TWI764792B - 切換式轉換器電路及其中具有適應性空滯時間之驅動電路 - Google Patents

切換式轉換器電路及其中具有適應性空滯時間之驅動電路

Info

Publication number
TWI764792B
TWI764792B TW110127400A TW110127400A TWI764792B TW I764792 B TWI764792 B TW I764792B TW 110127400 A TW110127400 A TW 110127400A TW 110127400 A TW110127400 A TW 110127400A TW I764792 B TWI764792 B TW I764792B
Authority
TW
Taiwan
Prior art keywords
bridge
mosfet
sensing
circuit
voltage
Prior art date
Application number
TW110127400A
Other languages
English (en)
Other versions
TW202230943A (zh
Inventor
廖庭維
陳建餘
游焜煌
邱建維
楊大勇
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to US17/567,130 priority Critical patent/US11955890B2/en
Application granted granted Critical
Publication of TWI764792B publication Critical patent/TWI764792B/zh
Publication of TW202230943A publication Critical patent/TW202230943A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一種切換式轉換器電路,用以根據脈寬調變(pulse width modulation, PWM)訊號,切換其中之電感一端的電壓,以轉換輸入電壓為輸出電壓。切換式轉換器電路具有驅動電路,其包括上橋驅動器、下橋驅動器、上橋感測電路以及下橋感測電路。上橋感測電路用以感測上橋金屬氧化物半導體場效電晶體(metal oxide semiconductor field effect transistor, MOSFET)之閘-源極電壓,而產生下橋致能訊號,以致能下橋驅動器根據PWM訊號切換下橋MOSFET。下橋感測電路用以感測下橋MOSFET之閘-源極電壓,而產生上橋致能訊號,以致能上橋驅動器根據PWM訊號切換上橋MOSFET。

