TWI760228B - Motor control method - Google Patents

Motor control method Download PDF

Info

Publication number
TWI760228B
TWI760228B TW110118195A TW110118195A TWI760228B TW I760228 B TWI760228 B TW I760228B TW 110118195 A TW110118195 A TW 110118195A TW 110118195 A TW110118195 A TW 110118195A TW I760228 B TWI760228 B TW I760228B
Authority
TW
Taiwan
Prior art keywords
voltage
estimated
current
axis
component
Prior art date
Application number
TW110118195A
Other languages
Chinese (zh)
Other versions
TW202247573A (en
Inventor
曾紹凱
林育賢
李振業
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW110118195A priority Critical patent/TWI760228B/en
Application granted granted Critical
Publication of TWI760228B publication Critical patent/TWI760228B/en
Publication of TW202247573A publication Critical patent/TW202247573A/en

Links

Images

Abstract

The present disclosure relates to a motor control method, including the following steps: adjusting a voltage component of an estimated voltage command to a steady-state voltage value; performing a coordinate axis conversion on the other voltage component of the estimated voltage command and the steady-state voltage value, and generating a three-phase excitation current to make a synchronous motor rotate to the rotating position and stop; calculating an estimated current signal; when determining that the current component is not maintained at a steady-state current value, calculating the estimated value of the stop position, and adjusting the other voltage component of the estimated voltage command; when determining that the current component maintains the steady-state current value, calculating an effective inductance of the synchronous motor according to the steady-state voltage value, the other voltage component, the steady-state current value, and the other current component of the estimated current signal.

Description

馬達控制方法motor control method

本揭示內容關於一種馬達控制方法,特別是用以計算磁鐵輔助型同步磁阻馬達的電感量。The present disclosure relates to a motor control method, especially for calculating the inductance of a magnet-assisted synchronous reluctance motor.

在無位置感測器(或稱編碼器)驅動馬達時,需要使用大量的馬達參數,進行轉軸角度估測,才能精準的驅動馬達。在傳統的技術中,用於驅動馬達的變頻器透過適當的控制馬達的定子電流,產生相對應的定子磁場,並使定子磁場及轉子磁場保持正交,以維持高效率運轉。一般來說,傳統的控制裝置是依據驅動電壓、驅動電流及馬達參數,來估測馬達的轉子之位置,並且依據轉子位置,適當地調整控制命令來保持定子磁場及轉子磁場的方向彼此正交。因此,如何正確的計算馬達的參數成為重要課題。When there is no position sensor (or encoder) to drive the motor, a large number of motor parameters need to be used to estimate the angle of the rotating shaft so that the motor can be driven accurately. In the traditional technology, the inverter used to drive the motor generates the corresponding stator magnetic field through appropriate control of the stator current of the motor, and keeps the stator magnetic field and the rotor magnetic field orthogonal to maintain high-efficiency operation. Generally speaking, the conventional control device estimates the position of the rotor of the motor according to the driving voltage, driving current and motor parameters, and appropriately adjusts the control command according to the rotor position to keep the directions of the stator magnetic field and the rotor magnetic field orthogonal to each other . Therefore, how to correctly calculate the parameters of the motor has become an important issue.

其中,在馬達控制領域中,馬達的電感量(包括:直軸電感量及交軸電感量)是非常重要的馬達參數。其中,磁鐵輔助型同步磁阻馬達(permanent magnet assisted synchronous reluctance motor, PMaSynRM,以下簡稱磁阻馬達)係一種同時利用永磁材料與導磁材料(例如:矽鋼片等)作為馬達的轉子結構。然而,此種馬達的轉子結構之特性,馬達的電感量與轉子位置有關。在傳統的電感參數自學習方法下,磁阻馬達的轉子位置難以精準地對齊所設定的角度,故難以精準地計算出馬達的電感量。因此,對目前的傳統技術而言,難以精準地計算出磁阻馬達的電感量(例如:直軸電感量、交軸電感量)。Among them, in the field of motor control, the inductance of the motor (including: direct-axis inductance and quadrature-axis inductance) is a very important motor parameter. Among them, a permanent magnet assisted synchronous reluctance motor (PMaSynRM, hereinafter referred to as a reluctance motor) is a rotor structure using both a permanent magnet material and a magnetic conductive material (eg, silicon steel sheet, etc.) as the motor. However, due to the characteristics of the rotor structure of such a motor, the inductance of the motor is related to the rotor position. Under the traditional self-learning method of inductance parameters, the rotor position of the reluctance motor is difficult to precisely align with the set angle, so it is difficult to accurately calculate the inductance of the motor. Therefore, for the current conventional technology, it is difficult to accurately calculate the inductance of the reluctance motor (eg, direct-axis inductance, quadrature-axis inductance).

