TWI762719B - 用於混和訊號運算的系統及方法 - Google Patents

用於混和訊號運算的系統及方法 Download PDF

Info

Publication number
TWI762719B
TWI762719B TW107132322A TW107132322A TWI762719B TW I762719 B TWI762719 B TW I762719B TW 107132322 A TW107132322 A TW 107132322A TW 107132322 A TW107132322 A TW 107132322A TW I762719 B TWI762719 B TW I762719B
Authority
TW
Taiwan
Prior art keywords
signal
analog
accumulators
reference signals
global
Prior art date
Application number
TW107132322A
Other languages
English (en)
Other versions
TW201933786A (zh
Inventor
羅拉 菲克
錢馬斯 瑪那 埃爾
史蓋拉 思可茲尼亞茲
大衛 菲克
Original Assignee
美商神話股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商神話股份有限公司 filed Critical 美商神話股份有限公司
Publication of TW201933786A publication Critical patent/TW201933786A/zh
Application granted granted Critical
Publication of TWI762719B publication Critical patent/TWI762719B/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/10Program control for peripheral devices
    • G06F13/102Program control for peripheral devices where the programme performs an interfacing function, e.g. device driver
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/065Analogue means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • G06F1/14Time supervision arrangements, e.g. real time clock
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • G06F9/3001Arithmetic instructions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/48Servo-type converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/662Multiplexed conversion systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/68Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurology (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Analogue/Digital Conversion (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

一種用於實現混合訊號積體電路的系統和方法,其包括藉由參考訊號 源將多個類比參考訊號沿共享訊號通訊路徑提供給多個區域累加器;基於多個類比參考訊號中的每一個,在多個區域累加器中的每一個產生一電荷;在一預定週期內,藉由多個區域累加器中的每一個,增加或減去該電荷至多個區域累加器中的每一個的一能量儲存裝置;在該預定週期結束時,沿著共享通訊路徑對多個區域累加器中的每一個的能量儲存裝置的電荷求和;以及基於來自多個區域累加器中的每一個的電荷之總和產生輸出。

