TWI750858B - Semiconductor structure and method for forming the same - Google Patents

Semiconductor structure and method for forming the same Download PDF

Info

Publication number
TWI750858B
TWI750858B TW109136646A TW109136646A TWI750858B TW I750858 B TWI750858 B TW I750858B TW 109136646 A TW109136646 A TW 109136646A TW 109136646 A TW109136646 A TW 109136646A TW I750858 B TWI750858 B TW I750858B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor
gate
gate electrode
barrier layer
Prior art date
Application number
TW109136646A
Other languages
Chinese (zh)
Other versions
TW202218113A (en
Inventor
林昶鴻
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW109136646A priority Critical patent/TWI750858B/en
Application granted granted Critical
Publication of TWI750858B publication Critical patent/TWI750858B/en
Publication of TW202218113A publication Critical patent/TW202218113A/en

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A semiconductor structure includes a semiconductor substrate and a gate structure embedded in the semiconductor substrate. The gate structure includes a gate electrode layer, a barrier layer disposed over the gate electrode layer, and a semiconductor layer disposed over the barrier layer. The semiconductor structure also includes an air gap in the semiconductor substrate and exposing the barrier layer and the semiconductor layer.

Description

半導體結構及其形成方法Semiconductor structure and method of forming the same

本揭露係有關於一種半導體結構,且特別是有關於動態隨機存取記憶體。The present disclosure relates to a semiconductor structure, and more particularly, to dynamic random access memory.

動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)裝置廣泛地應用於消費性電子產品中。為了增加動態隨機存取記憶體裝置內的元件密度以及改善其整體表現,目前動態隨機存取記憶體裝置的製造技術持續朝向元件尺寸的微縮化而努力。然而,當元件尺寸持續縮小時,許多挑戰隨之而生。例如,改善閘極引發汲極漏電流(gate induced drain leakage,GIDL)。因此,業界仍需要改進動態隨機存取記憶體裝置的製造方法,以克服元件尺寸縮小所產生的問題。Dynamic Random Access Memory (DRAM) devices are widely used in consumer electronic products. In order to increase the device density within a DRAM device and improve its overall performance, current DRAM device fabrication techniques continue to strive towards the miniaturization of device size. However, as component sizes continue to shrink, many challenges arise. For example, gate induced drain leakage (GIDL) is improved. Therefore, the industry still needs to improve the manufacturing method of the DRAM device to overcome the problems caused by the shrinking device size.

本發明實施例提供半導體結構。此半導體結構包含半導體基底以及埋置於半導體基底中的閘極結構。閘極結構包含閘極電極層、設置於閘極電極層之上的阻障層、以及設置於阻障層之上的半導體層。此半導體結構還包含位於半導體基底中且暴露出閘極結構的阻障層和半導體層的氣隙。Embodiments of the present invention provide semiconductor structures. The semiconductor structure includes a semiconductor substrate and a gate structure embedded in the semiconductor substrate. The gate structure includes a gate electrode layer, a barrier layer arranged on the gate electrode layer, and a semiconductor layer arranged on the barrier layer. The semiconductor structure also includes a barrier layer in the semiconductor substrate and exposing the gate structure and an air gap of the semiconductor layer.

本發明實施例提供半導體結構的形成方法,此方法包含形成溝槽於半導體基底中、形成閘極襯層沿著溝槽的下部、以及填入閘極電極層於溝槽的下部且於閘極襯層之上。此方法還包含形成第一犧牲層沿著溝槽的上部的側壁、以及形成阻障層沿著第一犧牲層的側壁和閘極電極層的頂面。此方法還包含移除阻障層沿著第一犧牲層的側壁的第一部分,從而留下阻障層沿著閘極電極層的頂面的第二部分。此方法還包含形成半導體層於閘極電極層的第二部分之上、移除第一犧牲層、以及形成蓋層於半導體層之上。Embodiments of the present invention provide a method of forming a semiconductor structure, the method comprising forming a trench in a semiconductor substrate, forming a gate liner along a lower portion of the trench, and filling a gate electrode layer in the lower portion of the trench and on the gate above the lining. The method also includes forming a first sacrificial layer along the sidewalls of the upper portion of the trench, and forming a barrier layer along the sidewalls of the first sacrificial layer and a top surface of the gate electrode layer. The method also includes removing a first portion of the barrier layer along the sidewalls of the first sacrificial layer, thereby leaving a second portion of the barrier layer along the top surface of the gate electrode layer. The method also includes forming a semiconductor layer over the second portion of the gate electrode layer, removing the first sacrificial layer, and forming a capping layer over the semiconductor layer.

以下參照本發明實施例之圖式以更全面地闡述本揭露。然而,本揭露亦可以各種不同的實施方式實現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度可能會為了清楚起見而放大,並且在各圖式中相同或相似之參考號碼表示相同或相似之元件。The present disclosure is more fully described below with reference to the drawings of embodiments of the present invention. However, the present disclosure can also be practiced in various different embodiments and should not be limited to the embodiments described herein. The thicknesses of layers and regions in the figures may be exaggerated for clarity, and the same or similar reference numbers indicate the same or similar elements throughout the various figures.

第1A至1O圖是根據本發明的一些實施例,繪示形成半導體結構在不同階段的剖面示意圖。第3圖是根據本發明的一些實施例,顯示半導體結構的平面示意圖,其中第1A至1O圖是沿著第3圖中的剖面A-A擷取。FIGS. 1A to 1O are schematic cross-sectional views illustrating different stages of forming a semiconductor structure according to some embodiments of the present invention. FIG. 3 is a schematic plan view showing a semiconductor structure according to some embodiments of the present invention, wherein FIGS. 1A to 10 are taken along the section A-A in FIG. 3 .

第3圖顯示半導體結構100。半導體結構100包含半導體基底102。半導體基底102包含主動區103、隔離區101、以及截斷區(chop region)105。主動區103是沿著第一方向D1延伸的半導體區塊,並且每一個主動區103被兩個隔離區101以及兩個截斷區105所定義。隔離結構(未顯示)形成於半導體基底102的隔離區101和截斷區105中,從而圍繞且電性隔離這些主動區103。FIG. 3 shows the semiconductor structure 100 . The semiconductor structure 100 includes a semiconductor substrate 102 . The semiconductor substrate 102 includes an active region 103 , an isolation region 101 , and a chop region 105 . The active regions 103 are semiconductor blocks extending along the first direction D1 , and each active region 103 is defined by two isolation regions 101 and two blocking regions 105 . Isolation structures (not shown) are formed in the isolation regions 101 and the blocking regions 105 of the semiconductor substrate 102 so as to surround and electrically isolate these active regions 103 .