本揭示內容提出一種馬達控制方法,用來計算馬達的電感量。藉此,來解決前述的問題。The present disclosure provides a motor control method for calculating the inductance of the motor. Thereby, the aforementioned problems are solved.

本揭示內容關於一種馬達控制方法,用於無位置感測器的同步馬達。馬達控制方法包含:調整估測電壓命令的電壓分量為穩態電壓值;對估測電壓命令的另一電壓分量及穩態電壓值進行座標軸轉換,而產生二軸電壓命令;依據直流激磁電壓命令及二軸電壓命令,產生三相激磁電流來驅動同步馬達旋轉至旋轉位置而停止;擷取三相激磁電流來計算一估測電流訊號,其中估測電流訊號的電流分量係相應於穩態電壓值;當判斷電流分量沒有維持於穩態電流值時,依據估測電流訊號計算旋轉位置的估測值;依據旋轉位置的估測值,調整估測電壓命令的另一電壓分量,使得相應穩態電壓值的電流分量維持於穩態電流值;當判斷電流分量維持穩態電流值時,依據穩態電壓值、估測電壓命令的另一電壓分量、穩態電流值及估測電流訊號的另一電流分量,計算同步馬達的有效電感量。The present disclosure relates to a motor control method for a position sensorless synchronous motor. The motor control method includes: adjusting the voltage component of the estimated voltage command to a steady-state voltage value; performing coordinate axis transformation on another voltage component of the estimated voltage command and the steady-state voltage value to generate a two-axis voltage command; according to the DC excitation voltage command and two-axis voltage command, generate three-phase excitation current to drive the synchronous motor to rotate to the rotating position and stop; extract the three-phase excitation current to calculate an estimated current signal, wherein the current component of the estimated current signal corresponds to the steady-state voltage When it is judged that the current component is not maintained at the steady-state current value, the estimated value of the rotational position is calculated according to the estimated current signal; according to the estimated value of the rotational position, another voltage component of the estimated voltage command is adjusted so that the corresponding stable The current component of the state voltage value is maintained at the steady state current value; when it is determined that the current component maintains the steady state current value, according to the steady state voltage value, another voltage component of the estimated voltage command, the steady state current value and the difference of the estimated current signal. Another current component, calculates the effective inductance of the synchronous motor.

本揭示內容還關於一種馬達控制方法,用於同步馬達。位置感測器耦接於同步馬達。馬達控制方法包括:調整估測電壓命令的電壓分量為穩態電壓值;對估測電壓命令的另一電壓分量及穩態電壓值進行座標軸轉換,而產生二軸電壓命令;依據直流激磁電壓命令及二軸電壓命令,產生三相激磁電流來驅動同步馬達旋轉至旋轉位置而停止;擷取三相激磁電流來計算估測電流訊號,其中估測電流訊號的電流分量係相應於穩態電壓值;當判斷電流分量沒有維持於穩態電流值時,藉由位置感測器取得旋轉位置的量測值;依據旋轉位置的量測值,調整估測電壓命令的另一電壓分量,使得相應穩態電壓值的電流分量維持於穩態電流值;當判斷電流分量維持穩態電流值時,依據穩態電壓值、估測電壓命令的另一電壓分量、穩態電流值及估測電流訊號的另一電流分量,計算同步馬達的有效電感量。The present disclosure also relates to a motor control method for a synchronous motor. The position sensor is coupled to the synchronous motor. The motor control method includes: adjusting the voltage component of the estimated voltage command to a steady-state voltage value; performing coordinate axis transformation on another voltage component of the estimated voltage command and the steady-state voltage value to generate a two-axis voltage command; according to the DC excitation voltage command and two-axis voltage command, generate three-phase excitation current to drive the synchronous motor to rotate to the rotating position and stop; extract the three-phase excitation current to calculate the estimated current signal, wherein the current component of the estimated current signal corresponds to the steady-state voltage value ; When it is determined that the current component is not maintained at the steady-state current value, the measured value of the rotational position is obtained by the position sensor; according to the measured value of the rotational position, another voltage component of the estimated voltage command is adjusted so that the corresponding stable The current component of the state voltage value is maintained at the steady state current value; when it is determined that the current component maintains the steady state current value, according to the steady state voltage value, another voltage component of the estimated voltage command, the steady state current value and the difference of the estimated current signal. Another current component, calculates the effective inductance of the synchronous motor.

