度分佈1716之直方圖對應於圖中之右側軸線(dQ3(x)[%])。所捕獲中值粒度為大約11μm。第10百分位粒度為大約3.5μm,且第90百分位粒度為大約21μm。圖17Q中之圖亦展示對應於圖中之左側y軸(Q0(x)[%])的數目基準累積粒度分佈1718。以數目為基準之中值粒度為大約0.1μm至大約0.2μm。所收集粒子之質量密度為大約22g/L。
The particle size distribution of carbon particles captured from the multistage reactor is shown in Figure 17Q. The mass-based cumulative
返回至圖17P之論述,圖亦展示第二組實例結果。特定而言,在此實例中,藉由機械研磨縮減粒子之大小,且接著使用旋風分離器處理經大小縮減粒子。此實例中所捕獲之經大小縮減碳粒子之質量基準累積粒度分佈1710對應於圖中之左側y軸(Q3(x)[%])。質量基準粒度分佈1712之直方圖對應於圖中之右側軸線(dQ3(x)[%])。此實例中所捕獲之經大小縮減碳粒子之中值粒度為大約6μm。第10百分位粒度為自1μm至2μm,且第90百分位粒度為自10μm至20μm。
Returning to the discussion of Figure 17P, the figure also shows a second set of example results. Specifically, in this example, the size of the particles is reduced by mechanical milling, and then the size-reduced particles are processed using a cyclone. The mass-based cumulative
關於製造及使用旋風分離器之其他細節可見於2017年10月5日申請的標題為「MICROWAVE REACTOR SYSTEM WITH GAS-SOLIDS SEPARATION」之美國專利申請案15/725,928中,該申請案以全文引用之方式併入本文中。 Additional details regarding the manufacture and use of cyclones can be found in US Patent Application Serial No. 15/725,928, entitled "MICROWAVE REACTOR SYSTEM WITH GAS-SOLIDS SEPARATION," filed October 5, 2017, which is incorporated by reference in its entirety. Incorporated herein.
使用微波反應器系統產生的高純度碳同素異形體High Purity Carbon Allotropes Produced Using a Microwave Reactor System
可使用微波電漿反應器系統,使用包含甲烷或包含異丙醇(IPA)或包含乙醇或包含冷凝烴(諸如己烷)之前驅材料產生包含石墨、石墨烯及非晶碳之碳粒子及聚集體。在一些其他實例中,含碳前驅體任擇地與供應氣體(諸如氬氣)混合。此實例中所產生之粒子包含石墨、石墨烯、非晶碳,而無晶種粒子。此實例中之粒子的碳與其他元素(除氫以外)之比率為大約99.5%或更大。 Carbon particles and aggregates comprising graphite, graphene and amorphous carbon can be produced using a microwave plasma reactor system using precursor materials comprising methane or comprising isopropanol (IPA) or comprising ethanol or comprising condensed hydrocarbons such as hexane body. In some other examples, the carbon-containing precursor is optionally mixed with a supply gas, such as argon. The particles produced in this example comprise graphite, graphene, amorphous carbon, and no seed particles. The ratio of carbon to other elements (other than hydrogen) for the particles in this example is about 99.5% or greater.
在一個特定實例中,烴為微波電漿反應器之輸入材料,且反應器之分離之輸出包含氫氣以及包含石墨、石墨烯及非晶碳之碳粒子。在多級氣固分離系統中將碳粒子與氫氣分離。來自反應器之分離之輸出的固體負載為自0.001g/L至2.5g/L。 In one particular example, the hydrocarbons are the input material of the microwave plasma reactor, and the separated output of the reactor includes hydrogen gas and carbon particles including graphite, graphene, and amorphous carbon. Carbon particles are separated from hydrogen in a multistage gas-solid separation system. The solids loading from the separated output of the reactor was from 0.001 g/L to 2.5 g/L.
