TWI763286B - 微型氣體傳輸裝置 - Google Patents
微型氣體傳輸裝置 Download PDFInfo
- Publication number
- TWI763286B TWI763286B TW110103455A TW110103455A TWI763286B TW I763286 B TWI763286 B TW I763286B TW 110103455 A TW110103455 A TW 110103455A TW 110103455 A TW110103455 A TW 110103455A TW I763286 B TWI763286 B TW I763286B
- Authority
- TW
- Taiwan
- Prior art keywords
- micro
- gas
- plate
- valve
- air outlet
- Prior art date
Links
Images
Landscapes
- Reciprocating Pumps (AREA)
Abstract
一種微型氣體傳輸裝置,包含:一微型氣體泵,傳輸一氣體;一微型閥門,供微型氣體泵設置,微型閥門由依序疊設一微型集氣板、一微型閥片框架、一微型閥片及一微型出氣板構成;微型集氣板,具有一挖空區及一洩氣契合部;微型閥片框架,具有一閥片容置區供微型閥片定位,且微型閥片具有複數閥孔;一微型出氣板供微型閥片框架設置並具有一出氣孔及一洩氣分流槽。其中,複數閥孔的中心位置與出氣孔的中心位置為一偏心設計,使氣體輸出順暢及洩氣完整。當氣體洩壓時,藉由微型出氣板之洩氣分流槽使氣體先分流再匯集排出,避免產生噪音。
Description
本案係與氣體傳輸裝置有關,特別是指一種微型化之氣體傳輸裝置。
隨著科技的日新月異,氣體輸送裝置的應用愈來愈多元化,舉凡工業應用、生醫應用、醫療保健、電子散熱等等,甚至近來熱門的穿戴式裝置皆可見它的踨影,可見傳統的氣體輸送裝置已漸漸有朝向裝置微小化、微型化、流量極大化的趨勢。
惟,目前的氣體傳輸裝置仍具有一定的厚度,特別是其中的閥門厚度無法降低,造成整體厚度難以與負載裝置(例如:穿戴式裝置)結合,因此,如何降低氣體傳輸裝置的整體厚度,使其能夠與負載裝置結合,實為目前迫切需要解決之問題。
請參閱第1圖,為習知氣體傳輸裝置之閥門立體分解示意圖,如圖所示,包含一閥門3,閥門3包含:一集氣板31、一閥片框架32、一閥片33及一出氣板34,集氣板31具有一挖空區310,閥片框架32設有一定位空間320供閥片33定位且閥片33設有一閥孔330,出氣板34設有一出氣孔340及一洩氣孔341,閥孔330設置於出氣孔340的中間位置,氣體在出氣時,因閥孔330孔徑小於出氣孔340孔徑而影響氣體的出氣路徑,導致出氣不順暢。而氣體在洩壓時,也因為閥孔330設置在出氣孔340的中間位置,導致氣體由出氣孔340進入後會經由閥孔330流入,使閥片33無法緊貼於集氣板31,導致部份氣體未經由洩氣孔341洩氣,造成氣體洩氣不完整。除此,當閥門3供一氣體泵(未圖示)設置其上時為了防止氣體泵氣體外洩,通常會在閥門3與氣體泵沒有重疊到的閥門表面塗佈一層封膠(未圖示),並使封膠環繞氣體泵外側並密封氣體泵。然而,此種做法的缺點會導致閥3與氣體泵結合時體積無法縮小。
本案係為一種微型氣體傳輸裝置,其主要目的係提供一種微型氣體泵結合微型閥門的結構,不僅大幅降低氣體傳輸裝置的整體厚度,並且有效解決出氣與洩氣時出現阻塞及噪音的問題。