Description

用於混和訊號運算的系統及方法
本發明總體上有關於積體電路結構的領域,尤指一種新穎且有用的混和訊號積體電路及其方法,且其適於運算積體電路結構領域的混和訊號。
在今日,人工智慧的各種應用正驅使不同科技領域的創新。各種人工智慧(AI)系統以及人工智慧模型(包括演算法)由多種系統架構以及模型來定義,其中這些系統架構以及模型支持機器學習(深度學習)、推論、推理能力以及機器的大數據處理能力(例如:電腦及/或電腦伺服器)。這些AI系統和模型通常會集中地訓練以執行一個或多個特定任務,例如自然語言處理、圖像識別、計劃、決策等任務。例如,這些AI系統和模型的子集合包括人工神經網路模型。在許多情況下,訓練人工神經網路模型可能需要數千小時的訓練週期和數兆位元組的訓練資料,以在使用前微調與模型相關的神經網路演算法。
然而,一旦訓練完成,神經網路模型或演算法可以快速地被部署,且基於相對較小的資料集合進行推導以完成特定任務(例如,從語音輸入資料識別語音等),其中所述相對較小的資料集合小於用於訓練週期的較大的資料集合。神經網路模型或演算法基於較小資料集合做出的推斷可以是神經網路預測關於正確答案的預測或者關於情況的指示。
雖然神經網路模型或演算法可能不需要如訓練階段般的運算資源,但部屬神經網路模型或演算法仍需耗費大量電路面積、能量以及運算能力,以對資料進行分類並推論或預測結果。這是因為許多實現神經網路模型或演算法的傳統計算機和系統往往具有較大的尺寸,以適應運算能力所需的大量電路和實現神經網路模型時增加的資料處理速度,且由於電路尺寸較大,因此需要更多的能量來致能多個電路的運算能力。
這些用於實現人工智慧模型的傳統計算機和系統(即神經網路模型)可以適用於遠端運算,例如分散式運算系統(例如,雲端)或者使用許多站台伺服器。然而,當這些遠端人工智慧處理系統用於遠端,即邊緣運算設備或現場設備的運算推論等運算中時,延遲問題是顯而易見的。也就是說,當這些傳統的遠端系統試圖實現用於產生推論結果(遠程現場設備使用)的神經網路模型時,從遠端現場設備接收輸入資料存在不可避免的延遲,因為輸入資料必須經常藉由網路且隨著頻寬變化而傳輸,由遠端運算系統產生的推論結果亦必須經由相同或類似的網路傳輸回遠端現場設備。
在現場層級實現AI處理系統(例如,區域性地位於遠端現場設備)可以是解決一些延遲問題的建議解決方案。然而,試圖在邊緣設備(例如遠端現場設備)上實現這些傳統AI電腦和系統可能導致產生具有許多電路的笨重系統,如上所述,為了處理資料和產生推論結果,運算系統需具備複雜架構,而此舉導致消耗大量能量。因此,沒有對現行技術進一步改良的提議是不可行的及/或無法持續發展的。
因此,需要一種可部署的系統,用於在區域性的現場實現人工智慧模型(例如,區域AI),並且較佳地用於邊緣設備,且不會導致大型、笨重(邊緣)設備,從而減少延遲,並具有必要的運算能力,可以即時或基本即時地進行預測或推論,同時還具有節能效果。
【0001】本申請的下述實施例提供了所述進步的和改良的積體電路和實現技術,其能夠解決傳統系統和積體電路架構的缺陷,以實現AI和機器學習。
本申請要求2017年09月15日向美國專利商標局提交的第62/559,354號美國臨時申請案的優先權,其藉由引用整體合併於文中。
在一個實施例中,混合訊號積體電路包括參考訊號源以及多個區域訊號累加器。參考訊號源基於數位輸入產生多個類比參考訊號,其中參考訊號源的輸出端電連接到共享訊號路徑,且參考訊號源將多個類比參考訊號提供給共享訊號路徑。多個區域訊號累加器沿共享訊號路徑排列,多個區域訊號累加器中的每一個具有電連接到共享訊號路徑的輸入端,其中多個區域訊號累加器中的每一個用於:藉由共享訊號路徑收集來自參考訊號源的多個類比參考訊號,並且在預定數量的時脈週期內儲存電荷總和,所述電荷總和為多個電荷的總和。
在一個實施例中,多個區域訊號累加器中的每一個還:接收一個或多個偏壓訊號輸入或控制訊號輸入,用於遞增或遞減多個電荷中的每一個至能量儲存裝置。
在一個實施例中,多個區域訊號累加器中的每一個的輸出端子電連接到神經網路裝置的多個輸入端子的其中之一,且多個區域訊號累加器中的每一個輸出多個電荷的總和到神經網路裝置的多個輸入端子的其中之一。
在一個實施例中,神經網路裝置的多個輸出端子中的每一個電連接到多個區域類比數位轉換器中的每一個的輸入端子,神經網路裝置的多個輸出端子中的每一個將類比輸出訊號提供給多個區域類比數位轉換器中的每一個的內部節點。
在一個實施例中,多個區域訊號累加器中的每一個的輸出端子電連接到多個區域類比數位轉換器中的每一個的內部節點,且多個區域類比數位轉換器中的每一個將二進制偏壓訊號輸出到相應的區域訊號累加器,用於遞增或遞減多個電荷中的每一個至能量儲存裝置。
在一個實施例中,多個區域訊號累加器中的每一個包括數位類比轉換器,其包括:一對電流鏡以及能量儲存裝置。所述電流鏡複製多個電流,所述電流基於共享訊號路徑提供的多個類比參考訊號而產生。能量儲存裝置用於儲存電荷總和。
在一個實施例中,多個區域訊號累加器中的每一個包括數位類比轉換器,所述數位類比轉換器包括:能量儲存裝置和放大器,所述放大器在連續時脈週期中對能量儲存裝置上的多個電荷進行積分。
在一個實施例中,參考訊號源包括二進制加權數位類比轉換器,其產生二進制加權類比參考訊號,多個類比參考訊號包括多個二進制加權類比參考訊號,其值在預定數量的時脈週期內變動,多個區域訊號累加器中的每一個在預定數量的時脈週期中的每一個時脈週期,基於多個二進制加權類比參考訊號對能量儲存設備上的多個電荷求和。
在一個實施例中,參考訊號源包括N位元二進制加權數位類比轉換器,其中N表示多個位元,預定數量的時脈週期等於N個時脈週期,且多個區域訊號累加器中的每一個在N個時脈週期內對多個電荷求和。
在一個實施例中,多個區域訊號累加器中的每一個包括可程式化電流源,其基於多個類比參考訊號中的每一個產生電流。
在一個實施例中,參考訊號源包括單個全域數位類比轉換器,其包括產生多個類比參考訊號的電路;且多個區域訊號累加器包括多個區域數位類比轉換器,其具有不同於單個全域數位類比轉換器的電路。
在一個實施例中,參考訊號源包括溫度計編碼全域數位類比轉換器,其產生溫度計編碼類比參考訊號,其中多個類比參考訊號包括具有恆定值的多個溫度計編碼類比參考訊號;且對於預定數量的時脈週期中的每一時脈週期,多個區域訊號累加器中的每一個根據多個溫度計編碼類比參考訊號將電荷總和儲存至能量儲存裝置。
在一個實施例中,參考訊號源包括分段全域訊號參考源,其包括兩個或更多個訊號參考源,這些訊號參考源用於被組合並產生高分辨率類比參考訊號,其中多個類比參考訊號包括多個高分辨率類比參考訊號,且對於預定數量的時脈週期中的每個時脈週期,多個區域訊號累加器中的每一個基於多個高分辨率類比參考訊號將電荷總和儲存在能量儲存設備上。
在一個實施例中,共享訊號路徑包括具有多個連接器的單個導電訊號線,所述多個連接器沿著共享訊號路徑在不同位置處連接多個區域訊號累加器中的每一個。
在一個實施例中,由參考訊號源產生的多個類比參考訊號包括多個電壓參考訊號,並且多個區域訊號累加器中的每一個將多個電壓參考訊號轉換為多個電流。
在一個實施例中,參考訊號源包括電流源全域數位類比轉換器,其基於多個電流源中的一個電流源的選擇產生電流參考訊號,其中多個類比參考訊號包括多個電流參考訊號;且對於預定數量的時脈週期的每個時脈週期,多個區域訊號累加器中的每一個基於多個電流參考訊號將多個電荷的總和儲存在能量儲存裝置上。
在一個實施例中,一種實現混合訊號運算電路的方法包括:通過全域參考訊號源將多個類比參考訊號沿共享訊號通訊路徑提供給多個區域累加器;基於多個類比參考訊號,在多個區域累加器中的每一個產生多個電荷;在一 預定週期內,藉由多個區域累加器中的每一個,增加或減去多個電荷中的每一個至與多個區域累加器中的每一個相關的一能量儲存裝置;以及藉由多個區域累加器中的每一個產生基於電荷總和的輸出。
在一個實施例中,共享訊號路徑包括具有多個連接器的單個導電訊號線,多個連接器沿著共享訊號路徑在不同位置處連接多個區域累加器中的每一個的輸入端子,且多個區域累加器中的每一個串聯連接並沿著全域參考訊號源下游的共享訊號路徑排列。