圖17R、圖17S及圖17T為經砷合成碳奈米粒子之TEM影像。影像展示石墨、石墨烯及非晶碳同素異形體之實例。在影像中可清楚地看到石墨烯層及其他碳材料層。 Figures 17R, 17S, and 17T are TEM images of arsenic-synthesized carbon nanoparticles. The images show examples of graphite, graphene, and amorphous carbon allotropes. Layers of graphene and other carbon materials can be clearly seen in the image.
所捕獲碳粒子之粒度分佈展示於圖17U中。質量基準累積粒度分佈1720對應於圖中之左側y軸(Q3(x)[%])。質量粒度分佈1722之直方圖對應於圖中之右側軸線(dQ3(x)[%])。此實例中在旋風分離器中所捕獲之中值粒度為大約14μm。第10百分位粒度為大約5μm,且第90百分位粒度為大約28μm。圖17U中之圖亦展示對應於圖中之左側y軸(Q0(x)[%])的數目基準累積粒度分佈1724。此實例中以數目為基準之中值粒度為大約0.1μm至大約0.2μm。
The particle size distribution of the captured carbon particles is shown in Figure 17U. The mass-based cumulative
圖17V、圖17W及圖17X以及圖17Y為展示生長至其他三維結構上之三維含碳結構的影像。圖17V為生長至碳纖維上之三維碳結構的100倍放大率,而圖17W為生長至碳纖維上之三維碳結構的200倍放大率。圖17X為生長至碳纖維上之三維碳結構的1601倍放大率。展示纖維表面上方之三維碳生長。圖17Y為生長至碳纖維上之三維碳結構的10000倍放大率。影像描繪在基底平面以及邊緣平面上之生長。 17V, 17W, and 17X and 17Y are images showing three-dimensional carbon-containing structures grown onto other three-dimensional structures. Figure 17V is a 100X magnification of a three-dimensional carbon structure grown on carbon fiber, and Figure 17W is a 200X magnification of a three-dimensional carbon structure grown on carbon fiber. Figure 17X is a 1601X magnification of a three-dimensional carbon structure grown onto a carbon fiber. Three-dimensional carbon growth above the fiber surface is shown. Figure 17Y is a 10000X magnification of a three-dimensional carbon structure grown onto carbon fibers. The images depict growth in the basal plane as well as in the marginal plane.
更特定而言,圖17V至圖17Y展示使用來自微波電漿反應器之電漿能量生長至纖維上之3D碳材料的實例SEM影像。圖17V展示3D碳材料1730生長於纖維表面上的相交纖維1731及1732之SEM影像。圖17W為展示纖維1732上之3D碳生長1730的較高放大率影像(相較於圖17V之500μm,比例尺為300μm)。圖17X為展示纖維表面1735上之3D碳生長1730的另一放大圖(比例尺為40μm),其中可清楚地看到碳生長1730之3D本質。圖17Y僅展示碳之近距視圖(比例尺為500nm),其展示生長於纖維上之3D碳材料之多個子粒子的基底平面1736與邊緣平面1734之間的互連。圖17V至圖17Y展現根據一些實施例的在3D纖維結構上生長3D碳的能力,諸如在3D碳纖維上生長之3D碳生長。
More specifically, Figures 17V-17Y show example SEM images of 3D carbon materials grown onto fibers using plasma energy from a microwave plasma reactor. Figure 17V shows an SEM image of intersecting
纖維上之3D碳生長可藉由將多個纖維引入至速調管供電式電離反應器中且在微波反應器中使用電漿來蝕刻纖維而實現。蝕刻產生凝核位點,使得在藉由反應器中之烴解離產生碳粒子及子粒子時,在此等凝核位點處起始3D碳結構之生長。3D碳結構在自身本質上為三維的纖維上之直接生長提供了具有孔隙之高度整合3D結構,樹脂可滲透至該等孔隙中。相較於具有平滑表面且平滑表面通常與樹脂基質分層之習知纖維的複合材料,用於樹脂複合物之此3D強化基質(包括與高縱橫比強化纖維整合之3D碳結構)產生經增強材料性質,諸如 拉伸強度及剪切。 3D carbon growth on fibers can be achieved by introducing multiple fibers into a klystron powered ionization reactor and etching the fibers using plasma in the microwave reactor. Etching creates condensation nucleation sites such that the growth of 3D carbon structures is initiated at these condensation nucleation sites as carbon particles and daughter particles are produced by dissociation of hydrocarbons in the reactor. The 3D carbon structure in itself provides a highly integrated 3D structure with pores, into which the resin can penetrate, for direct growth on fibers in three dimensions. This 3D reinforcement matrix for resin composites, including 3D carbon structures integrated with high aspect ratio reinforcement fibers, produces reinforced material properties such as Tensile strength and shear.