本揭示內容係根據含有角度誤差資訊的回授電流訊號,來估測馬達的轉子之位置,且依據所估測的轉子位置,調整估測座標軸的角度,並據此修正電感測試的電壓向量,直到估測座標與轉子之旋轉位置間之位置誤差收斂至誤差範圍內。據此,馬達控制裝置將可根據已校正之估測座標軸,在正確的轉子位置進行馬達參數估測,以利於精準地控制同步馬達。In the present disclosure, the position of the rotor of the motor is estimated according to the feedback current signal containing the angle error information, and the angle of the estimated coordinate axis is adjusted according to the estimated rotor position, and the voltage vector of the inductance test is corrected accordingly, Until the position error between the estimated coordinates and the rotational position of the rotor converges within the error range. Accordingly, the motor control device can estimate the motor parameters at the correct rotor position according to the corrected estimated coordinate axis, so as to facilitate the precise control of the synchronous motor.

以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。Several embodiments of the present invention will be disclosed in the drawings below, and for the sake of clarity, many practical details will be described together in the following description. It should be understood, however, that these practical details should not be used to limit the invention. That is, in some embodiments of the invention, these practical details are unnecessary. In addition, for the purpose of simplifying the drawings, some well-known structures and elements will be shown in a simple and schematic manner in the drawings.

第1A圖為根據傳統的技術繪示之座標軸轉換的示意圖。在一般馬達控制領域(包含磁阻馬達的控制)中,會透過座標軸的轉換運算來表示馬達的運動狀態,如第1A圖所示。一般來說,d軸及q軸為同步座標軸,用以代表馬達的轉子位置。因此,當磁阻馬達的轉速為零時,磁阻馬達的同步座標軸以方程式(1)來表示,如下所示:FIG. 1A is a schematic diagram of coordinate axis transformation according to a conventional technique. In the field of general motor control (including the control of reluctance motors), the motion state of the motor is represented by the transformation operation of the coordinate axes, as shown in Figure 1A. Generally speaking, the d-axis and the q-axis are synchronous coordinate axes, which are used to represent the rotor position of the motor. Therefore, when the rotational speed of the reluctance motor is zero, the synchronous coordinate axis of the reluctance motor is expressed by equation (1) as follows:

Figure 02_image001
(1)
Figure 02_image001
(1)

於方程式(1)中,Vd代表d軸電壓,Vq代表q軸電壓,id代表d軸電流,iq代表q軸電流,Ld代表d軸電感量,Lq代表q軸電感量,rs代表磁阻馬達的定子電阻。In equation (1), Vd is the d-axis voltage, Vq is the q-axis voltage, id is the d-axis current, iq is the q-axis current, Ld is the d-axis inductance, Lq is the q-axis inductance, and rs is the reluctance motor. the stator resistance.

如第1A圖所示,δ軸及γ軸為估測座標軸,用以代表設定的馬達轉子位置(通常是電腦或控制器所認定的轉子位置)或估測的轉子位置。α軸及β軸為靜止座標軸,用以代表馬達的定子位置。a軸、b軸及c軸代表馬達的三相座標軸。As shown in Fig. 1A, the delta axis and the gamma axis are the estimated coordinate axes, which are used to represent the set rotor position of the motor (usually the rotor position determined by the computer or the controller) or the estimated rotor position. The α-axis and the β-axis are static coordinate axes, which are used to represent the stator position of the motor. The a-axis, b-axis, and c-axis represent the three-phase coordinate axes of the motor.

由於磁阻馬達的結構特性,當控制磁阻馬達的轉子停止時,Θa代表馬達的轉子之實際位置Θa (或是同步座標軸的d軸與三相座標軸的a軸之間的角度差)時,估測座標軸及同步座標軸之間有明顯的角度誤差。因此,將方程式(1)轉換到估測座標軸時,會得到方程式(2),如下所示:Due to the structural characteristics of the reluctance motor, when the rotor of the control reluctance motor is stopped, when Θa represents the actual position Θa of the rotor of the motor (or the angular difference between the d-axis of the synchronous coordinate axis and the a-axis of the three-phase coordinate axis), There is a significant angular error between the estimated coordinate axis and the synchronized coordinate axis. Therefore, when Equation (1) is converted to the estimated axes, Equation (2) is obtained as follows:

Figure 02_image003
(2)
Figure 02_image003
(2)

於方程式(2)中,Vδ代表δ軸電壓,Vγ代表γ軸電壓,iδ代表δ軸電流,iγ代表γ軸電流,Ld代表d軸電感量,Lq代表q軸電感量,rs代表磁阻馬達的定子電阻,Θer代表馬達同步座標軸及估測座標軸之間的角度誤差。In equation (2), Vδ represents the delta-axis voltage, Vγ represents the γ-axis voltage, iδ represents the delta-axis current, iγ represents the γ-axis current, Ld represents the d-axis inductance, Lq represents the q-axis inductance, and rs represents the reluctance motor The stator resistance of , Θer represents the angular error between the motor synchronous coordinate axis and the estimated coordinate axis.

