TWI808383B - Seniconductor structure and method of manufacturing the same - Google Patents

Seniconductor structure and method of manufacturing the same Download PDF

Info

Publication number
TWI808383B
TWI808383B TW110106051A TW110106051A TWI808383B TW I808383 B TWI808383 B TW I808383B TW 110106051 A TW110106051 A TW 110106051A TW 110106051 A TW110106051 A TW 110106051A TW I808383 B TWI808383 B TW I808383B
Authority
TW
Taiwan
Prior art keywords
layer
work function
barrier
gate dielectric
sidewall
Prior art date
Application number
TW110106051A
Other languages
Chinese (zh)
Other versions
TW202234593A (en
Inventor
張峰榮
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW110106051A priority Critical patent/TWI808383B/en
Publication of TW202234593A publication Critical patent/TW202234593A/en
Application granted granted Critical
Publication of TWI808383B publication Critical patent/TWI808383B/en

Links

Images

Abstract

A semiconductor structure includes a substrate and a buried gate structure in the substrate. The buried gate structure includes a gate dielectric layer, a first work function layer, a barrier layer and a second work function layer. The gate dielectric layer is formed on the sidewalls and the bottom surface of a trench. The work function layer is formed in the trench and contacts the sidewalls and the bottom surface of the gate dielectric layer. The barrier layer is formed on the top surface of the first work function layer. The second work function layer is formed on the barrier layer, and the sidewall of the second work function layer is separated from the gate dielectric layer by a distance. The semiconductor structure further includes an insulating layer in the trench and on the second work function layer.

Description

半導體結構及其製造方法Semiconductor structure and manufacturing method thereof

本發明係有關於一種半導體結構及其製造方法,且特別係有關於一種動態隨機存取記憶體的半導體結構及其製造方法。 The present invention relates to a semiconductor structure and its manufacturing method, and in particular to a dynamic random access memory semiconductor structure and its manufacturing method.

動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)裝置廣泛地應用於消費性電子產品中。為了增加動態隨機存取記憶體裝置內的元件集積度以及改善其整體表現,目前動態隨機存取記憶體裝置的製造技術持續朝向元件尺寸的微縮化而努力。然而,當元件尺寸持續縮小時,許多挑戰隨之而生。例如,改善閘極引發汲極漏電流(gate induced drain leakage,GIDL)。因此,業界仍需要改進動態隨機存取記憶體裝置的製造方法,以克服元件尺寸縮小所產生的問題。 Dynamic Random Access Memory (DRAM) devices are widely used in consumer electronic products. In order to increase the density of components in the DRAM device and improve its overall performance, the current manufacturing technology of the DRAM device continues to strive towards the miniaturization of the device size. However, as component dimensions continue to shrink, many challenges arise. For example, improving gate induced drain leakage (GIDL). Therefore, the industry still needs to improve the manufacturing method of the DRAM device to overcome the problems caused by the shrinking device size.

本發明揭示一種半導體結構,包括:一基底以及設置於前述基底內的一埋入式閘極結構。埋入式閘極結構包含一閘極介電層、一第一功函數層、一阻障層以及一第二功函數層。閘極介電層位於前述基底中之一溝槽的側壁和底面上。第一功函數層位於溝槽中,且接觸前述閘極介電層的側壁和底面。阻障層位於第一功函數層的頂面上。第二功函數層位於阻障層的上方,且第二功函數層的側壁與閘極介電層之間相隔一距離。半導體結構更包括位於溝槽中且位於前述第二功函數層上的一絕緣層。 The invention discloses a semiconductor structure, including: a substrate and a buried gate structure disposed in the substrate. The buried gate structure includes a gate dielectric layer, a first work function layer, a barrier layer and a second work function layer. The gate dielectric layer is located on the sidewall and the bottom surface of one of the trenches in the aforementioned substrate. The first work function layer is located in the trench and contacts the sidewall and the bottom surface of the aforementioned gate dielectric layer. The barrier layer is on top of the first work function layer. The second work function layer is located above the barrier layer, and there is a distance between the sidewall of the second work function layer and the gate dielectric layer. The semiconductor structure further includes an insulating layer located in the trench and on the aforementioned second work function layer.

本發明揭示一種半導體結構的製造方法,包括提供一基底,且在前述基底中形成向下延伸之一溝槽;在前述溝槽的側壁和底面上形成一閘極介電層;在前述閘極介電層的下方側壁和底面上以及在前述溝槽的下部中形成一第一功函數層;在前述閘極介電層的上方側壁及前述第一功函數層的頂面上形成一阻障材料層;在前述阻障材料層上形成一第二功函數材料層;下凹前述第二功函數材料層,以在前述阻障材料層上形成一第二功函數層,並暴露出位於前述閘極介電層的上方側壁上的部分的前述阻障材料層;去除部分的前述阻障材料層,以形成一阻障層於前述第二功函數層和前述第一功函數層之間,並在前述第二功函數層的側壁與前述閘極介電層之間形成空隙;以及形成一絕緣層於前述溝槽中且位於前述第二功函數層上。 The present invention discloses a method for manufacturing a semiconductor structure, comprising providing a substrate and forming a trench extending downward in the substrate; forming a gate dielectric layer on the sidewall and bottom of the trench; forming a first work function layer on the lower sidewall and bottom of the gate dielectric layer and in the lower portion of the trench; forming a barrier material layer on the upper sidewall of the gate dielectric layer and the top surface of the first work function layer; forming a second work function material layer on the barrier material layer; The functional material layer is used to form a second work function layer on the barrier material layer and expose a portion of the barrier material layer on the upper sidewall of the gate dielectric layer; remove part of the barrier material layer to form a barrier layer between the second work function layer and the first work function layer, and form a gap between the sidewall of the second work function layer and the gate dielectric layer; and form an insulating layer in the trench and on the second work function layer.

100:基底 100: base

102:淺溝槽隔離結構 102:Shallow trench isolation structure

103:溝槽 103: Groove

AA:主動區 A A : active area

BL:位元線 BL: bit line

104:字元線組 104: character line group

104A,104B:埋入式字元線 104A, 104B: Embedded word lines

106:摻雜區域之底面 106: The bottom surface of the doped region

107:電容器接觸件 107: Capacitor contact

109:位元線接觸件 109: bit line contact

111:遮罩層 111: mask layer

100a,102a,111a,115a,117a,123a:頂面 100a, 102a, 111a, 115a, 117a, 123a: top surface

103s,112s,117s,120s,123s:側壁 103s, 112s, 117s, 120s, 123s: side wall

103b,112b,117b:底面 103b, 112b, 117b: bottom surface

112:閘極介電層 112: gate dielectric layer

112s-2:閘極介電層的下方側壁 112s-2: The lower sidewall of the gate dielectric layer

112s-1:閘極介電層的上方側壁 112s-1: Upper sidewall of the gate dielectric layer

115:第一阻障層 115: The first barrier layer

WF-1:第一功函數層 WF-1: The first work function layer

117:導電層 117: conductive layer

119:阻障材料層 119: barrier material layer

120:第二阻障層 120: Second barrier layer

122:第二功函數材料層 122: Second work function material layer

123:第二功函數層 123: Second work function layer

125,125’:空隙 125,125': gap

125G:氣隙 125G: air gap

126,127:絕緣部 126,127: insulation part

128:絕緣層 128: insulation layer

605:絕緣蓋層 605: insulation cover

607:間隔物 607: spacer

610:層間絕緣層 610: interlayer insulating layer

t1,t2:厚度 t1, t2: thickness

D1,D2,D3:方向 D1, D2, D3: direction

第1A-1F圖為根據本發明的一實施例之製造半導體結構的不同中間階段所對應的剖面示意圖。 1A-1F are schematic cross-sectional views corresponding to different intermediate stages of fabricating a semiconductor structure according to an embodiment of the present invention.

第2圖為根據本發明的另一實施例之製造半導體結構的中間階段的剖面示意圖。 FIG. 2 is a schematic cross-sectional view of an intermediate stage of fabricating a semiconductor structure according to another embodiment of the present invention.

第3圖為根據本發明的另一實施例之製造半導體結構的中間階段的剖面示意圖。 FIG. 3 is a schematic cross-sectional view of an intermediate stage of fabricating a semiconductor structure according to another embodiment of the present invention.

第4圖為根據本發明的其他實施例之製造半導體結構的中間階段的剖面示意圖。 FIG. 4 is a schematic cross-sectional view of an intermediate stage of fabricating a semiconductor structure according to another embodiment of the present invention.

第5圖是根據本發明的一實施例之製造半導體結構的中間階段的剖面示意圖。 FIG. 5 is a schematic cross-sectional view of an intermediate stage of fabricating a semiconductor structure according to an embodiment of the present invention.

第6圖是根據本發明的一實施例之記憶體裝置的上視示意圖,第7圖為根據第6圖中的剖面線7-7線段繪製的剖面示意圖。 FIG. 6 is a schematic top view of a memory device according to an embodiment of the present invention, and FIG. 7 is a schematic cross-sectional view drawn according to section line 7-7 in FIG. 6 .

