TWI763991B - 新式眼用凝膠及其製備方法 - Google Patents

新式眼用凝膠及其製備方法

Info

Publication number
TWI763991B
TWI763991B TW108115254A TW108115254A TWI763991B TW I763991 B TWI763991 B TW I763991B TW 108115254 A TW108115254 A TW 108115254A TW 108115254 A TW108115254 A TW 108115254A TW I763991 B TWI763991 B TW I763991B
Authority
TW
Taiwan
Prior art keywords
biodegradable matrix
ophthalmic gel
antibiotic
collagen
gelatin
Prior art date
Application number
TW108115254A
Other languages
English (en)
Other versions
TW202041235A (zh
Inventor
張明誠
羅彩月
彭正良
陳冠因
Original Assignee
行政院原子能委員會核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員會核能研究所 filed Critical 行政院原子能委員會核能研究所
Priority to TW108115254A priority Critical patent/TWI763991B/zh
Priority to US16/539,211 priority patent/US11191718B2/en
Publication of TW202041235A publication Critical patent/TW202041235A/zh
Application granted granted Critical
Publication of TWI763991B publication Critical patent/TWI763991B/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Preparation (AREA)

Abstract

本發明提供一種眼用凝膠及其製備方法,其眼用凝膠包括:一抗生素;一奈米載體,其中該奈米載體用以包覆該抗生素;以及一生物分解性基質,其中該生物分解性基質與該奈米載體結合,用以承載該奈米載體。當本發明眼用凝膠塗抹於眼睛角膜及結膜的表面時,生物可分解性基質會自動的降解,而生物可分解性基質所承載的奈米載體會以適當的速率,緩慢地釋放被包覆在奈米載體內的抗生素,能克服一般眼用藥劑需高頻率使用以及容易造成視力模糊等缺點;本發明另包含一種眼用凝膠製備方法。