由方程式(2)中所知,因為代表馬達轉子的同步座標軸沒有對齊估測座標軸,所以方程式(2)包含了實際位置Θa的分量。在無位置感測器的情況下,難以取得轉子之實際位置Θa,所以傳統的無位置感測器的馬達控制方法無法精準的估測磁阻馬達的d軸電感量Ld(或稱直軸電感量Ld)及q軸電感量(或稱交軸電感量Lq),以致於大幅度地降低馬達的控制效率。如第1B圖所示,本揭示內容提出一種馬達控制裝置及其控制方法,透過運算來估測轉子之實際位置Θa的估測值Θv,來調整估測座標軸(δ軸及γ軸)的位置以減少實際的轉子位置Θa的分量。藉此,解決上述的問題。雖然估測值Θv及轉子之實際位置Θa之間存在角度誤差Θer,但是本揭示內容經由調整估測值Θv,可以使得角度誤差Θer趨近於零。以下將詳述本揭示內容的實現方法。As known from equation (2), equation (2) contains the component of actual position Θa because the synchronous axis representing the motor rotor is not aligned with the estimated axis. In the case of no position sensor, it is difficult to obtain the actual position Θa of the rotor, so the traditional motor control method without position sensor cannot accurately estimate the d-axis inductance Ld (or direct-axis inductance of the reluctance motor) Quantity Ld) and q-axis inductance (or quadrature-axis inductance Lq), so that the control efficiency of the motor is greatly reduced. As shown in FIG. 1B , the present disclosure proposes a motor control device and a control method thereof. The estimated value Θv of the actual position Θa of the rotor is estimated by calculation to adjust the position of the estimated coordinate axes (delta axis and gamma axis). to reduce the component of the actual rotor position Θa. Thereby, the above-mentioned problems are solved. Although there is an angular error Θer between the estimated value Θv and the actual position Θa of the rotor, the present disclosure can make the angular error Θer approach zero by adjusting the estimated value Θv. The implementation method of the present disclosure will be described in detail below.

第2圖為根據本揭示內容之部份實施例的馬達控制裝置100示意圖。馬達控制裝置100應用於未裝設位置感測器的同步馬達200。特別注意的是,同步馬達200是指磁鐵輔助型同步磁阻馬達,但本揭示內容不限於此。FIG. 2 is a schematic diagram of a motor control device 100 according to some embodiments of the present disclosure. The motor control device 100 is applied to a synchronous motor 200 without a position sensor. It is particularly noted that the synchronous motor 200 refers to a magnet-assisted synchronous reluctance motor, but the present disclosure is not limited thereto.

馬達控制裝置100(或稱變頻器)包含控制運算單元110、驅動運算單元120及回授運算單元130。其中,控制運算單元110用以接收估測電壓命令(包含估測直軸電壓Vδ及估測交軸電壓Vγ),並據以產生二軸電壓命令(包含第一電壓分量Vα及第二電壓分量Vβ)給驅動運算單元120。依據二軸電壓命令,驅動運算單元120提供三相激磁電流Ia、Ib、Ic至同步馬達200。回授運算單元130擷取同步馬達200的三相激磁電流Ia、Ib、Ic。接著,回授運算單元130依據三相激磁電流Ia、Ib、Ic,產生回授訊號給控制運算單元110。控制運算單元110依據前述回授訊號,計算同步馬達200的直軸電感量或交軸電感量。於此實施例中,二軸電壓命令(Vα、Vβ)代表靜止座標軸,所以第一電壓分量Vα又稱為靜止座標軸的α軸電壓,且第二電壓分量Vβ又稱為靜止座標軸的β軸電壓,但本揭示內容不限於此。特別注意的是,在一實施例中估測直軸電壓Vδ、估測交軸電壓Vγ、第一電壓分量Vα及第二電壓分量Vβ,皆為高頻交流訊號,但本揭示內容不限於此。The motor control device 100 (or inverter) includes a control arithmetic unit 110 , a driving arithmetic unit 120 and a feedback arithmetic unit 130 . The control operation unit 110 is used to receive the estimated voltage command (including the estimated direct-axis voltage Vδ and the estimated quadrature-axis voltage Vγ), and generate biaxial voltage commands (including the first voltage component Vα and the second voltage component) accordingly Vβ) to the driving operation unit 120 . According to the two-axis voltage command, the driving operation unit 120 provides the three-phase excitation currents Ia, Ib, and Ic to the synchronous motor 200 . The feedback computing unit 130 captures the three-phase excitation currents Ia, Ib, and Ic of the synchronous motor 200 . Next, the feedback operation unit 130 generates a feedback signal to the control operation unit 110 according to the three-phase excitation currents Ia, Ib, and Ic. The control arithmetic unit 110 calculates the direct-axis inductance or the quadrature-axis inductance of the synchronous motor 200 according to the aforementioned feedback signal. In this embodiment, the two-axis voltage commands (Vα, Vβ) represent the stationary coordinate axis, so the first voltage component Vα is also called the α-axis voltage of the stationary coordinate axis, and the second voltage component Vβ is also called the β-axis voltage of the stationary coordinate axis. , but the present disclosure is not limited thereto. It should be noted that, in an embodiment, the estimated direct-axis voltage Vδ, the estimated quadrature-axis voltage Vγ, the first voltage component Vα, and the second voltage component Vβ are all high-frequency AC signals, but the disclosure is not limited thereto. .