隔離區101沿著第一方向D1延伸,並且在第二方向D2上間隔排列,從而將半導體基底102劃分出多個半導體長條(未顯示)。第一方向D1是通道延伸方向,而第二方向D2是閘極延伸方向。第一方向D1與第二方向D2之間夾一銳角,其範圍例如在約10度至約80度。截斷區105(以虛線表示)對應於半導體長條設置,且將半導體長條截斷成多個主動區103。在第二方向D2上,相鄰的截斷區105可以是錯位或不重疊的。舉例而言,在第二方向D2上,截斷區105可以每數個半導體長條(例如,2至5個)的方式周期排列(例如重疊)。 The isolation regions 101 extend along the first direction D1 and are spaced in the second direction D2, thereby dividing the semiconductor substrate 102 into a plurality of semiconductor strips (not shown). The first direction D1 is the channel extending direction, and the second direction D2 is the gate extending direction. An acute angle is formed between the first direction D1 and the second direction D2, the range of which is, for example, about 10 degrees to about 80 degrees. The cut-off regions 105 (represented by dotted lines) are disposed corresponding to the semiconductor strips, and cut the semiconductor strips into a plurality of active regions 103 . In the second direction D2, the adjacent cut-off regions 105 may be misaligned or non-overlapping. For example, in the second direction D2, the cut-off regions 105 may be periodically arranged (eg, overlapped) every several semiconductor strips (eg, 2 to 5).

半導體結構100還包含閘極結構124。閘極結構124埋入半導體基底102中且沿著第二方向D2延伸。每一個閘極結構124延伸交替地通過主動區103和隔離結構。兩條閘極結構124延伸通過單一主動區103,並且兩條閘極結構124延伸通過此主動區103兩側的截斷區105。為了圖式明確,第3圖僅顯示上述部件,半導體結構100的其餘部件可見於第1A至1O圖的剖面示意圖,其沿著第3圖之A-A剖面截取。 The semiconductor structure 100 also includes a gate structure 124 . The gate structure 124 is embedded in the semiconductor substrate 102 and extends along the second direction D2. Each gate structure 124 extends alternately through the active region 103 and the isolation structure. The two gate structures 124 extend through the single active region 103 , and the two gate structures 124 extend through the cut-off regions 105 on both sides of the active region 103 . For clarity of the drawings, FIG. 3 only shows the above-mentioned components, and the remaining components of the semiconductor structure 100 can be seen in the schematic cross-sectional views of FIGS. 1A to 10 , which are taken along the A-A section of FIG.

以下說明半導體結構的形成方法。請參考第1A圖,提供半導體基底102,並且形成隔離結構104於半導體基底102中。在一些實施例中,半導體基底102是元素半導體基底,例如矽基底、或鍺基底;或化合物半導體基底,例如碳化矽基底、或砷化鎵基底。在一些實施例中,半導體基底102可以是絕緣體上的半導體(semiconductor-on-insulator,SOI)基底。 A method of forming the semiconductor structure will be described below. Referring to FIG. 1A , a semiconductor substrate 102 is provided, and an isolation structure 104 is formed in the semiconductor substrate 102 . In some embodiments, the semiconductor substrate 102 is an elemental semiconductor substrate, such as a silicon substrate, or a germanium substrate; or a compound semiconductor substrate, such as a silicon carbide substrate, or a gallium arsenide substrate. In some embodiments, the semiconductor substrate 102 may be a semiconductor-on-insulator (SOI) substrate.

隔離結構104自半導體基底102的上表面向下延伸。隔離結構104配置以界定出半導體基底102的主動區103。在一些實施例中,隔離結構104由介電材料形成,例如,氮化矽(SiN)、氧化矽(SiO)、氮氧化矽(SiON)、及/或前述之組合。 The isolation structure 104 extends downward from the upper surface of the semiconductor substrate 102 . The isolation structure 104 is configured to define the active region 103 of the semiconductor substrate 102 . In some embodiments, the isolation structure 104 is formed of a dielectric material, eg, silicon nitride (SiN), silicon oxide (SiO), silicon oxynitride (SiON), and/or combinations thereof.

隔離結構104的形成可包含使用一或多道蝕刻製程形成對應於第3圖的隔離區101和截斷區105的溝槽,接著使用化學氣相沉積(chemical vapor deposition,CVD)及/或原子層沉積(atomic layer deposition,ALD)沉積用於隔離結構104的介電材料。之後,對半導體結構100進行平坦化製程,例如回蝕刻製程及/或化學機械研磨(chemical mechanical polishing)。The formation of the isolation structure 104 may include using one or more etching processes to form trenches corresponding to the isolation region 101 and the blocking region 105 of FIG. 3, followed by chemical vapor deposition (CVD) and/or atomic layer deposition Atomic layer deposition (ALD) deposits a dielectric material for the isolation structure 104 . Afterwards, a planarization process, such as an etch-back process and/or chemical mechanical polishing, is performed on the semiconductor structure 100 .

對半導體結構100進行圖案化製程,以形成溝槽106於半導體基底102中,如第1B圖所示。溝槽106延伸通過隔離結構104以及半導體基底102的主動區。第1B圖僅顯示溝槽106位於隔離結構104中的部分,溝槽106也包含位於半導體基底102的主動區103中的其他部分。A patterning process is performed on the semiconductor structure 100 to form trenches 106 in the semiconductor substrate 102, as shown in FIG. 1B. The trenches 106 extend through the isolation structures 104 and the active region of the semiconductor substrate 102 . FIG. 1B only shows the part of the trench 106 in the isolation structure 104 , and the trench 106 also includes other parts in the active region 103 of the semiconductor substrate 102 .

圖案化製程可以包含一或多道沉積製程、一或多道蝕刻製程、以及一或多道微影製程。舉例而言,可以透過沉積製程,形成硬遮罩層於半導體基底102之上。可透過微影製程,形成圖案化光阻層於硬遮罩層之上。可透過蝕刻製程,將圖案化光阻層的開口圖案轉移至硬遮罩層,並接著轉移至半導體基底102,從而形成溝槽106。The patterning process may include one or more deposition processes, one or more etching processes, and one or more lithography processes. For example, a hard mask layer can be formed on the semiconductor substrate 102 through a deposition process. A patterned photoresist layer can be formed on the hard mask layer through a lithography process. The trenches 106 may be formed by transferring the opening pattern of the patterned photoresist layer to the hard mask layer and then to the semiconductor substrate 102 through an etching process.

