TWI762811B - 負載有多孔隙奈米顆粒結構之多孔隙基材及其負載製程 - Google Patents

負載有多孔隙奈米顆粒結構之多孔隙基材及其負載製程 Download PDF

Info

Publication number
TWI762811B
TWI762811B TW108131237A TW108131237A TWI762811B TW I762811 B TWI762811 B TW I762811B TW 108131237 A TW108131237 A TW 108131237A TW 108131237 A TW108131237 A TW 108131237A TW I762811 B TWI762811 B TW I762811B
Authority
TW
Taiwan
Prior art keywords
porous
porous substrate
nanoparticle structure
reaction liquid
microplasma
Prior art date
Application number
TW108131237A
Other languages
English (en)
Other versions
TW202108265A (zh
Inventor
江偉宏
葉佾叡
Original Assignee
國立臺灣科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣科技大學 filed Critical 國立臺灣科技大學
Priority to TW108131237A priority Critical patent/TWI762811B/zh
Priority to US16/594,531 priority patent/US11624155B2/en
Publication of TW202108265A publication Critical patent/TW202108265A/zh
Application granted granted Critical
Publication of TWI762811B publication Critical patent/TWI762811B/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/02Metal coatings
    • D21H19/06Metal coatings applied as liquid or powder
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/04Physical treatment, e.g. heating, irradiating
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/002Tissue paper; Absorbent paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/08Filter paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本發明提供一種負載有多孔隙奈米顆粒結構之多孔隙基材,其包含:一多孔隙基材以及負載於其上之多孔隙奈米顆粒結構,其中:該多孔隙奈米顆粒結構係由數個奈米顆粒所堆疊而成;本發明運用微電漿可在短時間內提高電子密度並促進反應的特性,且無熱效應產生,使微電漿可以在大氣中正常使用,快速還原反應中離子得到奈米顆粒,再加上電漿所產生之電磁場,可驅使奈米顆粒一步驟即負載在多孔隙基材上,達到一步驟的快速與低成本製程,改善既有技術需要耗費較長時間與較繁瑣製程步驟的問題。