參照本發明實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似 之元件標號表示相同或相似之元件,以下段落將不再一一贅述。 The present invention will be described more fully with reference to the drawings of the embodiments of the present invention. However, the present invention can also be embodied in various forms and should not be limited to the embodiments described herein. The thicknesses of layers and regions in the drawings may be exaggerated for clarity. same or similar The reference numerals of the components indicate the same or similar components, and the following paragraphs will not repeat them one by one.

第1A-1F圖是根據本發明的一實施例之製造半導體結構的不同中間階段所對應的剖面示意圖。第6圖是根據本發明的一實施例之記憶體裝置的上視示意圖。其中第1A-1F圖係對應第6圖中的剖面線7-7所繪製。 1A-1F are schematic cross-sectional views corresponding to different intermediate stages of fabricating a semiconductor structure according to an embodiment of the present invention. FIG. 6 is a schematic top view of a memory device according to an embodiment of the present invention. Figures 1A-1F are drawn corresponding to section line 7-7 in Figure 6.

請參照第1A圖,提供一基底100,基底100包含向下延伸之溝槽103,且溝槽103的側壁103s和底面103b上具有一閘極介電層112。基底100的材料例如可包含半導體材料。在一實施例中,基底100係包括矽、砷化鎵、氮化鎵、矽化鍺、其他合適之材料或前述之組合。在其他實施例中,基底100為絕緣層上覆矽之基底。 Referring to FIG. 1A , a substrate 100 is provided, the substrate 100 includes a trench 103 extending downward, and a gate dielectric layer 112 is formed on the sidewall 103s and the bottom surface 103b of the trench 103 . The material of the substrate 100 may include semiconductor material, for example. In one embodiment, the substrate 100 includes silicon, gallium arsenide, gallium nitride, germanium silicide, other suitable materials, or a combination thereof. In other embodiments, the substrate 100 is a silicon-on-insulator substrate.

在一實施例中,可在基底100上形成一遮罩材料層,對遮罩材料層進行圖案化而形成遮罩層111。遮罩層111例如可包括氧化矽或其他合適之材料。遮罩層111例如包括四乙氧基矽烷(tetraethoxysilane,TEOS)。接著,以遮罩層111為一蝕刻遮罩,可對遮罩層111和下方的基底100進行蝕刻和填入隔離材料,以形成環繞多個主動區AA的淺溝槽隔離結構102(如第6圖所示主動區AA以外的區域)。之後,在對應後續形成字元線的位置,對遮罩層111和下方的基底100進行蝕刻製程以形成溝槽103,其中相鄰的溝槽103係在方向D1(第6圖)上互相分離,而各個溝槽103在基底100中沿著方向D3水平延伸,並沿著方向D2向下延伸。 In one embodiment, a mask material layer may be formed on the substrate 100 , and the mask material layer is patterned to form the mask layer 111 . The mask layer 111 may include silicon oxide or other suitable materials, for example. The mask layer 111 includes, for example, tetraethoxysilane (TEOS). Next, using the mask layer 111 as an etching mask, the mask layer 111 and the underlying substrate 100 can be etched and filled with isolation materials to form shallow trench isolation structures 102 surrounding a plurality of active regions AA (as shown in FIG. 6 outside the active region AA ). Afterwards, at the positions corresponding to subsequent word lines, the mask layer 111 and the underlying substrate 100 are etched to form trenches 103, wherein adjacent trenches 103 are separated from each other in the direction D1 (FIG. 6), and each trench 103 extends horizontally in the substrate 100 along the direction D3 and extends downward along the direction D2.

回到第1A圖,接著,在溝槽103的側壁103s和底面103b上形成閘極介電層112。閘極介電層112可通過熱氧化製程、沉積製程、任何合適的製程或前述之組合而形成。在一實施例中,例如是對含矽的基底100進行熱氧化製程,以在溝槽103的側壁103s和底面103b上形成氧化矽層,而作為閘極介電層112。在其他實施例中,例如可先在基底100的溝槽103中形成多晶矽襯層(包括覆蓋遮罩層111的側壁),之後再進行熱氧化製程以氧化多晶矽襯層,而形成閘極介電層112。 Returning to FIG. 1A , next, a gate dielectric layer 112 is formed on the sidewall 103 s and the bottom surface 103 b of the trench 103 . The gate dielectric layer 112 can be formed by a thermal oxidation process, a deposition process, any suitable process, or a combination thereof. In one embodiment, for example, a thermal oxidation process is performed on the silicon-containing substrate 100 to form a silicon oxide layer on the sidewall 103 s and the bottom surface 103 b of the trench 103 as the gate dielectric layer 112 . In other embodiments, for example, a polysilicon liner (including the sidewalls covering the mask layer 111 ) may be formed in the trench 103 of the substrate 100 first, and then a thermal oxidation process is performed to oxidize the polysilicon liner to form the gate dielectric layer 112 .

在一實施例中,閘極介電層112可為單層結構或多層結構,且其材料可包括氧化矽、氮化矽、其他合適之材料或前述之組合。舉例而言,閘極介電層112可為氧化矽/氮化矽/氧化矽的結構(ONO結構),或者NONON結構。為簡化圖式,係繪示單層的閘極介電層112以利說明。於一示例中,閘極介電層112為一氧化矽層。 In one embodiment, the gate dielectric layer 112 can be a single-layer structure or a multi-layer structure, and its material can include silicon oxide, silicon nitride, other suitable materials, or a combination thereof. For example, the gate dielectric layer 112 can be a silicon oxide/silicon nitride/silicon oxide structure (ONO structure), or a NONON structure. To simplify the drawing, a single gate dielectric layer 112 is shown for illustration. In one example, the gate dielectric layer 112 is a silicon oxide layer.

之後,在溝槽103的下方部分形成第一功函數層WF-1。第一功函數層WF-1可包含單層或多層的材料層,例如單層的金屬層、或是金屬氮化物層和金屬層之組合。在此實施例中,第一功函數層WF-1例如是(但不限於)包含第一阻障層115和導電層117。繼續參照第1A圖。可順應性地(conformably)於基底100上和溝槽103的閘極介電層112上沉積一第一阻障材料層(未示出),然後在基底100和第一阻障材料層上形成導電材料層(未示出)並填滿溝槽103。之後,利用例如化學機械研磨(CMP)製程、回蝕(etching back)製程或其他合適的製程,以去除位於溝槽103以外的第一阻障材料層和導電材料層。之後,例如使用選擇性蝕刻製程,下凹(recessing)溝槽103內的第一阻障材料層和導電材料層,而留在溝槽103的下方部分的第一阻障材料層和導電材料層的部分則分別形成第一阻障層115和導電層117,且第一阻障層115的頂面115a和導電層117的頂面117a大致上共平面。 Afterwards, a first work function layer WF- 1 is formed on the lower portion of the trench 103 . The first work function layer WF-1 may include a single layer or multiple layers of material, such as a single metal layer, or a combination of a metal nitride layer and a metal layer. In this embodiment, the first work function layer WF- 1 includes, for example but not limited to, a first barrier layer 115 and a conductive layer 117 . Continue to refer to Figure 1A. A first barrier material layer (not shown) can be conformably deposited on the substrate 100 and the gate dielectric layer 112 of the trench 103 , and then a conductive material layer (not shown) is formed on the substrate 100 and the first barrier material layer to fill the trench 103 . After that, using such as chemical mechanical polishing (CMP) process, etch back (etching back) process or other suitable processes to remove the first barrier material layer and the conductive material layer outside the trench 103 . Afterwards, for example, by using a selective etching process, the first barrier material layer and the conductive material layer in the trench 103 are recessed, and the parts of the first barrier material layer and the conductive material layer remaining in the lower part of the trench 103 form the first barrier layer 115 and the conductive layer 117 respectively, and the top surface 115a of the first barrier layer 115 and the top surface 117a of the conductive layer 117 are substantially coplanar.

如第1A圖所示,第一阻障層115和導電層117係形成於溝槽103的下方部分,並構成第一功函數層WF-1。其中,第一阻障層115接觸閘極介電層112,並形成於閘極介電層112及導電層117之間。具體而言,第一阻障層115係位於閘極介電層112的下方側壁112s-2和底面112b及導電層117的側壁117s和底面117b之間。 As shown in FIG. 1A , the first barrier layer 115 and the conductive layer 117 are formed at the lower portion of the trench 103 and constitute the first work function layer WF-1. Wherein, the first barrier layer 115 contacts the gate dielectric layer 112 and is formed between the gate dielectric layer 112 and the conductive layer 117 . Specifically, the first barrier layer 115 is located between the lower sidewall 112s - 2 and the bottom surface 112b of the gate dielectric layer 112 and the sidewall 117s and the bottom surface 117b of the conductive layer 117 .