依序形成閘極介電層108、閘極襯層110、以及閘極電極層112於溝槽106中,如第1C圖所示。閘極襯層110內襯於閘極介電層108與閘極電極層112之間。A gate dielectric layer 108 , a gate liner layer 110 , and a gate electrode layer 112 are sequentially formed in the trench 106 , as shown in FIG. 1C . The gate liner 110 is lined between the gate dielectric layer 108 and the gate electrode layer 112 .

形成閘極介電層108沿著溝槽106的側壁和底面,以部分填充溝槽106。第1C圖僅顯示閘極介電層108內襯於隔離結構104上的部分,閘極介電層108也包含內襯於半導體基底102的主動區103上的其他部分。在一些實施例中,閘極介電層108由氧化矽、氮化矽、氮氧化矽、及/或高介電常數的介電材料形成。在一些實施例中,使用臨場蒸氣產生法(in-situ steam generation,ISSG)、化學氣相沉積(CVD)、及/或原子層沉積(ALD)形成閘極介電層108。A gate dielectric layer 108 is formed along sidewalls and bottom surfaces of the trenches 106 to partially fill the trenches 106 . FIG. 1C only shows the portion of the gate dielectric layer 108 lining the isolation structure 104 , and the gate dielectric layer 108 also includes other portions lining the active region 103 of the semiconductor substrate 102 . In some embodiments, the gate dielectric layer 108 is formed of silicon oxide, silicon nitride, silicon oxynitride, and/or high-k dielectric materials. In some embodiments, the gate dielectric layer 108 is formed using in-situ steam generation (ISSG), chemical vapor deposition (CVD), and/or atomic layer deposition (ALD).

在溝槽106的下部形成閘極襯層110於閘極介電層108之上,以部分填充溝槽106。在一些實施例中,閘極襯層110由氮化鈦(TiN)、氮化鎢(WN)、及/或氮化鉭(TaN)形成。可使用化學氣相沉積(CVD)、物理氣相沉積(PVD)、及/或原子層沉積(ALD),沉積閘極襯層110。A gate liner 110 is formed over the gate dielectric layer 108 at the lower portion of the trench 106 to partially fill the trench 106 . In some embodiments, the gate liner 110 is formed of titanium nitride (TiN), tungsten nitride (WN), and/or tantalum nitride (TaN). The gate liner layer 110 may be deposited using chemical vapor deposition (CVD), physical vapor deposition (PVD), and/or atomic layer deposition (ALD).

形成閘極電極層112於閘極襯層110上,以填充溝槽106的下部。閘極電極層112嵌套於閘極襯層110內。在一些實施例中,閘極電極層112由金屬材料形成,例如,鎢(W)、鋁(Al)、銅(Cu)、鈷(Co)、釕(Ru)、及/或其他金屬材料。可使用物理氣相沉積(PVD)、化學氣相沉積(CVD)、及/或原子層沉積(ALD),沉積閘極電極層112。A gate electrode layer 112 is formed on the gate liner 110 to fill the lower portion of the trench 106 . The gate electrode layer 112 is nested within the gate liner layer 110 . In some embodiments, the gate electrode layer 112 is formed of a metallic material, eg, tungsten (W), aluminum (Al), copper (Cu), cobalt (Co), ruthenium (Ru), and/or other metallic materials. The gate electrode layer 112 may be deposited using physical vapor deposition (PVD), chemical vapor deposition (CVD), and/or atomic layer deposition (ALD).

可在沉積用於閘極介電層108、閘極襯層110和閘極電極層112的材料之後,對閘極襯層110和閘極電極層112進行回蝕刻。The gate liner layer 110 and the gate electrode layer 112 may be etched back after depositing the materials for the gate dielectric layer 108 , the gate liner layer 110 and the gate electrode layer 112 .

形成第一犧牲層114於半導體基底102之上,以部分填充溝槽106,如第1D圖所示。第一犧牲層114覆蓋且沿著閘極介電層108的側壁、閘極襯層110的頂面、以及閘極電極層112的頂面。根據一些實施例,第一犧牲層114沿著閘極介電層108的厚度等於或大於閘極襯層110的厚度。在一些實施例中,第一犧牲層114由介電材料形成,例如,氧化矽(SiO)、氮化矽(SiN)、氮氧化矽(SiON)、及/或前述之組合。第一犧牲層114與隔離結構104之間存在蝕刻選擇比。舉例而言,當隔離結構104由氮化矽形成時,第一犧牲層114由氧化矽形成。當隔離結構104由氧化矽形成時,第一犧牲層114由氮化矽形成。可使用化學氣相沉積(CVD)及/或原子層沉積(ALD),沉積第一犧牲層114。A first sacrificial layer 114 is formed on the semiconductor substrate 102 to partially fill the trench 106, as shown in FIG. 1D. The first sacrificial layer 114 covers and follows the sidewalls of the gate dielectric layer 108 , the top surface of the gate liner layer 110 , and the top surface of the gate electrode layer 112 . According to some embodiments, the thickness of the first sacrificial layer 114 along the gate dielectric layer 108 is equal to or greater than the thickness of the gate liner layer 110 . In some embodiments, the first sacrificial layer 114 is formed of a dielectric material, eg, silicon oxide (SiO), silicon nitride (SiN), silicon oxynitride (SiON), and/or combinations thereof. An etching selectivity ratio exists between the first sacrificial layer 114 and the isolation structure 104 . For example, when the isolation structure 104 is formed of silicon nitride, the first sacrificial layer 114 is formed of silicon oxide. When the isolation structure 104 is formed of silicon oxide, the first sacrificial layer 114 is formed of silicon nitride. The first sacrificial layer 114 may be deposited using chemical vapor deposition (CVD) and/or atomic layer deposition (ALD).

對第一犧牲層114進行蝕刻製程,以移除第一犧牲層114沿著半導體102上表面以及沿著閘極電極層112頂面的水平部分,如第1E圖所示。在蝕刻製程之後,暴露出閘極電極層112的頂面,並且留下第一犧牲層114沿著閘極介電層108的垂直部分。第一犧牲層114的垂直部分完全覆蓋閘極襯層110頂面。第一犧牲層114的垂直部分也可部分覆蓋閘極電極層112。在一些實施例中,蝕刻製程可包含過蝕刻步驟,以些許凹蝕閘極電極層112,使得閘極電極層112具有頂面112A,其水平低於閘極襯層110頂面的水平。An etching process is performed on the first sacrificial layer 114 to remove horizontal portions of the first sacrificial layer 114 along the upper surface of the semiconductor 102 and along the top surface of the gate electrode layer 112, as shown in FIG. 1E. After the etching process, the top surface of the gate electrode layer 112 is exposed, and the vertical portion of the first sacrificial layer 114 along the gate dielectric layer 108 is left. The vertical portion of the first sacrificial layer 114 completely covers the top surface of the gate liner 110 . The vertical portion of the first sacrificial layer 114 may also partially cover the gate electrode layer 112 . In some embodiments, the etching process may include an overetch step to slightly etch back the gate electrode layer 112 such that the gate electrode layer 112 has a top surface 112A that is lower than the top surface of the gate liner layer 110 .