Description

負載有多孔隙奈米顆粒結構之多孔隙基材及其負載製程
一種負載有奈米顆粒之基材,特別是一種負載有多孔隙奈米顆粒結構之多孔隙基材及其負載製程。
奈米顆粒金屬(Metal Nanoparticle)在科學及技術上有重要的影響,應用相當廣泛,其在許多領域裡有很受重視的應用價值。時至今日,由於原子光譜學之研究已然成熟,對金屬原子化之方法尤為多樣化,並能精確控制其金屬蒸氣生成速度及載流氣體流速,是以原子化儀器如:火焰原子化器(flame atomizer)、電熱原子化器(electrothermal atomizer)或輝光放電原子化器(glow discharge atomizer)皆可直接用為此方法之原子化源。除此之外,氬氣濺射(Argon sputtering)、場發射(field emission)、電子束法或雷射消熔(laser ablation)亦可當作原子化金屬固體之媒介。
前述之奈米顆粒金屬的其中一種應用係將其負載於基材上,目前既有技術提出包含物理吸附、浸泡、三維列印(3D Printing)及化學氣相沉積等方式,來將前述之奈米顆粒金屬附著於基材上,但此些技術都是採取先合成奈米顆粒金屬後再將其負載於基材上,總體製成需花費較長時間且較繁瑣之步驟,現階段缺少一種快速且能有效負載奈米顆粒金屬於基材上的一步驟製程存在,來解決前揭技術之問題。
為了解決現有將奈米顆粒金屬附著於基材的技術需要耗費較長時間與較繁瑣製程步驟的問題,本發明提供一種負載有多孔隙奈米顆粒結構之多孔隙基材及其負載製程,不僅可有效且穩固地將奈米顆粒負載於基材上,更是基本上僅需一步驟即可將多孔隙奈米顆粒結構負載於多孔隙基材上。
首先,本發明提供一種負載有多孔隙奈米顆粒結構之多孔隙基材,其包含:一多孔隙基材以及負載於其上之多孔隙奈米顆粒結構,其中:該多孔隙奈米顆粒結構係由數個奈米顆粒所堆疊而成。
其中,該奈米顆粒材質包含銀、鐵或金。
其中,該多孔隙基材為拋棄式之纖維基材,包含濾紙、衛生紙、A4紙或混合纖維素酯多孔隙基材。
其中,該多孔隙奈米顆粒結構負載於該多孔隙基材上之密度為至少1500顆/um2;以及該奈米顆粒尺寸介於5~50nm之間。
接著,本發明對應上述負載有多孔隙奈米顆粒結構之多孔隙基材,提供其負載製程,並包含以下步驟:將一多孔隙基材設置於一微電漿反應槽中所設置的電導通的一金屬電極以及一微電漿裝置間,或設置於該微電漿裝置下方;其中:該多孔隙基材與該金屬電極至少部分沒入於該微電漿反應槽所盛裝的一反應液體中,而該微電漿裝置則設置離該反應液體液面一設定距離;以及自該微電漿裝置通入一電漿氣體並輸出一電漿流至該反應液體,使該反應液體中所含的帶正電一奈米顆粒離子還原為數個奈米顆粒並沈積與負載於該多孔隙基材表面上
其中,當該多孔隙基材設置於該金屬電極以及該微電漿裝置間時,該多孔隙基材與該金屬電極以及該微電漿裝置間距離相等。
其中,該多孔隙基材係垂直或平行於該反應液體液面設置。
其中,該微電漿裝置包含一電漿氣體輸入口以及一電漿輸出管。
其中,該電漿輸出管之管徑介於150-250μm;以及該電漿輸出管與該反應液體液面距離介於0.05-0.75cm公分。
較佳地,電導通之該金屬電極與該微電漿裝置間設有一電阻,且其電力供應源為直流電;該金屬電極材質包含銀、鐵或金;該電漿氣體包含氬氣;以及該反應液體中進一步包含水、一包覆劑以及硝酸,該包覆劑包含聚醣類或高分子。
藉由上述說明可知,本發明具有以下優點:
1.本發明運用微電漿優越性質,其特點為短時間內提高電子密度促進更多反應,且沒有熱效應產生,使微電漿可以在大氣中正常使用,快速還原反應中離子得到奈米顆粒,再加上電漿屬於電化學反應之一,產生電磁場,讓奈米顆粒藉由此驅動力,負載在可拋棄式多孔隙基材,達到一步驟的低成本與快速製程,改善既有技術需要耗費較長時間與較繁瑣製程步驟的問題。
2.在應用方面,本發明所製造負載有多孔隙奈米顆粒結構之多孔隙基材具有增強拉曼光譜的特性,非常適合用於增強材料表面拉曼光譜(Surface Enhanced Raman Spectroscopy,SERS)效應之相關應用,所生成的奈米複合材料相較於單純的奈米粒子,更具明顯而巨幅的提升,產生現有技術所無法預期的功效,具備顯著進步性。
3.經測試本發明應用於增強材料表面拉曼光譜之效能遠優於現有材料,本發明可有效應用於材料特徵檢測、生物醫學、食品安全與環境污染監控及防治等用途,且本發明製程中無需使用強酸或強鹼等成分,屬於環境友善之綠色製程。
10:負載有多孔隙奈米顆粒結構之多孔隙基材
11:多孔隙基材
13:多孔隙奈米顆粒結構
131:奈米顆粒
131’:奈米顆粒離子
20:微電漿反應槽