在一實施例中,第一阻障層115的材料係包括導電金屬,例如金屬、金屬合金、金屬氮化物或金屬矽化物。在一實施例中,第一阻障層115的材料包括氮化鈦(TiN)、氮化鈦矽(TiSiN)、氮化鉭(TaN)、氮化鎢(WN)、鉭(Ta)、鈦(Ti)、鎢(W)、釕(Ru)、鋁(Al)、或其他合適的導電材料。在一實施例中,第一阻障層115可通過使用一沉積製程,例如物理氣相沉積(PVD)製程、化學氣相沉積(CVD)製程、或原子層沉積(ALD)製程而形成。 In one embodiment, the material of the first barrier layer 115 includes conductive metal, such as metal, metal alloy, metal nitride or metal silicide. In one embodiment, the material of the first barrier layer 115 includes titanium nitride (TiN), titanium silicon nitride (TiSiN), tantalum nitride (TaN), tungsten nitride (WN), tantalum (Ta), titanium (Ti), tungsten (W), ruthenium (Ru), aluminum (Al), or other suitable conductive materials. In one embodiment, the first barrier layer 115 can be formed by using a deposition process, such as a physical vapor deposition (PVD) process, a chemical vapor deposition (CVD) process, or an atomic layer deposition (ALD) process.

在一實施例中,導電層117的材料係包括導電金屬,例如金屬、金屬合金、金屬氮化物或金屬矽化物。在一實施例中,導電 層117的材料包括鎢、鉭、鈦、釕、鋁、氮化鎢、氮化鈦、氮化鈦矽、氮化鉭、或其他合適的導電材料。在一實施例中,導電層117可通過使用一沉積製程,例如PVD、CVD、或ALD等製程而形成。 In one embodiment, the material of the conductive layer 117 includes conductive metal, such as metal, metal alloy, metal nitride or metal silicide. In one embodiment, conductive The material of layer 117 includes tungsten, tantalum, titanium, ruthenium, aluminum, tungsten nitride, titanium nitride, titanium silicon nitride, tantalum nitride, or other suitable conductive materials. In one embodiment, the conductive layer 117 can be formed by using a deposition process such as PVD, CVD, or ALD.

接著,如第1B圖所示,在基底100上方以及溝槽103的上方部分順應性的形成一阻障材料層119。在一實施例中,係在閘極介電層112的上方側壁112s-1、第一阻障層115的頂面115a上、以及導電層117的頂面117a上形成阻障材料層119。如第1B圖所示,阻障材料層119係延伸至基底100的上方,例如是延伸至遮罩層111的頂面111a上。 Next, as shown in FIG. 1B , a barrier material layer 119 is conformally formed above the substrate 100 and above the trench 103 . In one embodiment, the barrier material layer 119 is formed on the upper sidewall 112 s - 1 of the gate dielectric layer 112 , on the top surface 115 a of the first barrier layer 115 , and on the top surface 117 a of the conductive layer 117 . As shown in FIG. 1B , the barrier material layer 119 extends above the substrate 100 , for example, extends onto the top surface 111 a of the mask layer 111 .

在一實施例中,第一阻障層115係具有大致上均勻的厚度,例如厚度t1;阻障材料層119係具有大致上均勻的厚度,例如厚度t2。根據實施例提出的製造方法,阻障材料層119的厚度t2係定義了後續製程中形成的空隙(如後續第1E、2圖所示之空隙125、125’)在方向D1上的寬度,進而影響了後續製得的埋入式閘極結構與溝槽103側壁上的閘極介電層112之間的距離。阻障材料層119越厚,後續形成的第二功函數層(如後續第1E、2圖所示之第二功函數層123)至閘極介電層112之間的距離越遠,則第二功函數層123在基底中引發的電場越小,可縮窄在基底中形成的通道寬度,進而抑止閘極引發汲極漏電流。 In one embodiment, the first barrier layer 115 has a substantially uniform thickness, such as a thickness t1 ; the barrier material layer 119 has a substantially uniform thickness, such as a thickness t2 . According to the manufacturing method proposed in the embodiment, the thickness t2 of the barrier material layer 119 defines the width in the direction D1 of the gaps formed in the subsequent manufacturing process (such as the gaps 125 and 125' shown in subsequent FIG. 1E and FIG. 2 ), thereby affecting the distance between the subsequently fabricated gate structure and the gate dielectric layer 112 on the sidewall of the trench 103. The thicker the barrier material layer 119 is, the longer the distance between the subsequently formed second work function layer (such as the second work function layer 123 shown in FIG. 1E and FIG. 2 ) and the gate dielectric layer 112 is, the smaller the electric field induced by the second work function layer 123 in the substrate can narrow the width of the channel formed in the substrate, thereby suppressing the drain leakage current caused by the gate.

在一實施例中,阻障材料層119的厚度t2係大致等於第一 阻障層115的厚度t1,如第1B圖所示。在其他實施例中,厚度t2係大於厚度t1。在一示例中,厚度t1例如是在3.5nm至5.5nm的範圍之間,例如4nm至5nm;厚度t2例如是在4.5nm至7.5nm的範圍之間,例如5nm至7nm。 In one embodiment, the thickness t2 of the barrier material layer 119 is substantially equal to the first The thickness t1 of the barrier layer 115 is shown in FIG. 1B. In other embodiments, the thickness t2 is greater than the thickness t1. In an example, the thickness t1 is in the range of 3.5 nm to 5.5 nm, such as 4 nm to 5 nm; the thickness t2 is in the range of 4.5 nm to 7.5 nm, such as 5 nm to 7 nm.

在一實施例中,阻障材料層119的材料係包括導電金屬,例如金屬、金屬合金、金屬氮化物或金屬矽化物。在一實施例中,阻障材料層119的材料包括氮化鈦、氮化鈦矽、氮化鉭、氮化鎢、鉭、鈦、鎢、釕、鋁、或其他合適的導電材料。在一實施例中,阻障材料層119可藉由沉積製程,例如PVD、CVD或ALD等製程而形成。 In one embodiment, the material of the barrier material layer 119 includes conductive metal, such as metal, metal alloy, metal nitride or metal silicide. In one embodiment, the material of the barrier material layer 119 includes titanium nitride, titanium silicon nitride, tantalum nitride, tungsten nitride, tantalum, titanium, tungsten, ruthenium, aluminum, or other suitable conductive materials. In one embodiment, the barrier material layer 119 may be formed by a deposition process, such as PVD, CVD, or ALD.

在一實施例中,阻障材料層119與第一阻障層115係包含相同的導電材料。在其他實施例中,阻障材料層119與第一阻障層115係包含不同的導電材料。再者,在一實施例中,阻障材料層119係不同於導電層117的材料,且阻障材料層119的功函數係小於導電層117的功函數。在一實施例中,第一阻障層115及阻障材料層119包含氮化鈦,而導電層117包含鎢。 In one embodiment, the barrier material layer 119 and the first barrier layer 115 include the same conductive material. In other embodiments, the barrier material layer 119 and the first barrier layer 115 contain different conductive materials. Moreover, in one embodiment, the barrier material layer 119 is a material different from the conductive layer 117 , and the work function of the barrier material layer 119 is smaller than the work function of the conductive layer 117 . In one embodiment, the first barrier layer 115 and the barrier material layer 119 include titanium nitride, and the conductive layer 117 includes tungsten.

接著,如第1C圖所示,在阻障材料層119上形成一第二功函數材料層122,其包含例如導體材料。第二功函數材料層122例如是填滿溝槽103的留下空間,且與阻障材料層119直接接觸。在一實施例中,導電層117係與第二功函數材料層122通過阻障材料層119 而隔離開來;亦即,第二功函數材料層122不與導電層117接觸。 Next, as shown in FIG. 1C , a second work function material layer 122 is formed on the barrier material layer 119 , which includes, for example, a conductor material. The second work function material layer 122 , for example, fills the remaining space of the trench 103 and is in direct contact with the barrier material layer 119 . In one embodiment, the conductive layer 117 and the second work function material layer 122 pass through the barrier material layer 119 and isolated; that is, the second work function material layer 122 is not in contact with the conductive layer 117 .

在一實施例中,第二功函數材料層122例如包括摻雜或未摻雜之多晶矽、或金屬、金屬合金、金屬氮化物、金屬矽化物等。在一實施例中,第二功函數材料層122的材料包括多晶矽、氮化鈦、氮化鈦矽、氮化鉭、氮化鎢、鉭、鈦、鎢、釕、鋁、或其他合適的導電材料。在一實施例中,第二功函數材料層122可通過使用一沉積製程,例如PVD、CVD、ALD等製程而形成。 In one embodiment, the second work function material layer 122 includes, for example, doped or undoped polysilicon, or metal, metal alloy, metal nitride, metal silicide, and the like. In one embodiment, the material of the second work function material layer 122 includes polysilicon, titanium nitride, titanium silicon nitride, tantalum nitride, tungsten nitride, tantalum, titanium, tungsten, ruthenium, aluminum, or other suitable conductive materials. In one embodiment, the second work function material layer 122 can be formed by using a deposition process, such as PVD, CVD, ALD and other processes.