以下請同時參閱第2圖、第3A圖及第3B圖來說明本揭示內容的各個實施例。本揭示內容提出一種馬達控制方法300,且馬達控制方法300適用於無位置感測器的同步馬達200。馬達控制方法300是被馬達控制裝置100所執行,且馬達控制方法300包含:步驟S301~S308。另外,步驟S303更包含:步驟S3031~S3034。Please refer to FIG. 2 , FIG. 3A and FIG. 3B together below to describe various embodiments of the present disclosure. The present disclosure provides a motor control method 300 , and the motor control method 300 is suitable for a synchronous motor 200 without a position sensor. The motor control method 300 is executed by the motor control device 100 , and the motor control method 300 includes steps S301 - S308 . In addition, step S303 further includes steps S3031 to S3034.

於步驟S301中,控制運算單元110調整估測電壓命令(包括:估測直軸電壓Vδ及估測交軸電壓Vγ)的一電壓分量為穩態電壓值。如第2圖所示,為了更精準地計算交軸電感量Lq,控制運算單元110可以調整估測直軸電壓Vδ為穩態電壓值,並且維持估測交軸電壓Vγ為高頻交流訊號。或著,為了更精準地計算直軸電感量Ld,控制運算單元110可以調整估測交軸電壓Vγ為穩態電壓值,並且維持估測直軸電壓Vδ為高頻交流訊號。在較佳的實施例中,穩態電壓值可以被設計為零,但本揭示內容不限於此。In step S301 , the control operation unit 110 adjusts a voltage component of the estimated voltage command (including the estimated direct-axis voltage Vδ and the estimated quadrature-axis voltage Vγ) to a steady-state voltage value. As shown in FIG. 2 , in order to calculate the quadrature inductance Lq more accurately, the control unit 110 can adjust the estimated quadrature voltage Vδ to be a steady-state voltage value, and maintain the estimated quadrature voltage Vγ as a high-frequency AC signal. Or, in order to calculate the direct-axis inductance Ld more accurately, the control operation unit 110 may adjust the estimated direct-axis voltage Vγ to be a steady-state voltage value, and maintain the estimated direct-axis voltage Vδ to be a high-frequency AC signal. In a preferred embodiment, the steady-state voltage value may be designed to be zero, but the present disclosure is not limited thereto.

於步驟S302中,對估測電壓命令的另一電壓分量及穩態電壓值進行座標軸轉換,而產生二軸電壓命令。舉例說明,如第2圖所示,控制運算單元110包含座標轉換器111及電感運算單元112,並且控制運算單元110調整估測交軸電壓Vγ為穩態電壓值,並且維持估測直軸電壓Vδ為高頻交流訊號(估測直軸電壓Vδ視為估測電壓命令的另一電壓分量)。座標轉換器111對估測直軸電壓Vδ及穩態電壓值進行座標轉換,以產生二軸電壓命令的第一電壓分量Vα及第二電壓分量Vβ。接著,控制運算單元110提供第一電壓分量Vα及第二電壓分量Vβ給驅動運算單元120。於此實施例中,估測直軸電壓Vδ及估測交軸電壓Vγ代表估測座標軸,且第一電壓分量Vα及第二電壓分量Vβ代表靜止座標軸,但本揭示內容不限於此。In step S302, coordinate axis transformation is performed on another voltage component of the estimated voltage command and the steady-state voltage value to generate a two-axis voltage command. For example, as shown in FIG. 2, the control operation unit 110 includes a coordinate converter 111 and an inductance operation unit 112, and the control operation unit 110 adjusts the estimated quadrature-axis voltage Vγ to a steady-state voltage value, and maintains the estimated direct-axis voltage Vδ is a high-frequency AC signal (the estimated direct-axis voltage Vδ is regarded as another voltage component of the estimated voltage command). The coordinate converter 111 performs coordinate transformation on the estimated direct-axis voltage Vδ and the steady-state voltage value to generate the first voltage component Vα and the second voltage component Vβ of the two-axis voltage command. Next, the control arithmetic unit 110 provides the first voltage component Vα and the second voltage component Vβ to the driving arithmetic unit 120 . In this embodiment, the estimated direct-axis voltage Vδ and the estimated quadrature-axis voltage Vγ represent the estimated coordinate axis, and the first voltage component Vα and the second voltage component Vβ represent the stationary coordinate axis, but the present disclosure is not limited thereto.

