TWI766616B - Seniconductor structure and method of manufacturing the same - Google Patents
Seniconductor structure and method of manufacturing the same Download PDFInfo
- Publication number
- TWI766616B TWI766616B TW110109262A TW110109262A TWI766616B TW I766616 B TWI766616 B TW I766616B TW 110109262 A TW110109262 A TW 110109262A TW 110109262 A TW110109262 A TW 110109262A TW I766616 B TWI766616 B TW I766616B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- work function
- material layer
- top surface
- trench
- Prior art date
Links
Images
Landscapes
- Semiconductor Memories (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
本發明係有關於一種半導體結構及其製造方法,且特別係有關於一種動態隨機存取記憶體的半導體結構及其製造方法。 The present invention relates to a semiconductor structure and a manufacturing method thereof, and in particular, to a semiconductor structure of a dynamic random access memory and a manufacturing method thereof.
動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)裝置廣泛地應用於消費性電子產品中。隨著半導體技術的提升,為了符合消費者對於小型化電子裝置的需求,動態隨機存取記憶體中記憶單元的尺寸縮小,記憶體單元的集積度也隨之增加。而埋入式字元線動態隨機存取記憶體的發展正是為了滿足增加的動態隨機存取記憶體的積集度的需求,以加快元件的操作速度。然而,當記憶體裝置尺寸持續縮小時,許多挑戰隨之而生。例如,需要降低閘極引發汲極漏電流(gate induced drain leakage,GIDL)。因此,業界仍需要改進動態隨機存取記憶體裝置的製造方法,以克服元件尺寸縮小所產生的問題。 Dynamic random access memory (Dynamic Random Access Memory, DRAM) devices are widely used in consumer electronic products. With the improvement of semiconductor technology, in order to meet consumer demand for miniaturized electronic devices, the size of memory cells in dynamic random access memory is reduced, and the integration degree of memory cells is also increased. The development of the embedded word line DRAM is to meet the requirement of increasing the integration of the DRAM, so as to speed up the operation speed of the device. However, as the size of memory devices continues to shrink, many challenges arise. For example, gate induced drain leakage (GIDL) needs to be reduced. Therefore, the industry still needs to improve the manufacturing method of the DRAM device to overcome the problems caused by the shrinking device size.
本發明揭示一種半導體結構,包括基底以及設置於基底內的埋入式閘極結構,其中埋入式閘極結構包括:閘極介電層,位於基底中之溝槽的側壁和底面上,此溝槽係自基底的頂面向下延伸;阻障層,位於溝槽中且位於閘極介電層的側壁和底面上;第一功函數層,位於溝槽中,且第一功函數層包括位於溝槽的下方部份的主體部和位於主體部之上並連接主體部的突起部,其中阻障層圍繞主體部的側壁和底面,突起部的頂面面積小於突起部的底面面積;第二功函數層,位於第一功函數層的突起部之兩側;以及絕緣層,位於溝槽中且位於第一功函數層的突起部及第二功函數層之上。 The invention discloses a semiconductor structure, comprising a substrate and a buried gate structure disposed in the substrate, wherein the buried gate structure comprises: a gate dielectric layer on the sidewall and bottom surface of a trench in the substrate, the The trench is extended downward from the top surface of the substrate; the barrier layer is located in the trench and is located on the sidewall and the bottom surface of the gate dielectric layer; the first work function layer is located in the trench, and the first work function layer includes a main body part located on the lower part of the groove and a protrusion part located above the main body part and connected to the main body part, wherein the barrier layer surrounds the side wall and the bottom surface of the main body part, and the top surface area of the protruding part is smaller than the bottom surface area of the protruding part; Two work function layers are located on both sides of the protruding part of the first work function layer; and an insulating layer is located in the trench and on the protruding part of the first work function layer and the second work function layer.