圖18A展示描繪用於輸出含碳粉末之方法的實例操作1800A之說明性流程圖。操作1800A可藉由所呈現FEWG及電路之組配及/或耦合中之任一或多者執行,諸如微波發射器控制電路140大體上展示為包括圖5中呈現之微波能量源141,該電路統稱為反應器系統。在區塊1802A處,反應器系統自微波能量源產生微波能量。在區塊1804A處,反應器系統產生控制信號,該控制信號經組配以調整微波能量之脈衝頻率來控制微波能量源。在區塊1806A處,反應器系統在微波能量源之斷開狀態期間將非零電壓施加至微波能量源,該非零電壓經組配以調整控制信號之頻率及工作循環。在區塊1808A處,反應器系統回應於藉由微波能量激發供應氣體而產生電漿。在區塊1810A處,反應器系統將原材料注入至電漿中。在區塊1812A處,反應器系統形成基於電漿內之供應氣體與原材料之部分的組合的混合物。在區塊1814A處,反應器系統基於藉由微波能量激發混合物而輸出含碳粉末。
18A shows an illustrative flow chart depicting
圖18B展示描繪用於對非零電壓進行脈衝的方法之實例操作1800B的說明性流程圖。操作1800B可藉由所呈現FEWG及電路之組配及/或耦合中之任一或多者執行,諸如微波發射器控制電路140大體上展示為包括圖5中呈現之微波能量源141,該電路統稱為反應器系統。在區塊1802B處,反應器系統對非零電壓進行脈衝。
18B shows an illustrative flowchart depicting
官能化碳functionalized carbon
諸如本文中所描述之3D碳材料的碳材料可經官能化以促進黏著力及/或添加諸如氧、氮、碳、矽之元素或硬化劑。碳材料可經原位官能化,亦即,在產生碳材料之同一反應器內經官能化。碳材料可在後處理中經官能化。例如,富勒烯或石墨烯之表面可用與樹脂基質之聚合物形成鍵的含氧或含氮物種 官能化,因此改良黏著力且提供強結合以增強複合材料之強度。 Carbon materials such as the 3D carbon materials described herein can be functionalized to promote adhesion and/or add elements such as oxygen, nitrogen, carbon, silicon, or hardeners. The carbon material can be functionalized in situ, that is, within the same reactor where the carbon material is produced. The carbon material can be functionalized in post-processing. For example, the surface of fullerenes or graphene may be available with oxygen- or nitrogen-containing species that form bonds with the polymer of the resin matrix Functionalized, thus improving adhesion and providing strong bonds to enhance the strength of the composite.
實施例包括利用本文中所描述之電漿反應器(諸如速調管供電式電離反應器)對碳(諸如CNT、CNO、石墨烯、諸如3D石墨烯之3D碳材料)進行官能化表面處理。各種實施例可包括在產生碳材料期間進行原位表面處理,該等碳材料可與複合材料中之黏合劑或聚合物組合。各種實施例可包括在產生碳材料之後進行表面處理,同時碳材料仍在反應器內。 Embodiments include functionalized surface treatment of carbon (such as CNT, CNO, graphene, 3D carbon materials such as 3D graphene) using a plasma reactor described herein, such as a klystron powered ionization reactor. Various embodiments may include in-situ surface treatment during the creation of carbon materials, which may be combined with binders or polymers in the composite material. Various embodiments may include surface treatment after producing the carbon material while the carbon material is still within the reactor.