為達上述目的,一種微型氣體傳輸裝置,一微型氣體泵;一微型閥門,供微型氣體泵設置;其中微型閥門包含依序疊設一微型集氣板、一微型閥片框架、一微型閥片及一微型出氣板;微型集氣板,具有一挖空區,挖空區凸設一洩氣契合部;微型閥片框架,具有一閥片容置區;微型閥片,定位於閥片容置區,且具有至少複數閥孔,複數閥孔與微型集氣板之挖空區錯位;以及一微型出氣板,供微型閥片框架佈置且具有一出氣槽及一出氣孔。其中, 複數閥孔的中心位置與出氣孔的中心位置形成偏心設計,使氣體輸出順暢及洩氣完整。當氣體洩壓時,藉由微型出氣板之洩氣分流槽使氣體被迫分成二路先分流再匯集排出,避免產生噪音。
體現本案特徵與優點的實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖示在本質上當作說明之用,而非用以限制本案。
請參閱第2A圖至第2B圖所示,第2A圖為本案微型氣體傳輸裝置立體示意圖,第2B圖為本案微型氣體傳輸裝置另一角度之立體示意圖。本案提供一種微型氣體傳輸裝置100,包含一微型氣體泵1及一微型閥門2,微型氣體泵1設置於微型閥門2上。
以及,請參閱第3A圖及第3B圖所示,第3A圖為微型氣體泵的分解示意圖,第3B圖為微型氣體泵另一角度的分解示意圖。微型氣體泵1包含一進氣板11、一共振片12、一致動件13、一第一絕緣框架14、一導電框架15及一第二絕緣框架16。微型氣體泵1可為壓電式氣體泵,且總厚度為0.5~3mm,但並不以此為限。
其中,進氣板11具有一第一表面111、第二表面112、複數個進氣孔113、一匯流腔室114及複數個進氣流道115。第一表面111與第二表面112為相互對應的兩表面。複數個進氣孔113於本實施例中其數量為4個,但不以此為限,分別由第一表面111貫穿至第二表面112。匯流腔室114則由第二表面112凹陷形成,且位於第二表面112中央。複數個進氣流道115其數量與位置與進氣孔113相對應,故於本實施例中其數量同樣為4個。進氣流道115的一端分別與對應之進氣孔113連通,另一端則分別連通至匯流腔室114,使得氣體分別由自進氣孔113進入後,會通過其對應的進氣流道115,最後匯聚於匯流腔室114內。
共振片12結合於進氣板11的第二表面112,共振片12包含一中心孔121、振動部122及一固定部123,中心孔121於共振片12的中心位置穿透形成,振動部122位於中心孔121的周緣區域,固定部123位於振動部122的外緣,共振片12透過固定部123與進氣板11結合。當共振片12結合至進氣板11時,中心孔121、振動部122將與進氣板11的匯流腔室114垂直對應。
致動件13結合至共振片12,致動件13包含一振動板131、一框架132、複數個連接部133、一壓電片134及複數個氣體通道135。振動板131呈一正方形態樣。框架132為一方型外框環繞於振動板131的外圍,且具有一第一導電接腳132a,第一導電接腳132a自框架132的外圍沿水平方向延伸。複數個氣體通道135則於振動板131、框架132及複數個連接部133之間。其中,致動件13透過框架132結合至共振片12的固定部123,複數個連接部133於本實施例中其數量為4個,但不以此為限。連接部133分別連接於振動板131與框架132之間,以彈性支撐振動板131。壓電片134其形狀與面積與振動板131相對應,於本實施例中,壓電片134亦為正方形態樣,其邊長小於或等於振動板131的邊長,且貼附於壓電片134。此外,振動板131具有相對的兩表面:一上表面131a及一下表面131b,上表面131a上具有一凸部131c,而壓電片134則是貼附於下表面131b。
第一絕緣框架14、第二絕緣框架16其外型與致動件13的框架132相同,皆為方形框架。導電框架15包含一框架部151、一電極部152及一第二導電接腳153,框架部151其形狀與第一絕緣框架14、第二絕緣框架16相同為方形框架,電極部152自框架部151內側向中心延伸,第二導電接腳153由框架部151的外周水平方向延伸。