本發明揭示一種半導體結構的製造方法,包括:提供基底,且在基底中形成向下延伸之溝槽;在溝槽的側面和底面上形成閘極介電層;在閘極介電層的下方側壁和底面上形成阻障層,以及在溝槽的下部中形成第一功函數層。第一功函數層包括位於溝槽的下方部份的主體部,以及位於主體部之上並連接主體部的突起部,其中阻障層圍繞主體部的側面和底面,突起部的頂面面積小於突起部的底面面積。此製造方法還包括在第一功函數層的突起部之兩側形成第二功函數層,以及在第一功函數層的突起部及第二功函數層的上方形成絕緣層。 The invention discloses a method for manufacturing a semiconductor structure, comprising: providing a substrate, and forming a downwardly extending trench in the substrate; forming a gate dielectric layer on the side and bottom surfaces of the trench; and forming a gate dielectric layer under the gate dielectric layer A barrier layer is formed on the sidewalls and the bottom surface, and a first work function layer is formed in the lower portion of the trench. The first work function layer includes a main body portion located at a lower portion of the trench, and a protruding portion located above the main body portion and connecting the main body portion, wherein the barrier layer surrounds the side surface and the bottom surface of the main body portion, and the top surface area of the protruding portion is less than The area of the bottom surface of the protrusion. The manufacturing method further includes forming a second work function layer on both sides of the protruding portion of the first work function layer, and forming an insulating layer over the protruding portion of the first work function layer and the second work function layer.
100:基底 100: base
103:溝槽 103: Groove
112:閘極介電層 112: gate dielectric layer
100a,112a,1150a,115a,1170a,118a,116P-a,121a,122a,124a:頂面 100a, 112a, 1150a, 115a, 1170a, 118a, 116P-a, 121a, 122a, 124a: Top surface
103s,117s,118s,1150s,119-s1,119-s2:側壁 103s, 117s, 118s, 1150s, 119-s1, 119-s2: Sidewalls
103b,116M-b,116P-b,121b,122b:底面 103b, 116M-b, 116P-b, 121b, 122b: Bottom
1150:阻障材料層 1150: Barrier Material Layer
115:阻障層 115: Barrier layer
1160,1160R:第一功函數材料層 1160, 1160R: the first work function material layer
116:第一功函數層 116: The first work function layer
116M:主體部 116M: main body
116P:突起部 116P: Protrusions
116M-s,116P-s1,116P-s2:側面 116M-s, 116P-s1, 116P-s2: Side
117:第一介電層 117: first dielectric layer
1170:第一介電材料層 1170: First Dielectric Material Layer
118:第二介電層 118: Second Dielectric Layer
1180:第二介電材料層 1180: Second Dielectric Material Layer
1171:開口 1171: Opening
119-1,119-2:孔洞 119-1, 119-2: Holes
1200:第二功函數材料層 1200: the second work function material layer
120:第二功函數層 120: Second work function layer
121:第一部分 121: Part One
122:第二部分 122: Part II
124:絕緣層 124: Insulation layer
t1:厚度 t1: thickness
WH,Wt,WP:寬度 W H ,W t ,W P : width
E1,E2:電場 E1, E2: Electric field
e-:電子 e - : electronic
第1A-1M圖是根據本揭露的一實施例之製造半導體結構的不同中間階段所對應的剖面示意圖。 FIGS. 1A-1M are schematic cross-sectional views corresponding to different intermediate stages of fabricating a semiconductor structure according to an embodiment of the present disclosure.