形成阻障層116於半導體基底102之上,以部分填充溝槽106,如第1F圖所示。阻障層116覆蓋且沿著第一犧牲層114側壁以及閘極電極層112頂面。阻障層116未與閘極襯層110接觸。A barrier layer 116 is formed over the semiconductor substrate 102 to partially fill the trench 106, as shown in FIG. 1F. The barrier layer 116 covers and extends along the sidewalls of the first sacrificial layer 114 and the top surface of the gate electrode layer 112 . The barrier layer 116 is not in contact with the gate liner 110 .

阻障層116與閘極電極層112之間存在蝕刻選擇比。在一些實施例中,阻障層116由氮化鈦(TiN)、氮化鎢(WN)、及/或氮化鉭(TaN)形成。可使用物理氣相沉積(PVD)、化學氣相沉積(CVD)、及/或原子層沉積(ALD),沉積阻障層116。在一些實施例中,阻障層116與閘極襯層110由相同材料形成。There is an etch selectivity ratio between the barrier layer 116 and the gate electrode layer 112 . In some embodiments, the barrier layer 116 is formed of titanium nitride (TiN), tungsten nitride (WN), and/or tantalum nitride (TaN). The barrier layer 116 may be deposited using physical vapor deposition (PVD), chemical vapor deposition (CVD), and/or atomic layer deposition (ALD). In some embodiments, barrier layer 116 and gate liner 110 are formed of the same material.

形成填充層118於阻障層116之上,以過量填充溝槽106的上部,如第1G圖所示。在一些實施例中,填充層116由富碳材料形成,例如,旋塗碳(spin-on coating,SOC)。可使用旋轉塗佈製程形成填充層118。A fill layer 118 is formed over the barrier layer 116 to overfill the upper portion of the trench 106, as shown in FIG. 1G. In some embodiments, the fill layer 116 is formed of a carbon-rich material, eg, spin-on coating (SOC). The fill layer 118 may be formed using a spin coating process.

對填充層118進行回蝕刻製程,以移除填充層118形成於半導體基底102上表面之上的部分,並且凹蝕填充層118形成於溝槽106中的部分,如第1H圖所示。在回蝕刻製程之後,再次形成溝槽106的上部,並且將其標示為溝槽106’。在回蝕刻製程之後,阻障層116沿著第一犧牲層114的垂直部分的上部自溝槽106’暴露出來。The filling layer 118 is etched back to remove the portion of the filling layer 118 formed on the upper surface of the semiconductor substrate 102, and the portion of the filling layer 118 formed in the trench 106 is etched back, as shown in FIG. 1H. After the etch-back process, the upper portion of trench 106 is again formed and designated as trench 106'. After the etch-back process, the barrier layer 116 is exposed from the trench 106' along the upper portion of the vertical portion of the first sacrificial layer 114.

根據一些實施例,對阻障層116進行一或多道蝕刻製程,以移除阻障層116位於半導體基底102上表面之上的部分、以及沿著第一犧牲層114的垂直部分,直到暴露出閘極電極層112,如第1I圖所示。在蝕刻製程期間,填充層118保護阻障層116沿著閘極電極層112頂面的水平部分免於被移除。According to some embodiments, one or more etching processes are performed on the barrier layer 116 to remove portions of the barrier layer 116 above the upper surface of the semiconductor substrate 102 and vertical portions along the first sacrificial layer 114 until exposed The gate electrode layer 112 is shown in FIG. 1I. The fill layer 118 protects the horizontal portion of the barrier layer 116 along the top surface of the gate electrode layer 112 from being removed during the etching process.

由於阻障層116與閘極電極層112之間存在蝕刻選擇比,可透過偵測蝕刻終止點,較佳地控制蝕刻製程。此外,在蝕刻製程期間,第一犧牲層114覆蓋且保護閘極襯層110,使得閘極襯層110大致上未被蝕刻。Since there is an etching selectivity ratio between the barrier layer 116 and the gate electrode layer 112, the etching process can be better controlled by detecting the etching stop point. In addition, during the etching process, the first sacrificial layer 114 covers and protects the gate liner 110 such that the gate liner 110 is substantially unetched.

在一些實施例中,蝕刻製程可包含過蝕刻步驟,以些許凹蝕閘極電極層112,使得閘極電極層112具有頂面112B,其水平低於閘極襯層110頂面的水平和閘極電極層頂面112A的水平。In some embodiments, the etching process may include an over-etch step to slightly etch back the gate electrode layer 112 such that the gate electrode layer 112 has a top surface 112B that is lower than the level of the top surface of the gate liner 110 and the gate The level of the top surface 112A of the electrode layer.

蝕刻移除填充層118,以暴露出阻障層116,如第1J圖所示。The fill layer 118 is etched away to expose the barrier layer 116, as shown in FIG. 1J.

形成第二犧牲層120於半導體基底102之上,以部分填充溝槽106’,如第1K圖所示。第二犧牲層120覆蓋且沿著第一犧牲層114側壁以及阻障層116的頂面。在一些實施例中,第二犧牲層120由介電材料形成,例如,氧化矽(SiO)、氮化矽(SiN)、氮氧化矽(SiON)、及/或前述之組合。第二犧牲層120與隔離結構104之間存在蝕刻選擇比。舉例而言,當隔離結構104由氮化矽形成時,第二犧牲層120由氧化矽形成。當隔離結構104由氧化矽形成時,第二犧牲層120由氮化矽形成。第二犧牲層120可與第一犧牲層114由相同材料形成。為了明確,第1K圖顯示第一犧牲層114與第二犧牲層120之間的界面,然而第一犧牲層114與第二犧牲層120之間可不存在物理界面。可使用化學氣相沉積(CVD)及/或原子層沉積(ALD),沉積第二犧牲層120。A second sacrificial layer 120 is formed over the semiconductor substrate 102 to partially fill the trench 106', as shown in FIG. 1K. The second sacrificial layer 120 covers and follows the sidewalls of the first sacrificial layer 114 and the top surface of the barrier layer 116 . In some embodiments, the second sacrificial layer 120 is formed of a dielectric material, eg, silicon oxide (SiO), silicon nitride (SiN), silicon oxynitride (SiON), and/or combinations thereof. There is an etching selectivity ratio between the second sacrificial layer 120 and the isolation structure 104 . For example, when the isolation structure 104 is formed of silicon nitride, the second sacrificial layer 120 is formed of silicon oxide. When the isolation structure 104 is formed of silicon oxide, the second sacrificial layer 120 is formed of silicon nitride. The second sacrificial layer 120 may be formed of the same material as the first sacrificial layer 114 . For clarity, FIG. 1K shows the interface between the first sacrificial layer 114 and the second sacrificial layer 120 , however, there may be no physical interface between the first sacrificial layer 114 and the second sacrificial layer 120 . The second sacrificial layer 120 may be deposited using chemical vapor deposition (CVD) and/or atomic layer deposition (ALD).