請配合參閱第4A圖,第4A圖為微型氣體泵的剖面示意圖。進氣板11、共振片12、致動件13、第一絕緣框架14、導電框架15及第二絕緣框架16依序堆疊,共振片12與振動板131之間形成一振動腔室17。此外,導電框架15的電極部152將抵觸致動件13的壓電片134且電性連接,使得致動件13的第一導電接腳132a與導電框架15的第二導電接腳153可對外接收驅動訊號(包含驅動電壓及驅動頻率),並將驅動訊號傳送至壓電片134。
接續,說明微型氣體泵1的作動,請參考第4B圖至第4D圖,壓電片134收到驅動訊號後,因壓電效應開始產生形變,進而帶動振動板131上下位移。請先參閱第3B圖,當振動板131向下位移時,帶動共振片12的振動部122向下移動,使得匯流腔室114的容積增加,開始通過進氣孔113、進氣流道115汲取外部的氣體進入至匯流腔室114內。再如第3C圖所示,振動板131被壓電片134向上帶動時,會將振動腔室17內的氣體由中心向外側推動,推至氣體通道135,以通過氣體通道135向下導送,同時共振片12會向上移動,推擠匯流腔室114內的氣體通過中心孔121向下傳輸。最後如第3D圖所示,當振動板131向下位移復位時,同步帶動共振片12的振動部122向下移動,振動部122接近振動板131的凸部131c,推動振動腔室17的氣體向外移動,以進入氣體通道135,且由於振動部122向下位移,使得匯流腔室114的容積大幅提升,進而由進氣孔113、進氣流道115吸取外部的氣體進入匯流腔室114內,不斷重複以上動作,將氣體持續的向下傳輸至微型閥門2。
另,請參閱第5A圖至第5B圖,第5A圖為微型閥門與微型氣體泵的分解示意圖,第5B圖為微型閥門與微型氣體泵另一角度的分解示意圖。其中,一微型氣體泵1設置於一微型閥門2上,微型閥門2包含一微型集氣板21、一微型閥片框架22、一微型閥片23及一微型出氣板24。
微型集氣板21具有一挖空區210,挖空區210凸設一洩氣契合部211。微型閥片框架22具有一閥片容置區220。微型閥片23設置於閥片容置區220並具有複數閥孔230,且複數閥孔230與微型集氣板21之挖空區210錯位。於本實施例中,複數個閥孔230的數量以偶數為佳,較佳為2個,但不以此為限。
微型出氣板24具有一出氣表面240、一與出氣表面240為兩相對表面之洩氣表面241,一由出氣表面240凹陷而成之出氣凹槽242、一設置於出氣凹槽242之出氣孔243及洩壓孔245,出氣孔243及洩壓孔245貫穿出氣表面240與洩氣表面241、一由出氣表面240凹陷而成之洩氣分流槽244,洩氣分流槽244的位置係對應挖空區210之洩氣契合部211設置並與出氣凹槽242錯開、以及一自洩氣表面241凹陷形成之洩壓溝渠246並與洩壓孔245連通,且洩壓溝渠246之面積自洩壓孔245處朝遠離洩壓孔245方向逐漸擴大。於本實施例中,微型出氣板24之洩氣分流槽244係以半蝕刻製程所蝕刻出來,且蝕刻深的深度為0.1~0.15mm時,消除噪音效果最佳。
值得一提的是,微型閥片23之兩閥孔230與微型出氣板24之出氣孔243的中心點並非設置在同一中心線而形成一偏心設計,使兩閥孔230未設置於出氣孔243的中心位置,而閥片容置區220形狀與微型閥片23的形狀相同,供微型閥片23固定及定位其中,微型閥片框架22設置於微型集氣板21上,而微型集氣板21供微型氣體泵1設置其上。請參閱第2A圖至2B圖,第2A圖為微型氣體傳輸裝置立體示意圖,第2B圖為微型氣體傳輸裝置另一角度的立體示意圖。本實施例中,上述之微型集氣板21、微型閥片框架22及微型出氣板24皆為金屬材質,(例如:為相同的金屬材質之不鏽鋼),此外,微型集氣板21、微型閥片框架22及微型出氣板24的厚度皆相同,其厚度皆為2mm。