接著,用計算直軸電感量Ld作為座標轉換的範例說明。如第2圖及第3A圖所示,為了精準地計算直軸電感量Ld,控制運算單元110會接收估測電壓命令的估測直軸電壓Vδ及估測交軸電壓Vγ,並且控制運算單元110調整估測交軸電壓Vγ為零(即:步驟S301中的穩態電壓值),如方程式(3)所示:Next, the calculation of the direct-axis inductance Ld is used as an example of coordinate transformation. As shown in FIGS. 2 and 3A, in order to accurately calculate the direct-axis inductance Ld, the control operation unit 110 receives the estimated direct-axis voltage Vδ and the estimated quadrature-axis voltage Vγ of the estimated voltage command, and controls the operation unit 110 Adjust the estimated quadrature axis voltage Vγ to zero (ie, the steady-state voltage value in step S301 ), as shown in equation (3):

Figure 02_image005
(3)
Figure 02_image005
(3)

在方程式(3)中,

Figure 02_image007
為控制運算單元110接收的高頻交流訊號,視為估測直軸電壓Vδ。接著,依據方程式(3)進行座標轉換,即可取得二軸電壓命令的第一電壓分量Vα及第二電壓分量Vβ,如方程式(4)所示: In equation (3),
Figure 02_image007
The high-frequency AC signal received by the control operation unit 110 is regarded as the estimated direct-axis voltage Vδ. Then, coordinate transformation is performed according to equation (3) to obtain the first voltage component Vα and the second voltage component Vβ of the two-axis voltage command, as shown in equation (4):

Figure 02_image009
(4)
Figure 02_image009
(4)

於方程式(4)中,θv為旋轉位置的估測值。特別注意的是,在第一次執行程式時,由於旋轉位置的估測值Θv沒有經由回授來取得,而是預設於座標轉換器111的程式設定值,或者是來自外部的位置命令。因此,座標轉換器111依據估測電壓命令的估測直軸電壓Vδ及穩態電壓值,進行座標轉換以取得二軸電壓命令的第一電壓分量Vα及第二電壓分量Vβ。In equation (4), θv is the estimated value of the rotational position. It should be noted that, when the program is executed for the first time, the estimated value Θv of the rotational position is not obtained through feedback, but is preset in the program setting value of the coordinate converter 111 or is an external position command. Therefore, the coordinate converter 111 performs coordinate conversion according to the estimated direct-axis voltage Vδ and the steady-state voltage value of the estimated voltage command to obtain the first voltage component Vα and the second voltage component Vβ of the two-axis voltage command.

相似地,在步驟S302的其他較佳實施例中,為了精準地計算交軸電感量Lq,控制運算單元110會接收估測電壓命令的估測直軸電壓Vδ及估測交軸電壓Vγ,並且控制運算單元110調整估測估測直軸電壓Vδ為零(即:步驟S301中的穩態電壓值)。接著,座標轉換器111依據該估測電壓命令的估測交軸電壓Vγ及穩態電壓值,進行座標轉換以取得二軸電壓命令的第一電壓分量Vα及第二電壓分量Vβ。由於此實施例的方程式原理可以修改方程式(3)及(4)而取得,故本揭示內容不另外贅述。Similarly, in other preferred embodiments of step S302, in order to accurately calculate the quadrature-axis inductance Lq, the control operation unit 110 receives the estimated direct-axis voltage Vδ and the estimated quadrature-axis voltage Vγ of the estimated voltage command, and The control arithmetic unit 110 adjusts the estimated and estimated direct-axis voltage Vδ to be zero (ie, the steady-state voltage value in step S301 ). Next, the coordinate converter 111 performs coordinate conversion according to the estimated quadrature voltage Vγ and the steady-state voltage value of the estimated voltage command to obtain the first voltage component Vα and the second voltage component Vβ of the biaxial voltage command. Since the principle of the equations of this embodiment can be obtained by modifying equations (3) and (4), the present disclosure will not describe them in detail.