Description

新式眼用凝膠及其製備方法
本發明係有關於一種眼用凝膠,特別是涉及一種包含有奈米載體的眼用凝膠
由於眼睛是血液循環緩慢的封閉器官,所以大多數藥物在全身給藥時不能以有效劑量到達眼部。因此,於眼睛用藥的部分,通常都是以外用角膜敷料的方式代替口服用藥。
而有關眼睛外用角膜敷料技術,主要可以分成三種藥物型式,分別是:眼藥水、眼膏及眼用凝膠;眼藥水是一種透明滲透性高的液體,其能使患者快速吸收藥物,但也因為眼藥水的滲透性高,所以無法使藥物濃度長時間維持在一定藥效的劑量,須靠頻繁的使用眼藥水才能達到有效的藥物濃度;而眼藥膏,其藥物穩定度比眼藥水高,能提供較長時間的藥效濃度,但卻存在有眼皮沾黏、透明度低而導致視力模糊、患者服藥醫囑遵從性低等問題;另外,在眼用凝膠的部分,其雖具有延長藥物釋放的時間,且能克服眼睛黏糊的問題,但目前市售的眼用凝膠卻沒有脂溶性藥物溶入眼用凝膠的開發。
另一方面,於長效緩釋藥物治療開發中,目前可透過使用微脂體傳輸技術以達到緩釋藥物的目的;微脂體是由磷脂質水合後所形成的雙層脂肪 球,其特殊的雙層膜結構與可控制的粒徑大小,可被用來包覆親水性或疏水性藥物,並做為標的給藥的藥物載體。
而微脂體作為藥物傳輸系統可歸納為以下幾個特點:1.具有包覆親水性、疏水性藥物之特質。此外,由於微脂體之外層具親水性,所以亦可增加疏水性藥物的水溶性。2.微脂體與細胞膜有相似之脂質結構,因此本身具有生物相容性(biocompatible)及生物降解性(biodegradable)的特性,為低毒性的載體。3.保護藥物使其輸入身體後不受到新陳代謝系統之分解,提高藥物的可利用率,並降低高毒性藥物對組織器官之傷害,如Amphotericin B具有腎臟毒性、Doxorubicin導致心臟毒性、而Cisplatin及Vincristine則會影響末梢神經。4.藥物包覆於微脂體間,能達到緩釋控制之效果。藉著微脂體載體組成及粒徑大小的不同,其可改變藥物動力學(pharmacokinetics),提高血中濃度,並可改變藥物在身體組織的分佈(biodistribution)。
然而,雖然微脂體具有緩釋藥物的功效,但要將帶有眼疫藥物的微脂體輸送至眼部組織,仍需要透過其他載體,例如:以玻璃體內注射的方式,向眼睛的後部(例如,視網膜和脈絡膜)傳遞治療藥物。而使用此類侵入性方法進行給藥對於病患而言,除了心理或是生理均會造成很大不便之外,成本價錢也相對較高。
有鑑於此,便有需要提供一種新式眼用凝膠,藉以解決上述問題。
本發明所欲解決的問題,係提供一種眼用凝膠,特別是一種包含有奈米載體的眼用凝膠。
為達成上述的目的,本發明公開了一種眼用凝膠,其包括:一抗生素;一奈米載體,其中該奈米載體用以包覆該抗生素;以及一生物分解性基質,其中該生物分解性基質與該奈米載體結合,用以承載該奈米載體。
本發明另公開一種親水性抗生素眼用凝膠之製備方法,其包含以下步驟:(a)將一抗生素、一膽固醇、一DSPC溶於二氯甲烷中,減壓濃縮移除該二氯甲烷得到一混合物;(b)添加水至該混合物中進行水合反應20~40分鐘,再震盪混合至少30分鐘後以過濾器進行過濾;(c)以緩衝液沖洗過濾器的一過濾膜得到複數個微脂體;(d)將一膠原蛋白(Collagen)、一明膠(Gelatin)及一海藻酸鈉(Sodium alginate)依一比例將該膠原蛋白(Collagen)、該明膠(Gelatin)及該海藻酸鈉(Sodium alginate)進行混合以形成一生物分解性基質混合物,其中該比例為1%的海藻酸鈉,4%的明膠及1mg/ml的膠原蛋白;以及(e)混合該步驟(c)之微脂體及乾步驟(d)之生物分解性基質混合物,置於室溫下待其固化;以及(f)以3%的氯化鈣沖洗得到該眼用凝膠。。
本發明再公開一種親脂性抗生素眼用凝膠之製備方法,其包含以下步驟:步驟一:親脂性抗生素微泡的製備:將一10mg~50mg的親脂性藥物以1:40~1:50的比例加入一乳化劑以形成一微泡,其中該乳化劑為Cremophor-Rh4,接著加入丙酮(Acetone),使該微泡完全溶解後,再靜置24小時即得一含有親脂性藥物的微泡薄膜,接著將該微泡薄膜放入離心管,並加入緩衝液,使含有親脂性藥物的微泡薄膜完全浸泡於此緩衝液中;步驟二:生物分解性基質的製備:將一膠原蛋白(Collagen)、一明膠(Gelatin)及一海藻酸 鈉(Sodium alginate)滅菌,接著於50℃下,依一比例將該膠原蛋白(Collagen)、該明膠(Gelatin)及該海藻酸鈉(Sodium alginate)進行混合以形成一生物分解性基質,其中該比例為1%的Sodium alginate,4%的Gelatin及1mg/ml的Collagen,最後將該生物分解性基質放置於室溫下2~3小時使該生物分解性基質固化;以及步驟三:取於步驟一製備好的親脂性抗生素微泡及步驟二製備好的生物分解性基質,於50℃下進行混合,接著將混合好的親脂性抗生素微泡與生物分解性基質放置於室溫下2~3小時使其固化,並以3%的氯化鈣(CaCl2)沖洗,沖洗後即得一眼用親脂性抗生素凝膠。
本發明的功效主要體現在於:1.本發明利用可分解生物醫材承載奈米載體(微脂體或微泡),用以增長微脂體及微泡奈米載體等藥物釋放載體停留在眼睛患部的時間;2.本發明能有效克服一般角膜用藥的高頻率點藥及造成視力模糊的缺點;3.本發明能提供包含有脂溶性藥物或水溶性藥物的角膜敷料。
10:抗生素
11:親水性藥物
12:親水基
13:疏水基
14:雙層磷脂質
15:疏水性藥物
21:親水鏈段
22:親油鏈段
30:奈米載體
31:微脂體
32:微泡
40:生物可分解基質
50:眼用凝膠
100:眼睛角膜表面