請參閱第6圖及第7圖,第6圖為本案微型氣體傳輸裝置之平面示意圖,第7圖依第6圖之A-A 氣體輸出剖面示意圖。微型閥門2的微型集氣板21、微型閥片框架22、微型閥片23及微型出氣板24依序由下往上堆疊固定。微型閥片23容設於微型閥片框架22的閥片容置區220內,而微型氣體泵1結合微型閥門2。在輸出氣體時,微型氣體泵1傳輸氣體至微型閥門2,氣體由微型集氣板21之挖空區210進入,此時,位於出氣凹槽242的微型閥片23部分區域因氣體擠壓而被向上推動,使氣體進入出氣凹槽242內,並通過兩閥孔230流經出氣孔243順利排出至一負載空間(未圖示)。
請參閱第8圖,為本案微型氣體傳輸裝置之氣體輸出平面示意圖。本案為避免微型氣體泵1在輸出氣體時產生阻塞的情況,因此將微型閥片23之兩閥孔230與微型出氣板24之出氣孔243的中心點不設置在同一中心線而形成偏心設計,同時兩閥孔230與出氣孔243重疊形成一貫穿孔洞,供氣體由貫穿孔洞及出氣孔243輸出至負載空間,完成氣體輸出而不會造成阻塞。
請再配合參閱第9圖所示,為本案微型氣體傳輸裝置依第6圖之B-B氣體洩壓剖面示意圖。當微型氣體傳輸裝置100停止傳輸氣體至負載空間時,負載空間的氣壓大於外部氣壓,便開始通過微型閥門2進行洩壓作業,氣體從出氣孔243回壓至微型出氣板24時,因微型閥片23之兩閥孔230與微型出氣板24之出氣孔243中心點並非設置在同一中心線而是呈偏心設計,使兩閥孔230不設置在出氣孔243的中心位置,因此大部份的氣體無法由兩閥孔230流入穿過微型閥片23而流經洩氣分流槽244,同時微型閥片23受到氣體的推動而緊貼密合於微型集氣板21上,且位於微型集氣板21之挖空區210上方的微型閥片23部分區域因氣體推擠而向下推動,使氣體可經由微型閥片23的上方進入到挖空區210,再流經洩氣分流槽244並由洩壓孔245輸出至洩壓溝渠246向外洩壓,順利完成洩壓作業。其中,當氣體經由至洩壓溝渠246洩壓時,因洩壓溝渠246之面積由洩壓孔245處朝遠離洩壓孔245方向逐漸擴大設計,使氣體可更順利地洩壓。
請參閱第10圖,為本案微型氣體傳輸裝置之氣體洩壓平面示意圖。為避免微型氣體泵1在進行洩壓時產生噪音的情況,因此微型集氣板21之挖空區210對應微型出氣板24之洩氣分流槽244位置設有洩氣契合部211。洩氣時,藉由洩氣契合部211緊貼於洩氣分流槽244,因此當氣體經由出氣孔243進入而流至洩氣分流槽244時,氣體會被迫分成二路後再匯集一併透過洩壓孔245排出微型氣體傳輸裝置100外,完成洩壓作業。藉由洩氣分流槽244的設計,無論氣體是分路或匯流都能有效降低因氣體直接衝擊洩氣分流槽244所造成的噪音。於本實施例中,洩氣分流槽244概呈一V形,並設有一V形分流結構,V形分流結構與洩氣契合部211垂直對應。
據此,經由上述敘明微型氣體傳輸裝置100的結構及動作後,可得知本案確實具有以下功效:
第一點、透過使用微型集氣板21、微型閥片框架22、微型閥片23及微型出氣板24等結構所組成的微型閥門2能夠大幅降低微型氣體傳輸裝置100的整體厚度,特別是微型集氣板21、微型閥片框架22及微型出氣板24的厚度都可降至2mm,使微型閥門2的全部厚度僅6mm。 除此,本案取消微型閥門2上塗佈封膠的設計,令微型氣體泵1與微型閥門2外圍尺寸形成一致,進一步達到縮小微型氣體傳輸裝置100之整體體積的功效。
第二點、本案的微型閥片23由原先的一個孔洞設置在出氣孔243的中間位置,改成兩個閥孔230,並且兩閥孔230與出氣孔243中心點並非設置在同一中心線而是呈偏心設計,此設計可避免氣體在回壓時通過兩閥孔230造成洩壓作業不完整,保障氣體洩氣順暢。
第三點、本案將微型集氣板21之挖空區210對應微型出氣板24之洩氣分流槽244的位置設有洩氣契合部211,洩氣時,藉由洩氣契合部211緊貼於洩氣分流槽244,使氣體經由出氣孔243進入而流至洩氣分流槽244時,氣體會被迫分成二路後再匯集一併透過洩壓孔245排出微型氣體傳輸裝置100外,完成洩壓作業。因此,無論氣體是分路或匯流都能有效降低氣體衝擊所產生的噪音。