第1A-1M圖是根據本揭露的一實施例之製造半導體結構的不同中間階段所對應的剖面示意圖。請參照第1A圖,提供一基底100,基底100包含多個向下延伸之溝槽103。基底100的材料例如可以包含半導體材料。在一實施例中,基底100係包括矽、砷化鎵、氮化鎵、矽化鍺、或前述之組合。在其他實施例中,基底100係為絕緣層上覆矽之基底。
FIGS. 1A-1M are schematic cross-sectional views corresponding to different intermediate stages of fabricating a semiconductor structure according to an embodiment of the present disclosure. Referring to FIG. 1A, a
接著,在基底100之表面順應性的(conformably)依序形成一閘極介電層112及一阻障材料層1150。如第1A圖所示,閘極介電層112覆蓋溝槽103的側壁103s和底面103b並延伸至基底100的頂面100a上,而阻障材料層1150形成於閘極介電層112之上。
Next, a gate
在一實施例中,閘極介電層112可為單層結構或多層結構,且其材料可包括氧化矽、氮化矽、二氧化矽、或前述之組合。舉例而言,閘極介電層112可為氧化矽/氮化矽/氧化矽的結構(ONO結構),或者NONON結構。再者,閘極介電層112可通過熱氧化製程、沉積製程或前述之組合而形成。
In one embodiment, the gate
在一實施例中,阻障材料層1150係包括導電金屬,例如金屬、金屬合金、金屬氮化物或金屬矽化物。在一實施例中,阻障材料層1150包括氮化鈦(TiN)、氮化鈦矽(TiSiN)、氮化鉭(TaN)、
氮化鎢(WN)、鉭(Ta)、鈦(Ti)、鎢(W)、釕(Ru)、鋁(Al)、或前述之組合。再者,阻障材料層1150可通過使用一沉積製程,例如物理氣相沉積製程、化學氣相沉積製程、或原子層沉積製程而形成於閘極介電層112上。
In one embodiment, the
參照第1B圖,接著,在阻障材料層1150上形成一第一功函數(work function)材料層1160並填滿溝槽103。在一實施例中,第一功函數材料層1160可包括銅、鎢、或其他合適的導電材料。再者,第一功函數材料層1160可為由單層或多層的導電金屬結構所構成。在此示例中,第一功函數材料層1160包含鎢。
Referring to FIG. 1B , next, a first work
參照第1C圖,接著,下凹(recessing)第一功函數材料層1160。在一實施例中,可通過化學機械研磨製程、回蝕製程或其他合適的製程,以去除位於溝槽103以外的第一功函數材料層1160。之後,例如可使用選擇性蝕刻製程,下凹溝槽103內的第一功函數材料層1160,而在溝槽103的下部留下部分的第一功函數材料層1160R。在下凹第一功函數材料層1160後,係露出阻障材料層1150之側壁1150s的上部。
Referring to FIG. 1C , next, the first work
之後,根據本揭露一實施例,可在下凹後留下的第一功函數材料層1160R上形成一罩幕,並根據此罩幕進行蝕刻,以去除未被該罩幕覆蓋的部分的第一功函數材料層1160R並形成相應的孔洞。然後,再於前述孔洞中填入第二功函數材料。以下,第1D~1G圖係繪示在下凹之第一功函數材料層1160R上形成一罩幕的其中
一種製法。然而,此領域具有通常知識者當可理解,以下所述步驟細節僅為例示之用,並非用以限制本揭露之製程。
Afterwards, according to an embodiment of the present disclosure, a mask can be formed on the first work
參照第1D圖,接著,順應性地沉積一第一介電材料層1170於阻障材料層1150之上。如圖所示,第一介電材料層1170覆蓋於阻障材料層1150的頂面1150a以及阻障材料層1150的側壁1150s的上部之上,且於溝槽103中形成一開口1171。再者,第一介電材料層1170可包括氧化矽、氮化矽、氮氧化矽、或其他合適的介電材料,且可利用化學氣相沉積或其他合適的方式而形成。
Referring to FIG. 1D , next, a first
第一介電材料層1170的厚度t1可根據溝槽103中阻障材料層1150之間的空隙大小而定,並可用以控制後續形成的第二功函數層120的第一部份121及第二部分122的寬度(第1M圖)。具體而言,可透過調整第一介電材料層1170的厚度t1控制開口1171的寬度,以控制後續形成的罩幕HM的寬度,進而控制後續形成的第二功函數層120的第一部分121及第二部分122的寬度。
The thickness t1 of the first
如第1D圖所示,在一實施例中,開口1171的寬度WH係占溝槽103的寬度Wt的大約1/6至大約1/2範圍之間。例如,在一示例中,開口1171的寬度WH係占溝槽103的寬度Wt的大約1/4。然而,本發明不限於此,可根據設計需求調整開口1171的寬度WH。
As shown in FIG. 1D , in one embodiment, the width W H of the
參照第1E圖,接著,形成一第二介電材料層1180於第一介電材料層1170的上方並填滿開口1171。在一實施例中,第二介電材料層1180可包括氧化矽、氮化矽、氮氧化矽、或其他合適的介電材料,且可利用化學氣相沉積或其他合適的方式而形成。
Referring to FIG. 1E , next, a second
在一實施例中,第一介電材料層1170的材料係不同於第二介電材料層1180。舉例來說,在一示例中,第一介電材料層1170係為氧化矽,第二介電材料層1180係為氮化矽。在另一示例中,第一介電材料層1170係為氮化矽,第二介電材料層1180係為氧化矽。但本揭露並不以前述材料為限。
In one embodiment, the material of the first