Description

切換式轉換器電路及其中具有適應性空滯時間之驅動電路
本發明係有關一種切換式轉換器電路,特別是指一種具有適應性空滯時間且可避免短路電流的切換式轉換器電路。本發明也有關於切換式轉換器電路中的驅動電路。
圖1A顯示一種先前技術的切換式轉換器電路10之電路示意圖。切換式轉換器電路10包含驅動電路11與功率級電路12。如圖所示,功率級電路12包括上橋開關121、下橋開關122與電感123。驅動電路11根據脈寬調變(pulse width modulation, PWM)訊號P1,產生上橋訊號UG與下橋訊號LG。上橋開關121與下橋開關122分別根據上橋訊號UG與下橋訊號LG而操作,以將輸入電壓Vin轉換為輸出電壓Vout,並產生電感電流IL,流經功率級電路12之電感123。
如圖1A所示的切換式轉換器電路10中,功率級電路12為一種降壓型功率級電路。於正常操作時,上橋開關121與下橋開關122輪流導通,以將電感123與相位節點LX電連接的一端切換於輸入電壓Vin與接地電位GND之間,而使電感電流IL在以下兩個電流通道之間輪流切換:一是由輸入電壓Vin流經上橋開關121至相位節點LX再流經電感L到輸出端;另一是由接地電位GND流經下橋開關122至相位節點LX再流經電感L到輸出端。在正常操作中,上橋開關121與下橋開關122必須避免同時導通,以避免電路擊穿(shoot through),造成電路損壞。因此,需要以上橋開關121與下橋開關122皆不導通的空滯時間(dead time),隔開上橋開關121與下橋開關122的導通時段。
圖1B顯示先前技術的驅動電路11之電路示意圖。如圖1B所示,驅動電路11包括閂鎖電路111與112、位準偏移電路113、反相器114、延遲電路115與116以及其他複數反相器。其中,PWM訊號P1作為閂鎖電路111的重置訊號,當PWM訊號P1為低電位,閂鎖電路111輸出高電位,經位準偏移電路113後,再經過3個反相器,所產生之上橋訊號UG為低電位,而不導通上橋開關121。當PWM訊號P1轉為高電位,則需要視延遲電路116的輸出訊號而決定是否使上橋訊號UG轉為高電位,而導通上橋開關121。
另一方面,PWM訊號P1經過反相器114,其反相訊號作為閂鎖電路112的重置訊號,當PWM訊號P1為高電位,閂鎖電路112輸出高電位,經過3個反相器,所產生之下橋訊號LG為低電位,而不導通下橋開關122。當PWM訊號P1轉為低電位,則需要視延遲電路115的輸出訊號而決定是否使下橋訊號LG轉為高電位,而導通上橋開關121。
閂鎖電路111之輸出訊號,經過延遲電路115延遲預設固定的一段上橋延遲時間後,輸入閂鎖電路112,作為閂鎖電路112的設定訊號,以致能閂鎖電路112根據PWM訊號P1的反相訊號,產生下橋訊號LG。而另一方面,閂鎖電路112之輸出訊號,經過延遲電路116延遲預設固定的一段下橋延遲時間後,輸入閂鎖電路111,作為閂鎖電路111的設定訊號,以致能閂鎖電路111根據PWM訊號P1,產生上橋訊號UG。
其中,上橋延遲時間必須足夠長以涵蓋上橋開關121結束導通後的空滯時間;且下橋延遲時間必須足夠長以涵蓋下橋開關122結束導通後的空滯時間,以避免上橋開關121與下橋開關122同時導通。其中,驅動電路11根據直流電壓VCC產生自舉電壓BOOT。位準偏移電路113將經過閂鎖電路111後之PWM訊號P1,位準偏移(level shift)至啟動電壓區間(boot voltage domain)。
同時參閱圖1A,在切換式轉換器電路10的正常操作中,空滯時間為固定的一段預設期間。在下橋開關122結束導通後,經過固定的空滯時間後,上橋開關121導通,在此空滯時間後,下橋開關122中的寄生二極體LD由順向偏壓轉換為逆向偏壓。而在另一個空滯時間,上橋開關121結束導通後,而下橋開關122尚未導通前之空滯時間,下橋開關122中的寄生二極體LD由逆向偏壓轉換為順向偏壓,在此空滯時間,電感電流IL僅由接地電位GND流經下橋開關122中的寄生二極體LD至相位節點LX再流經電感L。也就是說,在一個上橋開關121與下橋開關122切換週期,於前述兩個空滯時間中,下橋開關122中的寄生二極體LD之PN介面有兩次的偏壓反轉,造成反向恢復電荷(reverse recovery charge, Qrr)的電能與時間損失。
先前技術切換式轉換器電路10的正常操作中,空滯時間必須預設為足夠長的固定時間,以滿足因為切換式轉換器電路10中的電子元件與電路在各種製造程序中產生的誤差,所導致的不同的空滯時間的需求。也就是說,空滯時間必須預設為超過因為各種不同的誤差所導致的不同的空滯時間的需求中最大值,以避免上橋開關121與下橋開關122同時導通。如此一來,對於大部分僅需較短空滯時間的切換式轉換器電路10而言,過長的空滯時間將會產生較嚴重的反向恢復電荷的電能與時間損失,以及較嚴重的順向導通的電能損失,因而導致相對較低的轉換效率。
相較於前述的先前技術,本發明提出一種具有適應性空滯時間的切換式轉換器電路及其中的驅動電路,可避免上橋開關與下橋開關同時導通而造成的短路電流,同時降低反向恢復電荷與順向導通的電能損失,以提高轉換效率。
就其中一個觀點言,本發明提供了一種切換式轉換器電路,用以根據一脈寬調變(pulse width modulation, PWM)訊號,切換一電感之一第一端於一第一電壓與一第二電壓之間,以轉換一輸入電壓為一輸出電壓,該切換式轉換器電路包含:一上橋金屬氧化物半導體場效電晶體(metal oxide semiconductor field effect transistor, MOSFET),耦接於該第一電壓與該電感之該第一端之間;一下橋MOSFET,耦接於該第二電壓與該電感之該第一端之間;以及一驅動電路,包括:  一上橋驅動器,用以根據該PWM訊號,產生一上橋驅動訊號,而驅動該上橋MOSFET;一下橋驅動器,用以根據該PWM訊號,產生一下橋驅動訊號,而驅動該下橋MOSFET;一上橋感測電路,用以感測該上橋MOSFET之閘-源極電壓,並根據該上橋MOSFET之閘-源極電壓,產生一下橋致能訊號,以示意該上橋MOSFET之不導通狀態,其中,該下橋致能訊號致能該下橋驅動器,根據該PWM訊號而切換該下橋MOSFET;以及 一下橋感測電路,用以感測該下橋MOSFET之閘-源極電壓,並根據該下橋MOSFET之閘-源極電壓,產生一上橋致能訊號,以示意該下橋MOSFET之不導通狀態,其中,該上橋致能訊號致能該上橋驅動器,根據該PWM訊號而切換該上橋MOSFET。
就另一個觀點言,本發明也提供了一種切換式轉換器電路之驅動電路,包含:一上橋驅動器,用以根據一PWM訊號,產生一上橋驅動訊號,而驅動一上橋MOSFET;一下橋驅動器,用以根據該PWM訊號,產生一下橋驅動訊號,而驅動一下橋MOSFET;一上橋感測電路,用以感測該上橋MOSFET之閘-源極電壓,並根據該上橋MOSFET之閘-源極電壓,產生一下橋致能訊號,以示意該上橋MOSFET之不導通狀態,其中,該下橋致能訊號致能該下橋驅動器,根據該PWM訊號而切換該下橋MOSFET;以及一下橋感測電路,用以感測該下橋MOSFET之閘-源極電壓,並根據該下橋MOSFET之閘-源極電壓,產生一上橋致能訊號,以示意該下橋MOSFET之不導通狀態,其中,該上橋致能訊號致能該上橋驅動器,根據該PWM訊號而切換該上橋MOSFET。
在一較佳實施例中,該下橋感測電路包括一下橋感測MOSFET,其具有與該下橋MOSFET相同的導電型,且該下橋感測MOSFET之閘極與該下橋MOSFET之閘極耦接,且該下橋感測MOSFET之源極與該下橋MOSFET之源極耦接,以使該下橋感測MOSFET根據該下橋MOSFET之閘-源極電壓,於該下橋感測MOSFET之汲極產生該上橋致能訊號。
在一較佳實施例中,該下橋感測電路更包括一電流源,耦接於該上橋致能訊號與該上橋驅動器之一自舉(bootstrap)電壓之間,以使該上橋致能訊號之複數邏輯位準,位準偏移(level shift)至一啟動電壓區間(boot voltage domain),其中該上橋驅動器包括一致能邏輯電路,用以接收該上橋致能訊號以致能該上橋驅動器根據該PWM訊號切換該上橋MOSFET。
在一較佳實施例中,該下橋感測電路更包括一電流源,耦接於該上橋致能訊號與一直流電壓之間,其中該直流電壓用以產生該上橋驅動器之一自舉(bootstrap)電壓,其中該上橋驅動器包括彼此耦接之一致能邏輯電路與一位準偏移電路,以接收該上橋致能訊號,而致能該上橋驅動器根據該PWM訊號切換該上橋MOSFET。
在一較佳實施例中,該下橋感測電路包括一下橋比較器,用以比較該下橋MOSFET之該閘-源極電壓與一下橋參考電壓,以產生該上橋致能訊號,其中該上橋驅動器包括彼此耦接之一致能邏輯電路與一位準偏移電路,用以接收該上橋致能訊號以致能該上橋驅動器根據該PWM訊號切換該上橋MOSFET。