1:微型氣體泵
100:微型氣體傳輸裝置
11:進氣板
111:第一表面
112:第二表面
113:進氣孔
114:匯流腔室
115:進氣流道
12:共振片
121:中心孔
122:振動部
123:固定部
13:致動件
131:振動板
131a:上表面
131b:下表面
131c:凸部
132:框架
132a:第一導電接腳
133:連接部
134:壓電片
135:氣體通道
14:第一絕緣框架
15:導電框架
151:框架部
152:電極部
153:第二導電接腳
16:第二絕緣框架
17:振動腔室
2:微型閥門
21:微型集氣板
210:挖空區
211:洩氣契合部
2110:分流端部
22:微型閥片框架
220:閥片容置區
23:微型閥片
230:閥孔
24:微型出氣板
240:出氣表面
241:洩氣表面
242:出氣凹槽
243:出氣孔
244:洩氣分流槽
245:洩壓孔
246:洩壓溝渠
3:閥門
31:集氣板
310:挖空區
32:閥片框架
320:定位空間
33:閥片
330:閥孔
34:出氣板
340:出氣孔
341:洩氣孔
第1圖為習知閥門立體示意圖。
第2A圖為本案微型氣體傳輸裝置立體示意圖。
第2B圖為本案微型氣體傳輸裝置另一角度之立體示意圖。
第3A圖為本案微型氣體泵之分解示意圖。
第3B圖為本案微型氣體泵另一角度之分解示意圖。
第4A圖為本案微型氣體泵之剖面示意圖。
第4B至4D圖為本案微型氣體泵之作動示意圖。
第5A圖為微型閥門與微型氣體泵的分解示意圖。
第5B圖為微型閥門與微型氣體泵另一角度的分解示意圖。
第6圖為本案微型氣體傳輸裝置之平面示意圖。
第7圖為本案微型氣體傳輸裝置依第6圖之A-A剖線之氣體輸出剖面示意圖。
第8圖為本案微型氣體傳輸裝置之氣體輸出平面示意圖。
第9圖為本案微型氣體傳輸裝置依第6圖之B-B剖線之氣體洩壓剖面示意圖。
第10圖為本案微型氣體傳輸裝置之氣體洩壓平面示意圖。
1:微型氣體泵
2:微型閥門
21:微型集氣板
210:挖空區
211:洩氣契合部
2110:分流端部
22:微型閥片框架
220:閥片容置區
23:微型閥片
230:閥孔
24:微型出氣板
240:出氣表面
242:出氣凹槽
243:出氣孔
244:洩氣分流槽
245:洩壓孔
Claims (15)
- 一種微型氣體傳輸裝置,包含: 一微型氣體泵,傳輸一氣體; 一微型閥門,供該微型氣體泵設置;其中 該微型閥門包含依序疊設之一微型集氣板、一微型閥片框架、一微型閥片及一微型出氣板; 該微型集氣板,具有一挖空區; 該微型閥片框架,具有一閥片容置區; 該微型閥片,定位於該閥片容置區,且具有複數閥孔,該複數閥孔與該微型集氣板之該挖空區錯位;以及 該微型出氣板,供該微型閥片框架佈置,且具有一出氣表面、一與出氣表面為兩相對表面之洩氣表面,一由該出氣表面凹陷而成之出氣凹槽,設置於該微型出氣板之一出氣孔與一洩壓孔,該出氣孔貫穿該出氣表面與該洩氣表面,以及該微型出氣板由該出氣表面凹陷而成一洩氣分流槽,且該洩壓孔貫穿該出氣表面與該洩氣表面並與該洩氣分流槽連通,以及一自該洩氣表面凹陷形成之洩壓溝渠,該洩壓溝渠與該洩壓孔連通; 其中,該微型閥片之該複數閥孔與該微型出氣板之該出氣孔兩者的中心點並非設置在同一中心線而是呈偏心設計,使該複數閥孔不設置在該出氣孔的中心位置,保障出氣及洩氣順暢。
- 如請求項1所述之微型氣體傳輸裝置,其中該挖空區對應該洩氣分流槽位置凸設一洩氣契合部,當洩氣時該氣體經由該出氣孔進入後被迫分成二路流經該洩氣分流槽再匯集流至該洩壓孔排出該微型氣體傳輸裝置外,避免該氣體直接衝擊該洩氣分流槽產生噪音。
- 如請求項1所述之微型氣體傳輸裝置,其中該洩氣分流槽呈V形。
- 如請求項3所述之微型氣體傳輸裝置,其中該洩氣分流槽設有一V形分流結構。