在一個實施例中,多個區域累加器中的每一個的輸出端子電連接到神經網路裝置的多個輸入端子中的一個輸入端子,並且多個區域累加器中的每一個輸出電荷總和到神經網路裝置的多個輸入端子的一個輸入端子。
在一個實施例中,神經網路裝置的多個輸出端子中的每一個電連接到多個區域類比數位轉換器中的每一個的輸入端子,神經網路裝置的多個輸出端子中的每一個將類比輸出訊號提供給每一個區域類比數位轉換器的子電路,且每個區域累加器的輸出端子與每個區域類比數位轉換器中的子電路的輸入端子電連通。
110:全域參考產生器
120:區域累加器
124:電流鏡
125:共享訊號路徑
126:放大器
S210、S215、S220、S230:步驟
GDAC:全域DAC
LDAC:區域累加器
ADC:類比數位轉換器
A_input、B_input、C_input:偏壓輸入
410:區域ADC
415:全域DAC
420:區域DAC
430:內部節點
〔圖1〕示出了根據本發明的一個或多個實施例的積體電路100示意圖;〔圖1A-1B〕示出了根據本發明的一個或多個實施方式的系統100的一個或多個部分的示意圖;〔圖2〕示出了根據本發明的一個或多個實施例的方法200示意圖;〔圖3〕示出了根據本發明的一個或多個實施方式的用於混合訊號運算的系統的示意圖; 〔圖3A〕示出了根據本發明的一個或多個實施例的用於圖3的混合訊號運算的系統的具體實施方式;以及〔圖4〕示出了根據本發明的一個或多個實施例的積體電路的子系統的示意圖。
以下根據本發明較佳實施例之詳細描述並非用於限定本發明,而是用於使本領域之通常知識者能夠據以實施。
概述
在用於實現運算密集型(computationally-intensive)程式或應用(例如,深度神經網路演算法)等的傳統積體電路中,典型的積體電路(IC)架構包括相對較大的電路(較大的消耗面積和功率)來運作和執行運算。這是因為處理數位訊號(例如,二進制訊號)通常需要以較大且耗電的電路來實現。因此,對於運算密集型程序(例如人工智慧模型)的不同技術實現方式來說,運算積體電路(IC)因具有用於處理數位訊號的大型電路而占用較大的空間,因此不太可能實現在空間有限的邊緣設備或類似的設備中。
此外,積體電路在實現運算密集型應用(例如神經網路模型)時,其絕大部分的運算工作是關於執行數千到數百萬的矩陣乘法。此外,在用於神經網路模型的數位訊號處理中,還可以執行乘法累加運算,即運算兩個數的乘積,然後將乘積加到累加器中。因此,當僅使用或主要使用數位電路實現神經網路模型時,數位電路需要消耗大量能量來執行運算並儲存神經元和許多乘法累加運算的結果的權重係數。
因此一種技術解決方案被提出,其包括提供可以利用極其有效的數位類比轉換器(DAC)實現的混合訊號運算架構(而不是基本上體積較大或面積 密集(area-intensive)的標準DAC)來配合積體電路的其他電路,以實現面積上和能量上效益,因此能降低運算時所需的功率和減少進行運算密集型處理的積體電路的整體尺寸。然而,可以使用傳統DAC實現用於運算密集型實現的積體電路極有可能需要非常大量的DAC(例如,數千個DAC)來實現匹配並實現所需的速度和雜訊表現。因此,儘管DAC架構的傳統實施方式可能有用於減少積體電路所需的能量和整體尺寸,但是由於運算處理運算密集型的AI程式和應用程序可能需要大量的DAC,因此這些DAC架構的傳統實施例是不可行的。
然而,本發明的實施例以實現各種形式的全域(參考訊號源)DAC來解決至少上述技術問題,其中全域(global)(參考訊號源)DAC可操作性地通訊和控制多個區域(local)(輸出)DAC。所述實施例用於藉由在不消耗晶片過大區域的情況下產製多個精確的DAC來解決混合訊號運算架構的基本技術問題。相比之下,實現運算密集型程式等的現行DAC通常可能由於其各種組件的匹配限制而變大,因此限定了裝置大小的下限。一旦DAC解析度超過6-8位元,技術問題就變得更加明顯跟嚴重。因此,一旦在DAC的架構中考慮雜訊和速率,這些傳統的DAC可能不具備有能量或尺寸的效益。
在本發明的實施例中,全域(參考)DAC用作每個區域(鏡像)DAC的訊號源(在一些實施例中的唯一參考訊號源)。在較佳實施例中,區域DAC用作於串聯累加全域DAC在多個時脈週期內所產生的類比參考訊號。在實施例中,藉由每一個區域DAC所得的累加結果用於在電容器或其他能量裝置上用於提供新輸出或總輸出(例如表示參考訊號的累加結果的電荷)。
因此,以上述方式實現全域DAC和多個區域DAC能夠減少驅動區域DAC所需的高精度參考裝置的數量,其中每個區域DAC數位類比轉換器通常需要相應的專用參考裝置來提供參考訊號。在傳統的DAC中,參考訊號的產生以及輸出電路通常可以整合到單個大型DAC中。因此,在本發明的幾個實施 例中,全域DAC用於向多個區域DAC中的每一個提供精確的源訊號,因此改善了實現準確的DAC的匹配要求,更具體地說,需要多個參考訊號源DAC來驅動多個區域輸出DAC(即淘汰一對一匹配)。因此,可以實現DAC架構區域的減少,並且具有允許邊緣運算設備等執行複雜且運算密集型的操作(例如包括區域性的位於輸入訊號的來源的AI運算)的運算和功率效率。
1.用於混和訊號運算的系統
如圖1所示,系統100包括全域參考產生器(global reference generator)110、多個區域累加器(local accumulator)20(例如:區域訊號累加器)和共享訊號路徑125,其中系統100用於混合訊號運算,且混合訊號運算用於運算密集型程式和/或應用程式。如圖1A所示,在一些實施例中,區域累加器120可各自包括能量儲存裝置122和電流鏡124。附加或替代地,如圖1B所示,在一些實施例中,每個區域累加器120可以包括能量儲存裝置和放大器126。系統100可以較佳地在更全面的系統中實現,如美國臨時申請No.62/694,355中所述,該申請並通過引用整體併入本文中。
系統100較佳地用於將數位類比轉換器的典型功能分成至少兩個組件設備。在一些實施例中,第一組件包括全域參考產生器110,其用於基於輸入至全域參考產生器110的數位輸入定義或產生一個或多個(類比)參考訊號,例如電流。在一些實施例中,全域參考產生器110可以包括二進制加權全域參考產生器,其可以如美國臨時申請No.62/644,908中所描述的那樣實現,該申請通過引用整體併入本文中。在一些實施例中,第二組件包括一組區域累加裝置,其用於經由共享訊號路徑125從全域參考產生器110接收參考訊號。在一些實施例中,第二組件用於執行一些參考訊號的積分,例如參考訊號在一段時間內(超過預定數量的時脈週期)的值的算術函數(例如,加法,減法等)。與本發明的幾個實施例一樣,算術函數(例如,求和)和/或遞增和遞減函數可以由偏壓訊號(biasing signal) 或在區域累加器120接收的控制輸入訊號驅動。偏壓訊號或控制訊號輸入可以通過任何合適的偏壓輸入源或控制訊號輸入源產生,包括專用偏壓產生器或偏壓輸入源、控制處理器、比較器和/或全域參考產生器110。
附加或替代地,在一些實施例中,系統100可以用於產生並提供輸入到多個區域累加器120中的每一個的差分訊號輸入,以驅動其中的輸出值。在實施例中,系統100可以用於藉由兩個互補訊號(如一對差分訊號)將類比參考訊號和/或控制輸入訊號傳輸到多個區域累加器中的每一個。
系統100用於藉由允許第一組件可具有較大體積並且能夠為第二組件產生準確的參考訊號的方式來實現至少上述配置並具有比例和面積上的效益(例如,製造較小的積體電路),其中第二組件包括一組小的區域累加裝置。也就是說,第一組件(將可以匹配並具有有限雜訊)的面積和功率將被分攤。因此,系統100實現了積體電路架構,其能夠執行運算密集型操作,同時具有極高的面積和功率效益。