21:金屬電極
22:微電漿裝置
221:電漿輸出管
222:電漿流
223:電漿輸出管
23:反應液體
R:電阻
G:電漿氣體
圖1為本發明負載有多孔隙奈米顆粒結構之多孔隙基材較佳實施例示意圖。
圖2a~圖2c為本發明多孔隙奈米顆粒結構負載於多孔隙基材數實施例SEM圖。
圖3本發明之該奈米顆粒的尺寸分佈圖
圖4為本發明多孔隙基材之SEM圖。
圖5為本發明負載製程之較佳實施例示意圖。
圖6為本發明製程反應液體中該電漿流產生向外擴散能量示意圖。
圖7a與圖7b為本發明該多孔隙基材設置於該微電漿反應槽中之示意圖。
圖8為本發明與既有技術之拉曼散射增強測試比較圖。
為能詳細瞭解本發明的技術特徵及實用功效,並可依照說明書的內容來實施,進一步以如圖式所示的較佳實施例,詳細說明如下。
請參考圖1,其為本發明負載有多孔隙奈米顆粒結構之多孔隙基材10較佳實施例示意圖,其包含一多孔隙基材11以及負載於其上之多孔隙奈米顆粒結構13,其中,該多孔隙奈米顆粒結構13係由數個奈米顆粒131所堆疊而成,並形成多孔隙三維結構(Porous 3D Structure)。其中,本發明的奈米顆粒131材質包含銀、鐵或金,其尺寸介於5~50nm,較佳介於10~25nm,如圖2a、2b、2c之掃描式電子顯微鏡(Scanning Electron Microscope,SEM)圖所示,其中,圖2a-1為銀奈米顆粒負載於濾紙、圖2a-2為銀奈米顆粒負載於混合纖維素酯多孔隙基材、圖2b-1為鐵奈米粒子負載於濾紙、圖2b-2為鐵奈米粒子負載於混合纖維素酯多孔隙基材、圖2c-1為金奈米粒子負載於濾紙、圖2c-2為金奈米粒子負載於混合纖維素酯多孔隙基材。本發明亦可透過前述之SEM測試數據,藉由換算得本發 明之該奈米顆粒131的尺寸分佈(Size Distribution)與分佈密度(Density),如圖3所示,以銀奈米粒子為較佳實施範例之奈米顆粒尺寸為20.34±2.74nm,密度為至少1500顆/μm2以上,較佳為2000顆/μm2
而該多孔隙基材11較佳為可拋棄式之纖維基材,例如紙基材,包含混合纖維素酯多孔隙基材(Advantec)、濾紙、衛生紙或A4紙,其具有多孔隙之表面型態,如圖4之SEM圖所示。
進一步地,本發明對應上述負載有多孔隙奈米顆粒結構之多孔隙基材提供其負載製程,請參考圖5,其步驟包含:
步驟1):將前述之該多孔隙基材11設置於一微電漿反應槽20中所設置的電導通之一金屬電極21以及一微電漿裝置22間,或設置於該微電漿裝置22下方,該金屬電極21至少部分沒入於該微電漿反應槽20所盛裝的一反應液體23中,並且產生帶正電之奈米顆粒離子131’於該反應液體中,而該微電漿裝置22則設置離該反應液體23液面一設定距離。
進一步地詳細說明,前述電導通之該金屬電極21與該微電漿裝置22間較佳設有一電阻R,該電阻R值可介於50~300k歐姆,或較佳為150k歐姆或160k歐姆,該電導通之電力供應源較佳為直流電(DC),而該金屬電極21主要係作為整體反應之陰極(Cathode),材質包含銀、鐵或金,該微電漿裝置22主要係作為整體反應之陽極(Anode)並包含一電漿氣體輸入口221以及一電漿輸出管223。
該反應液體23的組成較佳包含水(H2O)、包覆劑以及硝酸(HNO3),該包覆劑主要可包覆還原後之該奈米顆粒131,並使其能順利負載於該多孔隙基材11上,該包覆劑可為聚醣類或高分子,該聚醣類包含果糖(Fructose)或葡萄糖(GLoucose),該高分子則包含聚乙烯吡咯烷酮(Polyvinyl Pyrrolidone,PVP)、檸檬酸鈉(Sodium Citrate)或是檸檬酸三鈉(Trisodium citrate,TSC)。
步驟2):自該電漿氣體輸入口221通入一電漿氣體G,例如但不限於氬氣,該電漿氣體G由該電漿輸出管223輸出一電漿流222至該反應液體23,並使該反應液體23中的帶正電奈米顆粒離子131’還原為數個奈米顆粒131並沈積與負載於該多孔隙基材11表面上。
前述該反應液體23的液體表面該電漿氣體G以及該反應液體23中該金屬電極21與該微電漿裝置22所產生之反應方程式如下式(1)、式(2)、式(3),方程式中M代表該金屬電極21之金屬元素符號。該電漿氣體G所輸出的該電漿流222會產生負電離子,負電離子與該反應液體23中的帶正電之奈米顆粒離子131’還原為該奈米顆粒131,該奈米顆粒131則對應該金屬電極21之材質還原為金屬奈米顆粒。
液體表面 Ar+H2O→Ar+H++OH- 式(1)
微電漿裝置 M++e-→M0 式(2)
金屬電極 M0→M++e- 式(3)