- 如請求項4所述之微型氣體傳輸裝置,其中該挖空區設有一洩氣契合部,該洩氣契合部與該V形分流結構垂直對應。
- 如請求項1所述之微型氣體傳輸裝置,其中該微型氣體泵可為壓電式氣體泵且總厚度為0.5~3mm。
- 如請求項1所述之微型氣體傳輸裝置,其中該微型氣體泵與該微型閥門的外圍尺寸一致。
- 如請求項1所述之微型氣體傳輸裝置,其中該微型閥片之該複數閥孔之數量為偶數個。
- 如請求項1所述之微型氣體傳輸裝置,其中該微型集氣板、該微型閥片框架及該微型出氣板的厚度為2mm。
- 如請求項1所述之微型氣體傳輸裝置,其中該微型出氣板之該洩氣分流槽的蝕刻深度為0.1~0.15mm。
- 如請求項1所述之微型氣體傳輸裝置,其中該洩壓溝渠之面積由該洩壓孔處朝遠離該洩壓孔方向逐漸擴大。
- 如請求項1所述之微型氣體傳輸裝置,其中該微型集氣板、該微型閥片框架以及該微型出氣板為一金屬材質。
- 如請求項12所述之微型氣體傳輸裝置,其中該金屬材質為一不銹鋼材質。
- 如請求項1所述之微型氣體傳輸裝置,其中該微型氣體泵包括: 一進氣板,具有:一第一表面,及與該第一表面相對之一第二表面; 複數個進氣孔,分別由該第一表面貫穿至該第二表面; 一匯流腔室,自該第二表面凹陷形成,且位於該第二表面中央;以及 複數個進氣流道,自該第二表面凹陷形成,其一端分別連接該些進氣孔,另一端連接至該匯流腔室; 一共振片,結合至該第二表面,具有: 一中心孔,位於該共振片中央處; 一振動部,位於該中心孔周緣,並與該匯流腔室對應;以及 一固定部,位於該振動部外緣,且該共振片透過該固定部結合至該進氣板; 一致動件,結合至該共振片的該固定部; 一第一絕緣框架,結合該致動件; 一導電框架,結合該第一絕緣框架;以及 一第二絕緣框架,結合該導電框架。
- 如請求項14所述之微型氣體傳輸裝置,其中該致動件包含: 一振動板,呈一正方形; 一框架,環繞於該振動板的外圍; 複數個連接部,分別連接於該振動板與該框架之間,以彈性支撐該振動板;以及 一壓電片,形狀與面積與該振動板對應,且貼附於該振動板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110103455A TWI763286B (zh) | 2021-01-29 | 2021-01-29 | 微型氣體傳輸裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110103455A TWI763286B (zh) | 2021-01-29 | 2021-01-29 | 微型氣體傳輸裝置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI763286B true TWI763286B (zh) | 2022-05-01 |
TW202229725A TW202229725A (zh) | 2022-08-01 |
Family
ID=82594038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110103455A TWI763286B (zh) | 2021-01-29 | 2021-01-29 | 微型氣體傳輸裝置 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI763286B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107654358A (zh) * | 2012-04-19 | 2018-02-02 | 株式会社村田制作所 | 流体控制装置 |
CN108884823A (zh) * | 2016-07-29 | 2018-11-23 | 株式会社村田制作所 | 阀、气体控制装置以及血压计 |