在一實施例中,第二功函數材料層122係不同於第一阻障層115的材料、導電層117的材料以及阻障材料層119的材料。再者,在一實施例中,第二功函數材料層122的功函數係小於導電層117的功函數。 In one embodiment, the second work function material layer 122 is different from the material of the first barrier layer 115 , the material of the conductive layer 117 and the material of the barrier material layer 119 . Furthermore, in one embodiment, the work function of the second work function material layer 122 is smaller than the work function of the conductive layer 117 .

接著,如第1D圖所示,去除位於基底100上方的第二功函數材料層122,並下凹位於溝槽103內的第二功函數材料層122,以形成一第二功函數層123。在一實施例中,形成的第二功函數層123係對應於導電層117之頂面117a的上方,且第二功函數層123與導電層117係以部分的阻障材料層119而彼此隔離。在一實施例中,可通過CMP、回蝕製程、選擇性蝕刻製程、其他合適的製程或前述之組合,去除位於溝槽103以外的第二功函數材料層122的部分,再下凹去除位於溝槽103內的一部份的第二功函數材料層122,以形成第二功函數層123。在一實施例中,第二功函數層123的頂面123a係 不高過主動區中的摻雜區域(未示出)(例如作為源極/汲極區域)之底面的水平高度,以增加摻雜區域之底部與埋入式閘極結構的距離,因此可有助於減少漏電流的情形。 Next, as shown in FIG. 1D , the second work function material layer 122 on the substrate 100 is removed, and the second work function material layer 122 in the trench 103 is recessed to form a second work function layer 123 . In one embodiment, the second work function layer 123 is formed corresponding to the top surface 117 a of the conductive layer 117 , and the second work function layer 123 and the conductive layer 117 are separated from each other by a part of the barrier material layer 119 . In one embodiment, a portion of the second work function material layer 122 located outside the trench 103 may be removed by CMP, an etch back process, a selective etching process, other suitable processes, or a combination thereof, and then a portion of the second work function material layer 122 located in the trench 103 may be recessed to form the second work function layer 123. In one embodiment, the top surface 123a of the second work function layer 123 is The level of the bottom surface of the doped region (not shown) in the active region (eg, as the source/drain region) is not higher than that to increase the distance between the bottom of the doped region and the buried gate structure, thereby helping to reduce the leakage current situation.

接著,如第1E圖所示,在一實施例中,去除部分的阻障材料層119,而留下的阻障材料層119的部份則形成一第二阻障層120。形成的第二阻障層120例如是位於第二功函數層123和導電層117之間。再者,去除部分的阻障材料層119後,係在第二功函數層123的側壁123s與閘極介電層112之間形成空隙(spacing)125。 Next, as shown in FIG. 1E , in one embodiment, part of the barrier material layer 119 is removed, and the remaining part of the barrier material layer 119 forms a second barrier layer 120 . The formed second barrier layer 120 is, for example, located between the second work function layer 123 and the conductive layer 117 . Furthermore, after removing part of the barrier material layer 119 , a spacing 125 is formed between the sidewall 123 s of the second work function layer 123 and the gate dielectric layer 112 .

在一實施例中,可去除阻障材料層119暴露出的部分,以及去除位於第二功函數層123的側壁123s與閘極介電層112之間的阻障材料層119的至少一部分,以形成空隙125。在一實施例中,係利用選擇性蝕刻製程去除阻障材料層119。例如,可選用相對於第二功函數層123的材料具有選擇性的蝕刻劑或蝕刻氣體對阻障材料層119進行濕式蝕刻或乾式蝕刻。 In one embodiment, the exposed portion of the barrier material layer 119 and at least a portion of the barrier material layer 119 between the sidewall 123 s of the second work function layer 123 and the gate dielectric layer 112 may be removed to form the gap 125 . In one embodiment, the barrier material layer 119 is removed using a selective etching process. For example, an etchant or an etching gas that is selective to the material of the second work function layer 123 can be selected to perform wet etching or dry etching on the barrier material layer 119 .

值得一提的是,空隙125在方向D1上的寬度是根據阻障材料層119的厚度t2而決定,因此可通過控制厚度t2來控制第二功函數層123與基底100間在方向D1上的距離,進而控制第二功函數層123所形成的電場,以抑制GIDL的路徑。 It is worth mentioning that the width of the gap 125 in the direction D1 is determined according to the thickness t2 of the barrier material layer 119. Therefore, the distance between the second work function layer 123 and the substrate 100 in the direction D1 can be controlled by controlling the thickness t2, thereby controlling the electric field formed by the second work function layer 123 to suppress the path of the GIDL.

此外,形成的空隙125的深度可以依實際應用條件而做合適的控制與調整。例如,在本實施例中,空隙125可以完全暴露出 第二功函數層123的側壁123s(如第1E圖)。詳細而言,係將未被第二功函數層123覆蓋的阻障材料層119的部份完全去除,因此,所形成的空隙125係暴露出部分的閘極介電層112、第二功函數層123的所有側壁123s以及第一阻障層115的頂面115a。在另一實施例中,空隙125可以僅暴露出第二功函數層123的部分的側壁123s(如第2圖)。在其他實施例中,空隙125亦可向下延伸至暴露出導電層117的部分的側壁117s。 In addition, the depth of the formed gap 125 can be properly controlled and adjusted according to actual application conditions. For example, in this embodiment, void 125 may be fully exposed The sidewall 123s of the second work function layer 123 (as shown in FIG. 1E ). Specifically, the portion of the barrier material layer 119 not covered by the second work function layer 123 is completely removed, so the formed gap 125 exposes a portion of the gate dielectric layer 112, all sidewalls 123s of the second work function layer 123, and the top surface 115a of the first barrier layer 115. In another embodiment, the gap 125 may only expose a portion of the sidewall 123s of the second work function layer 123 (as shown in FIG. 2 ). In other embodiments, the gap 125 may also extend down to the sidewall 117s exposing a portion of the conductive layer 117 .

請參照第1E圖,在進行前述之去除部分的阻障材料層119的步驟之後,第二功函數層123的側壁123s係與形成的第二阻障層120的側壁120s大致上共平面。另外,在一實施例中,在進行前述之去除部分的阻障材料層119的步驟之後,導電層117係被第一阻障層115與第二阻障層120包圍。 Referring to FIG. 1E , after the aforementioned step of removing part of the barrier material layer 119 , the sidewall 123s of the second work function layer 123 is substantially coplanar with the formed sidewall 120s of the second barrier layer 120 . In addition, in one embodiment, after the aforementioned step of removing part of the barrier material layer 119 , the conductive layer 117 is surrounded by the first barrier layer 115 and the second barrier layer 120 .

第2圖為根據本發明的另一實施例之製造半導體結構的中間階段的剖面示意圖,其係作為第1E圖的步驟的替代性實施例。相對於第1E圖,此處可以只去除位於第二功函數層123的側壁123s旁的阻障材料層119的一部分。因此,空隙125’僅暴露出第二功函數層123的部分的側壁123s。 FIG. 2 is a schematic cross-sectional view of an intermediate stage in the fabrication of a semiconductor structure according to another embodiment of the present invention, which is an alternative embodiment of the steps of FIG. 1E. With respect to FIG. 1E , only a part of the barrier material layer 119 beside the sidewall 123 s of the second work function layer 123 can be removed here. Therefore, the gap 125' only exposes a portion of the sidewall 123s of the second work function layer 123. Referring to FIG.

接著,參照第1F圖,在形成空隙125(第1E圖)之後,形成一絕緣層128於溝槽103中且位於第二功函數層123的上方,以覆蓋第二功函數層123、第二阻障層120、以及第一阻障層115。本實施 例中,絕緣層128更填入位於第二功函數層123的側壁123s與閘極介電層112之間的空隙125。在其他實施例中,絕緣層128也可以部份填滿空隙125或保留完整的空隙125(如第3圖)。另外,在其他實施例中,也可以將多層的絕緣材料填入於溝槽103中。亦即,絕緣層128包含多層的絕緣材料層(如第4圖)。 Next, referring to FIG. 1F, after forming the void 125 (FIG. 1E), an insulating layer 128 is formed in the trench 103 and above the second work function layer 123 to cover the second work function layer 123, the second barrier layer 120, and the first barrier layer 115. This implementation In one example, the insulating layer 128 further fills the gap 125 between the sidewall 123 s of the second work function layer 123 and the gate dielectric layer 112 . In other embodiments, the insulating layer 128 may also partially fill the gap 125 or keep the gap 125 intact (as shown in FIG. 3 ). In addition, in other embodiments, multiple layers of insulating material may also be filled in the trench 103 . That is, the insulating layer 128 includes multiple layers of insulating material (as shown in FIG. 4 ).