在一較佳實施例中,該上橋感測電路之一上橋感測MOSFET的導通閾值電壓之絕對值低於或等於該上橋MOSFET的導通閾值電壓之絕對值,且該下橋感測MOSFET的導通閾值電壓之絕對值低於或等於該下橋MOSFET的導通閾值電壓之絕對值。
在一較佳實施例中,該上橋感測電路包括一上橋感測MOSFET,其具有與該上橋MOSFET互補的導電型,且該上橋感測MOSFET之閘極與該上橋MOSFET之源極耦接,且該上橋感測MOSFET之源極與該上橋MOSFET之閘極耦接,以使該上橋感測MOSFET根據該上橋MOSFET之閘-源極電壓,於該上橋感測MOSFET之汲極產生該下橋致能訊號。
在一較佳實施例中,該上橋感測電路包括:一上橋感測MOSFET,其具有與該上橋MOSFET相同的導電型;以及一上橋鉗位MOSFET,其具有與該上橋MOSFET互補的導電型,且該上橋鉗位MOSFET與該上橋感測MOSFET串聯耦接至該上橋驅動器之一自舉(bootstrap)電壓;其中,該上橋MOSFET之閘極與源極分別對應耦接於該上橋感測MOSFET之閘極與該上橋鉗位MOSFET之閘極,以使該上橋鉗位MOSFET根據該上橋MOSFET之閘-源極電壓而於該上橋鉗位MOSFET之汲極產生該下橋致能訊號。
在一較佳實施例中,該上橋感測電路包括:一上橋感測MOSFET,其具有與該上橋MOSFET互補的導電型;以及一上橋鉗位MOSFET,其具有與該上橋MOSFET互補的導電型,且該上橋鉗位MOSFET與該上橋感測MOSFET串聯耦接至該上橋驅動器之一自舉(bootstrap)電壓;其中,該上橋MOSFET之閘極與源極分別對應耦接於該上橋感測MOSFET之閘極與該上橋鉗位MOSFET之閘極,以使該上橋鉗位MOSFET根據該上橋MOSFET之閘-源極電壓而於該上橋鉗位MOSFET之汲極產生該下橋致能訊號。
在一較佳實施例中,該上橋感測電路包括:一上橋感測MOSFET,其中該上橋感測MOSFET之導通閾值電壓之絕對值低於或等於該上橋MOSFET之導通閾值電壓之絕對值,且該下橋感測電路包括一下橋感測MOSFET,其中該下橋感測MOSFET之導通閾值電壓之絕對值低於或等於該下橋MOSFET之導通閾值電壓之絕對值。
在一較佳實施例中,該上橋MOSFET具有與該下橋MOSFET相同的導電型。
底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。
本發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。
圖2顯示根據本發明切換式轉換器電路20之示意圖。切換式轉換器電路20用以根據脈寬調變(pulse width modulation, PWM)訊號P1,切換電感223之第一端(在本實施例中為與相位節點LX電連接之一端)於第一電壓(在本實施例中為輸入電壓Vin)與一第二電壓(在本實施例中為接地電位GND)之間,以轉換輸入電壓Vin為輸出電壓Vout,而提供電源予負載電路23。切換式轉換器電路20包含:上橋金屬氧化物半導體場效電晶體(metal oxide semiconductor field effect transistor, MOSFET)221、下橋MOSFET222以及驅動電路21。
在本實施例中,上橋MOSFET耦接於輸入電壓Vin與相位節點LX(電感之第一端)之間。下橋MOSFET耦接於接地電位GND與相位節點LX(電感之第一端)之間。需說明的是,除了降壓型功率級電路,本發明也可以應用於升壓型功率級電路與升降壓型功率級電路,只要具有上橋MOSFET與下橋MOSFET之功率級電路,皆可應用本發明改善轉換效率與降低反向恢復電荷損失,只需要對應改變的電感之第一端耦接的接點,與改變上橋MOSFET與下橋MOSFET耦接之相對接點於:輸入電壓、接地電位、相位節點與輸出電壓即可。
驅動電路21用以根據相關於輸出電壓Vout回授訊號的PWM訊號P1,產生上橋驅動訊號UG與下橋驅動訊號LG,而對應操作上橋MOSFET221與下橋MOSFET222,以將電感223之第一端切換於第一電壓(輸入電壓Vin)與第二電壓(接地電位GND)之間。驅動電路21包括:上橋驅動器211、下橋驅動器213、上橋感測電路212以及下橋感測電路214。
上橋驅動器211用以根據PWM訊號P1,產生上橋驅動訊號UG,而驅動上橋MOSFET221。下橋驅動器213用以根據PWM訊號P1,產生下橋驅動訊號LG,而驅動下橋MOSFET222。上橋感測電路212用以感測上橋MOSFET221之閘-源極電壓,而產生下橋致能訊號ENL,以示意上橋MOSFET221之不導通狀態。下橋致能訊號ENL致能下橋驅動器213根據PWM訊號P1,切換下橋MOSFET222。下橋感測電路214用以感測下橋MOSFET222之閘-源極電壓,而產生上橋致能訊號ENH,以示意下橋MOSFET222之不導通狀態。其中,上橋致能訊號ENH致能上橋驅動器211根據PWM訊號P1,切換上橋MOSFET221。
具體以圖2所示的實施例而言,上橋MOSFET221例如為N型MOSFET,上橋感測電路212感測上橋MOSFET221之閘-源極電壓,於上橋MOSFET221之閘-源極電壓之絕對值高於第一閾值電壓,亦即示意上橋MOSFET221導通或接近導通時,上橋感測電路212例如將下橋致能訊號ENL改變為禁能位準,以禁能下橋MOSFET222之導通。在一種較佳的實施例中,第一閾值電壓例如為正值且低於或等於上橋MOSFET221之導通閾值電壓,以確保上橋MOSFET221導通時,致能訊號ENL改變為禁能位準。如此一來,即可確保在上橋MOSFET221導通時,下橋MOSFET222必為不導通。其中,上橋MOSFET221之導通閾值電壓例如為正值。
另一方面,於上橋MOSFET221之閘-源極電壓低於第一閾值電壓,亦即示意上橋MOSFET221為不導通時,上橋感測電路212例如將下橋致能訊號ENL改變為致能位準,以致能下橋驅動器213,根據PWM訊號P1而切換下橋MOSFET222。
同樣的,當上橋MOSFET221為P型MOSFET,則上橋感測電路212例如感測上橋MOSFET221之閘-源極電壓,於上橋MOSFET221之閘-源極電壓之絕對值高於第一閾值電壓,亦即示意上橋MOSFET221導通或接近導通時,上橋感測電路212將下橋致能訊號ENL改變為高電位禁能位準,以禁能下橋MOSFET222之導通。如此一來,即可確保在上橋MOSFET221導通時,下橋MOSFET222必為不導通。其中,上橋MOSFET221例如為P型MOSFET,其導通閾值電壓例如為負值,且第一閾值電壓小於等於上橋MOSFET221之導通閾值電壓的絕對值。
另一方面,於上橋MOSFET221之閘-源極電壓之絕對值低於第一閾值電壓時,亦即示意上橋MOSFET221為不導通時,上橋感測電路212例如將下橋致能訊號ENL改變為致能位準,以致能下橋驅動器213,根據PWM訊號P1而切換下橋MOSFET222。
請繼續參閱圖2,如圖2所示,下橋MOSFET222例如為N型MOSFET,下橋感測電路214感測下橋MOSFET222之閘-源極電壓,於下橋MOSFET222之閘-源極電壓之絕對值高於第二閾值電壓,亦即示意下橋MOSFET222為導通時,下橋感測電路214例如將上橋致能訊號ENH改變為高電位。在一種較佳的實施例中,第二閾值電壓例如為正值且低於或等於下橋MOSFET222之導通閾值電壓,以確保下橋MOSFET222導通時,致能訊號ENH改變為禁能位準。如此一來,即可確保在下橋MOSFET222導通時,上橋MOSFET221必為不導通。其中,下橋MOSFET222之導通閾值電壓例如為正值。在一較佳實施例中,上橋MOSFET221具有與該下橋MOSFET222相同的導電型,例如圖2中二者皆為N型MOSFET。
另一方面,於下橋MOSFET222之閘-源極電壓低於第二閾值電壓,亦即示意下橋MOSFET222為不導通時,下橋感測電路214例如將上橋致能訊號ENH改變為致能位準,以致能上橋驅動器211,根據PWM訊號P1而切換上橋MOSFET221。同樣的,當下橋MOSFET222為P型MOSFET,則下橋感測電路214例如感測下橋MOSFET222之閘-源極電壓,於下橋MOSFET222之閘-源極電壓之絕對值高於第二閾值電壓時,下橋感測電路214將上橋致能訊號ENH改變為示意禁能位準。如此一來,即可確保在下橋MOSFET222導通時,上橋MOSFET221不導通。其中,下橋MOSFET222例如為P型MOSFET,其導通閾值電壓例如為負值,且第二閾值電壓小於等於下橋MOSFET222之導通閾值電壓的絕對值。其中上述之致能位準與禁能位準之實際位準可依具體電路之需求而配置,容後詳述。