對第二犧牲層120進行蝕刻製程,以移除第二犧牲層120沿著半導體102上表面以及沿著阻障層116頂面的水平部分,如第1L圖所示。在蝕刻製程之後,暴露出阻障層116的頂面,並且留下第二犧牲層120沿著第一犧牲層114的垂直部分。閘極電極層112的頂面112A和112B分別被阻障層116與第二犧牲層120覆蓋。An etching process is performed on the second sacrificial layer 120 to remove horizontal portions of the second sacrificial layer 120 along the upper surface of the semiconductor 102 and along the top surface of the barrier layer 116, as shown in FIG. 1L. After the etching process, the top surface of the barrier layer 116 is exposed, and the vertical portion of the second sacrificial layer 120 along the first sacrificial layer 114 is left. The top surfaces 112A and 112B of the gate electrode layer 112 are covered by the barrier layer 116 and the second sacrificial layer 120, respectively.

形成半導體層122於溝槽106’中,以填充溝槽106’的下部,如第1M圖所示。閘極介電層108、閘極襯層110、閘極電極層112、阻障層116、以及半導體層122組合形成閘極結構124。閘極結構124可配置為所得到的半導體記憶裝置的字元線,例如埋入式字元線(buried word line,BWL)。在一些實施例中,阻障層116與半導體層122可以做為閘極結構124的功函數調整層。在一些實施例中,半導體層122由多晶矽(polysilicon)形成。半導體層122的形成可包含使用化學氣相沉積製程(CVD)沉積半導體層122以過量填充溝槽106’,接著回蝕刻半導體層122。A semiconductor layer 122 is formed in the trench 106' to fill the lower portion of the trench 106', as shown in FIG. 1M. The gate dielectric layer 108 , the gate liner layer 110 , the gate electrode layer 112 , the barrier layer 116 , and the semiconductor layer 122 combine to form the gate structure 124 . The gate structure 124 may be configured as a word line of the resulting semiconductor memory device, such as a buried word line (BWL). In some embodiments, the barrier layer 116 and the semiconductor layer 122 may serve as work function adjustment layers of the gate structure 124 . In some embodiments, the semiconductor layer 122 is formed of polysilicon. The formation of semiconductor layer 122 may include depositing semiconductor layer 122 using a chemical vapor deposition (CVD) process to overfill trench 106', and then etching semiconductor layer 122 back.

在一些實施例中,半導體層122的側壁與阻障層116的側壁大致對齊。半導體層122與阻障層116的寬度小於閘極電極層112的最大寬度。舉例而言,半導體層122與阻障層116的寬度對閘極電極層112的最大寬度的比值範圍在約0.5至約0.9。由於閘極電極層112的頂面被第二犧牲層120與阻障層116覆蓋,可形成半導體層122未與閘極電極層112的頂面接觸。在半導體層與閘極電極層接觸的情況下,來自半導體層的矽與閘極電極層的金屬可能會形成金屬矽化物,從而增加閘極結構整體電阻值。In some embodiments, the sidewalls of the semiconductor layer 122 are substantially aligned with the sidewalls of the barrier layer 116 . The widths of the semiconductor layer 122 and the barrier layer 116 are smaller than the maximum width of the gate electrode layer 112 . For example, the ratio of the width of the semiconductor layer 122 and the barrier layer 116 to the maximum width of the gate electrode layer 112 ranges from about 0.5 to about 0.9. Since the top surface of the gate electrode layer 112 is covered by the second sacrificial layer 120 and the barrier layer 116 , the semiconductor layer 122 may be formed not to be in contact with the top surface of the gate electrode layer 112 . When the semiconductor layer is in contact with the gate electrode layer, the silicon from the semiconductor layer and the metal of the gate electrode layer may form metal silicide, thereby increasing the overall resistance value of the gate structure.

蝕刻移除第一犧牲層114和第二犧牲層120,直到暴露出閘極電極層112與閘極襯層110,如第1N圖所示。在蝕刻製程之後,形成間隙107於半導體層122(以及阻障層116)與閘極介電層108之間。The first sacrificial layer 114 and the second sacrificial layer 120 are removed by etching until the gate electrode layer 112 and the gate liner layer 110 are exposed, as shown in FIG. 1N . After the etching process, a gap 107 is formed between the semiconductor layer 122 (and the barrier layer 116 ) and the gate dielectric layer 108 .

形成蓋層126於溝槽106’中,如第1O圖所示。蓋層126密封間隙107,以形成氣隙128於半導體層122(以及阻障層116)與閘極介電層108之間。A capping layer 126 is formed in the trench 106' as shown in FIG. 10 . Cap layer 126 seals gap 107 to form air gap 128 between semiconductor layer 122 (and barrier layer 116 ) and gate dielectric layer 108 .

可形成額外的部件,例如,半導體基底102中的源極/汲極區、連接至源極/汲極區的接觸插塞、位元線、電容器、及/或其他組件,於半導體結構100之上,以製得半導體記憶體裝置。在一些實施例中,半導體記憶體裝置是動態隨機存取記憶體(DRAM)。Additional components, such as source/drain regions in the semiconductor substrate 102, contact plugs connected to the source/drain regions, bit lines, capacitors, and/or other components, may be formed within the semiconductor structure 100 , to produce a semiconductor memory device. In some embodiments, the semiconductor memory device is a dynamic random access memory (DRAM).