本揭露內容中所描述之實施之各種修改對於熟習此項技術者而言可為易於顯而易見的,且本文中所界定之一般原理可在不脫離本揭露內容之精神或範疇的情況下應用於其他實施。因此,申請專利範圍並不意欲限於本文中所示之實施,而應符合與本文中所揭露之本揭露內容、原理及新穎特徵相一致之最廣泛範疇。 Various modifications to the implementations described in this disclosure may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to others without departing from the spirit or scope of this disclosure implement. Therefore, the scope of the claims is not intended to be limited to the implementations shown herein but is to be accorded the widest scope consistent with the disclosure, principles and novel features disclosed herein.
141:微波能量源
142:高電壓控制電路
143:燈絲控制電路
144:脈衝式高電壓輸出
145:元件
500:示意圖,微波發射器控制電路
501:電壓輸入
502:電力供應電路
503:脈衝產生器
504:高電壓控制器
505:高電壓電力供應(HVPS)變壓器
506:倍壓器
507:脈衝開關
508:燈絲控制器
509:燈絲隔離變壓器
510:主控制開關
511:高電壓控制開關
512:燈絲控制開關
513:泵/風扇控制開關
514:冷卻泵或風扇
515:變壓器
516:繼電器
517:繼電器控制器
518:電位計
519,520:電容器
521,522,529,530:二極體
523:高壓側電阻器
524:低壓側電阻器
525:高壓側雙極主動開關
526:低壓側雙極主動開關
527,528:開關驅動器
531:電抗組件
141: Microwave Energy Source
142: High voltage control circuit
143: Filament control circuit
144: Pulsed high voltage output
145: Components
500: Schematic diagram, microwave transmitter control circuit
501: Voltage input
502: Power Supply Circuit
503: Pulse Generator
504: High Voltage Controller
505: High Voltage Power Supply (HVPS) Transformers
506: Voltage Doubler
507: Pulse switch
508: Filament Controller
509: Filament Isolation Transformer
510: Main control switch
511: High Voltage Control Switch
512: Filament control switch
513: Pump/Fan Control Switch
514: Cooling Pump or Fan
515: Transformer
516: Relay
517: Relay Controller
518: Potentiometer
519,520:
Claims (24)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/008,188 US11923176B2 (en) | 2017-02-09 | 2020-08-31 | Temperature-controlled chemical processing reactor |
US17/008,188 | 2020-08-31 | ||
US17/039,736 US11107662B2 (en) | 2019-08-19 | 2020-09-30 | Reactor system coupled to an energy emitter control circuit |
US17/039,736 | 2020-09-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202211731A TW202211731A (en) | 2022-03-16 |
TWI766760B true TWI766760B (en) | 2022-06-01 |
Family
ID=80629789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110126106A TWI766760B (en) | 2020-08-31 | 2021-07-15 | Reactor system coupled to an energy emitter control circuit |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN116075361A (en) |
TW (1) | TWI766760B (en) |
WO (1) | WO2022055609A2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5307079A (en) * | 1991-06-14 | 1994-04-26 | Anro Engineering, Inc. | Short pulse microwave source with a high PRF and low power drain |
TW201639000A (en) * | 2015-02-07 | 2016-11-01 | 應用材料股份有限公司 | Selective deposition using masks and directional plasma treatment |
TW201818444A (en) * | 2016-08-16 | 2018-05-16 | 應用材料股份有限公司 | Modular microwave plasma source |
TW201820938A (en) * | 2016-11-15 | 2018-06-01 | 美商萊登股份有限公司 | Microwave chemical treatment |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5762708B2 (en) * | 2010-09-16 | 2015-08-12 | 国立大学法人名古屋大学 | Plasma generating apparatus, plasma processing apparatus, and plasma processing method |
EP3523013A4 (en) * | 2016-10-06 | 2020-05-27 | Lyten, Inc. | Microwave reactor system with gas-solids separation |