綜言之,上橋感測電路212與下橋感測電路214分別感測上橋MOSFET221之閘-源極電壓與下橋MOSFET222之閘-源極電壓,以分別於確認上橋MOSFET221與下橋MOSFET222不導通時,可即時地對應致能下橋驅動器213根據PWM訊號P1,切換下橋MOSFET222,及致能上橋驅動器211根據PWM訊號P1,切換上橋MOSFET221。如此一來,可以不需要如先前技術之切換式轉換器電路10,以固定過長的上橋延遲時間與下橋延遲時間,來隔開上橋開關121與下橋開關122的導通時間。相較於先前技術,本發明可以減少反向恢復電荷的電能與時間損失,也可以提高轉換效率。
圖3顯示根據本發明的驅動電路21之一種實施例。如圖3所示,驅動電路21包括:上橋驅動器211、上橋感測電路212、下橋驅動器213以及下橋感測電路214。其中,上橋感測電路212例如包括上橋感測MOSFET2121與電流源2122;下橋感測電路214例如包括下橋感測MOSFET2141與電流源2142。其中,PWM訊號P1經緩衝器產生上橋PWM訊號SH,其中PWM訊號P1與上橋PWM訊號SH同相;PWM訊號P1經反相器產生下橋PWM訊號SL,其中PWM訊號P1與下橋PWM訊號SL反相。
如圖3所示,下橋感測MOSFET2141具有與下橋MOSFET222相同的導電型;下橋感測MOSFET2141與下橋MOSFET222例如皆為N型MOSFET。且下橋感測MOSFET2141之閘極與下橋MOSFET222之閘極耦接,且下橋感測MOSFET2141之源極與下橋MOSFET222之源極耦接,如圖3所示,下橋感測MOSFET2141之源極與下橋MOSFET222之源極皆電連接於接地電位GND。如此一來,使下橋感測MOSFET2141根據下橋MOSFET222之閘-源極電壓,於下橋感測MOSFET2141之汲極產生上橋致能訊號ENH。
請繼續參閱圖3,下橋感測電路214更包括電流源2142,耦接於上橋致能訊號ENH與上橋驅動器21之自舉(bootstrap)電壓BOOT之間,以使上橋致能訊號ENH之複數邏輯位準,位準偏移(level shift)至啟動電壓區間(boot voltage domain),使得上橋驅動器211可以根據上橋致能訊號ENH判斷下橋MOSFET222是否不導通。其中上橋驅動器211包括致能邏輯電路(如圖3所示之P型MOSFET與電流源所形成的位準偏移反相器、耦接於後的另一個反相器與反及閘),用以接收上橋致能訊號ENH以致能上橋驅動器211根據PWM訊號P1切換上橋MOSFET221。
如圖3所示,上橋驅動器211例如包括P型MOSFET、作為致能邏輯電路之反及閘、電流源與2個反相器。下橋驅動器213例如包括作為致能邏輯電路之反及閘與2個反相器。
舉例而言,如圖3所示,下橋感測MOSFET2141之導通閾值電壓等於前述第二閾值電壓,並低於或等於下橋MOSFET222之導通閾值電壓。當下橋感測MOSFET2141導通,示意下橋MOSFET222導通或接近導通,也表示上橋MOSFET221不應導通。在此情況,下橋感測電路214將上橋致能訊號ENH改變為禁能位準(本實施例為低電位),以禁能上橋PWM訊號SH,確保上橋MOSFET221不導通。具體而言,位準偏移後的上橋致能訊號ENH輸入上橋驅動器211中的P型MOSFET之閘極,使P型MOSFET導通,輸出高電位予反相器,因此,上橋驅動器211中的反及閘之一輸入端為代表0之低電位,此時無論上橋PWM訊號SH的邏輯位準為何,反及閘之輸出端皆輸出代表1之高電位,此高電位再經過反相器後,輸出低電位,也就是上橋驅動訊號UG為低電位,上橋MOSFET221不導通。
當下橋感測MOSFET2141不導通,示意下橋MOSFET222必定不導通,也表示此時上橋MOSFET221可根據上橋PWM訊號SH而操作。在此情況,下橋感測電路214將上橋致能訊號ENH改變為致能位準(本實施例為高電位) 以致能上橋PWM訊號SH。具體而言,位準偏移後的上橋致能訊號ENH輸入上橋驅動器211中的P型MOSFET之閘極,使P型MOSFET不導通,而輸出低電位予反相器,因此,上橋驅動器211中的反及閘之一輸入端為代表1之高電位。當上橋PWM訊號SH為代表1之高電位,反及閘之輸出端為代表0之低電位,此低電位再經過反相器後,輸出高電位,也就是上橋驅動訊號UG為高電位,上橋MOSFET221導通;同理,當上橋PWM訊號SH為代表0之低電位,上橋驅動訊號UG為低電位,上橋MOSFET221不導通。也就是說,當下橋感測MOSFET2141不導通,上橋致能訊號ENH為高電位(致能),上橋驅動器211根據PWM訊號P1而切換上橋MOSFET221。
請繼續參閱圖3,上橋感測MOSFET2121具有與上橋MOSFET221互補的導電型;上橋感測MOSFET2121例如為P型MOSFET;而上橋MOSFET221例如為N型MOSFET。且上橋感測MOSFET2121之閘極與上橋MOSFET221之源極耦接,且上橋感測MOSFET2121之源極與上橋MOSFET221之閘極耦接。如此一來,使上橋感測MOSFET2121根據上橋MOSFET221之閘-源極電壓,於上橋感測MOSFET2121之汲極產生下橋致能訊號ENL。
請繼續參閱圖3,上橋感測電路212更包括電流源2122,耦接於下橋致能訊號ENL與接地電位GND之間,以使下橋驅動器213可以根據下橋致能訊號ENL判斷上橋MOSFET221是否不導通。其中下橋驅動器213包括致能邏輯電路(如圖3所示之反及閘),用以根據下橋致能訊號ENL以致能下橋驅動器213根據PWM訊號P1切換下橋MOSFET222。
另一方面,舉例而言,如圖3所示,上橋感測MOSFET2121之導通閾值電壓等於前述第一閾值電壓,其絕對值低於或等於上橋MOSFET221之導通閾值電壓。當上橋感測MOSFET2121導通,示意上橋MOSFET221導通或接近導通,也表示下橋MOSFET222不應導通。在此情況,上橋感測電路212將下橋致能訊號ENL改變為禁能位準(本實施例為高電位),以禁能下橋PWM訊號SL,確保下橋MOSFET222不導通。具體而言,高電位之下橋致能訊號ENL輸入下橋驅動器213中的反相器,因此,下橋驅動器213中的反及閘之一輸入端為代表0之低電位,此時無論下橋PWM訊號SL的邏輯位準為何,反及閘之輸出端皆輸出代表1之高電位,此高電位再經過反相器後,輸出低電位,也就是下橋驅動訊號LG為低電位,下橋MOSFET222不導通。
當上橋感測MOSFET2121不導通,示意上橋MOSFET221必定不導通,也表示此時下橋MOSFET222可根據下橋PWM訊號SL而操作。在此情況,上橋感測電路212將下橋致能訊號ENL改變為致能位準(本實施例為低電位) 以致能下橋PWM訊號SL。具體而言,低電位之下橋致能訊號ENL輸入下橋驅動器213中的反相器,因此,下橋驅動器213中的反及閘之一輸入端為代表1之高電位。當下橋PWM訊號SL為代表1之高電位,反及閘之輸出端為代表0之低電位,此低電位再經過反相器後,輸出高電位,也就是下橋驅動訊號LG為高電位,下橋MOSFET222導通;同理,當下橋PWM訊號SL為代表0之低電位,下橋驅動訊號LG為低電位,下橋MOSFET222不導通。也就是說,當上橋感測MOSFET2121不導通,下橋致能訊號ENL為低電位(致能),下橋驅動器213根據下橋PWM訊號SL,也就是PWM訊號P1的反相訊號,而切換下橋MOSFET222。
圖4顯示根據本發明的驅動電路31之一種實施例。如圖4所示,驅動電路31包括:上橋驅動器311、上橋感測電路312、下橋驅動器313以及下橋感測電路314。其中,上橋感測電路312例如包括上橋感測MOSFET3121、電流源3122與上橋鉗位MOSFET3123;下橋感測電路314例如包括下橋感測MOSFET3141與電流源3142。其中,PWM訊號P1即為上橋PWM訊號SH,示意PWM訊號P1與上橋PWM訊號SH同相;PWM訊號P1經反相器產生下橋PWM訊號SL,其中PWM訊號P1與下橋PWM訊號SL反相。
如圖4所示,下橋感測MOSFET3141具有與下橋MOSFET222相同的導電型;下橋感測MOSFET3141與下橋MOSFET222例如皆為N型MOSFET。且下橋感測MOSFET3141之閘極與下橋MOSFET222之閘極耦接,且下橋感測MOSFET3141之源極與下橋MOSFET222之源極耦接,如圖4所示,下橋感測MOSFET3141之源極與下橋MOSFET222之源極皆電連接於接地電位GND。如此一來,使下橋感測MOSFET3141根據下橋MOSFET222之閘-源極電壓,於下橋感測MOSFET3141之汲極產生上橋致能訊號ENH。