於步驟S303中,驅動運算單元120接收座標轉換器111輸出的第一電壓分量Vα及第二電壓分量Vβ後,驅動運算單元120依據直流激磁電壓命令Vdc及二軸電壓命令(包括第一電壓分量Vα或第二電壓分量Vβ),產生三相激磁電流Ia、Ib、Ic來驅動同步馬達200旋轉至旋轉位置而停止。特別注意的是,有關於同步馬達200的旋轉位置(即:轉子210之實際位置Θa),由於此實施例沒有使用位置感測器,所以馬達控制裝置200無法直接取得旋轉位置的實際值。In step S303, after the driving operation unit 120 receives the first voltage component Vα and the second voltage component Vβ outputted by the coordinate converter 111, the driving operation unit 120 according to the DC excitation voltage command Vdc and the biaxial voltage command (including the first voltage component Vα or the second voltage component Vβ), three-phase excitation currents Ia, Ib, Ic are generated to drive the synchronous motor 200 to rotate to a rotating position and stop. It should be noted that, regarding the rotational position of the synchronous motor 200 (ie, the actual position Θa of the rotor 210 ), since this embodiment does not use a position sensor, the motor control device 200 cannot directly obtain the actual value of the rotational position.

請同時參閱第2圖、第3A圖及第3B圖,來詳細地說明步驟S303之操作方式。其中步驟S303包括步驟S3031~S3034。於步驟S3031中,驅動運算單元120選擇第一電壓分量Vα及第二電壓分量Vβ的其中之一,以作為第一驅動命令。於步驟S3032中,選擇第一電壓分量Vα及第二電壓分量Vβ的另外一個,以作為第二驅動命令。例如:如果第一電壓分量Vα被選擇為第一驅動命令,則第二電壓分量Vβ被選擇為第二驅動命令。相同地,如果第二電壓分量Vβ被選擇為第一驅動命令,則第一電壓分量Vα被選擇為第二驅動命令。Please refer to FIG. 2 , FIG. 3A and FIG. 3B at the same time to describe the operation of step S303 in detail. The step S303 includes steps S3031 to S3034. In step S3031, the driving operation unit 120 selects one of the first voltage component Vα and the second voltage component Vβ as the first driving command. In step S3032, the other one of the first voltage component Vα and the second voltage component Vβ is selected as the second driving command. For example: if the first voltage component Vα is selected as the first drive command, the second voltage component Vβ is selected as the second drive command. Likewise, if the second voltage component Vβ is selected as the first drive command, the first voltage component Vα is selected as the second drive command.

於步驟S3033中,驅動運算單元120疊加直流激磁電壓命令Vdc及第一驅動命令,以產生激磁驅動電壓Vt。於步驟S3034中,驅動運算單元120依據激磁驅動電壓Vt及第二驅動命令,產生三相激磁電流Ia、Ib、Ic。In step S3033, the driving operation unit 120 superimposes the DC excitation voltage command Vdc and the first driving command to generate the excitation driving voltage Vt. In step S3034, the driving arithmetic unit 120 generates three-phase excitation currents Ia, Ib, and Ic according to the excitation driving voltage Vt and the second driving command.

舉例說明:如果第一電壓分量Vα被選擇為第一驅動命令,則驅動運算單元120疊加直流激磁電壓命令Vdc及第一電壓分量Vα。接著,第二電壓分量Vβ被選擇為第二驅動命令。因此,驅動運算單元120整理方程式(4)與直流激磁電壓命令Vdc,可以得到方程式(5),如下所示:For example, if the first voltage component Vα is selected as the first driving command, the driving operation unit 120 superimposes the DC excitation voltage command Vdc and the first voltage component Vα. Next, the second voltage component Vβ is selected as the second drive command. Therefore, the driving operation unit 120 arranges the equation (4) and the DC excitation voltage command Vdc to obtain the equation (5), as shown below:

Figure 02_image011
(5)
Figure 02_image011
(5)

在方程式(5)中,Vt為激磁驅動電壓。驅動運算單元整理方程式(3)、(4)及(5)後,即可取得方程式(6),如下所示:In equation (5), Vt is the excitation drive voltage. After the driving operation unit arranges equations (3), (4) and (5), equation (6) can be obtained, as shown below:

Figure 02_image013
(6)
Figure 02_image013
(6)

參照方程式(6),驅動運算單元120依據激磁驅動電壓Vt及第二電壓分量Vβ(即第二驅動命令),產生三相激磁電流Ia、Ib、Ic。Referring to equation (6), the driving operation unit 120 generates three-phase excitation currents Ia, Ib, and Ic according to the excitation driving voltage Vt and the second voltage component Vβ (ie, the second driving command).