全域參考產生器110用於為多個區域累加器120中的每一個產生參考訊號。全域參考產生器110在本文中有時可稱為全域訊號源。較佳地,全域參考產生器110包括全域數位類比轉換器(DAC),如圖3所示。在這種情況下,全域DAC可用於從外部源、上游層、上游設備等接收做為輸入數位訊號的訊號(例如,二進制數字或輸入),並輸出類比參考訊號(例如,電壓或電流訊號)到多個區域DAC。在一個或多個實施例中,全域參考產生器110包括數位類比轉換器,系統100可以用於實現任何合適類型的數位類比轉換器,包括但不限於電阻式(resistor ladder)DAC、R-2R梯形(R-2R ladder)DAC、電流源(Current source)DAC、二進制加權(binary-weighted)DAC、溫度計編碼(thermometer-encoded)DAC、分段(segmented)DAC、乘法(multiplying)DAC、混合(hybrid)DAC等。
在一個或多個實施例中,全域源產生器110包括簡化的數位類比轉換器,因此可能不是可輸出256位元或不同等級的類比輸出的完整數位類比轉換器。在一個或多個較佳實施例中,當實現為DAC數位類比轉換器時,全域源產生器110的配置可能被限制,使得DAC數位類比轉換器可以僅輸出八個等級(即,具有較小電流和/或電阻源的8位元DAC)。當實現為具有有限輸出等級的DAC時,這種全域參考產生器110的簡化結構和/或配置具有較小的電路尺寸,使得能夠實現具有更小布線面積且相應地具有更低的功率消耗的積體電路。然而,應當注意的是,雖然在一個或多個實施例中,較佳地為使用限制的(電路)DAC作為全域參考產生器,但是亦可以使用任何合適的和/或任何大小且具有任何數量的輸出等級的DAC數位類比轉換器。
因此,全域DAC可以用於基於在全域DAC接收的數位輸入提供類比參考訊號到區域累加器(例如,區域DAC)。附加或替代地,由全域參考產生器110產生並發送到每個區域累加器的參考訊號可以是類比參考訊號,例如電流或電壓,其可以用於控制或驅動區域累加器120的功能。因此,由全域參考產生器110提供的全域參考訊號較佳地經由共享訊號路徑125(例如,共享或共同路徑)發送到區域累加器120,使得區域累加器120可操作性地連接到彼此以及同一個全域參考產生器110。
共享訊號路徑125較佳地從全域參考產生器110的輸出端子下游延伸到與其個別的輸入端子連接的多個區域累加器中的每一個。最終輸出電路(例如,類比數位轉換器等)。附加或替代地,多個區域累加器120中的每一個可以沿著共享訊號路徑125串列地佈置或定位。共享訊號路徑125較佳地連接到全域參考產生器110的輸出端子和多個區域累加器120中的每一個的輸入端子。
請參考圖3,其示出了於神經網路裝置中全域DAC至區域DAC架構的一種實施方式,其中多個區域DAC(LDAC)用於從單個全域DAC(GDAC)(例 如,全域參考產生器110)接收一個或多個類比參考訊號,並使得每個LDAC對應產生一個輸出訊號到神經網路裝置中。在此實施方式中,每個LDAC產生的輸出訊號可以作為輸入訊號由神經網路裝置的相應輸入終端所接收。在這種實施方式中,每個相應的LDAC數位類比轉換器的輸出端子可以(直接地(例如,沒有任何中間節點)或間接地)電連接到神經網路裝置的相應輸入端子。附加或替代地,可以向多個LDAC中的每一個提供多個偏壓輸入(例如,A_input,B_input,C_input等),用於操縱或指示每個LDAC的遞增或遞減功能。例如,在一個實施例中,相應地,偏壓輸入源(biasing input source)(例如,專用偏壓輸入源或全域參考源)區域輸入(例如,A_input,B_input等)到神經網路裝置的輸入端子,所述輸入個別地被每個區域DAC接收,區域DAC可以對應於產生一定量的電流(current charge)的可調電阻器(可程式電流源)。每列可調電阻器作為(神經網路的)神經元列組合中的每一列,在神經元列中每個可調電阻器產生的電流輸出可以匯總(或總和在一起),如圖3A所示,以形成單個總和電流輸出(例如,神經元輸出)。附加或替代地,可以使用類比數位轉換器(analog-to-digital converter)或任何其他合適的輸出電路將總和電流輸出轉換為數位輸出。
請參考圖4,圖4示出了另一種實施方式(圖3-3A的實施方式),其中來自神經網路裝置(或任何運算密集型實施例,任何並列資料處理網路和/或任何合適的輸出源)的輸出作為輸入並輸入到類比數位轉換器。在此實施方式的一實施例中,神經網路裝置可以包括多個神經網路列,每個神經網路列產生相應的神經元輸出(即神經元列輸出)。在此實施例中,多個區域類比數位轉換器(ADC)可以被配置成從神經網路裝置的每個相應神經元列接收相應的神經元輸出。
附加或替代地,多個區域ADC 410中的每一個可以配置或設計有區域DAC420和內部節點430。因此,在這樣的實施方式中,可以利用多個區域ADC 410實現全域DAC至區域DAC的結構,多個區域ADC 410中的每一個包括 區域DAC,且每一個區域DAC輸入端子可以沿共享訊號路徑佈置,以用於接收來自全域DAC 415的一個或多個參考訊號。在一些實施例中,全域DAC 415可以與全域參考產生器110相同,使得多個區域累加器120和多個區域DAC 420的參考訊號源自同一訊號源。應注意的是,每個區域ADC的內部節點430可以包括但不限於比較器電路(comparator circuit)、放大器(amplifier)和/或任何合適的子電路。在一個或多個較佳實施例中,內部節點430包括比較器電路等電路。
在操作中,多個區域ADC中的每一個可以用於從神經網路裝置的相應神經元列接收類比神經元輸出,並將類比神經元輸出轉換為數位訊號(即二進制值)。相應地,每個區域DAC 420可用於從全域DAC 415接收參考訊號,其中每個區域DAC 420可以用於作為區域ADC 410的內部節點430的來源。因此,基於來自區域DAC 420的神經元輸出和參考訊號,每個相應的區域ADC 410可用於產生二進制輸出。在一些實施例中,由每個相應的區域ADC 410產生的二進制輸出可以是相應的區域DAC 420的偏壓輸入訊號,並用於遞增或遞減與區域DAC 420相關聯的區域電容器或儲存設備的充電。
因此,在用於實現神經網路模型的典型數位電路中,使用數位數值(二進制值)執行矩陣乘法運算。相比之下,在實現混合訊號運算架構的系統100的實施例中,矩陣乘法運算在電流(類比)域(domain)中執行,從而允許高達五十倍(50x)或更高的系統消耗功率的改善。也就是說,系統100可降低功耗多達50倍或更多。
通常地,全域參考產生器110可以配置為具有更佳的匹配和雜訊表現的高速類比設計。附加或替代地,全域參考產生器110的配置可以包括參考訊號產生裝置和/或允許全域參考產生器110產生類比參考訊號的電路,因此使得全域參考產生器110相對大於多個區域累加器120中的每一個。附加或替代地,全域參考產生器110可以被配置為順序地(例如,一次一個)或同時(例如,每個時脈 週期發送多個訊號)發送參考訊號。應當注意的是,全域參考產生器110可以被配置為以本文考慮的或本領域已知的任何合適的方式產生和/或發送參考訊號。
共享訊號路徑125可以是單個(導電)訊號線、訊號軌跡或與多個區域累加器120連接的訊號路徑。共享訊號路徑較佳地用於允許將參考訊號從全域參考產生器110傳輸到與其連接或沿共享訊號路徑125定位(或佈置)的多個區域累加器120中的每一個。共享訊號路徑125可以被配置為使得源自全域參考產生器110的任何參考訊號沿著共享訊號路徑125傳輸,且參考訊號可以被連接到共享訊號路徑125的每個區域累加器120複製或以其他方式映射(mirrored)。
在一個實施方式中,全域參考產生器110可以使用共享訊號路徑125來提供序列化(serialized)(類比)參考訊號。因此,在這樣的實施方式中,共享訊號路徑125可以用於在每個時脈週期向區域累加器120提供單一位元參考訊號。例如,如果全域參考產生器110包括三位元DAC等,共享訊號路徑125可以向多個區域累加器120中的每一個單獨地且順序地提供三位元中的每一個,且較佳地,係在三個時脈週期中提供。以這種方式,共享訊號路徑125使單個訊號源(例如,全域參考產生器)能夠向多個區域累加器提供準確的參考訊號來代替每個區域累加器120的專用訊號源。所述配置的技術優勢在於其為相當小的電路,尤其在用於實現運算密集型應用程序和/或程序(例如,神經網路模型等)中。