WO2020084978A1 (ja) * | 2018-10-22 | 2020-04-30 | 株式会社村田製作所 | バルブ、及び、気体制御装置 |
CN111542715A (zh) * | 2018-03-09 | 2020-08-14 | 株式会社村田制作所 | 阀以及具备阀的流体控制装置 |
TWI709208B (zh) * | 2020-02-18 | 2020-11-01 | 研能科技股份有限公司 | 薄型氣體傳輸裝置 |
-
2021
- 2021-01-29 TW TW110103455A patent/TWI763286B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107654358A (zh) * | 2012-04-19 | 2018-02-02 | 株式会社村田制作所 | 流体控制装置 |
CN108884823A (zh) * | 2016-07-29 | 2018-11-23 | 株式会社村田制作所 | 阀、气体控制装置以及血压计 |
CN111542715A (zh) * | 2018-03-09 | 2020-08-14 | 株式会社村田制作所 | 阀以及具备阀的流体控制装置 |
WO2020084978A1 (ja) * | 2018-10-22 | 2020-04-30 | 株式会社村田製作所 | バルブ、及び、気体制御装置 |
TWI709208B (zh) * | 2020-02-18 | 2020-11-01 | 研能科技股份有限公司 | 薄型氣體傳輸裝置 |
Also Published As
Publication number | Publication date |
---|---|
TW202229725A (zh) | 2022-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI681120B (zh) | 微型輸送裝置 | |
TWI720878B (zh) | 致動傳感模組 | |
TW201500670A (zh) | 微型閥門裝置 | |
TW202106976A (zh) | 微型泵浦 | |
CN112240280B (zh) | 微型泵 | |
TWI698583B (zh) | 微型泵浦 | |
TWI763286B (zh) | 微型氣體傳輸裝置 | |
CN107795465B (zh) | 微型流体控制装置 | |
TW202217146A (zh) | 薄型氣體傳輸裝置 | |
TWI768809B (zh) | 微型氣體傳輸裝置 | |
TWI721743B (zh) | 薄型氣體傳輸裝置 | |
CN114810560A (zh) | 微型气体传输装置 | |
CN210660518U (zh) | 微型泵 | |
CN114810560B (zh) | 微型气体传输装置 | |
CN210599353U (zh) | 微型泵 | |
CN113123947B (zh) | 薄型气体传输装置 | |
CN113107817B (zh) | 具消音泄气结构的微型泵 | |
CN112392698B (zh) | 微型泵 | |
US11746773B2 (en) | Gas transportation device | |
TW202004021A (zh) | 微型輸送裝置 | |
TW202035870A (zh) | 微型泵 | |
TWI768915B (zh) | 微型氣體傳輸裝置 | |
TWM465472U (zh) | 微型閥門裝置 | |
TWI720649B (zh) | 氣體偵測模組 | |
TWI720877B (zh) | 致動傳感模組 |