圖1為本發明眼用凝膠之結構示意圖;圖2A與圖2B為本發明奈米載體之結構示意圖;圖3為本發明眼用凝膠之使用示意圖;圖4為本發明60mg氯黴素微脂體Lipo-CAP(圖中以60mg CAP表示)和30mg氯黴素微脂體Lipo-CAP(圖中以30mg CAP表示)的藥物濃度試驗圖;圖5A為本發明生物可分解性基質的分解狀況的影像;圖5B為生物可分解性基質中檸檬酸鈉:海藻酸鈉莫爾數比的關係曲線;圖6為氯黴素微脂體Lipo-CAP於掃瞄式電子顯微鏡下所拍攝的影像;圖7為依據本發明一實施方式所示含氯黴素微脂體之眼用凝膠的藥物釋放濃度折線圖; 圖8依據本發明一實施方式所示含氯黴素微脂體之眼用凝膠抑菌能力之直條圖;以及圖9為依據本發明另一實施方式所示眼用凝膠之生物相容性分析的結果。
本發明為呈現解決問題所採用的技術手段較佳實施方式或實施例而已,並非用來限定本發明專利實施之範圍,即凡與本發明專利申請範圍文義相符,或依本發明專利範圍所作的均等變化與修飾,皆為本發明專利所涵蓋。
請參閱圖1,圖1為本發明眼用凝膠之結構示意圖,本發明提供的一種眼用凝膠50,其特徵在於:包含有一抗生素10;一奈米載體30,其中該奈米載體30用以包覆該抗生素10;以及一生物分解性基質40,其中該生物分解性基質40與該奈米載體30結合,用以承載該奈米載體30。以下進一步針對本發明的特徵進行說明。
關於奈米載體30:請參閱圖2A及圖2B,圖2A及圖2B為本發明奈米載體之結構示意圖,本發明眼用凝膠50中所使用的奈米載體30為微脂體31(Liposomes)或微泡32(micells)。其中微脂體31是將脂質或磷脂質分散在液相中所形成的小球,為一層或多層被水相隔開的雙層磷脂質14所形成的同心球體結構。形成微脂體的雙層磷脂質14為兩性物質(amphiphile),它是由磷酸根基團組成的親水(hydrophilic)極性頭基,以及兩條疏水(hydrophobic)的脂肪酸鏈所構成。當磷脂質分子分散於水中時,會因為兩端親、疏水性作用的不同,造成親水性頭基指向水相,而疏水性的脂肪酸鏈會傾向彼此排列緊密,而自我聚集(self-assembly)成一封閉的中空球體,此即為微脂體31。由於這種特殊的中空球體結構,使得微脂體31可同時作為親水性或疏水性藥物的載體;其中親水 性藥物11可被包覆於中心的親水基12中,而疏水性藥物15則可被包覆在雙層磷脂質14的夾層疏水基13中。
其中微泡32(Micelle)是表面活性劑(乳化劑)在溶液中的濃度到達某一臨界值(即臨界微泡濃度CMC)及超過該值後,其分子或離子會自組裝(Selfassembly)形成奈米尺寸的微泡。
與Liposome類似,由可溶性之兩性(Amphiphilic)的分子鏈段所組成,其一端帶有親水鏈段21(Hydrophilic Chain),另一端則帶有親油鏈段22(Hydrophobic Chain),當兩性高分子溶解於水溶液中濃度超過臨界微泡濃度時,兩性高分子分子中之疏水鏈段會透過凡得瓦爾力(Van Der Waal Force)互相作用,結合形成一疏水基13在內而親水基12在外之微泡構造,其核心結構可為親油鏈段22,外層(Layer)為親水鏈段21或相反結構。其中疏水性藥物15可被包覆在微泡的疏水基13中。
關於抗生素10:本發明眼用凝膠50中所使用的抗生素10可分為水溶性抗生素及脂溶性抗生素;其中水溶性抗生素為親水性藥物11,而脂溶性抗生素為疏水性藥物15。
關於生物分解性基質40:本發明眼用凝膠50中所包含的生物分解性基質40為高分子聚合物,是由膠原蛋白、明膠及海藻酸鈉所組合而成的。
膠原蛋白(Collagen)佔哺乳類動物總蛋白質約20%,是人體結締組織中重要的蛋白質,屬於纖維蛋白,廣泛存在皮膚、關節、牙齦等部位,同時膠原蛋白亦是眼睛角膜的主要成份。
由於膠原蛋白源自於動物體內的各種結締組織,其具有良好的生物相容性及生物可降解性,因此被廣泛的作為生物醫材使用。
明膠又稱魚膠或吉利丁(從英文名「Gelatine」譯音而來),是以動物皮、骨內的蛋白質即膠原製成,帶淺黃色透明,無味的膠質,主要成分為蛋白質。明膠通常用於食物、藥物或化妝品的膠凝劑。明膠是膠原蛋白的一種不可逆的水解形式,且被歸類為食品。
海藻酸又稱藻酸、褐藻酸、海藻素,是存在於褐藻細胞壁中的一種天然多糖。通常純品為白色到棕黃色纖維、顆粒或粉末。海藻酸易與陽離子形成凝膠,如海藻酸鈉等,被稱為海藻膠、褐藻膠或藻膠。
常見的褐藻如海帶、馬尾藻、泡葉藻、巨藻都是海藻酸的主要來源。海藻用氫氧化鈉處理後抽提液與硫酸等強酸反應製得海藻酸。固氮菌和偽單胞菌也可以用於生物合成海藻酸,通常細菌合成的海藻酸可以產生微米級或奈米級結構用於生物醫學工程領域。
在此,所述的生物分解性基質為眼用凝膠中主要的成分,其可與奈米載體結合,並用以承載包覆含有抗生素的奈米載體(微脂體或微泡),而生物分解性基質與奈米載體結合的原理,乃由於膠原蛋白、明膠及海藻酸鈉所組合而成的生物分解性基質為一種網狀結構的親水性聚合物,其能與前述奈米載體具有親水性結構的極性頭基(Hydrophilic)或親水鏈段相容結合。
有關本發明所述之眼用凝膠,為一種包含有奈米載體的眼用凝膠,是一種新的藥物型式之角膜敷料。
請參閱圖3,圖3為本發明眼用凝膠之使用示意圖,當使用本發明眼用凝膠50,其塗抹於眼睛角膜表面100時,可藉由生物分解性基質40的降解,將包覆有抗生素10的奈米載體30(微脂體31或微泡32)帶入眼部組織血管內,使血液循環較差的眼部組織血管能有效吸收抗生素藥物,並使眼部周圍的血液藥物濃度能長時間的維持在有效的藥物濃度。
再者,本發明提供的眼用凝膠之透明度可進一步因眼疾及藥物特性而設計,例如:置於下眼皮或眼角膜已經嚴重受損的病患之藥物釋放載體,可暫時不考慮透光度。而本發明提供的眼用凝膠之透明度主要是透過對生物可分解性基質成分比例的調整而達成的。
此外,本發明揭示多種製備含有抗生素微脂體或微泡的製備方法。