絕緣層128的材料例如包括氮化物、氧化物、其他合適之介電材料或前述之組合。在一實施例中,絕緣層128的材料包括氮化矽、氧化矽、其他合適之材料或前述之組合。絕緣層128可以是單層或多層絕緣材料。在一實施例中,絕緣層128係包含與閘極介電層112不同的絕緣材料。再者,絕緣層128可以是通過PVD、CVD、ALD、旋轉塗佈製程、其他合適的製程或前述之組合而形成。 The material of the insulating layer 128 includes, for example, nitride, oxide, other suitable dielectric materials, or a combination thereof. In one embodiment, the material of the insulating layer 128 includes silicon nitride, silicon oxide, other suitable materials, or a combination thereof. The insulating layer 128 may be a single layer or multiple layers of insulating material. In one embodiment, the insulating layer 128 comprises a different insulating material than the gate dielectric layer 112 . Furthermore, the insulating layer 128 can be formed by PVD, CVD, ALD, spin-coating process, other suitable processes, or a combination of the foregoing.

第3圖為根據本發明的另一實施例之製造半導體結構的中間階段的剖面示意圖。第4圖為根據本發明的其他實施例之製造半導體結構的中間階段的剖面示意圖。第3圖及第4圖係作為第1F圖的步驟的替代性實施例。 FIG. 3 is a schematic cross-sectional view of an intermediate stage of fabricating a semiconductor structure according to another embodiment of the present invention. FIG. 4 is a schematic cross-sectional view of an intermediate stage of fabricating a semiconductor structure according to another embodiment of the present invention. Figures 3 and 4 are alternative embodiments of the steps of Figure 1F.

請參照第3圖,此處形成的絕緣層128僅部份填入或不填入空隙125,因此第二功函數層123的側壁123s與閘極介電層112之間具有一氣隙(air gap)125G,而絕緣層128位於第二功函數層123的頂面123a及氣隙125G的上方。在本實施例中,由於空氣的介電常數較絕緣層128高,因此相對於第1F圖的實施例而言,氣隙 125G可進一步減少漏電流的情形。 3, the insulating layer 128 formed here only partially fills or does not fill the gap 125, so there is an air gap (air gap) 125G between the sidewall 123s of the second work function layer 123 and the gate dielectric layer 112, and the insulating layer 128 is located above the top surface 123a of the second work function layer 123 and the air gap 125G. In this embodiment, since the dielectric constant of air is higher than that of the insulating layer 128, compared to the embodiment of Fig. 1F, the air gap 125G can further reduce the situation of leakage current.

請參照第4圖,此處形成的絕緣層128包含兩個絕緣部126和127。具體而言,在第1E圖的步驟之後,可在基底100上以及溝槽103內,先順應性的形成絕緣部126,並繼續在基底100上以及溝槽103內毯覆性的形成絕緣部127。如圖所示,絕緣部126係位於溝槽103中且位於第二功函數層123上,且絕緣部126填入第二功函數層123的側壁123s與閘極介電層112之間的空隙125。絕緣部126更覆蓋第二功函數層123的頂面123a與側壁123s。在一實施例中,絕緣部126和絕緣部127可包含不同材料。例如,絕緣部126為一氧化層,絕緣部127為一氮化層。在另一實施例中,絕緣部126可包含與閘極介電層112相同的絕緣材料,例如氧化矽。在本實施例中,藉由形成多層結構的絕緣層128,可進一步的選取不同介電常數的絕緣材料以提高絕緣層128整體的介電常數,因此相對於第1F圖的實施例而言,可進一步減少漏電流的情形。 Please refer to FIG. 4 , the insulating layer 128 formed here includes two insulating portions 126 and 127 . Specifically, after the step in FIG. 1E , the insulating portion 126 may be conformally formed first on the substrate 100 and in the trench 103 , and then the insulating portion 127 may be blanket formed on the substrate 100 and in the trench 103 . As shown, the insulating portion 126 is located in the trench 103 and on the second work function layer 123 , and the insulating portion 126 fills the gap 125 between the sidewall 123 s of the second work function layer 123 and the gate dielectric layer 112 . The insulating portion 126 further covers the top surface 123 a and the sidewall 123 s of the second work function layer 123 . In one embodiment, the insulating part 126 and the insulating part 127 may comprise different materials. For example, the insulating portion 126 is an oxide layer, and the insulating portion 127 is a nitride layer. In another embodiment, the insulating portion 126 may include the same insulating material as the gate dielectric layer 112 , such as silicon oxide. In this embodiment, by forming the insulating layer 128 with a multi-layer structure, insulating materials with different dielectric constants can be further selected to increase the overall dielectric constant of the insulating layer 128. Therefore, compared with the embodiment of FIG. 1F, the situation of leakage current can be further reduced.

第5圖是根據本發明的一實施例之製造半導體結構的中間階段的剖面示意圖。接續於第1F圖,在形成絕緣層128之後,可進行平坦化製程,以去除部分的絕緣層128,直至暴露出遮罩層111的頂面111a。如第5圖所示,在平坦化後,溝槽103中位於留下的絕緣層128下方的第一功函數層WF-1、第二功函數層123、以及第二阻障層120係構成本發明的埋入式閘極結構。本實施例中,第一功函數層WF-1包括第一阻障層115及導電層117。在其他實施例 中,第一功函數層WF-1亦可僅包括導電層117。 FIG. 5 is a schematic cross-sectional view of an intermediate stage of fabricating a semiconductor structure according to an embodiment of the present invention. Following FIG. 1F , after the insulating layer 128 is formed, a planarization process may be performed to remove part of the insulating layer 128 until the top surface 111 a of the mask layer 111 is exposed. As shown in FIG. 5, after planarization, the first work function layer WF-1, the second work function layer 123, and the second barrier layer 120 located under the remaining insulating layer 128 in the trench 103 constitute the buried gate structure of the present invention. In this embodiment, the first work function layer WF- 1 includes a first barrier layer 115 and a conductive layer 117 . In other embodiments Among them, the first work function layer WF-1 may also only include the conductive layer 117 .

本發明實施例的埋入式閘極結構可應用於一動態隨機存取記憶體(DRAM)裝置,以作為埋入式字元線。以下係提出一示例說明形成如實施例之埋入式閘極結構後,製作一DRAM裝置的後續製程。請參照第6、7圖。第6圖是根據本發明的一實施例之記憶體裝置的上視示意圖,第7圖為根據第6圖中的剖面線7-7線段繪製的剖面示意圖。第6、7圖中與第1A-1F、2-5圖中相同或相似的元件係沿用相同或相似的標號,以利清楚說明。再者,如第7圖所示之埋入式閘極結構係以前述第5圖之埋入式閘極結構接續進行說明,但本發明不限於此。 The buried gate structure of the embodiment of the present invention can be applied to a dynamic random access memory (DRAM) device as a buried word line. The following is an example to illustrate the subsequent process of manufacturing a DRAM device after forming the buried gate structure according to the embodiment. Please refer to Figures 6 and 7. FIG. 6 is a schematic top view of a memory device according to an embodiment of the present invention, and FIG. 7 is a schematic cross-sectional view drawn according to section line 7-7 in FIG. 6 . The same or similar elements in Figures 6 and 7 as those in Figures 1A-1F and 2-5 continue to use the same or similar symbols for clarity. Furthermore, the buried gate structure shown in FIG. 7 is described in continuation of the buried gate structure shown in FIG. 5 , but the present invention is not limited thereto.

如第6圖所示,記憶體裝置包括基底100、多個淺溝槽隔離結構102、多個主動區AA、多個位元線BL、多個字元線組104、多個電容器接觸件107以及多個位元線接觸件109。基底100中形成有多個摻雜區域以作為主動區AA,各個主動區AA大致沿著方向D1(例如X方向)排列並與方向D1呈一夾角。基底100中還形成有環繞主動區AA的淺溝槽隔離結構102(未示出)。在此實施例中,主動區AA是以波浪狀的形式在方向D1上交替形成,但本發明不限於此。 As shown in FIG. 6, the memory device includes a substrate 100, a plurality of shallow trench isolation structures 102, a plurality of active regions AA , a plurality of bit lines BL, a plurality of word line groups 104, a plurality of capacitor contacts 107 and a plurality of bit line contacts 109. A plurality of doped regions are formed in the substrate 100 as active regions A A , and each active region A A is roughly arranged along a direction D1 (eg, X direction) and forms an included angle with the direction D1 . A shallow trench isolation structure 102 (not shown) surrounding the active region AA is also formed in the substrate 100 . In this embodiment, the active areas A A are alternately formed in the direction D1 in the form of waves, but the invention is not limited thereto.