請進一步參考圖6,本發明透過前述微電漿製程所得之該奈米顆粒131得以負載於該多孔隙基材11表面之原因,主要可能包含電磁特性(Electromagnetic)、氣體擴散(Gas Diffusion)與吸附作用(Adsorption),其中前述所謂氣體擴散主要是透過該電漿流222會於該反應液體23中向外擴散(Diffusion),並驅使負電離子與該反應液體23中的帶正電之奈米顆粒離子131’朝向該多孔隙基材11方向沉積並負載於其上,並透過該多孔隙基材11的多孔結構,使該奈米顆粒131能固著於其上不掉落。
另外,本發明為了調控該微電漿裝置223的該電漿流222,可透過物理或化學參數來達成,其中物理性參數包含該反應液體23包覆劑以及硝酸(HNO3)的濃度,而該化學性參數包含輸入之電源電流強度、該微電漿裝置22與該反應液體23表面之距離或是調控該電漿輸出管223之管徑。舉例而言,若本發 明欲增強該電漿流222,可實施之方式包含增強電流、縮短該微電漿裝置22與該反應液體23表面之距離,例如可介於0.05-0.75cm,更佳地是0.1~0.3公分,或可透過縮小該電漿輸出管223之管徑達成,本發明製程中所適用之該電漿輸出管223的管徑較佳為150-250μm。
另一方面,本發明該多孔隙基材11設置於該微電漿反應槽20中的位置包含設置於該金屬電極21以及該微電漿裝置22之間,或是該微電漿裝置22之下方即有該奈米顆粒131之負載效果,且該多孔隙基材11可以是垂直於該反應液體23液面或是平行於液面皆可;但更佳地是該多孔隙基材11以垂直於該反應液體23液面並設置介於該金屬電極21以及該微電漿裝置22間的等距位置,具有最多量的與最均勻地該奈米顆粒131負載效果。請進一步參考圖7a、圖7b與下表1,其中,圖7a為該多孔隙基材11平行於該反應液體23液面設置於兩位置,圖7a中標示編號7a-(1)與7a-(2)分別為設置於該金屬電極21以及該微電漿裝置22間的等距位置,以及該微電漿裝置22下方;同樣地,圖7b中為該多孔隙基材11垂直於該反應液體23液面分別為設置於該金屬電極21以及該微電漿裝置22間的等距位置(標示為7b-(1)),以及該微電漿裝置22下方(標示為7b-(2))。表1則表示由此四位置所製得之負載有多孔隙奈米顆粒結構之多孔隙基材10以四點探針測試其表面電阻值,確實可顯示該多孔隙基材11以垂直於該反應液體23液面並設置介於該金屬電極21以及該微電漿裝置22間的等距位置,具有最多量的與最均勻地該奈米顆粒131負載效果。其中,表1之製程參數包含該金屬電極21以及該微電漿裝置22間距離3公分,該多孔隙基材11設置於該金屬電極21以及該微電漿裝置22間各相距1.5公分位置,該微電漿裝置22距離該反應液體23的液面0.3公分,總反應時間為20分鐘,該電漿氣體G為氬氣,該金屬電極21材質為銀。前述之參數僅係本發明實施範例之呈現,並非用以限定本發明僅可使用此製程參數才得據以實施,前述之製程參數範圍皆已被本發明所確效。
Figure 108131237-A0305-02-0010-1
進一步地,本發明所製得之負載有多孔隙奈米顆粒結構之多孔隙基材10可為待測材料於測定拉曼光譜時,增強待測材料表面拉曼光譜之增強因子。一般而言,自發性之拉曼散射非常微弱,因此拉曼光譜量測結果通常難以辨識,導致測定困難。本發明所製得之負載有多孔隙奈米顆粒結構之多孔隙基材10,如配合待測材料之用途時,測試之入射光可藉由該負載有多孔隙奈米顆粒結構之多孔隙基材10使待測物之拉曼光譜訊號增強,可更為清楚辨識測定物質。以下表2係對應表1之四個實施例之拉曼光譜訊號增強測試結果。自表2顯示四個位置所得之該負載有多孔隙奈米顆粒結構之多孔隙基材10皆具有拉曼散射增強之效果,但以該多孔隙基材11以垂直於該反應液體23液面並設置介於該金屬電極21以及該微電漿裝置22間的等距位置的拉曼散射表現尤為突出。
Figure 108131237-A0305-02-0010-2
本發明的另一特色在於利用不導電之多孔隙基材11即可達成微電漿一步驟負載金屬奈米粒子131之效果,且該負載有多孔隙奈米顆粒結構之多孔隙基材10相較於先合成奈米顆粒後再負載於基材之兩階段製程或是他種材質之基材,具有更優異的拉曼散射表現,如圖8與以下表3所示。
表3。
Figure 108131237-A0305-02-0011-3
以上所述僅為本發明的較佳實施例而已,並非用以限定本發明主張的權利範圍,凡其它未脫離本發明所揭示的精神所完成的等效改變或修飾,均應包括在本發明的申請專利範圍內。
10:負載有多孔隙奈米顆粒結構之多孔隙基材
11:多孔隙基材
13:多孔隙奈米顆粒結構
131:奈米顆粒