區域累加器120可用於產生輸出到區域輸出接收器(例如,區域類比數位轉換器)等的類比輸出,如圖3A所示。在一個較佳實施例中,多個區域累加器120包括多個區域數位類比轉換器(LDAC),其可用於在若干時脈週期內使用來自全域參考產生器110的全域參考訊號產生類比輸出。應當注意的是,根據全域參考產生器110的參考訊號產生模式,多個區域累加器120可以在單個時脈週期內產生類比輸出。LDAC的配置通常可以排除參考訊號產生裝置,因為每個LDAC的參考訊號可以由全域參考產生器110提供,且通常參考訊號產生裝置和/ 或電路很大。因此,所述配置使得LDAC在印刷電路板或積體電路的面板上消耗的尺寸和面積相當小。例如,與全域DAC相比,LDAC的尺寸和面積可小至十(10)至二十(20),或更多倍。這允許積體電路或計算機晶片具有更佳的面積和功率效益。然而,應當注意的是,在一些實施例中,多個LDAC中的每一個可以包括一種或多種類型的參考訊號累積/聚合/總和/重構電路,其用於輸出結果參考訊號,後文將更詳細說明。也就是說,雖然在一些實施例中,區域累加器120(或LDAC)可以用於累積參考訊號,但是在區域累加器的一些變化中,亦可以基於全域參考產生器110的編碼方案和每個相應的區域累加器120的配置來遞增/遞減能量儲存設備或執行總和功能。
如上所述,多個區域累加器120中的每一個包括能量儲存裝置122、電流鏡124,並且在一些實施例中,更包括比較器電路。能量儲存裝置122較佳地用於將在區域累加器120區域地儲存能量值,例如包括電流或電壓值的類比能量值。較佳地,能量儲存裝置122包括電容器,然而,能量儲存裝置122可以是任何合適的電能儲存元件,例如串聯操作的快閃電晶體(flash transistor)等。在一些實施例中,多個區域累加器120中的每一個可以用於基於一個或多個訊號輸入(例如,順序輸入)來執行針對能量儲存設備122的算術函數。因此,區域累加器120可以用於根據接收的參考訊號的值在能量儲存設備122上增加和/或減少電荷。附加或替代地,每個區域累加器120可以用於基於一個或多個訊號輸入在電容器上整合(電壓)電荷值。
多個區域累加器120中的每一個的電流鏡124用於重複或複製通過共享訊號路徑125提供的參考電流訊號。具體地,在一些實施例中,全域參考產生器110用於藉由共享訊號路徑125來提供參考電流訊號。參考電流訊號可以由連接到共享訊號路徑125或沿共享訊號路徑125定位的每個區域累加器120接 收。因此,藉由在每個相應的區域累加器120使用電流鏡124,區域累加器120用於複製參考電流訊號(例如,全域參考訊號)以用於產生或累積輸出訊號。
在一個較佳實施例中,電流鏡124包括用於藉由控制一電路的另一個主動元件中的電流來複製通過一個主動元件的電流,同時保持輸出電流恆定而與負載無關的電路。電流鏡124可用於複製變動訊號電流或恆定訊號電流(取決於全域參考產生器110是否提供恆定或變動的全域參考訊號)並向電路提供偏壓電流和/或有源負載。較佳地,限定電流鏡124的電路包括反相電流放大器(理想地),在大多數實施例中,該反相電流放大器也用於反轉電流方向,或者可以是電流控制的電流源。然而,應注意的是,電流鏡可包括任何合適於複製參考電流訊號的電路。
請參考圖1A,其示出了區域累加器120的一種實施方式,其中全域參考產生器110用於為區域累加器120中的兩個電流鏡124產生偏壓電壓(例如,全域參考訊號)。由全域參考產生器110提供的偏壓電壓用於使得在電流鏡124中複製的電流被加權。例如,在系統100的全域參考產生器110的二進制加權實施方式中,可以在每個時脈週期更新由全域參考產生器110產生的偏壓電壓。以這種方式,電流鏡124中複製的電流以二進制方式改變。在該實施方式中,可以依序添加一些電荷至區域累加器120的能量儲存裝置122(電容器),或者從能量儲存裝置122中減去一些電荷。添加到能量儲存裝置122或從能量儲存裝置122減去的電荷量較佳地是區域累加器120中複製的電流的函數值-因為複製的電流以二進制方式改變,因此電荷以類似或相同的方式來增加或減少。因此,對於N位元(例如,8位元)全域DAC等,將需要N(例如,N=8)個時脈週期來在區域DAC處產生所需輸出。
在系統100的一個變化的實施方式中,當被實現為LDAC時,區域累加器120基於由全域參考產生器110(溫度計編碼全域參考產生器)提供的溫度 計編碼的參考訊號來增加/減少能量儲存設備122上的電荷。在這種變化的實施方式中,從能量儲存裝置122遞增或遞減的電荷量在每個時脈週期中可以是恆定的。在這樣的實施方式中,對於N位元全域參考產成器110來說,將需要2 ^ N個週期來在區域累加器120(LDAC)處產生所需輸出。
另外,在又一實施方式中,可實施分段全域參考產生器110,其中組合兩個或兩個以上全域參考產生器(兩個或兩個以上DAC)以實現單一的較高分辨率全域參考產生器110以提供所需性能,(例如,更準確的參考訊號產生,更好的匹配性,更高的雜訊效能等)並產生高分辨率類比參考訊號(例如,具有滿足或超過分辨率閾值的分辨率和/或精度的類比訊號)。在使用中,不同段的較高分辨率全域參考產生器可用於處理各種訊號產生任務,其中可組合這些不同段的輸出以實現單一輸出。在一個或多個實施例中,可以使用包括八(8)個電流源的兩個二進制加權DAC的組合來實現分段全域參考產生器。在這樣的實施例中,每一二進制加權DAC可以將所需電流值的一半輸出到每個積分器或區域累加器120,因此,使每個區域累加器集成兩次。這種配置的最終技術優勢為減少整體的不匹配,原因在於分段全域參考產生器的每個二進制加權DAC產生的更高精度電流值。
附加或替代地,在一些實施例中,系統100可以包括多個區域類比數位轉換器(ADC)(未示出),其用於接收來自多個區域累加器120的輸出電路的輸出。具體地,在一些實施例中,一旦區域累加器120已經在電容器等上獲得了足夠的(儲存的)電荷值,則可以將該電荷值輸出或者定義為類比參考訊號到相應的區域ADC,相應的區域ADC通過將類比輸入訊號與類比參考訊號進行比較而將類比輸入訊號轉換為二進制輸出。在這樣的實施例中,每個區域ADC可以包括比較器電路,該比較器電路可以用於將類比輸入訊號與參考訊號進行比較, 以便確定或產生二進制輸出,如美國專利申請No.15,890,402所述,該專利申請通過引用將全部內容包括於本文中。
類似於本文描述的全域DAC到區域DAC架構,全域參考訊號產生器(例如,全域ADC)到區域ADC架構可以被實現。在此實施方式中,可經由共享訊號路徑從全域ADC提供一個或一個以上參考訊號至多個區域ADC。這樣的配置可以實現多種技術優勢,包括更小的電路架構面積、能量效率(例如,更低的功耗)等。
請參考圖1B,示出了區域累加器120的另一實施方式,其中全域參考產生器110用於產生偏壓電壓(例如,全域參考訊號),所述偏壓電壓為區域累加器120的積分器所用,所述積分器基於放大器來實現。這種實施方式的技術優點包括使區域累加器120具有單個電流源(而不是兩個電流源)。在具有基於放大器的積分器的區域累加器120的較佳配置中,可以實現虛路徑(dummy path),其減小電荷注入的影響,這在(電晶體)開關致動到ON或OFF狀態時發生。所述配置可以使用額外的電晶體來實現。
附加或替代地,偏壓n通道MOSFET(nmos)等的閘極可以接地(而不是連接到來自全域參考產生器110的偏壓)。區域累加器120中的開關的一個或多個汲極可以下面的方式連接:左(複製)開關的汲極可以連接到右開關的汲極,和右邊的汲極(複製)開關可以連接到左開關的汲極。
2.混和訊號的運算方法
如圖2所示,方法200包括提供要沿共享訊號通訊路徑發送的全域類比參考訊號S210,通過共享訊號通訊路徑發送全域類比參考訊號S215,在多個區域累加器中的每一個複製全域類比參考訊號S220,以及在多個區域累加器中的每一個產生輸出訊號S230。