多條位元線BL係形成於基底100的上方,各條位元線BL沿著方向D1延伸,且相鄰的位元線BL在方向D3上相距排列。多條字元線組104係形成於基底100中,分別沿著方向D3延伸。在一實施例中,每一字元線組104具有兩個埋入式字元線104A、104B, 且相鄰的埋入式字元線104A、104B在方向D1上相距排列。各個埋入式字元線104A/104B的剖面結構與第5圖所示的埋入式閘極結構相同,此處不再贅述。 A plurality of bit lines BL are formed above the substrate 100 , each bit line BL extends along the direction D1 , and adjacent bit lines BL are arranged at a distance from each other along the direction D3 . A plurality of word line groups 104 are formed in the substrate 100 and respectively extend along the direction D3. In one embodiment, each wordline group 104 has two buried wordlines 104A, 104B, And the adjacent buried word lines 104A, 104B are arranged with a distance in the direction D1. The cross-sectional structure of each buried word line 104A/ 104B is the same as the buried gate structure shown in FIG. 5 , and will not be repeated here.

如第6圖所示,每一主動區AA橫越一組對應的字元線組104(例如包含埋入式字元線104A、104B),且每一主動區AA與所對應的位元線BL具有一重疊區域(例如主動區AA的中間區段)和位於兩側的非重疊區域。在每一主動區AA與位元線BL的兩個非重疊區域中分別具有一電容器接觸件107與上方的電容器(未示出)電性連接。各個電容器接觸件107位於相鄰的兩條位元線BL之間。在一實施例中,電容器接觸件107位於基底100之上,且接觸一部分的基底100的摻雜區域的上表面。例如第6、7圖所示,對應於一個主動區AA的兩個電容器接觸件107分別配置於此主動區AA的字元線組104的兩側,以電性連接鄰近於字元線組104的兩側的摻雜區域(主動區AA)。因此,電容器接觸件107接觸基底100的摻雜區域係作為記憶體裝置的源極/汲極區域。 As shown in FIG. 6, each active area AA crosses a set of corresponding word line groups 104 (for example, including buried word lines 104A, 104B), and each active area AA and the corresponding bit line BL have an overlapping area (for example, a middle section of the active area AA ) and non-overlapping areas on both sides. There is a capacitor contact 107 in the two non-overlapping regions of each active area AA and the bit line BL, which is electrically connected to the upper capacitor (not shown). Each capacitor contact 107 is located between two adjacent bit lines BL. In one embodiment, the capacitor contact 107 is located on the substrate 100 and contacts a portion of the upper surface of the doped region of the substrate 100 . For example, as shown in FIGS. 6 and 7, two capacitor contacts 107 corresponding to an active area A A are respectively disposed on both sides of the word line group 104 in the active area A A to electrically connect the doped regions (active area A A ) adjacent to both sides of the word line group 104. Thus, the doped regions where the capacitor contacts 107 contact the substrate 100 serve as source/drain regions of the memory device.

如第6、7圖所示,每一主動區AA在與位元線BL的重疊區域處具有一位元線接觸件109。在一實施例中,位元線接觸件109係埋置於兩相鄰埋入式字元線104A和104B的絕緣層128之間,其中位元線接觸件109的底面係與基底100的摻雜區域接觸。位元線接觸件109的製作方式例如是,在兩相鄰埋入式字元線104A和104B的絕緣層128之間形成開口,且前述開口暴露出部分的基底100的摻雜區域,接著於基底上及前述開口中全面性地沉積多晶矽,再依序 全面性地沉積例如鈦、鎢、鉭、氮化鈦、氮化鉭、氮化鎢等一或多種導電材料以及例如氮化矽之絕緣材料後,沉積光阻及遮罩材料並進行微影蝕刻製程以形成包括位元線接觸件109、位元線BL及絕緣蓋層605的堆疊結構。值得一提的是,位於前述開口中的多晶矽在此作為位元線接觸件109,而位於位元線接觸件109上的位元線BL可包含鈦、鎢、鉭、氮化鈦、氮化鉭、氮化鎢等一或多種導電材料,且位元線BL沿著方向D1延伸。 As shown in FIGS. 6 and 7, each active area AA has a bit line contact 109 at the overlapping area with the bit line BL. In one embodiment, the bitline contact 109 is buried between the insulating layer 128 of two adjacent buried wordlines 104A and 104B, wherein the bottom surface of the bitline contact 109 is in contact with the doped region of the substrate 100 . The manufacturing method of the bit line contact 109 is, for example, forming an opening between the insulating layer 128 of two adjacent buried word lines 104A and 104B, and the aforementioned opening exposes a part of the doped region of the substrate 100, and then depositing polysilicon on the substrate and in the aforementioned opening, and then depositing one or more conductive materials such as titanium, tungsten, tantalum, titanium nitride, tantalum nitride, tungsten nitride, etc. A photolithographic etching process is performed to form a stack structure including the bit line contact 109 , the bit line BL and the insulating capping layer 605 . It is worth mentioning that the polysilicon located in the aforementioned opening serves as the bit line contact 109, and the bit line BL located on the bit line contact 109 may include one or more conductive materials such as titanium, tungsten, tantalum, titanium nitride, tantalum nitride, and tungsten nitride, and the bit line BL extends along the direction D1.

如第6、7圖所示,每一條位元線BL在橫越所對應的字元線組104時,可利用位元線接觸件109電性連接所對應的兩個埋入式字元線104A、104B,例如位元線接觸件109的底部係接觸兩個字元線之間的基底100的摻雜區域的上表面。 As shown in FIGS. 6 and 7, when each bit line BL crosses the corresponding word line group 104, it can use the bit line contact 109 to electrically connect the corresponding two embedded word lines 104A, 104B. For example, the bottom of the bit line contact 109 is in contact with the upper surface of the doped region of the substrate 100 between the two word lines.

再者,如第7圖所示,可在絕緣蓋層605和位元線BL的側壁上形成間隔物607(其材料例如包括氧化矽、氮化矽、空氣隙等一或多種材料)。例如,在前述的微影蝕刻製程後,可順應性地在基底上沉積一襯層(例如氮化矽)並進行乾式蝕刻以在絕緣蓋層605及位元線BL的側壁上形成間隔物607。接著,在基底上全面性地形成絕緣材料後,以絕緣蓋層605為停止層進行平坦化製程以在位元線BL的兩側形成層間絕緣層610。之後,利用例如微影蝕刻等製程,形成貫穿層間絕緣層610及遮罩層111的接觸孔(未示出),以暴露出部分的基底100的摻雜區域。接著,於接觸孔中沉積包括多晶矽、氮化鈦或鎢等一或多種導電材料,並且例如以CMP方式去除層間絕緣層610上方多餘的導電材料,以形成電容器接觸件107。在一實施例 中,電容器接觸件107、位元線接觸件109、位元線BL、與絕緣蓋層605係形成於層間絕緣層610中,電容器接觸件107的頂面以及絕緣蓋層605的頂面例如可與層間絕緣層610的頂面大致同平面。 Furthermore, as shown in FIG. 7 , spacers 607 (materials thereof include one or more materials such as silicon oxide, silicon nitride, and air gaps) can be formed on the insulating cap layer 605 and the sidewalls of the bit lines BL. For example, after the aforementioned lithographic etching process, a liner (such as silicon nitride) can be conformally deposited on the substrate and dry-etched to form spacers 607 on the insulating cap layer 605 and the sidewalls of the bit lines BL. Next, after the insulating material is completely formed on the substrate, a planarization process is performed with the insulating cap layer 605 as a stop layer to form an interlayer insulating layer 610 on both sides of the bit line BL. Afterwards, a contact hole (not shown) is formed through the interlayer insulating layer 610 and the mask layer 111 by using a process such as lithographic etching to expose a part of the doped region of the substrate 100 . Next, one or more conductive materials including polysilicon, titanium nitride, or tungsten are deposited in the contact holes, and redundant conductive materials above the interlayer insulating layer 610 are removed by CMP, to form capacitor contacts 107 . In an embodiment Among them, the capacitor contact 107, the bit line contact 109, the bit line BL, and the insulating cover layer 605 are formed in the interlayer insulating layer 610, and the top surface of the capacitor contact 107 and the top surface of the insulating cover layer 605 can be substantially coplanar with the top surface of the interlayer insulating layer 610, for example.

綜合上述,本發明所提出之半導體結構及其製造方法,具有與第一功函數層117不同功函數的第二功函數層123,其中第二功函數層123的功函數小於第一功函數層117的功函數,因此可以減少第二功函數層123於基底中引發的電場,進而調整閘極通道的寬度以抑制閘極引發汲極漏電流。 To sum up the above, the semiconductor structure and its manufacturing method proposed by the present invention have the second work function layer 123 having a different work function from the first work function layer 117, wherein the work function of the second work function layer 123 is smaller than the work function of the first work function layer 117, so the electric field induced by the second work function layer 123 in the substrate can be reduced, and the width of the gate channel can be adjusted to suppress the drain leakage current caused by the gate.