參照第1F圖,之後,去除部份的第二介電材料層1180,以露出第一介電材料層1170的頂面1170a。在一實施例中,可通過化學機械研磨製程或回蝕製程去除位於開口1171以外的第二介電材料層1180。留下的部分第二介電材料層1180形成位於開口1171中的第二介電層118。此時第一介電材料層1170的頂面1170a係與第二介電層118的頂面118a共平面。
Referring to FIG. 1F , after that, part of the second
參照第1G圖,接著,去除未被第二介電層118覆蓋的部分第一介電材料層1170。在一實施例中,可通過回蝕製程去除未被第二介電層118覆蓋的部分第一介電材料層1170。留下的部分第一介電材料層1170形成第一介電層117。此時,第一介電層117的側壁117s係與第二介電層118的側壁118s共平面。在本實施例中,第一介電層117與第二介電層118係共同作為後續製程使用之罩幕HM。
Referring to FIG. 1G, next, the part of the first
參照第1H圖,接著,進行一蝕刻步驟以去除部分的未被罩幕HM覆蓋的第一功函數材料層1160R,而形成第一功函數層116。在一實施例中,可通過例如反應離子刻蝕(RIE)或其他合適的乾式蝕刻方式以去除部分的未被罩幕HM覆蓋的第一功函數材料層1160R。在此示例中,在進行該蝕刻步驟後,係在第一功函數層116
的兩側分別形成孔洞119-1及119-2。值得一提的是,此處由於只需要罩幕HM而不需要額外採用光罩,即可對第一功函數材料層1160R進行蝕刻,因此此蝕刻步驟又稱為自對準蝕刻製程。
Referring to FIG. 1H, then, an etching step is performed to remove part of the first work
請再參照第1H圖,在進行該蝕刻步驟後,形成的孔洞119-1及119-2的尺寸係自第一功函數材料層1160R的頂面朝著進入第一功函數材料層1160R的方向逐漸縮減。如圖所示,孔洞119-1的側壁119-s1及孔洞119-2的側壁119-s2係分別傾斜於阻障材料層1150的側壁1150s。在一實施例中,孔洞119-1的側壁119-s1及孔洞119-2的側壁119-s2係為弧形側壁。
Please refer to FIG. 1H again, after the etching step, the size of the formed holes 119-1 and 119-2 is from the top surface of the first work
參照第1I圖,接著,去除罩幕HM,包括去除第一介電層117和第二介電層118,以在溝槽103中露出第一功函數層116。如第1I圖所示,第一功函數層116係包括一主體部116M以及一突起部116P,其中主體部116M例如是位於溝槽103的下方部份,而突起部116P則位於主體部116M之上。
Referring to FIG. 1I , next, the mask HM is removed, including removing the
參照第1J圖,接著,去除部分的阻障材料層1150,而留下的阻障材料層1150係形成阻障層115。在一實施例中,可去除阻障材料層1150的上部,舉例來說,如第1J圖所示,此處例如是去除高於孔洞119-1及孔洞119-2底面的部分阻障材料層1150,而留下的阻障層115圍繞主體部116M的側面116M-s和底面116M-b。此外,阻障層115的頂面115a可以與突起部116P的底面116P-b大致上共平面。在一實施例中,去除部分的阻障材料層1150的方式例如可為乾式蝕刻或濕式蝕刻製程。
Referring to FIG. 1J , next, part of the
再參照第1J圖,第一功函數層116的突起部116P的寬度係自突起部116P的頂面116P-a朝向突起部116P的底面116P-b而逐漸增加。在一實施例中,第一功函數層116的突起部116P的頂面116P-a的寬度WP係占溝槽103寬度Wt的大約1/6至大約1/2範圍之間,例如1/3至大約1/2範圍之間。在一示例中,突起部116P的頂面116P-a的寬度WP例如是占溝槽103寬度Wt的大約1/2。
1J again, the width of the protruding
參照第1K圖,接著,在阻障層115及第一功函數層116的上方形成第二功函數材料層1200。第二功函數材料層1200係覆蓋阻障層115並填入溝槽103中,且更填滿位於第一功函數層116之突起部116P兩側的孔洞119-1及119-2。在一實施例中,第二功函數材料層1200可包括摻雜或未摻雜之多晶矽,或包括金屬、金屬合金、金屬氮化物、金屬矽化物等。在一實施例中,第二功函數材料層1200的材料包括多晶矽、氮化鈦、氮化鈦矽、氮化鉭、氮化鎢、鉭、鈦、鎢、釕、鋁、或其他合適的導電材料。在一實施例中,第二功函數材料層1200可通過使用一沉積製程,例如物理氣相沉積製程、化學氣相沉積製程、或原子層沉積製程等製程而形成。
Referring to FIG. 1K , next, a second work function material layer 1200 is formed over the
在一實施例中,第二功函數材料層1200係不同於阻障層115的材料,也不同於第一功函數層116的材料。再者,在一實施例中,第二功函數材料層1200的功函數係小於阻障層115的功函數,阻障層115的功函數係小於第一功函數層116的功函數。
In one embodiment, the second work function material layer 1200 is different from the material of the
參照第1L圖,接著,去除一部份的第二功函數材料層1200,直至露出第一功函數層116為止,而形成第二功函數層120。