Claims (8)

  1. 一種負載有多孔隙奈米顆粒結構之多孔隙基材,其包含:一多孔隙基材以及負載於其上之多孔隙奈米顆粒結構,其中:該多孔隙奈米顆粒結構是以微電漿裝置進行沈積與負載於該多孔隙基材,且該多孔隙基材設置於一微電漿反應槽中所設置的電導通的一金屬電極以及該微電漿裝置間等距位置,該多孔隙基材係垂直於該反應液體液面設置;該多孔隙奈米顆粒結構係由數個奈米顆粒所堆疊而成,該負載有多孔隙奈米顆粒結構之多孔隙基材的表面電阻值為4.44E-04k歐姆/sq以及拉曼散射值為至少2191a.u.。
  2. 如申請專利範圍第1之負載有多孔隙奈米顆粒結構之多孔隙基材,該奈米顆粒材質包含銀、鐵或金。
  3. 如申請專利範圍第1或2項之負載有多孔隙奈米顆粒結構之多孔隙基材,該多孔隙基材為拋棄式之纖維基材,包含濾紙、衛生紙、A4紙或混合纖維素酯多孔隙基材。
  4. 如申請專利範圍第1或2項之負載有多孔隙奈米顆粒結構之多孔隙基材,該多孔隙奈米顆粒結構負載於該多孔隙基材上之密度為至少1500顆/μm2;以及該奈米顆粒尺寸介於5~50nm之間。
  5. 一種負載有多孔隙奈米顆粒結構之多孔隙基材的負載製程,其步驟包含:將一多孔隙基材設置於一微電漿反應槽中所設置的電導通的一金屬電極以及一微電漿裝置間等距位置,該多孔隙基材係垂直於該反應液體液面設置;其中:該多孔隙基材與該金屬電極至少部分沒入於該微電漿反應槽所盛裝的一反應液體中,而該微電漿裝置則設置離該反應液體液面一設定距離;以及 自該微電漿裝置通入一電漿氣體並輸出一電漿流至該反應液體,使該反應液體中所含的帶正電一奈米顆粒離子還原為數個奈米顆粒並沈積與負載於該多孔隙基材表面上,其中:該多孔隙奈米顆粒結構係由數個奈米顆粒所堆疊而成,該負載有多孔隙奈米顆粒結構之多孔隙基材的表面電阻值為4.44E-04k歐姆/sq以及拉曼散射值為至少2191a.u.。
  6. 如申請專利範圍第5項之負載有多孔隙奈米顆粒結構之多孔隙基材的負載製程,該微電漿裝置包含一電漿氣體輸入口以及一電漿輸出管。
  7. 如申請專利範圍第6項之負載有多孔隙奈米顆粒結構之多孔隙基材的負載製程,該電漿輸出管之管徑介於150-250μm;以及該電漿輸出管與該反應液體液面距離介於0.05-0.75公分。
  8. 如申請專利範圍第5項之負載有多孔隙奈米顆粒結構之多孔隙基材的負載製程,其中:電導通之該金屬電極與該微電漿裝置間設有一電阻,且其電力供應源為直流電;該金屬電極材質包含銀、鐵或金;該電漿氣體包含氬氣;以及該反應液體中進一步包含水、一包覆劑以及硝酸,該包覆劑包含聚醣類或高分子。
TW108131237A 2019-08-30 2019-08-30 負載有多孔隙奈米顆粒結構之多孔隙基材及其負載製程 TWI762811B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108131237A TWI762811B (zh) 2019-08-30 2019-08-30 負載有多孔隙奈米顆粒結構之多孔隙基材及其負載製程
US16/594,531 US11624155B2 (en) 2019-08-30 2019-10-07 Porous substrate with porous nano-particles structure and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108131237A TWI762811B (zh) 2019-08-30 2019-08-30 負載有多孔隙奈米顆粒結構之多孔隙基材及其負載製程