此外,本發明更可透過控制空隙125/125’的寬度(即阻障材料層的厚度t2)來控制第二功函數層123到基底100的距離,來調整第二功函數層123在基底中引發的電場以抑制閘極引發汲極漏電流。此外,本發明亦可在第二功函數層123上方以及第二功函數123與基底100間形成不同結構的介電質,來抑制閘極引發汲極漏電流。例如,可形成單層結構(如第1E圖的絕緣層128)或多層結構(如第3圖的氣隙125G及絕緣層128、或第4圖包括絕緣部126及127的絕緣部128)的介電質,來抑制閘極引發汲極漏電流。 In addition, the present invention can control the distance from the second work function layer 123 to the substrate 100 by controlling the width of the gap 125/125' (i.e., the thickness t2 of the barrier material layer), so as to adjust the electric field induced by the second work function layer 123 in the substrate to suppress the gate-induced drain leakage current. In addition, the present invention can also form dielectrics with different structures above the second work function layer 123 and between the second work function layer 123 and the substrate 100 to suppress gate-induced drain leakage current. For example, a single-layer structure (such as the insulating layer 128 in FIG. 1E ) or a multi-layer structure (such as the air gap 125G and the insulating layer 128 in FIG. 3 , or the insulating portion 128 including the insulating portions 126 and 127 in FIG. 4 ) can be formed to suppress gate-induced drain leakage current.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with several preferred embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make any changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the scope of the appended patent application.

100:基底 100: base

102:淺溝槽隔離結構 102:Shallow trench isolation structure

111:遮罩層 111: mask layer

100a,111a,123a:頂面 100a, 111a, 123a: top surface

103s,112s,117s,120s,123s:側壁 103s, 112s, 117s, 120s, 123s: side wall

103b,117b:底面 103b, 117b: bottom surface

112:閘極介電層 112: gate dielectric layer

112s-2:閘極介電層的下方側壁 112s-2: The lower sidewall of the gate dielectric layer

112s-1:閘極介電層的上方側壁 112s-1: Upper sidewall of the gate dielectric layer

WF-1:第一功函數層 WF-1: The first work function layer

115:第一阻障層 115: The first barrier layer

117:導電層 117: conductive layer

120:第二阻障層 120: Second barrier layer

123:第二功函數層 123: Second work function layer

125:空隙 125: Gap

128:絕緣層 128: insulation layer

Claims (15)

一種半導體結構,包括:一基底;一埋入式閘極結構,設置於該基底內,該埋入式閘極結構包括:一閘極介電層,位於該基底中之一溝槽的側壁和底面上;一第一功函數層,位於該溝槽中且接觸該閘極介電層的側壁和底面;一阻障層,係位於該第一功函數層的頂面上;及一第二功函數層,位於該阻障層的上方,且該第二功函數層的側壁係與該閘極介電層之間相隔一距離,其中該阻障層的厚度定義該距離的寬度,且該距離的該寬度與該阻障層的該厚度相等,其中該阻障層的側壁與該第二功函數層的該側壁共平面,該第二功函數層的該側壁的所有部分與該閘極介電層之間以及該阻障層的該側壁的所有部分與該閘極介電層之間係完全地填入空氣或完全地填入不包含金屬的一介電材料層;以及一絕緣層,位於該溝槽中且位於該第二功函數層上。 A semiconductor structure comprising: a substrate; a buried gate structure disposed in the substrate, the buried gate structure comprising: a gate dielectric layer located on the sidewall and bottom of a trench in the substrate; a first work function layer located in the trench and in contact with the sidewall and bottom of the gate dielectric layer; a barrier layer located on the top surface of the first work function layer; There is a distance between the gate dielectric layers, wherein the thickness of the barrier layer defines the width of the distance, and the width of the distance is equal to the thickness of the barrier layer, wherein the sidewall of the barrier layer is coplanar with the sidewall of the second work function layer, and all parts of the side wall of the second work function layer and the gate dielectric layer and between all parts of the side wall of the barrier layer and the gate dielectric layer are completely filled with air or completely filled with a dielectric material layer that does not contain metal; and an insulating layer located in the trench and on the second work function layer. 如請求項1所述之半導體結構,其中該絕緣層的一延伸部分為填入該第二功函數層的該側壁與該閘極介電層之間以及該阻障層的該側壁與該閘極介電層之間的空隙的前述介電材料層。 The semiconductor structure as claimed in claim 1, wherein an extension portion of the insulating layer is the aforementioned dielectric material layer filling gaps between the sidewall of the second work function layer and the gate dielectric layer and between the sidewall of the barrier layer and the gate dielectric layer. 如請求項1所述之半導體結構,其中該絕緣層包含: 一第一絕緣部,位於該溝槽中,且該第一絕緣部為填入該第二功函數層的該側壁與該閘極介電層之間以及該阻障層的該側壁與該閘極介電層之間的空隙的前述介電材料層;以及一第二絕緣部,位於該溝槽中且位於該第一絕緣部上。 The semiconductor structure as claimed in claim 1, wherein the insulating layer comprises: A first insulating part is located in the trench, and the first insulating part is the aforementioned dielectric material layer filling the space between the sidewall of the second work function layer and the gate dielectric layer and the gap between the sidewall of the barrier layer and the gate dielectric layer; and a second insulating part is located in the trench and on the first insulating part. 如請求項3所述之半導體結構,其中該第一絕緣部更覆蓋該第二功函數層的頂面及該側壁,該第二絕緣部與該第二功函數層係以該第一絕緣部相互分離。 The semiconductor structure according to claim 3, wherein the first insulating portion further covers the top surface and the sidewall of the second work function layer, and the second insulating portion and the second work function layer are separated from each other by the first insulating portion. 如請求項3所述之半導體結構,其中該第一絕緣部包含與該閘極介電層相同的材料,該第一絕緣部與該第二絕緣部包含不同的材料。 The semiconductor structure of claim 3, wherein the first insulating portion comprises the same material as the gate dielectric layer, and the first insulating portion and the second insulating portion comprise different materials. 如請求項1所述之半導體結構,其中該第二功函數層的該側壁與該閘極介電層之間以及該阻障層的該側壁與該閘極介電層之間係具有一氣隙,而該絕緣層位於該第二功函數層的頂面及該氣隙的上方。 The semiconductor structure as claimed in claim 1, wherein there is an air gap between the sidewall of the second work function layer and the gate dielectric layer and between the side wall of the barrier layer and the gate dielectric layer, and the insulating layer is located on the top surface of the second work function layer and above the air gap. 如請求項1所述之半導體結構,其中該第一功函數層包括:一第一阻障層,位於該溝槽中且位於該閘極介電層的該側壁和該底面上;以及一導電層,位於該溝槽中,且該第一阻障層圍繞該導電層的側壁和底面,其中位於該第一功函數層的該頂面上的該阻障層為一第二阻 障層。 The semiconductor structure as claimed in claim 1, wherein the first work function layer comprises: a first barrier layer located in the trench and on the sidewall and the bottom surface of the gate dielectric layer; and a conductive layer located in the trench, and the first barrier layer surrounds the sidewall and bottom surface of the conductive layer, wherein the barrier layer located on the top surface of the first work function layer is a second barrier layer barrier layer. 如請求項7所述之半導體結構,其中該第二阻障層的功函數係小於該導電層的功函數,而大於該第二功函數層的功函數。 The semiconductor structure as claimed in claim 7, wherein the work function of the second barrier layer is smaller than the work function of the conductive layer and greater than the work function of the second work function layer. 一種半導體結構的製造方法,包括:提供一基底,且在該基底中形成向下延伸之一溝槽;在該溝槽的側壁和底面上形成一閘極介電層;在該閘極介電層的下方側壁和底面上以及在該溝槽的下部中形成一第一功函數層;在該閘極介電層的上方側壁及該第一功函數層的頂面上形成一阻障材料層;在該阻障材料層上形成一第二功函數材料層;下凹該第二功函數材料層,以在該阻障材料層上形成一第二功函數層,並暴露出位於該閘極介電層的該上方側壁上的部分的該阻障材料層;去除部分的該阻障材料層,以形成一阻障層於該第二功函數層和該第一功函數層之間,並在該第二功函數層的側壁與該閘極介電層之間形成空隙(spacing),其中該空隙的寬度與該阻障層的厚度相等,該阻障層的側壁與該第二功函數層的該側壁共平面,且該第二功函數層的該側壁的所有部分與該閘極介電層之間以及該阻障層的該側壁的所有部分與該閘極介電層之間係完全地填入空氣或完全地填入不包含金屬的一介電材料層;以及形成一絕緣層於該溝槽中且位於該第二功函數層上。 A method for manufacturing a semiconductor structure, comprising: providing a substrate, and forming a trench extending downward in the substrate; forming a gate dielectric layer on the sidewall and bottom of the trench; forming a first work function layer on the lower sidewall and bottom of the gate dielectric layer and in the lower part of the trench; forming a barrier material layer on the upper sidewall of the gate dielectric layer and the top surface of the first work function layer; forming a second work function material layer on the barrier material layer; a material layer to form a second work function layer on the barrier material layer, and expose a portion of the barrier material layer located on the upper sidewall of the gate dielectric layer; remove a portion of the barrier material layer to form a barrier layer between the second work function layer and the first work function layer, and form a space between the sidewall of the second work function layer and the gate dielectric layer, wherein the width of the space is equal to the thickness of the barrier layer, and the side wall of the barrier layer and the The sidewalls of the second work function layer are coplanar, and between all parts of the side walls of the second work function layer and the gate dielectric layer and between all parts of the side walls of the barrier layer and the gate dielectric layer are completely filled with air or completely filled with a dielectric material layer not containing metal; and forming an insulating layer in the trench and on the second work function layer. 如請求項9所述之半導體結構的製造方法,其中在該 阻障材料層上形成該第二功函數材料層時,該第二功函數材料層係直接接觸位於該閘極介電層的該上方側壁上之前述部分的該阻障材料層。 The method for manufacturing a semiconductor structure as claimed in item 9, wherein in the When the second work function material layer is formed on the barrier material layer, the second work function material layer directly contacts the aforementioned portion of the barrier material layer on the upper sidewall of the gate dielectric layer. 如請求項9所述之半導體結構的製造方法,其中該絕緣層的一延伸部分為係填入該第二功函數層的該側壁與該閘極介電層之間以及該阻障層的該側壁與該閘極介電層之間的該空隙的前述介電材料層。 The method for manufacturing a semiconductor structure as claimed in item 9, wherein an extension of the insulating layer is the aforementioned dielectric material layer filling the gap between the sidewall of the second work function layer and the gate dielectric layer and the gap between the sidewall of the barrier layer and the gate dielectric layer. 如請求項9所述之半導體結構的製造方法,其中該絕緣層包含:一第一絕緣部,位於該溝槽中且位於該第二功函數材料層上,且該第一絕緣部為前述介電材料層,填入該第二功函數層的該側壁與該閘極介電層之間以及該阻障層的該側壁與該閘極介電層之間的該空隙,該第一絕緣部更覆蓋該第二功函數層的頂面及該側壁;以及一第二絕緣部,位於該溝槽中且位於該第一絕緣部上,其中該第二絕緣部與該第二功函數層係以該第一絕緣部相互分離。 The method for manufacturing a semiconductor structure as claimed in claim 9, wherein the insulating layer comprises: a first insulating portion located in the trench and on the second work function material layer, and the first insulating portion is the aforementioned dielectric material layer, filling the space between the side wall of the second work function layer and the gate dielectric layer and the gap between the side wall of the barrier layer and the gate dielectric layer, the first insulating portion further covers the top surface and the side wall of the second work function layer; and a second insulating portion is located in the trench and Located on the first insulating portion, wherein the second insulating portion and the second work function layer are separated from each other by the first insulating portion. 如請求項9所述之半導體結構的製造方法,其中該第二功函數層的該側壁與該閘極介電層之間以及該阻障層的該側壁與該閘極介電層之間係具有一氣隙,而該絕緣層位於該第二功函數層的頂面及該氣隙的上方。 The method for manufacturing a semiconductor structure as claimed in item 9, wherein there is an air gap between the sidewall of the second work function layer and the gate dielectric layer and between the side wall of the barrier layer and the gate dielectric layer, and the insulating layer is located on the top surface of the second work function layer and above the air gap. 如請求項9所述之半導體結構的製造方法,其中形成該第一功函數層係包括: 在該閘極介電層的該下方側壁和該底面上形成一第一阻障層,以及在該溝槽的該下部中形成一導電層,且該第一阻障層圍繞該導電層的側壁和底面,其中該第一阻障層與該導電層形成該第一功函數層,其中該阻障材料層係形成於該閘極介電層的該上方側壁、該第一阻障層的頂面及該導電層的頂面上,其中去除部分的該阻障材料層後所形成的該阻障層為一第二阻障層。 The method for manufacturing a semiconductor structure as claimed in claim 9, wherein forming the first work function layer comprises: A first barrier layer is formed on the lower sidewall and the bottom surface of the gate dielectric layer, and a conductive layer is formed in the lower portion of the trench, and the first barrier layer surrounds the sidewall and the bottom surface of the conductive layer, wherein the first barrier layer and the conductive layer form the first work function layer, wherein the barrier material layer is formed on the upper sidewall of the gate dielectric layer, the top surface of the first barrier layer, and the top surface of the conductive layer, wherein part of the barrier material layer is removed. The barrier layer is a second barrier layer. 如請求項14所述之半導體結構的製造方法,其中該阻障材料層的功函數係小於該導電層的功函數,而大於該第二功函數材料層的功函數。 The method of manufacturing a semiconductor structure as claimed in claim 14, wherein the work function of the barrier material layer is smaller than the work function of the conductive layer and greater than the work function of the second work function material layer.
TW110106051A 2021-02-22 2021-02-22 Seniconductor structure and method of manufacturing the same TWI808383B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110106051A TWI808383B (en) 2021-02-22 2021-02-22 Seniconductor structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110106051A TWI808383B (en) 2021-02-22 2021-02-22 Seniconductor structure and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW202234593A TW202234593A (en) 2022-09-01
TWI808383B true TWI808383B (en) 2023-07-11