依據本發明一實施方式於製備含有抗生素微脂體的方法上,可將特定莫爾數比之1,2-distearoyl-3-sn-phosphatidylcholine(DSPC)及膽固醇溶於二氯甲烷(DCM)後置於50mL圓底燒瓶中,使用旋轉減壓乾燥機以60℃進行減壓乾燥,直至瓶內DCM完全抽乾,接著加入10mg的抗生素進行水合30分鐘,之後以探針式超音波震盪30分鐘,使脂質分子自瓶璧剥離,並以0.2μm的過濾器進行過濾,再以10mL緩衝溶液(PH=7.4)沖洗過濾器過濾膜。最後未包覆微脂體的親水性藥物以PD-10管柱的方式移除、收集純化的微脂體。舉例而言,所述1,2-distearoyl-3-sn-phosphatidylcholine(DSPC)及膽固醇之莫爾數比可以是6:1、7:1、8:1或9:1。在一具體的實施方式中,所述莫爾數比為9:1。
在另一製備抗生素微脂體的實施方式中,將30mg或60mg抗生素、7.7mg之膽固醇和110.6mg之1,2-distearoyl-3-sn-phosphatidylcholine(DSPC)藥物溶於二氯甲烷(DCM)後置於50mL圓底燒瓶中,使用旋轉減壓乾燥機以60℃進行減壓乾燥,直至瓶內DCM完全抽乾。加入已加熱至70℃的生理實驗水10mL進行水合反應30分鐘。之後以探針式超音波震盪30分鐘。並以0.2μm的過濾器進行過濾,並以10mL緩衝溶液沖洗過濾器過濾膜。再以PD-10管柱的方式移除未包覆微脂體的活性成分(如,抗生素),收集純化的微脂體。在一實施方式中,所述DSPC、膽固醇和抗生素的莫爾數比為1:5.5~9.5:5~9。在一較具體的實施方式中,DSPC、膽固醇和抗生素的莫爾數比為1:6.5~8.5: 6~8。在一更具體的實施方式,所述,DSPC、膽固醇和抗生素的莫爾數比為1:7.5:7。
在一實施方式抗生素微泡的實施方式中,將10mg的親脂性抗生素以1:50的比例加入乳化劑cremophor-Rh40進行藥物包覆,之後加入丙酮使微泡完全溶解後,再靜置24小時並使之乾燥。之後將含藥物的微泡薄膜放入離心管後,並加入含有0.5% tween-80的PBS緩衝液(pH=7.4),使藥物的微泡薄膜完全浸泡於此緩衝液中。
所述抗生素可以是親水性或親脂性抗生素。舉例而言,所述親水性藥物是選自由Beta Lactams(penicillin及其衍生物、cephalosporins、monobactams及carbapenems)、Glycopetides(vancomycin、teicoplanin、telavancin、bleomycin、ramoplanin及decaplanin)及Aminoglycosides(amikacin、gentamicin、kanamycin、neomycin、netilmicin、paromomycin、streptomycin及tobramycin)等藥物所組成。所述親脂性藥物是選自由Macrolides(Erythromycin、Roxitromycin、Clarithromycin、Spiramycin、Josamycin及Azithromycin)、Fluroquinolones(ciprofloxacin、levofloxacin、gatifloxacin,moxifloxacin、ofloxacin及norfloxacin)、Tetracyclines(Doxycycline、Lymecycline及Minocycline)、Chloramphenicol及Rifampin等藥物所組成之群組。
實驗方法
穿透式電子顯微鏡檢驗
分別將微脂體或微泡以滅菌後之二次水進行30倍及100倍稀釋後,取7μl以稀釋之微脂體或微泡檢體滴在厚度為5-6nm的銅網上,並靜置一分鐘。之後以濾紙吸去銅網上之多餘檢體,並加入7μl之1-3%的Sodium(Potassium)phosphotungstate(PTA)進行複染,並靜置一分鐘。之後再以濾紙吸去銅網上之 PTA後,在烤燈下照射20分鐘以烘乾檢體。之後便能進行以穿透式電子顯微鏡觀察微脂體或微泡表面形態。
奈米微脂體的粒徑分析
使用粒徑分析儀分析微脂體或微泡粒徑,此儀器是利用雷射散射法為原理,測定微脂體或微泡粒徑分佈。在雷射光照射下,藉由儀器偵測到從微脂體或微泡反射回來的散射光,再予以轉換成數值資料,所獲得的資料經電腦運算之後,即可得知微脂體或微泡粒徑分佈及粒徑平均值。將製備好的微脂體或微泡取約1.5ml的量注入cuvette中,在波長636nm之氦氖雷射進行掃描,並用動態光散射粒徑介面電位測定儀選擇顆粒大小做分析,重複3次取其平均值。掃瞄範圍為3~3000nm。
包覆率檢測
取5mL製備好的微脂體或微泡樣品,以離心機進行離心後取上清液至粒徑分析儀中檢測,確定上清液中無微脂體或微泡存在。設定波長為275nm,以微量注射針頭吸取至少20μL注入注射頭,以HPLC進行分析。藥物包覆率(drug loading efficiency)的計算方式為: 藥物包覆率(%)=包覆的藥物重量/微脂體或微泡總重量x100%。以ethanol/DMSO(1:2 v/v)溶解定量之微脂體或微泡,測量波長485nm之吸收峰,比對藥物在DMSO之校正線可計算出包覆的藥物重量。
體外藥物釋放測定
以2mL含有活性成分(如,抗生素)之微脂體或微泡溶液置放於透析膜中(以分子量為3.5kDa進行隔離),並將透析膜置放在含有50mL生理食鹽水(pH~7.4),37℃的環境中進行透析並於固定的時間間隔收集釋放藥物。釋放出來藥物是利用分光光度計(spectrophotometer)並以波長274nm以進行分析。在進行本發明抗生素眼用凝膠的藥物釋放分析試驗時,將待測物置放於 透析膜中(以分子量為3.5kDa進行隔離),並將透析膜置放在含有50mL生理食鹽水(pH~7.4),37℃的環境中進行透析並於固定的時間間隔收集釋放藥物。釋放藥物的測定方式是利用分光光度計並以波長274nm以進行分析。