方法200用於使全域參考產生器(例如全域DAC)能夠沿共享訊號通訊路徑提供一個或多個全域參考訊號。沿著共享訊號通訊路徑,方法100允許與其連接的任何區域累加器(例如區域DAC)複製一個或多個類比全域參考訊號以產生最終輸出。因此,在方法100中,對於每個全域DAC,可能存在多個區域DAC,其因為參考訊號而依賴於全域DAC,以便在多個區域DAC中的每一個處產生輸出訊號。
S210包括提供將沿共享訊號通訊路徑發送的參考訊號,參考訊號所述參考訊號為使用數位(二進制)輸入訊號來產生傳送到多個區域累加器的類比參考訊號。在一個示例中,可以在全域DAC(例如,全域參考發生器110)處接收二進制或數位訊號輸入,全域DAC將其轉換為可以經由共享訊號通訊路徑傳播到每個區域DAC中的每一個的全域類比參考訊號(例如,區域累加器120)。將全域類比參考訊號發送到多個區域DAC中的每一個的時脈週期的數量可以取決於全域DAC的配置(例如,位元配置和/或訊號編碼方案)。
在第一實施方式中,當全域DAC包括二進制加權類比參考訊號產生器時,全域DAC可以被配置為產生在N個時脈週期上發送的一個參考訊號(例如,隨時間的二進制求和)。在這樣的實施方式中,可能花費N個時脈週期(其中N匹配全域DAC的N位元)以發送足以在每個區域DAC處產生輸出訊號的類比參考訊號。附加替代地,當輸出訊號位準(output signal levels)是二進制加權時或者如果輸出訊號位準是二進制加權的,則可以採用log(N)-位元全域DAC。舉例來說,8位DAC可用於產生0-255之間的訊號位準,但出於全域DAC的目的,可能僅需要訊號位準0、1、2、4、8、16、32、64以及128。因此,顯著降低了訊號輸出位準。即使輸出訊號位準是二進制間隔(即二進制加權輸出),只有8個輸出訊號位準。
在第二種實施方式中,當全域DAC包括非二進制加權類比參考訊號產生器時,可能需要多達2 ^ N個週期(N匹配全域DAC的N位元)以傳送足夠的類比參考訊號以在每個區域DAC產生輸出訊號。
在第三實施方式中,全域DAC可以被配置為產生在單個週期上發送的N參考訊號。以這種方式,區域DAC的輸出轉換時間顯著減少,並且區域DAC可能被限制為對諸如電容器的能量儲存裝置執行附加功能。
在第四實施方式中,全域DAC可經配置以在上限(N/M)週期上產生M參考訊號。以這種方式,由全域DAC產生的類比參考訊號可以成對地發送到每個區域DAC。
另外,可以通過方法100實現各種編碼方案,以在區域DAC處實現最終輸出訊號。例如,可以實現溫度計編碼,二進制編碼,分段編碼,對數編碼等中的一個或多個。在一些實施例中,各種編碼方案中的一個或多個可以組合實現,其中多種的全域DAC和/或全域DAC的組合用於根據在各種編碼方案中選擇的一種或多種編碼類型產生參考訊號。在一個示例中,在具有至少兩個全域DAC的系統中,其中至少兩個全域DAC中的每一個用於向與其相關聯的多個區域DAC提供參考訊號,兩個全域DAC中的第一個可以被設計為根據溫度計編碼產生參考訊號,至少兩個全域DAC中的第二個可以被設計為使用二進制加權編碼來產生參考訊號。應注意的是,本文描述的全域DAC能夠採用任何已知的、組合的或合理的編碼方案。
附加或替代地,S210可以用於以任何合適的方式提供和/或發送訊號,包括:使用全域DAC來提供保持恆定或固定的多個類比參考訊號;提供隨時間變化或改變的單個類比參考訊號(例如,二進制求和);提供隨時間變化的多個類比訊號等。
在一個實施方式中,S210可以用於實現具有脈衝調變器等的全域參考產生器,其能夠改變每個時脈週期產生的脈衝寬度和/或脈衝數。因此,在一個或多個實施例中,S210可以用於在時脈週期期間增加和/或減小脈衝寬度,使得諸如區域DAC的區域累加器能夠相應地改變(增加或減少)儲存在能量儲存裝置(例如電容器)中的電荷(電壓)。附加或替代地,S210可以用於在時脈週期期間增加和/或減少多個脈衝,使得諸如區域DAC的區域累加器能夠相應地改變(增大或減小)儲存在能量儲存裝置(例如電容器)的電荷(電壓)。
另外,S215可以用於通過共享或共同訊號通訊路徑提供參考訊號。在較佳實施例中,源自全域DAC的共享訊號通訊路徑可以延伸到多個區域DAC中的每一個,從而將全域DAC與多個區域DAC中的每一個進行可操作性地訊號通訊。以這種方式,由全域DAC產生的每個參考訊號可以沿著共享訊號路徑傳遞到多個區域DAC中的每一個。
S220用於複製全域類比參考訊號,用於複製沿共享訊號通訊路徑發送的全域類比參考訊號。具體地,每個區域DAC可以包括電流鏡,其在由區域DAC實現時用於複製全域類比參考訊號或由全域DAC提供的電荷(電壓或電流)。
根據在全域DAC處實現的編碼方案或訊號傳輸方法,S220用於將全域類比參考訊號(或產生的電荷)累積到位於每個區域DAC處的能量儲存裝置(例如,電容器)上,所述區域DAC沿共享訊號通訊路徑與全域DAC進行訊號通訊。具體地,S220用於從區域累加器的電容器添加或減去電荷。S220可以用於以任何合適的方式累積或產生電荷,包括使用電荷泵電路(charge pump circuitry)、使用脈衝電流源(pulsed current sources)、使用積分放大器(例如,積分器)。
在一些實施例中,多個區域DAC中的每一個在預定數量的時脈週期內在能量儲存裝置上累積和/或整合電荷的方式是基於多個區域DAC中的每一個在每個時脈週期中一個或多個偏壓輸入訊號的接收。因此,S220可另外用於 在多個區域DAC中的每一個處接收來自偏壓輸入源(例如,全域偏壓輸入源或產生器等)的一個或多個偏壓輸入訊號,其向區域DAC指示是否應該從能量儲存裝置(例如,電容器等)上的電荷來遞增或遞減電荷。
S230,其包括產生輸出電荷,用於基於來自全域參考產生器的一個或多個全域類比參考訊號輸出電荷的總和或累積。在區域DAC(例如,區域累加器)的能量儲存裝置包括電容器的情況下,S230可以用於以各種方式輸出電容器的結果電荷。
在一個實施方式中,S230可用於將電容器連接到輸出目的地(終端)並將電容器的總和或累積電荷(電流或電壓)直接輸出到輸出目的地。
在第二實施方式中,S230可以用於將電容器連接到電流源的輸入端子,例如(快閃)電晶體,並將電容器上的電荷輸出到電流源的輸入。附加或替代地,在第三實施方式中,S230可用於將電容器連接到可調電阻器的輸入,並將電容器的電荷輸出到可調電阻器的輸入。
附加或替代地,在另一實施方式中,來自全域DAC的類比訊號參考可用於執行非揮發性記憶體裝置(例如電阻性隨機存取記憶體(resistive random access memory,RRAM))的脈衝寫入。在這樣的實施方式中,S230中產生的輸出可以包括電流訊號或阻抗。
應當理解,方法200是可以以任何合適的順序實現的示例性方法,以實現在權限範圍內的本發明的實施例或者可以根據本文提供的公開內容容易地預期的實施例。因此,順序和處理步驟不應限於本文提供的示例性順序。
較佳實施例及其變型的方法可以至少部分地體現和/或實現為被配置為接收儲存計算機可讀指令的計算機可讀介質的機器。指令較佳地由計算機可執行組件執行,所述計算機可執行組件較佳地與光刻系統集成,並且處理器和/或控制器的一個或多個部分由此實現。計算機可讀介質可以儲存在任何合適 的計算機可讀介質上,例如RAM、ROM、快閃記憶體、EEPROM、光學設備(CD或DVD)、硬碟、軟碟或任何合適的設備。計算機可執行組件較佳地是通用或專用處理器,但是任何合適的專用硬體或硬體/韌體組合設備可以替代地或另外地執行指令。
儘管為了簡明而省略,但較佳實施例包括本文描述的各種方法,裝置和系統的每種組合和置換。
如本領域之通常知識者將從前面的詳細描述以及從所附圖式和申請專利範圍中認識到的,在不脫離所附申請專利範圍限定的本發明的範圍的情況下,可以對本發明的較佳實施例進行修改和改變。
110:全域參考產生器
120:區域累加器
125:共享訊號路徑