Family

ID=84957116

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110106051A TWI808383B (en) 2021-02-22 2021-02-22 Seniconductor structure and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI808383B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201545352A (en) * 2014-05-29 2015-12-01 Sk Hynix Inc Dual work function buried gate-type transistor, method for forming the same, and electronic device including the same
CN105390542A (en) * 2014-08-21 2016-03-09 爱思开海力士有限公司 Semiconductor device having passing gate and method for fabricating the same
CN106067482A (en) * 2015-04-22 2016-11-02 爱思开海力士有限公司 There is the semiconductor device of buried grid structure and manufacture its method
CN107527912A (en) * 2016-06-16 2017-12-29 三星电子株式会社 Semiconductor devices
CN109801880A (en) * 2017-11-17 2019-05-24 联华电子股份有限公司 Flush type character line of dynamic random access memory and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201545352A (en) * 2014-05-29 2015-12-01 Sk Hynix Inc Dual work function buried gate-type transistor, method for forming the same, and electronic device including the same
CN105390542A (en) * 2014-08-21 2016-03-09 爱思开海力士有限公司 Semiconductor device having passing gate and method for fabricating the same
CN106067482A (en) * 2015-04-22 2016-11-02 爱思开海力士有限公司 There is the semiconductor device of buried grid structure and manufacture its method
CN107527912A (en) * 2016-06-16 2017-12-29 三星电子株式会社 Semiconductor devices
CN109801880A (en) * 2017-11-17 2019-05-24 联华电子股份有限公司 Flush type character line of dynamic random access memory and preparation method thereof

Also Published As

Publication number Publication date
TW202234593A (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US6613621B2 (en) Methods of forming self-aligned contact pads using a damascene gate process
US6764893B2 (en) Method for reducing a parasitic capacitance of a semiconductive memory cell using metal mask for sidewall formation
US20150017779A1 (en) Semiconductor device having stacked storage nodes of capacitors in cell region separated from peripheral region
JP2009158591A (en) Semiconductor device and process for manufacturing same
US11711914B2 (en) Semiconductor structure having buried gate structure and method of manufacturing the same
US10439048B2 (en) Photomask layout, methods of forming fine patterns and method of manufacturing semiconductor devices
US10818664B2 (en) Method of forming semiconductor memory device
US11812605B2 (en) Semiconductor structure with air gaps for buried semiconductor gate and method for forming the same
KR101561061B1 (en) Semiconductor device having a protrusion typed isolation layer
US20220384449A1 (en) Semiconductor memory device and method of fabricating the same
US7989335B2 (en) Methods of forming insulation layer patterns and methods of manufacturing semiconductor devices including insulation layer patterns
KR20050116421A (en) Method of forming self-aligned contact in semiconductor memory device and method of fabricating the semiconductor memory device using the method
KR100385951B1 (en) Semiconductor memory device having multi-layer storage node contact plug and fabrication method thereof
KR20210057249A (en) A semiconductor device and method of manufacturing the same
US20220359525A1 (en) Memory device and method of forming the same
US11665889B2 (en) Semiconductor memory structure
US20100148228A1 (en) Semiconductor and manufacturing method of the same
TWI808383B (en) Seniconductor structure and method of manufacturing the same
US20220344343A1 (en) Dynamic random access memory and method of fabricating the same
TWI757043B (en) Semiconductor memory structure and method for forming the same
US6982199B2 (en) Bitline of semiconductor device having stud type capping layer and method for fabricating the same
CN115172369A (en) Semiconductor structure and manufacturing method thereof
US20220352323A1 (en) Method for fabricating semiconductor device
TWI750858B (en) Semiconductor structure and method for forming the same
US20230320080A1 (en) Semiconductor memory device