在一實施例中,例如可通過回蝕製程以去除一部份的第二功函數材料層1200。如第1L圖所示,第二功函數層120包括分別位於第一功函數層116的突起部116P的相對側的第一部分121和第二部分122,並且突起部116P的頂面116P-a係與第二功函數層120的頂面121a和122a共平面。此外,在一實施例中,第二功函數層120係覆蓋阻障層115的頂面115a,例如第一部分121的底面121b和第二部分122的底面122b接觸並覆蓋阻障層115。
Referring to FIG. 1L, then, a part of the second work function material layer 1200 is removed until the first
如第1L圖所示,根據一實施例,第二功函數層120的兩相對側面,即圖中之突起部116的第一側面116P-s1和第二側面116P-s2,係分別傾斜於第二功函數層120的頂面,即頂面121a和122a。在一示例中,第二功函數層120的兩相對側面具有弧形側面。
As shown in FIG. 1L, according to an embodiment, two opposite sides of the second work function layer 120, namely the
參照第1M圖,接著,於溝槽103中形成絕緣層124,絕緣層124覆蓋突起部116P的頂面116P-a以及第二功函數層120的頂面121a和122a。在一實施例中,例如可先在基底100上毯覆性地形成一絕緣材料,絕緣材料覆蓋閘極介電層112的頂面並填入溝槽103中,接著再去除位於溝槽103以外的絕緣材料的部份,以及去除部份的閘極介電層112,直到露出基底100的頂面100a,並於溝槽103中形成絕緣層124。在一實施例中,絕緣層124的材料例如是氮化矽或其他合適之絕緣材料,並可通過化學氣相沈積法或其他合適之製程而形成。在一實施例中,絕緣層124的頂面124a係與閘極介電層112的頂面112a以及基底100的頂面100a大致上共平面。
Referring to FIG. 1M, next, an insulating
如第1M圖所示,絕緣層124位於第一功函數層116的突起部116P的上方以及第二功函數層120的上方。絕緣層124係覆蓋和接觸第二功函數層120的第一部分121之頂面121a、第二部分122之頂面122a以及第一功函數層116的突起部116P之頂面116P-a。
As shown in FIG. 1M , the insulating
綜合上述,依照本揭露之一實施例所提出之半導體結構及其製造方法,係在第一功函數層116的突起部116P的兩側設置第二功函數層120,以使鄰近摻雜區域的第二功函數層120在通道開啟的狀態下所產生的電場(例如電場E2)強度下降。請再參照第1M圖,亦即,當記憶體裝置的通道開啟時,在第一功函數層116之主體部116M的一側(其鄰近基底100之作為汲極區域的摻雜區域)產生電場E1,而在第一功函數層116之突起部116P一側(其鄰近基底100之作為汲極區域的摻雜區域)產生電場E2,電場E2的強度小於所產生的電場E1的強度,進而改善傳統容易產生的閘極引發汲極漏電流(GIDL)的問題。
In view of the above, according to the semiconductor structure and the manufacturing method thereof proposed in one embodiment of the present disclosure, the second work function layer 120 is disposed on both sides of the protruding
再者,根據本揭露之一實施例,第一功函數層116的突起部116P的頂面面積係小於突起部116P的底面面積,例如突起部116P的寬度係自突起部116P的頂面至突起部116P的底面逐漸增加。當記憶體裝置的通道開啟時,可以使如第1M圖所示之電場E2的強度除了小於電場E1的強度之外,還可以使電場E2自上到下形成逐漸增加的電場強度,以縮小電場E2與電場E1交界處的電場強度差異,有效改善閘極引發汲極漏電流(GIDL)。若電場E2與電場E1之間強度差異過大,可能會對電子e-產生穿隧效應,而使原本停留在
電場E2中的電子e-受到驟然提高的電場E1的拉力而進入電場E1,仍會產生極大的漏電流,因此無法有效改善閘極引發汲極漏電流(GIDL)的問題。
Furthermore, according to an embodiment of the present disclosure, the top surface area of the protruding
再者,在操作記憶體裝置時,若電場E2與電場E1之間強度差異過大,除了會影響各個字元線在操作表現上的穩定性,也會影響記憶體裝置整體的電性表現。舉例而言,一般記憶體裝置係包含600~900根(甚至更多數目)的字元線,在各個字元線在開啟狀態下,若因為前述電場E2與電場E1之間存在急遽變化的電場強度而導致漏電流,會無法穩定控制各個字元線的漏電流的大小一致,除了會影響各個字元線在電性表現上的一致性外,更會進而影響裝置的整體操作速度(例如操作速度最慢的字元線,其反應時間決定了裝置的整體反應時間)。因此,依照本揭露之一實施例所提出之半導體結構及其製造方法,除了可以有效降低閘極引發汲極漏電流,更可獲得各個字元線在電性上的一致性(uniformity),進而改善應用裝置的電子特性,使操作表現更為穩定。 