請繼續參閱圖4,下橋感測電路314更包括電流源3142,耦接於上橋致能訊號ENH與直流電壓VCC之間,其中直流電壓VCC用以產生上橋驅動器311之自舉電壓BOOT。其中上橋驅動器311包括彼此耦接之致能邏輯電路3111與位準偏移電路315。位準偏移電路315用以使致能邏輯電路3111之輸出訊號,往上位準偏移(level shift)至啟動電壓區間(boot voltage domain),使得上橋驅動器311可以根據上橋致能訊號ENH判斷下橋MOSFET222是否不導通。其中致能邏輯電路3111,用以接收上橋致能訊號ENH以致能上橋驅動器311根據PWM訊號P1切換上橋MOSFET221。
舉例而言,如圖4所示,下橋感測MOSFET3141之導通閾值電壓低於或等於下橋MOSFET222之導通閾值電壓。當下橋感測MOSFET3141導通,示意下橋MOSFET222導通或接近導通,也表示上橋MOSFET221不應導通。在此情況,下橋感測電路314將上橋致能訊號ENH改變為禁能位準(本實施例為低電位),以禁能上橋PWM訊號SH,確保上橋MOSFET221不導通。
具體而言,低電位之上橋致能訊號ENH輸入上橋驅動器311中的反相器,而輸出高電位予致能邏輯電路3111。致能邏輯電路3111例如為如圖4所示之反及閘閂鎖電路。因此,致能邏輯電路3111之一輸入端,例如為反及閘閂鎖電路之重置接腳,接收上橋PWM訊號SH;另一端例如為反及閘閂鎖電路之設定接腳,接收反相之上橋致能訊號ENH。
當上橋PWM訊號SH為代表0之低電位,致能邏輯電路3111輸出代表代表1之高電位,此高電位再經過位準偏移電路315後,再經過3個反相器,產生之上橋驅動訊號UG為低電位,上橋MOSFET221不導通。
當上橋PWM訊號SH由代表0之低電位轉為代表1之高電位,此時上橋致能訊號ENH邏輯位準為代表0之低電位,其反相訊號為代表1之高電位,致能邏輯電路3111輸出代表代表1之高電位,上橋驅動訊號UG為低電位,上橋MOSFET221亦不導通。也就是說,當上橋致能訊號ENH為低電位(本實施例對應為禁能),無論上橋PWM訊號SH之邏輯位準為何,上橋驅動訊號UG為低電位,上橋MOSFET221不導通。
另一方面,當下橋感測MOSFET2141不導通,示意下橋MOSFET222必定不導通,也表示此時上橋MOSFET221可根據上橋PWM訊號SH而操作。在此情況,下橋感測電路314將上橋致能訊號ENH改變為致能位準(本實施例為高電位) 以致能上橋PWM訊號SH。具體而言,上橋致能訊號ENH的反相訊號為代表0之低電位,輸入反及閘閂鎖電路之設定接腳。則反及閘閂鎖電路的輸出訊號為與上橋PWM訊號SH反相的訊號,此訊號經過位準偏移電路315後,再經過3個反相器(形成級進緩衝電路, tapered buffer),即可使上橋驅動訊號UG與上橋PWM訊號SH同相。也就是說,當下橋感測MOSFET3141不導通,示意下橋MOSFET222確定不導通,上橋致能訊號ENH為高電位(致能),上橋驅動器311根據與PWM訊號P1相同的上橋PWM訊號SH,而切換上橋MOSFET221。
請繼續參閱圖4,上橋感測電路312包括上橋感測MOSFET3121、電流源3122與上橋鉗位MOSFET3123。上橋感測MOSFET3121具有與上橋MOSFET221相同的導電型;上橋鉗位MOSFET3123其具有與該上橋MOSFET互補的導電型,且上橋鉗位MOSFET3123與上橋感測MOSFET3121串聯耦接至上橋驅動器311之自舉(bootstrap)電壓BOOT。上橋感測MOSFET3121與上橋MOSFET221例如為N型MOSFET。上橋鉗位MOSFET3123例如為P型MOSFET。上橋MOSFET221之閘極與源極分別對應耦接於上橋感測MOSFET3121之閘極與上橋鉗位MOSFET3123之閘極,以使上橋感測MOSFET3121與上橋鉗位MOSFET3123根據上橋MOSFET221之閘-源極電壓而於上橋鉗位MOSFET3123之汲極產生下橋致能訊號ENL。
請繼續參閱圖4,上橋感測電路312之電流源3122,耦接於下橋致能訊號ENL與接地電位GND之間,以使下橋驅動器313可以根據下橋致能訊號ENL判斷上橋MOSFET221是否不導通。其中下橋驅動器313包括致能邏輯電路3131,用以接收下橋致能訊號ENL以致能下橋驅動器313根據與PWM訊號P1反相之下橋PWM訊號SL,而切換下橋MOSFET222。
舉例而言,如圖4所示,當上橋感測MOSFET3121導通,示意上橋MOSFET221導通或接近導通,也表示下橋MOSFET222不應導通。在此情況,上橋感測電路312將下橋致能訊號ENL改變為禁能位準(本實施例為高電位),以禁能下橋PWM訊號SL,確保下橋MOSFET222不導通。
具體而言,高電位之下橋致能訊號ENL輸入致能邏輯電路3131。致能邏輯電路3131例如為如圖4所示之反及閘閂鎖電路。因此,致能邏輯電路3131之一輸入端,例如為反及閘閂鎖電路之重置接腳,接收下橋PWM訊號SL;另一端例如為反及閘閂鎖電路之設定接腳,接收下橋致能訊號ENL。
當下橋PWM訊號SL為代表0之低電位,致能邏輯電路3131輸出代表代表1之高電位,此高電位再經過3個反相器,產生之下橋驅動訊號LG為低電位,下橋MOSFET222不導通。
當下橋PWM訊號SL由代表0之低電位轉為代表1之高電位,此時下橋致能訊號ENL邏輯位準為代表1之高電位,致能邏輯電路3131輸出代表1之高電位,下橋驅動訊號LG為低電位,下橋MOSFET222亦不導通。也就是說,當下橋致能訊號ENL為高電位(禁能),無論下橋PWM訊號SL之邏輯位準為何,下橋驅動訊號LG為低電位,下橋MOSFET222不導通。
另一方面,當上橋感測MOSFET3121不導通,示意上橋MOSFET221必定不導通,也表示此時下橋MOSFET222可根據下橋PWM訊號SL而操作。在此情況,上橋感測電路312將下橋致能訊號ENL改變為致能位準(本實施例為低電位) 以致能下橋PWM訊號SL。具體而言,低電位之下橋致能訊號ENL輸入反及閘閂鎖電路之設定接腳,反及閘閂鎖電路的輸出訊號為與下橋PWM訊號SL反相的訊號,此訊號經過3個反相器,即可使下橋驅動訊號LG與下橋PWM訊號SL同相。也就是說,當上橋感測MOSFET3121不導通,示意上橋MOSFET221不導通,下橋致能訊號ENL為低電位(致能),下橋驅動器313根據與PWM訊號P1反相的下橋PWM訊號SL,而切換下橋MOSFET222。
圖5顯示根據本發明的驅動電路41之一種實施例。如圖5所示,驅動電路41包括:上橋驅動器411、上橋感測電路412、下橋驅動器413以及下橋感測電路414。其中,上橋感測電路412例如包括上橋感測MOSFET4121、電流源4122與上橋鉗位MOSFET4123;下橋感測電路414例如包括下橋感測MOSFET4141與電流源4142。上橋驅動器411例如包括彼此耦接之致能邏輯電路4111與位準偏移電路415以及4個反相器。下橋驅動器413例如包括致能邏輯電路4131與4個反相器。其中,PWM訊號P1即為上橋PWM訊號SH,示意PWM訊號P1與上橋PWM訊號SH同相;PWM訊號P1經反相器產生下橋PWM訊號SL,示意PWM訊號P1與下橋PWM訊號SL反相。
本實施例與圖4所示之實施例不同之處在於,在本實施例中,上橋感測MOSFET4121具有與上橋MOSFET221互補的導電型,上橋感測MOSFET4121例如為P型MOSFET。上橋MOSFET221例如為N型MOSFET。因此,本實施例之下橋致能訊號ENL與圖4所示之實施例的下橋致能訊號ENL彼此反相。在本實施例中,下橋致能訊號ENL經過反相器後產生與圖4所示之實施例的下橋致能訊號ENL相同的訊號。除此之外,本實施例的其餘部分都與圖4所示之實施例相同,請參閱圖4的說明。
圖6顯示根據本發明的驅動電路51之一種實施例。如圖6所示,驅動電路51包括:上橋驅動器511、上橋感測電路512、下橋驅動器513以及下橋感測電路514。其中,上橋感測電路512例如包括上橋比較器5121與位準偏移電路516;下橋感測電路例如包括下橋比較器514。上橋驅動器511例如包括彼此耦接之致能邏輯電路5111與位準偏移電路515以及3個反相器。下橋驅動器513例如包括致能邏輯電路5131與3個反相器。其中,PWM訊號P1即為上橋PWM訊號SH,示意PWM訊號P1與上橋PWM訊號SH同相;PWM訊號P1經反相器產生下橋PWM訊號SL,其中PWM訊號P1與下橋PWM訊號SL反相。