Publications (2)

Publication Number Publication Date
TW202108265A TW202108265A (zh) 2021-03-01
TWI762811B true TWI762811B (zh) 2022-05-01

Family

ID=74680788

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108131237A TWI762811B (zh) 2019-08-30 2019-08-30 負載有多孔隙奈米顆粒結構之多孔隙基材及其負載製程

Country Status (2)

Country Link
US (1) US11624155B2 (zh)
TW (1) TWI762811B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113245554B (zh) * 2021-04-21 2022-07-12 中山大学 一种银多孔材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI376353B (en) * 2005-07-01 2012-11-11 Hon Hai Prec Ind Co Ltd Method to prepare nanoparticles
CN103008684A (zh) * 2013-01-21 2013-04-03 北京大学 大气压冷等离子体方式制备金属纳米颗粒的方法
TW201608229A (zh) * 2014-08-29 2016-03-01 國立臺灣大學 表面增強拉曼散射試片及其製備方法
TW201643102A (zh) * 2015-06-10 2016-12-16 國立臺灣科技大學 異維度奈米複材的製造方法及異維度奈米複材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010083852A1 (en) * 2009-01-26 2010-07-29 Tethis S.R.L. Functionalized microfluidic device for immunofluorescence
US8669202B2 (en) * 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US20140132376A1 (en) * 2011-05-18 2014-05-15 The Regents Of The University Of California Nanostructured high-strength permanent magnets
KR102131887B1 (ko) * 2019-04-25 2020-07-08 한국기초과학지원연구원 나노입자 합성을 위한 플라즈마 결합형 마이크로리액터 및 이의 용도