根據本發明實施例,閘極結構124包含雙功函數調整層(即阻障層116與半導體層122),其可降低閘極結構124的閘極電極層112所產生的電場強度,從而降低閘極引發汲極漏電流(gate induced drain leakage,GIDL)。此外,半導體結構100包含氣隙128於半導體層122(以及阻障層116)兩側,可進一步降低閘極引發汲極漏電流,這提升了半導體記憶體裝置的可靠性和製造良率。再者,根據本發明實施例,閘極結構124的雙功函數調整層無須透過額外的遮罩形成。如此,避免了微影製程的疊對容許度(overlay window)限制。再者,根據本發明實施例,透過形成第一犧牲層114來保護閘極襯層110,在阻障層116的蝕刻製程期間,可以大幅減少閘極襯層110的損失並且較佳地控制蝕刻製程的終止點。再者,形成第二犧牲層120覆蓋閘極電極層112的頂面112B,避免了半導體層122與閘極電極層112接觸而形成金屬矽化物。如此,避免閘極結構124的電阻值因為金屬矽化物的形成而增加。According to the embodiment of the present invention, the gate structure 124 includes a dual work function adjustment layer (ie, the barrier layer 116 and the semiconductor layer 122 ), which can reduce the electric field intensity generated by the gate electrode layer 112 of the gate structure 124 , thereby reducing the gate gate induced drain leakage (GIDL). In addition, the semiconductor structure 100 includes air gaps 128 on both sides of the semiconductor layer 122 (and the barrier layer 116 ), which can further reduce the gate-induced drain leakage current, which improves the reliability and manufacturing yield of the semiconductor memory device. Furthermore, according to the embodiment of the present invention, the dual work function adjustment layer of the gate structure 124 does not need to be formed through an additional mask. In this way, the overlay window limitation of the lithography process is avoided. Furthermore, according to the embodiment of the present invention, by forming the first sacrificial layer 114 to protect the gate liner 110, during the etching process of the barrier layer 116, the loss of the gate liner 110 can be greatly reduced and the etching can be better controlled The end point of the process. Furthermore, the second sacrificial layer 120 is formed to cover the top surface 112B of the gate electrode layer 112 to prevent the semiconductor layer 122 from contacting the gate electrode layer 112 to form metal silicide. In this way, the resistance value of the gate structure 124 is prevented from increasing due to the formation of metal silicide.

第2圖是根據本發明的一些實施例,顯示第1O圖的半導體結構的修改。第2圖所示的半導體結構200與第1O圖的半導體結構100相似,除了阻障層116圍繞半導體層122的下部。FIG. 2 is a diagram showing a modification of the semiconductor structure of FIG. 10 in accordance with some embodiments of the present invention. The semiconductor structure 200 shown in FIG. 2 is similar to the semiconductor structure 100 of FIG. 10 , except that the barrier layer 116 surrounds the lower portion of the semiconductor layer 122 .

在第1I圖所述的步驟中,部分蝕刻移除阻障層116沿著第一犧牲層114的垂直部分。在蝕刻製程之後,剩餘的阻障層116具有U形輪廓。閘極電極層112被剩餘的阻障層116覆蓋而未暴露出來。接著,進行第1J圖所述的步驟,以移除填充層118,以暴露出阻障層116。In the step depicted in FIG. 1I, a partial etch removes the vertical portion of the barrier layer 116 along the first sacrificial layer 114 . After the etching process, the remaining barrier layer 116 has a U-shaped profile. The gate electrode layer 112 is covered by the remaining barrier layer 116 without being exposed. Next, the steps described in FIG. 1J are performed to remove the filling layer 118 to expose the barrier layer 116 .

省略第1K和與1L圖所述的步驟,進行第1M至1O圖所述的步驟。形成半導體層122於溝槽106’中。半導體層122包含被阻障層116圍繞的下部、以及形成於阻障層116頂面之上的上部,如第2圖所示。形成蓋層126於溝槽106’中,以形成氣隙128於半導體層122(以及阻障層116)與閘極介電層108之間,以製得半導體結構200。The steps described in Figures 1K and 1L are omitted, and the steps described in Figures 1M to 10 are performed. A semiconductor layer 122 is formed in the trench 106'. The semiconductor layer 122 includes a lower portion surrounded by the barrier layer 116 and an upper portion formed over the top surface of the barrier layer 116, as shown in FIG. 2 . Cap layer 126 is formed in trench 106' to form air gap 128 between semiconductor layer 122 (and barrier layer 116) and gate dielectric layer 108 to produce semiconductor structure 200.

根據上述,本發明實施例提供包含埋入式閘極結構的半導體結構及其形成方法。埋入式閘極結構包含雙功函數調整層以及雙功函數調整層兩側的氣隙。因此,降低閘極引發汲極漏電流,這提升了半導體記憶體裝置的可靠性和製造良率。Based on the above, embodiments of the present invention provide a semiconductor structure including a buried gate structure and a method for forming the same. The buried gate structure includes a dual work function adjustment layer and air gaps on both sides of the dual work function adjustment layer. Therefore, the gate induced drain leakage current is reduced, which improves the reliability and manufacturing yield of the semiconductor memory device.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許之更動與潤飾。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention is disclosed in the foregoing embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention pertains may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be determined by the scope of the appended patent application.

100:半導體結構 101:隔離區 102:半導體基底 103:主動區 104:隔離結構 105:截斷區 106:溝槽 106’:溝槽 107:間隙 108:閘極介電層 110:閘極襯層 112:閘極電極層 112A:頂面 112B:頂面 114:第一犧牲層 116:阻障層 118:填充層 120:第二犧牲層 122:半導體層 124:閘極結構 126:蓋層 128:氣隙 200:半導體結構 100: Semiconductor Structure 101: Quarantine 102: Semiconductor substrate 103: Active Zone 104: Isolation Structure 105: Truncation area 106: Groove 106’: Groove 107: Gap 108: gate dielectric layer 110: Gate liner 112: gate electrode layer 112A: Top surface 112B: Top surface 114: The first sacrificial layer 116: Barrier layer 118: Fill Layer 120: Second sacrificial layer 122: Semiconductor layer 124: Gate structure 126: Cover Layer 128: Air gap 200: Semiconductor Structure

讓本發明之特徵和優點能更明顯易懂,下文特舉不同實施例,並配合所附圖式作詳細說明如下: 第1A至1O圖是根據本發明的一些實施例,顯示形成半導體結構在不同階段的剖面示意圖。 第2圖是根據本發明的一些實施例,顯示第1O圖的半導體結構的修改。 第3圖是根據本發明的一些實施例,顯示半導體結構的平面示意圖。 To make the features and advantages of the present invention more obvious and easy to understand, different embodiments are exemplified below, and are described in detail in conjunction with the accompanying drawings as follows: FIGS. 1A to 10 are schematic cross-sectional views showing various stages of forming a semiconductor structure according to some embodiments of the present invention. FIG. 2 is a diagram showing a modification of the semiconductor structure of FIG. 10 in accordance with some embodiments of the present invention. FIG. 3 is a schematic plan view showing a semiconductor structure according to some embodiments of the present invention.