如圖6所示,下橋比較器514用以比較下橋MOSFET222之閘-源極電壓與下橋參考電壓Vref2,以產生上橋致能訊號ENH。在一種較佳的實施例中,下橋參考電壓Vref2低於或等於下橋MOSFET222的導通閾值電壓。如此一來,使下橋比較器514根據下橋MOSFET222之閘-源極電壓,於下橋比較器514之輸出端產生上橋致能訊號ENH。
請繼續參閱圖6,上橋驅動器511之致能邏輯電路5111,用以接收上橋致能訊號ENH以致能上橋驅動器511根據PWM訊號P1切換上橋MOSFET221。
舉例而言,如圖6所示,當下橋MOSFET222導通或接近導通時,表示上橋MOSFET221不應導通。在此情況,下橋比較器514根據下橋驅動訊號LG高於下橋參考電壓Vref2,將上橋致能訊號ENH改變為禁能位準(本實施例為高電位),以禁能上橋PWM訊號SH,確保上橋MOSFET221不導通
具體而言,高電位之上橋致能訊號ENH輸入致能邏輯電路5111,致能邏輯電路5111例如為如圖6所示之反及閘閂鎖電路。因此,致能邏輯電路5111之一輸入端,例如為反及閘閂鎖電路之重置接腳,接收上橋PWM訊號SH;另一端例如為反及閘閂鎖電路之設定接腳,接收上橋致能訊號ENH。
當上橋PWM訊號SH為代表0之低電位,致能邏輯電路5111輸出代表代表1之高電位,此高電位再經過位準偏移電路515後,再經過3個反相器,產生之上橋驅動訊號UG為低電位,上橋MOSFET221不導通。
當上橋PWM訊號SH由代表0之低電位轉為代表1之高電位,此時上橋致能訊號ENH邏輯位準為代表1之高電位,致能邏輯電路5111輸出代表代表1之高電位,上橋驅動訊號UG為低電位,上橋MOSFET221亦不導通。也就是說,當上橋致能訊號ENH為高電位(禁能),無論上橋PWM訊號SH之邏輯位準為何,上橋驅動訊號UG為低電位,上橋MOSFET221不導通。
另一方面,當下橋MOSFET222不導通,且下橋MOSFET222之閘-源極電壓低於下橋參考電壓Vref2,表示此時上橋MOSFET221可根據上橋PWM訊號SH而操作。在此情況,下橋比較器514將上橋致能訊號ENH改變為致能位準(本實施例為低電位) 以致能上橋PWM訊號SH。具體而言,低電位的上橋致能訊號ENH輸入致能邏輯電路5111中反及閘閂鎖電路之設定接腳。則反及閘閂鎖電路的輸出訊號為與上橋PWM訊號SH反相的訊號,此訊號經過位準偏移電路515後,再經過3個反相器,即可使上橋驅動訊號UG與上橋PWM訊號SH同相。也就是說,當下橋比較器514將上橋致能訊號ENH改變為代表0之低電位,示意下橋MOSFET222確定不導通,上橋致能訊號ENH為低電位(致能),上橋驅動器511根據與PWM訊號P1相同的上橋PWM訊號SH,而切換上橋MOSFET221。
請繼續參閱圖6,上橋感測電路512之上橋比較器5121與位準偏移電路516,根據上橋MOSFET221之閘-源極電壓與上橋參考電壓Vref1,以使下橋驅動器513可以根據下橋致能訊號ENL判斷上橋MOSFET221是否不導通。在一種較佳的實施例中,上橋參考電壓Vref1低於或等於上橋MOSFET221的導通閾值電壓。其中下橋驅動器513包括致能邏輯電路5131,用以根據下橋致能訊號ENL以致能下橋驅動器513根據與PWM訊號P1反相之下橋PWM訊號SL,而切換下橋MOSFET222。
舉例而言,如圖6所示,當上橋MOSFET221導通或接近導通,也表示下橋MOSFET222不應導通。在此情況,上橋比較器5121根據上橋驅動訊號UG高於上橋參考電壓Vref1,將下橋致能訊號ENL改變為禁能位準(本實施例為高電位),以禁能下橋PWM訊號SL,確保下橋MOSFET222不導通。具體而言,高電位之下橋致能訊號ENL輸入致能邏輯電路3131。位準偏移電路516將上橋比較器5121的輸出訊號之位準向下偏移後,輸入致能邏輯電路5131,以使致能邏輯電路5131可根據下橋致能訊號ENL而決定是否致能下橋驅動器513根據PWM訊號P1而操作下橋MOSFET222。
致能邏輯電路5131例如為如圖6所示之反及閘閂鎖電路。因此,致能邏輯電路5131之一輸入端,例如為反及閘閂鎖電路之重置接腳,接收下橋PWM訊號SL;另一端例如為反及閘閂鎖電路之設定接腳,接收位準下移後之下橋致能訊號ENL。
當下橋PWM訊號SL為代表0之低電位,致能邏輯電路5131輸出代表代表1之高電位,此高電位再經過3個反相器,產生之下橋驅動訊號LG為低電位,下橋MOSFET222不導通。
當下橋PWM訊號SL由代表0之低電位轉為代表1之高電位,此時下橋致能訊號ENL邏輯位準為代表1之高電位,致能邏輯電路5131輸出代表代表1之高電位,下橋驅動訊號LG為低電位,下橋MOSFET222亦不導通。也就是說,當下橋致能訊號ENL為高電位(禁能),無論下橋PWM訊號SL之邏輯位準為何,下橋驅動訊號LG為低電位,下橋MOSFET222不導通。
另一方面,當上橋MOSFET221不導通,且上橋MOSFET221之閘-源極電壓低於上橋參考電壓Vref1,也表示此時下橋MOSFET222可根據下橋PWM訊號SL而操作。在此情況,上橋比較器5121根據上橋驅動訊號UG低於上橋參考電壓Vref1,將下橋致能訊號ENL改變為致能位準(本實施例為低電位) 以致能下橋PWM訊號SL。具體而言,經過位準偏移電路516將上橋比較器5121的輸出訊號之位準往下位移後,輸入致能邏輯電路5131之反及閘閂鎖電路之設定接腳。則反及閘閂鎖電路的輸出訊號為與下橋PWM訊號SL反相的訊號,此訊號經過3個反相器,即可使下橋驅動訊號LG與下橋PWM訊號SL同相。也就是說,當上橋比較器5121將下橋致能訊號ENL改變為代表0低電位(致能),示意上橋MOSFET221確定不導通,下橋驅動器513根據與PWM訊號P1反相的下橋PWM訊號SL,而切換下橋MOSFET222。
以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。所說明之各個實施例,並不限於單獨應用,亦可以組合應用,舉例而言,兩個或以上之實施例可以組合運用,而一實施例中之部分組成亦可用以取代另一實施例中對應之組成部件。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,舉例而言,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。
10,20:切換式轉換器電路 11,21,31,41,51:驅動電路 12:功率級電路 23:負載電路 111,112:閂鎖電路 113:位準偏移電路 114:反相器 115,116:延遲電路 121:上橋開關 122:下橋開關 123:電感 211,311,411,511:上橋驅動器 212,312,412,512:上橋感測電路 213,313,413,513:下橋驅動器 214,314,414,514:下橋感測電路 221:上橋MOSFET 222:下橋MOSFET 223:電感 315,415,515,516:位準偏移電路 514:下橋比較器 2121,3121,4121:上橋感測MOSFET 2122,2142,3122,3142,4122,4142:電流源 2141,3141,4141:下橋感測MOSFET 3111,3131,4111,4131,5111,5131 :致能邏輯電路 3123,4123:上橋鉗位MOSFET 5121:上橋比較器 BOOT:自舉電壓 ENH:上橋致能訊號 ENL:下橋致能訊號 GND:接地電位 IL:電感電流 LD:寄生二極體 LG:下橋訊號 LX:相位節點 P1:PWM訊號 SH:上橋PWM訊號 SL:下橋PWM訊號 VCC:直流電壓 Vin:輸入電壓 Vout:輸出電壓 Vref1:上橋參考電壓 Vref2:下橋參考電壓 UG:上橋訊號
圖1A顯示一種先前技術的切換式轉換器電路10之示意圖。
圖1B顯示先前技術的驅動電路11之電路示意圖。
圖2顯示根據本發明切換式轉換器電路20之示意圖。
圖3顯示根據本發明的驅動電路21之一種實施例。
圖4顯示根據本發明的驅動電路31之一種實施例。
圖5顯示根據本發明的驅動電路41之一種實施例。
圖6顯示根據本發明的驅動電路51之一種實施例。
20:切換式轉換器電路
21:驅動電路
23:負載電路
211:上橋驅動器
212:上橋感測電路
213:下橋驅動器
214:下橋感測電路
221:上橋MOSFET
222:下橋MOSFET
223:電感
ENH:上橋致能訊號
ENL:下橋致能訊號
GND:接地電位
IL:電感電流
LD:寄生二極體
LG:下橋訊號
LX:相位節點
P1:PWM訊號
Vin:輸入電壓
Vout:輸出電壓
UG:上橋訊號