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI376353B (en) * 2005-07-01 2012-11-11 Hon Hai Prec Ind Co Ltd Method to prepare nanoparticles
CN103008684A (zh) * 2013-01-21 2013-04-03 北京大学 大气压冷等离子体方式制备金属纳米颗粒的方法
TW201608229A (zh) * 2014-08-29 2016-03-01 國立臺灣大學 表面增強拉曼散射試片及其製備方法
TW201643102A (zh) * 2015-06-10 2016-12-16 國立臺灣科技大學 異維度奈米複材的製造方法及異維度奈米複材

Also Published As

Publication number Publication date
TW202108265A (zh) 2021-03-01
US20210062427A1 (en) 2021-03-04
US11624155B2 (en) 2023-04-11

Similar Documents

Publication Publication Date Title
Ran et al. Electrochemical detection of serotonin based on a poly (bromocresol green) film and Fe 3 O 4 nanoparticles in a chitosan matrix
CN208399384U (zh) 一种sers单元、sers芯片及sers检测系统
US20110048960A1 (en) Electrochemical cell including a plasma source and method of operating the electrochemical cell
CN103862031A (zh) 与有序多孔载体或粗糙表面结合制备的复合纳米金属材料及方法
Shen et al. Synthesis of stabilizer-free gold nanoparticles by pulse sonoelectrochemical method
TWI762811B (zh) 負載有多孔隙奈米顆粒結構之多孔隙基材及其負載製程
CN104692827A (zh) 一种Ag-SiO2-Ag纳米球阵列的制备方法
Ballarin et al. RF-sputtering preparation of gold-nanoparticle-modified ITO electrodes for electrocatalytic applications
Gellini et al. Magneto-plasmonic colloidal nanoparticles obtained by laser ablation of nickel and silver targets in water
Afraz et al. Electrodeposition of Pt nanoparticles on new porous graphitic carbon nanostructures prepared from biomass for fuel cell and methanol sensing applications
Lamsal et al. Single particle inductively coupled plasma mass spectrometry with and without flow injection for the characterization of nickel nanoparticles
McCarthy et al. Silver nanocolloid generation using dynamic Laser Ablation Synthesis in Solution system and drop-casting
CN108254355A (zh) 一种盐桥辅助原电池诱导生长金纳米颗粒表面增强拉曼散射基底的制备方法
Wang et al. Surface functionalization and shape tuning of carbon fiber monofilament via direct microplasma scanning for ultramicroelectrode application
He et al. Electrophoretic fabrication of silver nanostructure/zinc oxide nanorod heterogeneous arrays with excellent SERS performance
Jurov et al. Atmospheric pressure plasma jet–assisted impregnation of gold nanoparticles into PVC polymer for various applications
Choi et al. Electrodeposition of Pt nanostructures with reproducible SERS activity and superhydrophobicity
US11059014B2 (en) Nanocluster liquid dispersion, nanocluster film, nanocluster solid dispersion, method for producing nanocluster liquid dispersion, and device for producing nanocluster liquid dispersion
CN104897643B (zh) 银‑锗‑硅异质分级结构阵列及其制备方法和用途
CN208607150U (zh) Sers单元、sers芯片及sers系统
JP6008272B2 (ja) 金属ナノクスラスター担持カーボン多孔体の製造方法
CN113668029B (zh) 粗糙金纳米颗粒构成的薄膜及其制备方法和用途
Dilonardo et al. Plasma deposited electrocatalytic films with controlled content of Pt nanoclusters
Li et al. Au NPs/ITO prepared by dopamine reduction and its application in glucose sensing
Hun et al. A Novel Electrogenerated Chemiluminescence (ECL) Sensor Based on Ru (bpy) 32+‐Doped Titania Nanoparticles Dispersed in Nafion on Glassy Carbon Electrode