100:半導體結構 100: Semiconductor Structure

102:半導體基底 102: Semiconductor substrate

103:主動區 103: Active Zone

104:隔離結構 104: Isolation Structure

105:截斷區 105: Truncation area

108:閘極介電層 108: gate dielectric layer

110:閘極襯層 110: Gate liner

112:閘極電極層 112: gate electrode layer

112A:頂面 112A: Top surface

112B:頂面 112B: Top surface

116:阻障層 116: Barrier layer

122:半導體層 122: Semiconductor layer

124:閘極結構 124: Gate structure

126:蓋層 126: Cover Layer

128:氣隙 128: Air gap

Claims (13)

一種半導體結構,包括:一半導體基底;以及一閘極結構,埋置於該半導體基底中且包括:一閘極電極層;一阻障層,設置於該閘極電極層之上;以及一半導體層,設置於該阻障層之上;一隔離結構,設置於該半導體基底中,其中該閘極結構至少部分埋置於該隔離結構中;以及一氣隙,位於該半導體基底中且暴露出該閘極結構的該阻障層和該半導體層。 A semiconductor structure, comprising: a semiconductor substrate; and a gate structure embedded in the semiconductor substrate and comprising: a gate electrode layer; a barrier layer disposed on the gate electrode layer; and a semiconductor layer disposed on the barrier layer; an isolation structure disposed in the semiconductor substrate, wherein the gate structure is at least partially embedded in the isolation structure; and an air gap located in the semiconductor substrate and exposing the The barrier layer and the semiconductor layer of the gate structure. 如請求項1之半導體結構,更包括:一蓋層,設置於該閘極結構之上且密封該氣隙。 The semiconductor structure of claim 1, further comprising: a cap layer disposed on the gate structure and sealing the air gap. 如請求項1之半導體結構,其中該半導體層的側壁與該阻障層的側壁對齊,且該阻障層的寬度小於該閘極電極層的寬度。 The semiconductor structure of claim 1, wherein the sidewall of the semiconductor layer is aligned with the sidewall of the barrier layer, and the width of the barrier layer is smaller than the width of the gate electrode layer. 如請求項1之半導體結構,其中該閘極結構更包括:一閘極襯層,其中該閘極電極層嵌套於該閘極襯層內,且該閘極襯層的頂面高於與該閘極電極層的頂面。 The semiconductor structure of claim 1, wherein the gate structure further comprises: a gate liner, wherein the gate electrode layer is nested in the gate liner, and the top surface of the gate liner is higher than the the top surface of the gate electrode layer. 如請求項1之半導體結構,其中該閘極結構更包括:一閘極介電層,內襯於該隔離結構上,其中該氣隙暴露出該閘極介電層的一部分。 The semiconductor structure of claim 1, wherein the gate structure further comprises: a gate dielectric layer lining the isolation structure, wherein the air gap exposes a portion of the gate dielectric layer. 如請求項1之半導體結構,其中該半導體層由多晶矽形成,且該阻障層由氮化鈦形成。 The semiconductor structure of claim 1, wherein the semiconductor layer is formed of polysilicon, and the barrier layer is formed of titanium nitride. 如請求項1之半導體結構,其中該阻障層具有U形輪廓。 The semiconductor structure of claim 1, wherein the barrier layer has a U-shaped profile. 一種半導體結構的形成方法,包括:形成一溝槽於一半導體基底中;形成一閘極襯層沿著該溝槽的一下部;填入一閘極電極層於該溝槽的該下部且於該閘極襯層之上;形成一第一犧牲層沿著該溝槽的一上部的側壁;形成一阻障層沿著該第一犧牲層的側壁和該閘極電極層的頂面;移除該阻障層沿著該第一犧牲層的側壁的一第一部分,從而留下該阻障層沿著該閘極電極層的頂面的一第二部分;形成一半導體層於該阻障層的該第二部分之上;移除該第一犧牲層;以及形成一蓋層於該半導體層之上。 A method for forming a semiconductor structure, comprising: forming a trench in a semiconductor substrate; forming a gate lining layer along a lower portion of the trench; filling a gate electrode layer in the lower portion of the trench and On the gate liner; forming a first sacrificial layer along the sidewall of an upper part of the trench; forming a barrier layer along the sidewall of the first sacrificial layer and the top surface of the gate electrode layer; moving removing a first portion of the barrier layer along the sidewall of the first sacrificial layer, thereby leaving a second portion of the barrier layer along the top surface of the gate electrode layer; forming a semiconductor layer on the barrier over the second portion of the layer; removing the first sacrificial layer; and forming a capping layer over the semiconductor layer. 如請求項8之半導體結構的形成方法,更包括:在移除該阻障層的該第一部分之前,形成一填充層於該阻障層之上以填充該溝槽的該上部;凹蝕該填充層,以至少部分暴露出該阻障層的該第一部分;以及 在移除該阻障層的該第一部分之後,移除該填充層,以暴露出該阻障層的該第二部分。 The method for forming a semiconductor structure of claim 8, further comprising: before removing the first portion of the barrier layer, forming a filling layer on the barrier layer to fill the upper portion of the trench; etching the a filling layer to at least partially expose the first portion of the barrier layer; and After removing the first portion of the barrier layer, the fill layer is removed to expose the second portion of the barrier layer. 如請求項8之半導體結構的形成方法,更包括:在形成該半導體層之前,形成一第二犧牲層沿著該第一犧牲層的側壁和該阻障層的頂面;以及移除該第二犧牲層沿著該阻障層的頂面的一第一部分,其中在移除該第二犧牲層的該第一部分之後,該第二犧牲層沿著該第一犧牲層的側壁的一第二部分部分覆蓋該閘極電極層。 The method for forming a semiconductor structure of claim 8, further comprising: before forming the semiconductor layer, forming a second sacrificial layer along the sidewall of the first sacrificial layer and the top surface of the barrier layer; and removing the first sacrificial layer Two sacrificial layers are along a first portion of the top surface of the barrier layer, wherein after removing the first portion of the second sacrificial layer, the second sacrificial layer is along a second portion of the sidewalls of the first sacrificial layer A portion of the gate electrode layer is partially covered. 如請求項10之半導體結構的形成方法,更包括:在移除該第一犧牲層的同時,移除該第二犧牲層的該第二部分,其中移除該第一犧牲層與該第二犧牲層形成一間隙於該半導體層與該半導體基底之間,且形成該蓋層以密封該間隙。 The method for forming a semiconductor structure of claim 10, further comprising: removing the second portion of the second sacrificial layer while removing the first sacrificial layer, wherein removing the first sacrificial layer and the second sacrificial layer The sacrificial layer forms a gap between the semiconductor layer and the semiconductor substrate, and forms the cap layer to seal the gap. 如請求項8之半導體結構的形成方法,其中該第一犧牲層具有沿著該溝槽的該上部的一第一厚度,且該閘極襯層具有沿著該溝槽的該下部的一第二厚度,且該第一厚度大於該第二厚度。 The method for forming a semiconductor structure of claim 8, wherein the first sacrificial layer has a first thickness along the upper portion of the trench, and the gate liner has a first thickness along the lower portion of the trench two thicknesses, and the first thickness is greater than the second thickness. 一種半導體結構,包括:一半導體基底;一閘極結構,埋置於該半導體基底中且包括:一閘極電極層;一阻障層,設置於該閘極電極層之上; 一閘極介電層,至少設置於該閘極電極層與該半導體基底之間;一半導體層,設置於該阻障層之上;以及一氣隙,位於該半導體基底中,其中該氣隙暴露出該閘極電極層之部分的頂表面,其中該氣隙位於該閘極介電層及該半導體層之間,以及位於該閘極介電層及該阻障層之間。 A semiconductor structure, comprising: a semiconductor substrate; a gate structure embedded in the semiconductor substrate and comprising: a gate electrode layer; a barrier layer disposed on the gate electrode layer; a gate dielectric layer disposed at least between the gate electrode layer and the semiconductor substrate; a semiconductor layer disposed on the barrier layer; and an air gap in the semiconductor substrate, wherein the air gap is exposed A portion of the top surface of the gate electrode layer exits, wherein the air gap is located between the gate dielectric layer and the semiconductor layer, and between the gate dielectric layer and the barrier layer.
TW109136646A 2020-10-22 2020-10-22 Semiconductor structure and method for forming the same TWI750858B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109136646A TWI750858B (en) 2020-10-22 2020-10-22 Semiconductor structure and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109136646A TWI750858B (en) 2020-10-22 2020-10-22 Semiconductor structure and method for forming the same