抑菌效能分析
接種細菌至細菌培養液(LB)中,於30℃下培養24小時。取定量菌液至細菌培養液中,並加入固定體積之待測物(如,抗生素眼用凝膠等),對照組使用無菌水取代抗生素藥物於37℃下培養,並每隔一小時取樣,之後以分光光度計(spectrophotometer)在波長600nm測其吸光值以進行細菌成長曲線的分析。扣除空白組的平均吸光值後,以不加藥的細菌組當作存活度100%,加藥的細菌組與不加藥的細菌組之吸光值相除後即為其當時的抑菌率。
細胞毒性測試
進行毒性測試所使用的細胞株分別為人類表皮纖維母細胞(human fibroblast)HS-68與上皮細胞。細胞培養基為添加10%胎牛血清與1%抗生素的培養基Dulbecco's modified eagle medium(DMEM),並在37℃,5% CO2的環境中培養並繼代細胞。
將已置備好的待測物(如,抗生素眼用凝膠等)置入細胞培養6孔盤中,接著加入2×106的HS-68細胞或上皮細胞,之後放入37℃,5% CO2的培養箱培養12小時使細胞貼附並恢復健康生理活性。經過12小時後,將培養基吸出,用PBS清洗過後,加入0.5mL的0.05% Trypsin-EDTA溶液,並在37℃作用數分鐘,於倒立顯微鏡下觀察,當細胞將要分離而呈現圓粒狀時,吸掉trypsin-EDTA溶液,輕敲培養盤邊緣使細胞脫落,之後加入5mL的細胞培養基並使細胞能均勻懸浮在培養基中。之後取100ul細胞懸浮液與100ul 0.4% trypan blue等體積混合均勻,取少許混合液(約15ul)自血球計數盤chamber上方凹槽加入,蓋上蓋玻片,於100倍倒立顯微鏡下觀察。細胞計數的方法為計數 每個大正方形內之細胞數目,乘以稀釋倍數再乘以常數104,即為每mL中之細胞數目。
統計分析
實驗數據以SAS中之AVOVA或Student’s t-test進行分析,結果之實驗數據以Mean±SEM表示,p<0.05即具有顯著差異。
實施例
1.1 氯黴素微脂體(LipoCAP)之製備
將30mg或60mg之氯黴素(CAP)、7.7mg之膽固醇和110.6mg之1,2-distearoyl-3-sn-phosphatidylcholine(DSPC)藥物(莫爾數比=14:15:2)溶於二氯甲烷(DCM)後置於50mL圓底燒瓶中,使用旋轉減壓乾燥機以60℃進行減壓乾燥,直至瓶內DCM完全抽乾。加入已加熱至70℃的生理實驗水10mL進行水合反應30分鐘。之後以探針式超音波震盪30分鐘。並以0.2μm的過濾器進行過濾,並以10mL緩衝溶液沖洗過濾器過濾膜。再以PD-10管柱的方式移除未包覆微脂體的活性成分(如,氯黴素),收集純化的氯黴素微脂體(LipoCAP)。本實驗例所製備的氯黴素微脂體(LipoCAP)以上述穿透式電子顯微鏡檢驗法檢驗,電子顯微鏡下的照片請參見第6圖。照片顯示氯黴素微脂體(LipoCAP)具有的單/雙層囊泡形狀及中空結構。囊泡的大小約為200nm,結果證明(LipoCAP)膠體三維結構中並具有空心的結構。
1.2 氯黴素微脂體(LipoCAP-S)之製備
將30mg或60mg之氯黴素(CAP)、7.7mg之膽固醇和110.6mg之1,2-distearoyl-3-sn-phosphatidylcholine(DSPC)藥物(莫爾數比=14:15:2)溶於二氯甲烷(DCM)後置於50mL圓底燒瓶中,使用旋轉減壓乾燥機以60℃進行減壓乾燥,直至瓶內DCM完全抽乾。加入已加熱至70℃的生理實驗水10mL進行水合反應30分鐘。之後以探針式超音波震盪30分鐘。並以0.2μm的過濾器進行 過濾,並以10mL緩衝溶液沖洗過濾器過濾膜,並收集前5mL引流液(含粒徑小於200nm的微脂體)。再以PD-10管柱的方式移除未包覆微脂體的活性成分(如,氯黴素),收集純化的氯黴素微脂體(LipoCAP-S)。
1.3 生物可分解性基質之製備
取經滅菌的膠原蛋白、明膠和海藻酸鈉製備成儲備原液(stock solution),生物可分解基質中各成分的濃度為1%的海藻酸鈉、4%明膠及1mg/ml膠原蛋白,於攝氏50度的情形下混合均勻,接著放置於室溫下2小時,使生物可分解性基質固化,最後再將已經凝固的的生物可分解基質以3%的CaCl2加以沖洗以穩定結構,即得生物可分解性基質。
1.4 眼用凝膠之製備
取經滅菌的膠原蛋白、明膠和海藻酸鈉製備成儲備原液(stock solution),生物可分解基質中各成分的濃度為1%的海藻酸鈉、4%明膠及1mg/ml膠原蛋白。分別取含實施例1.1或1.2製備而成氯黴素微脂體300μl與生物可分解性基質300μl(體積比約1:1),於攝氏50度的情形下混合均勻,接著放置於室溫下2小時,使生物可分解性基質固化,最後再將已經凝固的的生物可分解基質以3%的CaCl2加以沖洗以穩定結構,即得眼用凝膠。
1.5 8小時眼用凝膠緩釋劑型之製備
取經滅菌的膠原蛋白、明膠和海藻酸鈉製備成儲備原液(stock solution),生物可分解基質中各成分的濃度為1%的海藻酸鈉、4%明膠、0.01%檸檬酸鈉及1mg/ml膠原蛋白。分別取含實施例1.1或1.2製備而成氯黴素微脂體300μl與生物可分解性基質300μl(體積比約1:1),於攝氏50度的情形下混合均勻,接著放置於室溫下2小時,使生物可分解性基質固化,最後再將已經凝固的的生物可分解基質以3%的CaCl2加以沖洗以穩定結構,即得8小時眼用凝膠緩釋劑型(CAG-LipoCAP-8)。
實驗例2 實施例1.1之LipoCAP物理學特性分析