Claims (18)

  1. 一種混和訊號積體電路,其包括:一參考訊號源,用於根據一數位輸入,在一預定時間內連續地產生多個類比參考訊號中的每一個;一單訊號線,從該參考訊號源的輸出端子延伸;多個訊號累加器沿著該單訊號線的長度排列,其中該等多個訊號累加器的每一個的輸入端子沿著該單訊號線的長度與該單訊號線明顯地連接,其中,該等多個訊號累加器的每一個包括一數位類比轉換器,其中該參考訊號源將該等多個類比參考訊號提供至該單訊號線;其中各該訊號累加器用於:藉由該單訊號線收集來自該參考訊號源的該等多個類比參考訊號的每一個;以及將數位輸入轉換為多個電荷,且基於該等多個類比參考訊號在該預定時間內儲存該等多個電荷的總和。
  2. 如請求項1所述之混和訊號積體電路,其中該等多個類比參考訊號包括多個偏壓訊號輸入,該等多個偏壓輸入使該等多個累加器遞增或遞減至一能量儲存裝置的電荷。
  3. 如請求項1所述之混和訊號積體電路,其中各該訊號累加器的輸出端子電連接到一神經網路裝置的多個輸入端子的其中之一,以及各該訊號累加器將該等多個電荷的總和輸出到該神經網路裝置的多個輸入端子的其中之一。
  4. 如請求項3所述之混和訊號積體電路,其中該神經網路裝置的各輸出端子電連接到多個區域類比數位轉換器中的每一個的輸入端子,以及該神經網路裝置的各輸出端子將一類比輸出訊號提供給各該區域類比數位轉換器的內部節點。
  5. 如請求項4所述之混和訊號積體電路,其中各該訊號累加器的輸出端子電連接到各該區域類比數位轉換器中的內部節點的輸入端子,以及各該區域類比數位轉換器輸出一二進制訊號。
  6. 如請求項1所述之混和訊號積體電路,其中各該訊號累加器包括:一能量儲存裝置,以及一放大器,用於在連續時脈週期上積分該能量儲存裝置的多個電荷。
  7. 如請求項1所述之混和訊號積體電路,其中該參考訊號源包括一二進制加權數位類比轉換器,其用於產生多個二進制加權類比參考訊號,該等多個類比參考訊號包括該等多個二進制加權類比參考訊號,其值於該預定時間內變化,以及對於該預定時間的每一個時脈週期,各該訊號累加器基於該等多個二進制加權類比參考訊號對一能量儲存裝置上的多個電荷求和。
  8. 如請求項1所述之混和訊號積體電路,其中 該參考訊號源包括一N位元二進制加權數位類比轉換器,其中N表示位元數,其中該預定時間等於N個時脈週期,以及各該訊號累加器在N個時脈週期上對該等多個電荷求和。
  9. 如請求項1所述之混和訊號積體電路,其中各該訊號累加器包括可程式化電流源。
  10. 如請求項1所述之混和訊號積體電路,其中該參考訊號源包括單個全域數位類比轉換器,其包括產生該等多個類比參考訊號的電路;以及該等多個訊號累加器中的每一個的該數位類比轉換器具有不同於該單個全域數位類比轉換器的電路。
  11. 如請求項1所述之混和訊號積體電路,其中:該參考訊號源包括一溫度計編碼全域數位類比轉換器,用於產生多個溫度計編碼類比參考訊號,其中該等多個類比參考訊號包括具有恆定值的多個溫度計編碼類比參考訊號;以及對於該預定時間中的每個時脈週期,各該訊號累加器基於該等多個溫度計編碼類比參考訊號,將該等多個電荷的總和儲存在一能量儲存裝置上。
  12. 如請求項1所述之混和訊號積體電路,其中:該參考訊號源包括一分段全域訊號參考源,其包括兩個或更多個訊號參考源,該等多個訊號參考源被組合並產生多個高分辨率類比參考訊號,其中該等多個類比參考訊號包括該等多個高分辨率類比參考訊號,以及 對於該預定時間中的每個時脈週期,各該訊號累加器基於該等多個高分辨率類比參考訊號,將該等多個電荷的總和儲存在一能量儲存裝置上。
  13. 如請求項1所述之混和訊號積體電路,其中:由該參考訊號源產生的該等多個類比參考訊號包括多個電壓參考訊號,以及各該訊號累加器將該等多個電壓參考訊號轉換為多個電流。
  14. 如請求項1所述之混和訊號積體電路,其中:該參考訊號源包括一電流源全域數位類比轉換器,其基於多個電流源中的一個電流源的選擇產生一電流參考訊號,其中該等多個類比參考訊號包括多個電流參考訊號;和對於該預定時間的每個時脈週期,各該訊號累加器基於該等多個電流參考訊號,將該等多個電荷的總和儲存在一能量儲存裝置上。
  15. 一種混和訊號運算電路的實現方法,其方法包括:藉由一全域參考訊號源,沿著來自該全域參考訊號源的單訊號線向多個訊號累加器提供多個類比參考訊號,其中該等多個訊號累加器沿著該單訊號線的範圍配置,其中該等多個訊號累加器的輸入端子明確地沿著該單訊號線的範圍連接;基於轉換數位輸入,在各該訊號累加器產生多個電荷;基於該等多個類比參考訊號,在一預定時間內,藉由各該訊號累加器中,增加或減少各該電荷至與各該訊號累加器相關的一能量儲存裝置;以及 由各該訊號累加器產生基於該能量儲存裝置中的該等多個電荷之總和的輸出至一人工神經網路節點。
  16. 如請求項15所述之方法,其中:該單訊號線具有多個連接器,該等多個連接器沿著該單訊號線的範圍在不同位置處連接各該訊號累加器的輸入端子,以及各該訊號累加器沿著該全域參考訊號源下游的該單訊號線的範圍來佈置。
  17. 如請求項15所述之方法,其中:各該訊號累加器的輸出端子電連接到一神經網路裝置的一個神經網路節點的一個輸入端子,以及各該訊號累加器將該能量儲存裝置的該等多個電荷的總和輸出到該神經網路裝置的該個神經網路節點的該個輸入端子。
  18. 如請求項17所述之方法,其中:該神經網路裝置的多個神經網路節點中的每一個的多個輸出端子中的每一個電連接到多個區域類比數位轉換器中的每一個的輸入端子,以及該神經網路裝置的各該神經網路節點的各該輸出端子提供一類比輸出訊號至各該區域類比數位轉換器中的子電路。
TW107132322A 2017-09-15 2018-09-13 用於混和訊號運算的系統及方法 TWI762719B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762559354P 2017-09-15 2017-09-15
US62/559,354 2017-09-15