Furthermore, when the memory device is operated, if the strength difference between the electric field E2 and the electric field E1 is too large, not only will the stability of the operation performance of each word line be affected, but also the overall electrical performance of the memory device. For example, a general memory device includes 600-900 (or even more) word lines. When each word line is in an on state, if there is a rapidly changing electric field between the electric field E2 and the electric field E1 The leakage current caused by the intensity of the leakage current will not be able to stably control the leakage current of each word line to be consistent in size. In addition to affecting the consistency of the electrical performance of each word line, it will also affect the overall operation speed of the device (such as operating The slowest word line, whose response time determines the overall response time of the device). Therefore, according to the semiconductor structure and the manufacturing method thereof proposed in an embodiment of the present disclosure, in addition to effectively reducing the gate-induced drain leakage current, the electrical uniformity of each word line can be obtained, and further Improve the electronic characteristics of the application device, so that the operation performance is more stable.
另外,根據本揭露一實施例提出的製造方法,可根據應用實際條件之需求調整第一介電材料層的厚度,以決定後續形成罩幕的寬度,並利用此罩幕對下方的第一功函數材料層進行蝕刻,進而控制後續形成另一種功函數材料(例如多晶矽)所需的孔洞位置及尺寸,無須設置額外光罩進行蝕刻(即,自對準製程)。因此,根據本揭露的實施例所提出的製造方法,還可簡化製程步驟,減少光罩的 使用數量,進而降低製程成本。再者,本揭露實施例提出的製造方法與目前現有製程相容,在應用上亦極富經濟價值。 In addition, according to the manufacturing method proposed in an embodiment of the present disclosure, the thickness of the first dielectric material layer can be adjusted according to the requirements of actual application conditions, so as to determine the width of the mask formed subsequently, and the mask can be used to affect the first function below. The functional material layer is etched, thereby controlling the position and size of the holes required for the subsequent formation of another work function material (eg, polysilicon), without setting an additional mask for etching (ie, a self-aligned process). Therefore, according to the manufacturing method proposed by the embodiments of the present disclosure, the manufacturing steps can be simplified, and the mask size can be reduced. The quantity used, thereby reducing the process cost. Furthermore, the manufacturing method proposed in the embodiment of the present disclosure is compatible with the current existing manufacturing process, and is also highly economical in application.
雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed above with several preferred embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make any changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be determined by the scope of the appended patent application.