以上述實驗方法進行實施例1.1之LipoCAP奈米微脂體的粒徑分析,結果顯示30mg的氯黴素進行微脂體的包覆後製成的氯黴素微脂體,其粒徑平均大小為211.00+10.04nm,以60mg過量氯黴素製備而成的氯黴素微脂體其粒徑平均大小為305.57+19.83nm。
實施例3 生物可分解性基質物理學特性分析
分析實施例1.3製備生物可分解基質(最終濃度1%海藻酸鈉、4%明膠及1mg/ml膠原蛋白)的分解速率。本實驗例添加不同濃度的檸檬酸鈉(sodium citrate)以加速生物可分解性基質的分解。檸檬酸鈉的濃度則是依照現今市售眼睛沖洗液(生理食鹽水)的可容許劑量(需小於0.3%)為基準。
結果示於第5A圖和第5B圖。當檸檬酸鈉:海藻酸鈉的莫爾數比為1:0.25時,生物可分解性基質的分解時間會超過20天。隨著檸檬酸鈉:海藻酸鈉的莫爾數比增加,生物可分解性基質的分解時間會顯著縮短,當檸檬酸鈉:海藻酸鈉的莫爾數比為1:1.25時,生物可分解性基質的分解時間會降至為11.51小時(0.47天)(莫爾數比為1:0.5時,生物可分解性基質分解時間為13.61天;莫爾數比為1:0.75時,生物可分解性基質分解時間為7.15天;莫爾數比為1:1時,生物可分解性基質分解時間為2.24天)透過觀察這個現象,我們進一步建立生物可分解性基質分解時間與檸檬酸鈉:海藻酸鈉莫爾數比的關係曲線,其中Y=12.3314X2-38.6691X+29.2180(Y是生物可分解性基質分解時間,X是檸檬酸鈉:海藻酸鈉莫爾數比)(第5B圖)。因此,依照本發明一實施方式,8小時可分解的生物可分解性基質複合物,由此方程式所提供的關係曲線,我們求出檸檬酸鈉的濃度約為0.01%。
這個研究結果顯示可以根據此方程式,利用調整檸檬酸鈉:海藻酸鈉莫爾數比,建立短、中及長效型的可分解生物可分解性基質生物基材來應用在不同的用途。
實驗例4 實施例1.1所示LipoCAP藥物釋放濃度測驗
以上述實驗方法所示之步驟測定30mg LipoCAP(30mg氯黴素)和60mg LipoCAP(60mg氯黴素)藥物釋放率。結果顯示於圖4,在30mg LipoCAP(30mg氯黴素)(圖中以30mg CAP顯示)藥物釋放方面,至6小時後達到有效藥物作用劑量,60mg LipoCAP(60mg氯黴素)(圖中以60mg CAP顯示)藥物釋放數據中,至4小時後達到有效藥物作用劑量(0.5mg/mL)。試驗結果發現,本發明所提出的微脂體具有緩釋藥物的功效。
實施例5 實施例1.4和1.5眼用凝膠藥物釋放濃度測驗
以上述實驗方法所示之步驟測定實施例1.4和1.5眼用凝膠藥物的藥物釋放濃度,在此實驗例以60mg LipoCAP-S依據實施例1.4步驟製備而成含有60mg LipoCAP-S之眼用凝膠、以及以60mg LipoCAP依據實施例1.5步驟製備而成含有60mg LipoCAP-8之眼用凝膠,結果示於圖7。控制組含為60mg氯黴素的眼用凝膠,其中控制組雖然可以很快達到藥物釋放的有效作用濃度,但在90分鐘後藥物便停止釋放。另一方面60mg LipoCAP-S之眼用凝膠雖可以持續進行藥物的釋放,但起始的藥物釋放則需要至4小時後才能達到有效藥物作用劑量。60mg LipoCAP-8之眼用凝膠能在75分鐘後就達到藥物有效作用濃度,而且藥物釋放的時間能持續到12小時。研究結果顯示60mg LipoCAP-8之眼用凝膠具有單純藥物包覆及緩釋藥物的優點,能快速達到藥物有效作用濃度且能持續進行藥物的釋放。
實施例6 實施例1.4和1.5眼用凝膠抑菌效能力分析
以上述實驗方法所示之步驟測定本發明不同實施方式所製備而成的眼用凝膠藥物(60mg LipoCAP-S之眼用凝膠(圖中以CGA-LipoCAP-S顯示)、60mg LipoCAP-8之眼用凝膠(圖中以CGA-LipoCAP-8顯示)和控制組含60mg氯黴素之眼用凝膠(圖中以CGA-CAP顯示)測試各眼用凝膠的抑菌能力,在實驗例中以大腸桿菌為研究模式。結果如圖8所示,以各時間點的大腸桿菌菌液濃度當作基準(100%),控制組在4小時的時候能達到最明顯的抑菌量,且能維持到8小時,8小時之後由於藥物濃度不再釋出,未被抑制清除的E.coli便再度開始增殖。60mg LipoCAP-S之眼用凝膠組的抑菌能力分析方面,由於藥物不能在很短的時間內達到有效作用濃度,並沒有顯現出明顯的抑制E.coli生長的效果。60mg LipoCAP-8之眼用凝膠能穩定並持續抑制E.coli的增殖,且隨著時間的延長,抑制E.coli增殖的現象越顯著。結果顯示60mg LipoCAP-8之眼用凝膠能持續藥物釋放,即便是超過8小時也能持續抑制E.coli增殖,且具有顯著的差異。
實施例7 實施例1.4和1.5眼用凝膠生物相容性分析
在此實驗例中分析本發明眼用凝膠對正常細胞尤其是眼部上皮細胞是否具有毒性。將依據前述實施例所製成的含氯黴素之眼用凝膠(圖中以CGA-CAP)、LipoCap-S之眼用凝膠(圖中以CGA-LipoCap-S表示)及LipoCAP-8之眼用凝膠(圖中以CGA-LipoCAP-8表示)分別與眼部上皮細胞共同培養12小時後進行細胞計數。在12小時的情形下,對照組為僅添加PBS緩衝液培養後的細胞之平均存活率定義為100%。氯黴素眼用凝膠(圖中以CGA-CAP表示)、LipoCap-S之眼用凝膠(圖中以CGA-LipoCap-S表示)及LipoCAP-8之眼用凝膠(圖中以CGA-LipoCAP-8表示)經共同培養後細胞存活率分別為76.01+6.87%、79.17+16.16%與67.87+3.7587%,三者之間並沒有顯著的差異。 這個研究結果顯示CGA-CAP、CGA-LipoCap-S及CGA-LipoCAP-8等緩釋藥物新劑型對眼部上皮細胞並沒有顯著毒性,結果請參見圖9。
10:抗生素
30:奈米載體
40:生物可分解基質
50:眼用凝膠