Publications (2)

Publication Number Publication Date
TWI750858B true TWI750858B (en) 2021-12-21
TW202218113A TW202218113A (en) 2022-05-01

Family

ID=80681506

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109136646A TWI750858B (en) 2020-10-22 2020-10-22 Semiconductor structure and method for forming the same

Country Status (1)

Country Link
TW (1) TWI750858B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201545352A (en) * 2014-05-29 2015-12-01 Sk Hynix Inc Dual work function buried gate-type transistor, method for forming the same, and electronic device including the same
US20160181377A1 (en) * 2014-12-16 2016-06-23 SK Hynix Inc. Semiconductor device having dual work function gate structure, method for fabricating the same, memory cell having the same, and electronic device having the same
US20180145080A1 (en) * 2016-11-18 2018-05-24 Samsung Electronics Co., Ltd. Semiconductor device and method for fabricating the same
US20180308850A1 (en) * 2015-04-22 2018-10-25 SK Hynix Inc. Semiconductor device having buried gate structure and method for manufacturing the same, memory cell having the same and electronic device having the same
TW202027233A (en) * 2018-11-29 2020-07-16 美商應用材料股份有限公司 Reducing gate induced drain leakage in dram wordline

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201545352A (en) * 2014-05-29 2015-12-01 Sk Hynix Inc Dual work function buried gate-type transistor, method for forming the same, and electronic device including the same
US20160181377A1 (en) * 2014-12-16 2016-06-23 SK Hynix Inc. Semiconductor device having dual work function gate structure, method for fabricating the same, memory cell having the same, and electronic device having the same
US20180308850A1 (en) * 2015-04-22 2018-10-25 SK Hynix Inc. Semiconductor device having buried gate structure and method for manufacturing the same, memory cell having the same and electronic device having the same
US20180145080A1 (en) * 2016-11-18 2018-05-24 Samsung Electronics Co., Ltd. Semiconductor device and method for fabricating the same
TW202027233A (en) * 2018-11-29 2020-07-16 美商應用材料股份有限公司 Reducing gate induced drain leakage in dram wordline

Also Published As

Publication number Publication date
TW202218113A (en) 2022-05-01

Similar Documents

Publication Publication Date Title
CN110416157B (en) Air spacer in transistor and method of forming the same
KR102606784B1 (en) Semiconductor device with air gap and method for fabricating the same
US9257529B2 (en) Method of forming self-aligned contacts using a replacement metal gate process in a semiconductor device
CN110098175B (en) Semiconductor device and method for manufacturing the same
KR100614240B1 (en) Semiconductor devices including a field effect transistor and methods of the same
US11812605B2 (en) Semiconductor structure with air gaps for buried semiconductor gate and method for forming the same
KR102505229B1 (en) Semiconductor device and method of fabricating semiconductor device
KR20130134719A (en) Semiconductor device with air gap and method for fabricating the same
US20180158729A1 (en) Finfet device and method of forming the same
US11711914B2 (en) Semiconductor structure having buried gate structure and method of manufacturing the same
US11818876B2 (en) Method of manufacturing semiconductor device having reduced contact resistance between access transistors and conductive features
KR20210048700A (en) Semiconductor device and method of manufacturing the semiconductor device
US11665889B2 (en) Semiconductor memory structure
TWI750858B (en) Semiconductor structure and method for forming the same
TWI762173B (en) Semiconductor memory structure and method for forming the same
TWI757043B (en) Semiconductor memory structure and method for forming the same
CN114582867A (en) Semiconductor structure and forming method thereof
US20220344343A1 (en) Dynamic random access memory and method of fabricating the same
TWI795703B (en) Semiconductor memory structure and method for forming the same
TWI808383B (en) Seniconductor structure and method of manufacturing the same
TWI750574B (en) Semiconductor memory structure and method for forming the same
TWI766609B (en) Semiconductor memory structure
TWI765694B (en) Semiconductor memory structure and method for forming the same
US11943913B2 (en) Method of manufacturing semiconductor structure having multi-work function gate electrode
TW202315077A (en) Method of forming three-dimensional memory device