Claims (22)

  1. 一種切換式轉換器電路,用以根據一脈寬調變(pulse width modulation, PWM)訊號,切換一電感之一第一端於一第一電壓與一第二電壓之間,以轉換一輸入電壓為一輸出電壓,該切換式轉換器電路包含: 一上橋金屬氧化物半導體場效電晶體(metal oxide semiconductor field effect transistor, MOSFET),耦接於該第一電壓與該電感之該第一端之間; 一下橋MOSFET,耦接於該第二電壓與該電感之該第一端之間;以及 一驅動電路,包括: 一上橋驅動器,用以根據該PWM訊號,產生一上橋驅動訊號,而驅動該上橋MOSFET; 一下橋驅動器,用以根據該PWM訊號,產生一下橋驅動訊號,而驅動該下橋MOSFET; 一上橋感測電路,用以感測該上橋MOSFET之閘-源極電壓,並根據該上橋MOSFET之閘-源極電壓,產生一下橋致能訊號,以示意該上橋MOSFET之不導通狀態,其中,該下橋致能訊號致能該下橋驅動器,根據該PWM訊號而切換該下橋MOSFET;以及 一下橋感測電路,用以感測該下橋MOSFET之閘-源極電壓,並根據該下橋MOSFET之閘-源極電壓,產生一上橋致能訊號,以示意該下橋MOSFET之不導通狀態,其中,該上橋致能訊號致能該上橋驅動器,根據該PWM訊號而切換該上橋MOSFET。
  2. 如請求項1所述之切換式轉換器電路,其中該下橋感測電路包括一下橋感測MOSFET,其具有與該下橋MOSFET相同的導電型,且該下橋感測MOSFET之閘極與該下橋MOSFET之閘極耦接,且該下橋感測MOSFET之源極與該下橋MOSFET之源極耦接,以使該下橋感測MOSFET根據該下橋MOSFET之閘-源極電壓,於該下橋感測MOSFET之汲極產生該上橋致能訊號。
  3. 如請求項2所述之切換式轉換器電路,其中該下橋感測電路更包括一電流源,耦接於該上橋致能訊號與該上橋驅動器之一自舉(bootstrap)電壓之間,以使該上橋致能訊號之複數邏輯位準,位準偏移(level shift)至一啟動電壓區間(boot voltage domain),其中該上橋驅動器包括一致能邏輯電路,用以接收該上橋致能訊號以致能該上橋驅動器根據該PWM訊號切換該上橋MOSFET。
  4. 如請求項2所述之切換式轉換器電路,其中該下橋感測電路更包括一電流源,耦接於該上橋致能訊號與一直流電壓之間,其中該直流電壓用以產生該上橋驅動器之一自舉(bootstrap)電壓,其中該上橋驅動器包括彼此耦接之一致能邏輯電路與一位準偏移電路,以接收該上橋致能訊號,而致能該上橋驅動器根據該PWM訊號切換該上橋MOSFET。
  5. 如請求項1所述之切換式轉換器電路,其中該下橋感測電路包括一下橋比較器,用以比較該下橋MOSFET之該閘-源極電壓與一下橋參考電壓,以產生該上橋致能訊號,其中該上橋驅動器包括彼此耦接之一致能邏輯電路與一位準偏移電路,用以接收該上橋致能訊號以致能該上橋驅動器根據該PWM訊號切換該上橋MOSFET。
  6. 如請求項2所述之切換式轉換器電路,其中該上橋感測電路之一上橋感測MOSFET的導通閾值電壓之絕對值低於或等於該上橋MOSFET的導通閾值電壓之絕對值,且該下橋感測MOSFET的導通閾值電壓之絕對值低於或等於該下橋MOSFET的導通閾值電壓之絕對值。
  7. 如請求項1所述之切換式轉換器電路,其中該上橋感測電路包括一上橋感測MOSFET,其具有與該上橋MOSFET互補的導電型,且該上橋感測MOSFET之閘極與該上橋MOSFET之源極耦接,且該上橋感測MOSFET之源極與該上橋MOSFET之閘極耦接,以使該上橋感測MOSFET根據該上橋MOSFET之閘-源極電壓,於該上橋感測MOSFET之汲極產生該下橋致能訊號。
  8. 如請求項1所述之切換式轉換器電路,其中該上橋感測電路包括: 一上橋感測MOSFET,其具有與該上橋MOSFET相同的導電型;以及 一上橋鉗位MOSFET,其具有與該上橋MOSFET互補的導電型,且該上橋鉗位MOSFET與該上橋感測MOSFET串聯耦接至該上橋驅動器之一自舉(bootstrap)電壓; 其中,該上橋MOSFET之閘極與源極分別對應耦接於該上橋感測MOSFET之閘極與該上橋鉗位MOSFET之閘極,以使該上橋鉗位MOSFET根據該上橋MOSFET之閘-源極電壓而於該上橋鉗位MOSFET之汲極產生該下橋致能訊號。
  9. 如請求項1所述之切換式轉換器電路,其中該上橋感測電路包括: 一上橋感測MOSFET,其具有與該上橋MOSFET互補的導電型;以及 一上橋鉗位MOSFET,其具有與該上橋MOSFET互補的導電型,且該上橋鉗位MOSFET與該上橋感測MOSFET串聯耦接至該上橋驅動器之一自舉(bootstrap)電壓; 其中,該上橋MOSFET之閘極與源極分別對應耦接於該上橋感測MOSFET之閘極與該上橋鉗位MOSFET之閘極,以使該上橋鉗位MOSFET根據該上橋MOSFET之閘-源極電壓而於該上橋鉗位MOSFET之汲極產生該下橋致能訊號。
  10. 如請求項1所述之切換式轉換器電路,其中該上橋感測電路包括: 一上橋比較器,用以比較該上橋MOSFET之閘-源極電壓與一上橋參考電壓,並根據該電感之該第一端的電壓,而產生該下橋致能訊號;以及 一位準偏移電路,用以將該下橋致能訊號之位準向下偏移; 其中該下橋驅動器包括一致能邏輯電路,用以接收位準向下偏移後之該下橋致能訊號,以致能該下橋驅動器根據該PWM訊號切換該下橋MOSFET。
  11. 如請求項1所述之切換式轉換器電路,其中該上橋MOSFET具有與該下橋MOSFET相同的導電型。
  12. 一種切換式轉換器電路之驅動電路,包含: 一上橋驅動器,用以根據一PWM訊號,產生一上橋驅動訊號,而驅動一上橋MOSFET; 一下橋驅動器,用以根據該PWM訊號,產生一下橋驅動訊號,而驅動一下橋MOSFET; 一上橋感測電路,用以感測該上橋MOSFET之閘-源極電壓,並根據該上橋MOSFET之閘-源極電壓,產生一下橋致能訊號,以示意該上橋MOSFET之不導通狀態,其中,該下橋致能訊號致能該下橋驅動器,根據該PWM訊號而切換該下橋MOSFET;以及 一下橋感測電路,用以感測該下橋MOSFET之閘-源極電壓,並根據該下橋MOSFET之閘-源極電壓,產生一上橋致能訊號,以示意該下橋MOSFET之不導通狀態,其中,該上橋致能訊號致能該上橋驅動器,根據該PWM訊號而切換該上橋MOSFET。
  13. 如請求項12所述之驅動電路,其中該下橋感測電路包括一下橋感測MOSFET,其具有與該下橋MOSFET相同的導電型,且該下橋感測MOSFET之閘極與該下橋MOSFET之閘極耦接,且該下橋感測MOSFET之源極與該下橋MOSFET之源極耦接,以使該下橋感測MOSFET根據該下橋MOSFET之閘-源極電壓,於該下橋感測MOSFET之汲極產生該上橋致能訊號。
  14. 如請求項13所述之驅動電路,其中該下橋感測電路更包括一電流源,耦接於該上橋致能訊號與該上橋驅動器之一自舉(bootstrap)電壓之間,以使該上橋致能訊號之複數邏輯位準,位準偏移(level shift)至一啟動電壓區間(boot voltage domain),其中該上橋驅動器包括一致能邏輯電路,用以接收該上橋致能訊號以致能該上橋驅動器根據該PWM訊號切換該上橋MOSFET。
  15. 如請求項13所述之驅動電路,其中該下橋感測電路更包括一電流源,耦接於該上橋致能訊號與一直流電壓之間,其中該直流電壓用以產生該上橋驅動器之一自舉(bootstrap)電壓,其中該上橋驅動器包括彼此耦接之一致能邏輯電路與一位準偏移電路,以接收該上橋致能訊號,而致能該上橋驅動器根據該PWM訊號切換該上橋MOSFET。
  16. 如請求項12所述之驅動電路,其中該下橋感測電路包括一下橋比較器,用以比較該下橋MOSFET之該閘-源極電壓與一下橋參考電壓,以產生該上橋致能訊號,其中該上橋驅動器包括彼此耦接之一致能邏輯電路與一位準偏移電路,用以接收該上橋致能訊號以致能該上橋驅動器根據該PWM訊號切換該上橋MOSFET。
  17. 如請求項13所述之驅動電路,其中該上橋感測電路之一上橋感測MOSFET的導通閾值電壓之絕對值低於或等於該上橋MOSFET的導通閾值電壓之絕對值,且該下橋感測MOSFET的導通閾值電壓之絕對值低於或等於該下橋MOSFET的導通閾值電壓之絕對值。
  18. 如請求項12所述之驅動電路,其中該上橋感測電路包括一上橋感測MOSFET,其具有與該上橋MOSFET互補的導電型,且該上橋感測MOSFET之閘極與該上橋MOSFET之源極耦接,且該上橋感測MOSFET之源極與該上橋MOSFET之閘極耦接,以使該上橋感測MOSFET根據該上橋MOSFET之閘-源極電壓,於該上橋感測MOSFET之汲極產生該下橋致能訊號。
  19. 如請求項12所述之驅動電路,其中該上橋感測電路包括: 一上橋感測MOSFET,其具有與該上橋MOSFET相同的導電型;以及 一上橋鉗位MOSFET,其具有與該上橋MOSFET互補的導電型,且該上橋鉗位MOSFET與該上橋感測MOSFET串聯耦接至該上橋驅動器之一自舉(bootstrap)電壓; 其中,該上橋MOSFET之閘極與源極分別對應耦接於該上橋感測MOSFET之閘極與該上橋鉗位MOSFET之閘極,以使該上橋鉗位MOSFET根據該上橋MOSFET之閘-源極電壓而於該上橋鉗位MOSFET之汲極產生該下橋致能訊號。
  20. 如請求項12所述之驅動電路,其中該上橋感測電路包括: 一上橋感測MOSFET,其具有與該上橋MOSFET互補的導電型;以及 一上橋鉗位MOSFET,其具有與該上橋MOSFET互補的導電型,且該上橋鉗位MOSFET與該上橋感測MOSFET串聯耦接至該上橋驅動器之一自舉(bootstrap)電壓; 其中,該上橋MOSFET之閘極與源極分別對應耦接於該上橋感測MOSFET之閘極與該上橋鉗位MOSFET之閘極,以使該上橋鉗位MOSFET根據該上橋MOSFET之閘-源極電壓而於該上橋鉗位MOSFET之汲極產生該下橋致能訊號。
  21. 如請求項12所述之驅動電路,其中該上橋感測電路包括: 一上橋比較器,用以比較該上橋MOSFET之閘-源極電壓與一上橋參考電壓,並根據該電感之該第一端的電壓,而產生該下橋致能訊號;以及 一位準偏移電路,用以將該下橋致能訊號之位準向下偏移; 其中該下橋驅動器包括一致能邏輯電路,用以接收位準向下偏移後之該下橋致能訊號,以致能該下橋驅動器根據該PWM訊號切換該下橋MOSFET。
  22. 如請求項12所述之驅動電路,其中該驅動電路所驅動之該上橋MOSFET具有與所驅動之該下橋MOSFET相同的導電型。
TW110127400A 2021-01-25 2021-07-26 切換式轉換器電路及其中具有適應性空滯時間之驅動電路 TWI764792B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/567,130 US11955890B2 (en) 2021-01-25 2022-01-02 Switching converter circuit and driver circuit having adaptive dead time thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163141406P 2021-01-25 2021-01-25
US63/141406 2021-01-25