Claims (6)

  1. 一種眼用凝膠,包含:一抗生素;一奈米載體,包覆該抗生素,其中該奈米載體是為微脂體,且由膽固醇和1,2-distearoyl-3-sn-phosphatidylcholine(DSPC)所組成,且其中該DSPC、膽固醇和抗生素的莫爾數比為1:5.5~9.5:5~9;以及一生物分解性基質,其中該生物分解性基質與該奈米載體結合,用以承載該奈米載體,其中該生物分解性基質包含膠原蛋白(Collagen)、明膠(Gelatin)、海藻酸鈉(Sodium alginate)和檸檬酸鈉,其中該檸檬酸鈉與該海藻酸鈉的莫爾數比為1:0.1至1:2,且該生物分解性基質含1%的海藻酸鈉,4%的明膠及1mg/ml的膠原蛋白。
  2. 如請求項1所述之眼用凝膠,其中該DSPC、膽固醇和抗生素的莫爾數比為1:7.5:7。
  3. 如請求項1所述之眼用凝膠,其中該抗生素是選自由penicillin derivatives、cephalosporins、monobactams、carbapenems、vancomycin、teicoplanin、telavancin、bleomycin、ramoplanin、decaplanin、amikacin、gentamicin、kanamycin、neomycin、netilmicin、paromomycin、streptomycin、tobramycin、moxifoxacin、erythromycin、roxitromycin、clarithromycin、spiramycin、josamycin、azithromycin、ciprofloxacin,levofloxacin、gatifloxacin、moxifloxacin、ofloxacin、norfloxacin、doxycycline、lymecycline、minocycline、chloramphenicol及rifampin所組成之群組。
  4. 一種製備如請求項1所述眼用凝膠之方法,其包含以下步驟: (a)將一抗生素、一膽固醇、一DSPC溶於二氯甲烷中,減壓濃縮移除該二氯甲烷得到一混合物,其中該DSPC、膽固醇和抗生素的莫爾數比為1:5.5~9.5:5~9;(b)添加水至該混合物中進行水合反應20~40分鐘,再震盪混合至少30分鐘後以過濾器進行過濾;(c)以緩衝液沖洗過濾器的一過濾膜得到複數個微脂體;(d)將一膠原蛋白(Collagen)、一明膠(Gelatin)及一海藻酸鈉(Sodium alginate)依一比例將該膠原蛋白(Collagen)、該明膠(Gelatin)及該海藻酸鈉(Sodium alginate)進行混合以形成一生物分解性基質混合物,其中該比例為1%的海藻酸鈉,4%的明膠及1mg/ml的膠原蛋白;以及(e)混合該步驟(c)之微脂體及步驟(d)之生物分解性基質混合物,置於室溫下待其固化;以及(f)以3%的氯化鈣沖洗得到該眼用凝膠。
  5. 如請求項4所述之方法,其中該DSPC、膽固醇和抗生素的莫爾數比為1:7.5:7。
  6. 如請求項5所述之方法,其中該抗生素是選自由penicillin、cephalosporins、monobactams、carbapenems、yancomycin、teicoplanin、telayancin、bleomycin、ramoplanin、decaplanin、amikacin、gentamicin、kanamycin、neomycin、netilmicin、paromomycin、streptomycin、tobramycin、moxifoxacin、erythromycin、roxitromycin、clarithromycin、spiramycin、josamycin、azithromycin、ciprofloxacin,levofloxacin、gatifloxacin、moxifloxacin、ofloxacin、norfloxacin、doxycycline、lymecycline、minocycline、chloramphenicol及rifampin所組成之群組。
TW108115254A 2019-05-02 2019-05-02 新式眼用凝膠及其製備方法 TWI763991B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108115254A TWI763991B (zh) 2019-05-02 2019-05-02 新式眼用凝膠及其製備方法
US16/539,211 US11191718B2 (en) 2019-05-02 2019-08-13 Ophthalmic gel and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108115254A TWI763991B (zh) 2019-05-02 2019-05-02 新式眼用凝膠及其製備方法