100:基底 100: base
112:閘極介電層 112: gate dielectric layer
100a,112a,115a,116P-a,121a,122a,124a:頂面 100a, 112a, 115a, 116P-a, 121a, 122a, 124a: top surface
121b,122b:底面 121b, 122b: Bottom
115:阻障層 115: Barrier layer
116:第一功函數層 116: The first work function layer
116M:主體部 116M: main body
116P:突起部 116P: Protrusions
116P-s1,116P-s2:側面 116P-s1, 116P-s2: Side
120:第二功函數層 120: Second work function layer
121:第一部分 121: Part One
122:第二部分 122: Part II
124:絕緣層 124: Insulation layer
Wt,WP:寬度 W t , W P : width
E1,E2:電場 E1, E2: Electric field
e-:電子 e - : electronic
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110109262A TWI766616B (en) | 2021-03-16 | 2021-03-16 | Seniconductor structure and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110109262A TWI766616B (en) | 2021-03-16 | 2021-03-16 | Seniconductor structure and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI766616B true TWI766616B (en) | 2022-06-01 |
TW202238853A TW202238853A (en) | 2022-10-01 |
Family
ID=83103638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110109262A TWI766616B (en) | 2021-03-16 | 2021-03-16 | Seniconductor structure and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI766616B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201409668A (en) * | 2012-08-31 | 2014-03-01 | Sk Hynix Inc | Semiconductor device having buried gate, method of fabricating the same, and module and system having the same |
CN111668298A (en) * | 2014-12-16 | 2020-09-15 | 爱思开海力士有限公司 | Semiconductor device with dual work function gate structure |
-
2021
- 2021-03-16 TW TW110109262A patent/TWI766616B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201409668A (en) * | 2012-08-31 | 2014-03-01 | Sk Hynix Inc | Semiconductor device having buried gate, method of fabricating the same, and module and system having the same |
US20160240538A1 (en) * | 2012-08-31 | 2016-08-18 | SK Hynix Inc. | Semiconductor device having buried gate, method of fabricating the same, and module and system having the same |
CN111668298A (en) * | 2014-12-16 | 2020-09-15 | 爱思开海力士有限公司 | Semiconductor device with dual work function gate structure |
Also Published As
Publication number | Publication date |
---|---|
TW202238853A (en) | 2022-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8421077B2 (en) | Replacement gate MOSFET with self-aligned diffusion contact | |
JP4903313B2 (en) | Self-aligned contact pad formation method in damascene gate process | |
US20050170593A1 (en) | Method for forming a FinFET by a damascene process | |
US20090215238A1 (en) | Methods of fabricating semiconductor devices with enlarged recessed gate electrodes | |
US10163784B2 (en) | Semiconductor device and method for manufacturing the same | |
US20030062568A1 (en) | Integrated spacer for gate/source/drain isolation in a vertical array structure | |
US6861313B2 (en) | Semiconductor memory device and fabrication method thereof using damascene bitline process | |
US11711914B2 (en) | Semiconductor structure having buried gate structure and method of manufacturing the same | |
JP2006041276A (en) | Semiconductor device and its manufacturing method | |
TWI830993B (en) | Semiconductor devices | |
US11943913B2 (en) | Method of manufacturing semiconductor structure having multi-work function gate electrode | |
US9768176B2 (en) | Semiconductor device and method for forming the same | |
US20230133763A1 (en) | Semiconductor devices | |
TWI766616B (en) | Seniconductor structure and method of manufacturing the same | |
US11665889B2 (en) | Semiconductor memory structure | |
TWI808383B (en) | Seniconductor structure and method of manufacturing the same | |
KR100443917B1 (en) | Semiconductor memory device and method for fabricating the same using damascene gate and epitaxial growth | |
US7439126B2 (en) | Method for manufacturing semiconductor memory | |
CN115832027A (en) | Semiconductor structure and manufacturing method thereof | |
CN117500270B (en) | Semiconductor structure and manufacturing method thereof | |
CN115172369B (en) | Semiconductor structure and manufacturing method thereof | |
TWI853417B (en) | Semiconductor device | |
KR100515441B1 (en) | Method for fabricating an integrated circuit | |
US20230371235A1 (en) | Semiconductor device | |
TWI627705B (en) | Semiconductor device and method for manufacturing the same |