Publications (2)

Publication Number Publication Date
TWI764792B true TWI764792B (zh) 2022-05-11
TW202230943A TW202230943A (zh) 2022-08-01

Family

ID=82460435

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110127400A TWI764792B (zh) 2021-01-25 2021-07-26 切換式轉換器電路及其中具有適應性空滯時間之驅動電路

Country Status (2)

Country Link
CN (1) CN114793053A (zh)
TW (1) TWI764792B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773487B (zh) * 2021-03-23 2022-08-01 立錡科技股份有限公司 電源供應系統

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6859087B2 (en) * 2002-10-31 2005-02-22 International Rectifier Corporation Half-bridge high voltage gate driver providing protection of a transistor
US20060038545A1 (en) * 2002-11-29 2006-02-23 Koninklijke Philips Electronics N.V. Driver for swicthing circuit and drive method
US20070071086A1 (en) * 2005-09-23 2007-03-29 Stmicroelectronics S.R.I. Method and circuit for controlling a pwm power stage
TW201041288A (en) * 2009-05-08 2010-11-16 Richtek Technology Corp PWM controller and method for a DC-to-DC converter
TW201517468A (zh) * 2013-10-17 2015-05-01 Richtek Technology Corp 電源轉換電路的控制電路及相關的電容充電電路
US20160329808A1 (en) * 2015-05-06 2016-11-10 Flextronics Ap, Llc Gate driver circuit for half bridge mosfet switches providing protection of the switch devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6859087B2 (en) * 2002-10-31 2005-02-22 International Rectifier Corporation Half-bridge high voltage gate driver providing protection of a transistor
US20060038545A1 (en) * 2002-11-29 2006-02-23 Koninklijke Philips Electronics N.V. Driver for swicthing circuit and drive method
US20070071086A1 (en) * 2005-09-23 2007-03-29 Stmicroelectronics S.R.I. Method and circuit for controlling a pwm power stage
TW201041288A (en) * 2009-05-08 2010-11-16 Richtek Technology Corp PWM controller and method for a DC-to-DC converter
TW201517468A (zh) * 2013-10-17 2015-05-01 Richtek Technology Corp 電源轉換電路的控制電路及相關的電容充電電路
US20160329808A1 (en) * 2015-05-06 2016-11-10 Flextronics Ap, Llc Gate driver circuit for half bridge mosfet switches providing protection of the switch devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773487B (zh) * 2021-03-23 2022-08-01 立錡科技股份有限公司 電源供應系統

Also Published As

Publication number Publication date
CN114793053A (zh) 2022-07-26
TW202230943A (zh) 2022-08-01

Similar Documents

Publication Publication Date Title
US8558586B1 (en) Circuit arrangement for driving transistors in bridge circuits
US8040162B2 (en) Switch matrix drive circuit for a power element
US8054110B2 (en) Driver circuit for gallium nitride (GaN) heterojunction field effect transistors (HFETs)
US11876453B2 (en) Switching converter circuit and driver circuit having adaptive dead time thereof
JP4380726B2 (ja) ブリッジ回路における縦型mosfet制御方法
US8766711B2 (en) Switching circuit with controlled driver circuit
US11955890B2 (en) Switching converter circuit and driver circuit having adaptive dead time thereof
KR101225399B1 (ko) 강압형 스위칭 조절기
US20220321116A1 (en) Gate drive circuit of switching circuit
CN110165872B (zh) 一种开关控制电路及其控制方法
CN107005234B (zh) 半导体装置
US20120319754A1 (en) Transistor switch control circuit
JP2005318766A (ja) Dc−dcコンバータ
US6909620B2 (en) Inverter configurations with shoot-through immunity
US10715027B2 (en) Driver circuit
CN111564959B (zh) 适用于开关转换器的功率驱动电路
TWI764792B (zh) 切換式轉換器電路及其中具有適應性空滯時間之驅動電路
US20110133714A1 (en) Power converter with protection mechanism for diode in open-circuit condition and pulse-width-modulation controller thereof
US7202652B2 (en) Motor driving apparatus incorporating switch device driving apparatus
JP2006238547A (ja) 電圧駆動素子の駆動回路
US20170005594A1 (en) Power Semiconductor Circuit having a Field Effect Transistor
TW201507337A (zh) 電壓轉換控制器及電壓轉換電路
CN212627663U (zh) 功率电路和包括半桥驱动器的电路
CN116633341A (zh) 驱动装置的电位转换电路
JP2023166269A (ja) 電源用半導体装置及びスイッチトキャパシタコンバータ