Publications (2)

Publication Number Publication Date
TW202041235A TW202041235A (zh) 2020-11-16
TWI763991B true TWI763991B (zh) 2022-05-11

Family

ID=73017001

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108115254A TWI763991B (zh) 2019-05-02 2019-05-02 新式眼用凝膠及其製備方法

Country Status (2)

Country Link
US (1) US11191718B2 (zh)
TW (1) TWI763991B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117017909A (zh) * 2023-10-09 2023-11-10 成都金瑞基业生物科技有限公司 和厚朴酚脂质体眼用凝胶及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708861A (en) * 1984-02-15 1987-11-24 The Liposome Company, Inc. Liposome-gel compositions
TW200744669A (en) * 2005-09-01 2007-12-16 Novartis Ag Liposome compositions
CN103622904A (zh) * 2013-11-27 2014-03-12 沈阳新马药业有限公司 加替沙星脂质体眼用凝胶及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090169629A1 (en) * 2008-01-02 2009-07-02 Novagali Pharma Sa Micellar compositions with ophthalmic applications
US9265782B2 (en) * 2013-02-22 2016-02-23 Ader Enterprises, Inc. Compositions, methods, and devices for the treatment of eye stain
WO2020047141A1 (en) * 2018-08-30 2020-03-05 Liu Yunxiang Ophthalmic injectable formulation preparing and oculopathy treating and preventing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4708861A (en) * 1984-02-15 1987-11-24 The Liposome Company, Inc. Liposome-gel compositions
TW200744669A (en) * 2005-09-01 2007-12-16 Novartis Ag Liposome compositions
CN103622904A (zh) * 2013-11-27 2014-03-12 沈阳新马药业有限公司 加替沙星脂质体眼用凝胶及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Wu, Zhengjie, et al. "Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation." Scientific reports 6.1 (2016): 1-10. *

Also Published As

Publication number Publication date
US20200345631A1 (en) 2020-11-05
TW202041235A (zh) 2020-11-16
US11191718B2 (en) 2021-12-07

Similar Documents

Publication Publication Date Title
Imam et al. Formulation and optimization of levofloxacin loaded chitosan nanoparticle for ocular delivery: In-vitro characterization, ocular tolerance and antibacterial activity
Chang et al. Liposomal dexamethasone–moxifloxacin nanoparticle combinations with collagen/gelatin/alginate hydrogel for corneal infection treatment and wound healing
Zhou et al. Core-shell lipid-polymer nanoparticles as a promising ocular drug delivery system to treat glaucoma
Luo et al. Construction and optimization of pH-sensitive nanoparticle delivery system containing PLGA and UCCs-2 for targeted treatment of Helicobacter pylori
JP6491647B2 (ja) キトサンペースト創傷手当て材
CN101027065A (zh) 磷脂组合物及其制备和使用方法
CN110339168B (zh) 一种负载抗肺纤维化药物和免疫调节剂的纳米制剂及其制备方法
He et al. Chondroitin sulfate microspheres anchored with drug-loaded liposomes play a dual antioxidant role in the treatment of osteoarthritis
US11534459B2 (en) Compositions and methods of treating dry eye syndrome and other traumatized non-keratinized epithelial surfaces
Cui et al. Fabrication and characterization of chitosan/poly (lactic-co-glycolic acid) core-shell nanoparticles by coaxial electrospray technology for dual delivery of natamycin and clotrimazole
Xie et al. A new strategy to sustained release of ocular drugs by one-step drug-loaded microcapsule manufacturing in hydrogel punctal plugs
EP4382094A1 (en) Atherosclerosis-targeted liposome nanocarrier delivery system and preparation method therefor
Yang et al. Photocrosslinked methacrylated natural macromolecular hydrogels for tissue engineering: A review
CN104288093B (zh) 纳米药物透皮制剂在肿瘤中的应用
TWI763991B (zh) 新式眼用凝膠及其製備方法
Zhang et al. Immunomodulatory gallium/glycyrrhizic acid hydrogels for treating multidrug-resistant Pseudomonas aeruginosa-infected pressure ulcers
Modi et al. Polysaccharide-based nanogels and ocular drug delivery: The emerging nanocarrier for crossing blood retinal barrier
CN109481403A (zh) 一种壳聚糖修饰的醋酸曲安奈德脂质体及制备方法
US20210069120A1 (en) Composite nanoparticle, preparation method thereof and preparation method of composite nano preparation using thereof
CN113577096B (zh) 一种用于治疗慢性创伤的组合制剂及其制备方法
CN107362142B (zh) 一种氟维司群脂质体注射液及其制备方法
Misra et al. Microscale and nanoscale chitosan-based particles for biomedical use
Zhang et al. Nano-lipid contrast agent combined with ultrasound-guided sgb in nursing treatment of lymphedema after breast cancer surgery
Binaymotlagh et al. Liposome–Hydrogel Composites for Controlled Drug Delivery Applications
Bao et al. Ultrasound-Triggered On-Demand Insulin Release for Diabetes Mellitus Treatment