Publications (2)

Publication Number Publication Date
TW201933786A TW201933786A (zh) 2019-08-16
TWI762719B true TWI762719B (zh) 2022-05-01

Family

ID=65720310

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107132322A TWI762719B (zh) 2017-09-15 2018-09-13 用於混和訊號運算的系統及方法

Country Status (7)

Country Link
US (3) US10255205B1 (zh)
EP (1) EP3682377A4 (zh)
JP (1) JP7338876B2 (zh)
KR (1) KR102653822B1 (zh)
CN (1) CN111448573B (zh)
TW (1) TWI762719B (zh)
WO (1) WO2019055380A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012533A1 (en) * 2017-07-11 2019-01-17 Technion Research & Development Foundation Limited RECONFIGURABLE DAC IMPLEMENTED BY A NEURONAL NETWORK BASED ON A MEMORIST
KR102653822B1 (ko) 2017-09-15 2024-04-02 미씩 인크 혼성 신호 컴퓨팅 시스템 및 방법
US10878315B1 (en) * 2019-06-28 2020-12-29 Arm Limited Data converters and methods for memory arrays
WO2021072732A1 (zh) * 2019-10-18 2021-04-22 北京希姆计算科技有限公司 矩阵运算电路、装置以及方法
CN110797067B (zh) * 2019-10-21 2021-10-22 上海闪易半导体有限公司 存储阵列模块及其控制方法、装置、模组
US12118329B2 (en) 2020-01-16 2024-10-15 International Business Machines Corporation Dual capacitor mixed signal mutiplier
US11770130B2 (en) 2020-03-04 2023-09-26 International Business Machines Corporation Mixed-signal dot product processor with single capacitor per multiplier
US11301211B2 (en) 2020-04-13 2022-04-12 International Business Machines Corporation Differential mixed signal multiplier with three capacitors
CN112307703B (zh) * 2020-10-27 2022-08-26 电子科技大学 一种边缘计算智能功率模块
US11621040B2 (en) * 2021-02-17 2023-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. System and method applied with computing-in-memory
US20230083270A1 (en) * 2021-09-14 2023-03-16 International Business Machines Corporation Mixed signal circuitry for bitwise multiplication with different accuracies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336937A (en) * 1992-08-28 1994-08-09 State University Of New York Programmable analog synapse and neural networks incorporating same
US20150278681A1 (en) * 2014-04-01 2015-10-01 Boise State University Memory controlled circuit system and apparatus
US20160283842A1 (en) * 2014-03-06 2016-09-29 Progress, Inc. Neural network and method of neural network training

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232725A (ja) * 1989-03-07 1990-09-14 Fujitsu Ltd マルチダミーノードを有するニューロコンピュータ
US5017919A (en) 1990-06-06 1991-05-21 Western Digital Corporation Digital-to-analog converter with bit weight segmented arrays
US5167008A (en) * 1990-12-14 1992-11-24 General Electric Company Digital circuitry for approximating sigmoidal response in a neural network layer
US5444446A (en) 1993-07-01 1995-08-22 Texas Instruments Incorporated Apparatus and method for duplicating currents
US5559722A (en) 1993-11-24 1996-09-24 Intel Corporation Process, apparatus and system for transforming signals using pseudo-SIMD processing
GB2373654B (en) 2001-03-21 2005-02-09 Fujitsu Ltd Reducing jitter in mixed-signal integrated circuit devices
US6940744B2 (en) * 2002-10-31 2005-09-06 Unity Semiconductor Corporation Adaptive programming technique for a re-writable conductive memory device
US6690310B1 (en) * 2003-02-13 2004-02-10 Northrop Grumman Corporation Method and apparatus for adaptively compensating for an inaccuracy in an analog-to-digital converter
KR100549872B1 (ko) 2003-12-10 2006-02-06 삼성전자주식회사 차동 스위칭 회로 및 디지털 아날로그 변환기
DE10360241B4 (de) 2003-12-16 2006-04-27 Visteon Global Technologies, Inc., Dearborn Schaltmatrix für ein Eingabegerät
EP2293165B1 (en) 2009-09-02 2018-01-17 ams AG Multi-current-source and method for regulating current
US8264255B2 (en) 2009-11-03 2012-09-11 Silicon Laboratories Inc. Radio frequency (RF) power detector suitable for use in automatic gain control (AGC)
US8275727B2 (en) * 2009-11-13 2012-09-25 International Business Machines Corporation Hardware analog-digital neural networks
FR2983664B1 (fr) * 2011-12-05 2013-12-20 Commissariat Energie Atomique Convertisseur analogique-numerique et circuit neuromorphique utilisant un tel convertisseur
US9300462B2 (en) 2013-05-18 2016-03-29 Bernd Schafferer Methods, devices, and algorithms for the linearization of nonlinear time variant systems and the synchronization of a plurality of such systems
US9991001B2 (en) 2014-05-22 2018-06-05 Cypress Semiconductor Corporation Methods, circuits, devices and systems for sensing an NVM cell
KR101591883B1 (ko) 2014-09-02 2016-02-19 포항공과대학교 산학협력단 하드웨어 기반의 신경망을 이용한 사용자 적응형 언어 보조기기
US9674009B2 (en) * 2014-12-19 2017-06-06 Rambus Inc. Receiver with offset calibration
US9531394B1 (en) * 2015-06-22 2016-12-27 Silicon Laboratories Inc. Calibration of digital-to-time converter
CN110383282A (zh) 2017-02-07 2019-10-25 密执安州立大学董事会 用于混合信号计算的系统和方法
KR102653822B1 (ko) 2017-09-15 2024-04-02 미씩 인크 혼성 신호 컴퓨팅 시스템 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336937A (en) * 1992-08-28 1994-08-09 State University Of New York Programmable analog synapse and neural networks incorporating same
US20160283842A1 (en) * 2014-03-06 2016-09-29 Progress, Inc. Neural network and method of neural network training
US20150278681A1 (en) * 2014-04-01 2015-10-01 Boise State University Memory controlled circuit system and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
網路文獻韕Yingxue Wang and Shih-Chii Liu韕Programmable Synaptic Weights for an aVLSI Network of Spiking Neurons韕 韕 韕2006 IEEE International Symposium on Circuits and Systems韕2006年5月24日公開文件韕 韕http://dx.doi.org/10.1109/ISCAS.2006.1693637 *

Also Published As

Publication number Publication date
US20190179776A1 (en) 2019-06-13
KR102653822B1 (ko) 2024-04-02
EP3682377A4 (en) 2021-06-16
US10255205B1 (en) 2019-04-09
US11467984B2 (en) 2022-10-11
TW201933786A (zh) 2019-08-16
JP2020534626A (ja) 2020-11-26
EP3682377A1 (en) 2020-07-22
US20190087356A1 (en) 2019-03-21
JP7338876B2 (ja) 2023-09-05
US11726925B2 (en) 2023-08-15
CN111448573B (zh) 2024-01-30
US20220414025A1 (en) 2022-12-29
CN111448573A (zh) 2020-07-24
KR20200062209A (ko) 2020-06-03
WO2019055380A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
TWI762719B (zh) 用於混和訊號運算的系統及方法
US20230359571A1 (en) System and methods for mixed-signal computing
US11604977B2 (en) Computing circuitry
Kim et al. Analog CMOS-based resistive processing unit for deep neural network training
US9129220B2 (en) Methods and systems for digital neural processing with discrete-level synapes and probabilistic STDP
KR102542532B1 (ko) 혼합-신호 연산 시스템 및 방법
TW201939270A (zh) 用於混合訊號運算的系統與方法
US11038520B1 (en) Analog-to-digital conversion with reconfigurable function mapping for neural networks activation function acceleration
US20200327401A1 (en) Computing circuitry
TW202236172A (zh) 分佈式多組件突觸計算結構
US11790220B2 (en) Artificial neural networks
US20190294957A1 (en) Arithmetic device and arithmetic method
US20240036525A1 (en) Energy efficient digital to time converter (dtc) for edge computing
Gi et al. A ReRAM-based convolutional neural network accelerator using the analog layer normalization technique
TW202234399A (zh) 記憶體系統
Khodabandehloo et al. A prototype CVNS distributed neural network using synapse-neuron modules
Moriyasu et al. A deep dynamic binary neural network and its application to matrix converters
WO2023074798A1 (ja) スパイキングニューラルネットワークを実行するための装置及び方法、並びに、スパイキングニューロモーフィックシステム
CN117492349A (zh) 时间数字转换器、数字读出电路以及电子装置
CN116579392A (zh) 一种基于电导可调器件的神经网络训练操作系统及方法
CN115062583A (zh) 一种求解优化问题的hopfield网络硬件电路及操作方法
Rathore Forward and reverse conversions of multi-valued logic numbers
JP3338713B2 (ja) 信号処理装置