US9767992B1 (en) * | 2017-02-09 | 2017-09-19 | Lyten, Inc. | Microwave chemical processing reactor |
JP6910320B2 (en) * | 2018-05-01 | 2021-07-28 | 東京エレクトロン株式会社 | Microwave output device and plasma processing device |
-
2021
- 2021-07-09 WO PCT/US2021/041050 patent/WO2022055609A2/en active Application Filing
- 2021-07-09 CN CN202180050881.6A patent/CN116075361A/en active Pending
- 2021-07-15 TW TW110126106A patent/TWI766760B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5307079A (en) * | 1991-06-14 | 1994-04-26 | Anro Engineering, Inc. | Short pulse microwave source with a high PRF and low power drain |
TW201639000A (en) * | 2015-02-07 | 2016-11-01 | 應用材料股份有限公司 | Selective deposition using masks and directional plasma treatment |
TW201818444A (en) * | 2016-08-16 | 2018-05-16 | 應用材料股份有限公司 | Modular microwave plasma source |
TW201820938A (en) * | 2016-11-15 | 2018-06-01 | 美商萊登股份有限公司 | Microwave chemical treatment |
Also Published As
Publication number | Publication date |
---|---|
WO2022055609A2 (en) | 2022-03-17 |
WO2022055609A3 (en) | 2022-06-16 |
TW202211731A (en) | 2022-03-16 |
CN116075361A (en) | 2023-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11107662B2 (en) | Reactor system coupled to an energy emitter control circuit | |
TWI732093B (en) | Microwave chemical processing reactor | |
US11923176B2 (en) | Temperature-controlled chemical processing reactor | |
US7794797B2 (en) | Synthesis of carbon nanotubes by selectively heating catalyst | |
CN110291612B (en) | Seedless particles with carbon allotropes | |
JP5773438B2 (en) | Low pressure radio frequency pulsed plasma reactor system for producing nanoparticles | |
US7824649B2 (en) | Apparatus and method for synthesizing a single-wall carbon nanotube array | |
US7097906B2 (en) | Pure carbon isotropic alloy of allotropic forms of carbon including single-walled carbon nanotubes and diamond-like carbon | |
US20180138017A1 (en) | Microwave Chemical Processing | |
US11358869B2 (en) | Methods and systems for microwave assisted production of graphitic materials | |
JP2002514694A (en) | Plasma catalysis for obtaining carbon nanofibers | |
US12281013B2 (en) | Microwave reactor system enclosing a self-igniting plasma | |
Matthews et al. | Plasma-enhanced chemical vapor deposition of multiwalled carbon nanofibers | |
TWI766760B (en) | Reactor system coupled to an energy emitter control circuit | |
Yen et al. | Synthesis of well-aligned carbon nanotubes by inductively coupled plasma chemical vapor deposition | |
JP4872042B2 (en) | High-density carbon nanotube aggregate and method for producing the same | |
CN1923677A (en) | Carbon nano-tube growth apparatus and method | |
WO2016024301A1 (en) | Co2 reduction device and co2 reduction method | |
WO2022046296A1 (en) | Temperature-controlled chemical processing reactor | |
Haibat | Processing of Multiwalled Carbon Nanotubes as Magnetic Additives for Polymer Nanocomposites | |
WO2022046297A1 (en) | Microwave reactor system enclosing a self-igniting plasma | |
He et al. | Plasma coating and enhanced dispersion of carbon nanotubes | |
KR20250006003A (en) | Fluidized bed reactor for post-processing fine particles | |
WO2015173589A2 (en) | A method and apparatus for fabricating a carbon nanotube | |
Hiramatsu et al. | Preparation Methods |