相同地,在步驟S3033及S3034中,如果第二電壓分量Vβ被選擇為第一驅動命令,則驅動運算單元120疊加直流激磁電壓命令Vdc及第二電壓分量Vβ。接著,在步驟S3034中,驅動運算單元120依據激磁驅動電壓Vt及第一電壓分量Vα(即第二驅動命令),產生三相激磁電流Ia、Ib、Ic。於此實施例中,本領域之技術人員可以經修改方程式(5)及(6),來得到激磁驅動電壓Vt,並產生產生三相激磁電流Ia、Ib、Ic。故,本揭示內容不重複贅述。Similarly, in steps S3033 and S3034, if the second voltage component Vβ is selected as the first driving command, the driving operation unit 120 superimposes the DC excitation voltage command Vdc and the second voltage component Vβ. Next, in step S3034, the driving arithmetic unit 120 generates three-phase excitation currents Ia, Ib, and Ic according to the excitation driving voltage Vt and the first voltage component Vα (ie, the second driving command). In this embodiment, those skilled in the art can modify equations (5) and (6) to obtain the excitation driving voltage Vt and generate three-phase excitation currents Ia, Ib, and Ic. Therefore, the content of the present disclosure will not be repeated.

特別注意的是,本揭示內容的第2圖僅用於描述第一電壓分量Vα被選擇為第一驅動命令,且驅動運算單元120疊加直流激磁電壓命令Vdc及第一電壓分量Vα的範例。為了簡化說明本揭示內容,不重複描繪第二電壓分量Vβ被選擇為第一驅動命令,且驅動運算單元120疊加直流激磁電壓命令Vdc及第二電壓分量Vβ的範例。It should be noted that FIG. 2 of the present disclosure is only used to describe an example in which the first voltage component Vα is selected as the first driving command, and the driving operation unit 120 superimposes the DC excitation voltage command Vdc and the first voltage component Vα. To simplify the description of the present disclosure, an example in which the second voltage component Vβ is selected as the first driving command and the driving operation unit 120 superimposes the DC excitation voltage command Vdc and the second voltage component Vβ is not repeated.

於步驟S303中,驅動運算單元120產生三相激磁電流Ia、Ib、Ic,來驅動同步馬達200旋轉至旋轉位置而停止。如第2圖所示,驅動運算單元120包括二相轉三相轉換器121及PWM調變電路122。其中,二相轉三相轉換器121接收激磁驅動電壓Vt及第二電壓分量Vβ(即第二驅動命令)後,二相轉三相轉換器121產生三相電壓Va、Vb、Vc。PWM調變電路122切換三相電壓Va、Vb、Vc,而產生三相電流Ia、Ib、Ic。或者,在其他的實施例中,二相轉三相轉換器121接收激磁驅動電壓Vt及第一電壓分量Vα(即第二驅動命令)後,二相轉三相轉換器121產生三相電壓Va、Vb、Vc。PWM調變電路122切換三相電壓Va、Vb、Vc,而產生三相電流Ia、Ib、Ic。In step S303 , the driving arithmetic unit 120 generates three-phase excitation currents Ia, Ib, and Ic to drive the synchronous motor 200 to rotate to a rotating position and stop. As shown in FIG. 2 , the driving operation unit 120 includes a two-phase to three-phase converter 121 and a PWM modulation circuit 122 . The two-phase-to-three-phase converter 121 generates three-phase voltages Va, Vb, Vc after receiving the excitation driving voltage Vt and the second voltage component Vβ (ie, the second driving command). The PWM modulation circuit 122 switches the three-phase voltages Va, Vb, and Vc to generate three-phase currents Ia, Ib, and Ic. Alternatively, in other embodiments, after the two-phase-to-three-phase converter 121 receives the excitation driving voltage Vt and the first voltage component Vα (ie, the second driving command), the two-phase-to-three-phase converter 121 generates the three-phase voltage Va , Vb, Vc. The PWM modulation circuit 122 switches the three-phase voltages Va, Vb, and Vc to generate three-phase currents Ia, Ib, and Ic.

在一些實施例中,驅動運算單元120接收直流激磁電壓命令Vdc的目的是:讓同步馬達200輸出的轉矩為零,以致於同步馬達200停止於所設定的旋轉位置。一般來說,同步馬達的轉矩方程式,如方程式(7)所示:In some embodiments, the purpose of receiving the DC excitation voltage command Vdc by the driving operation unit 120 is to make the output torque of the synchronous motor 200 zero, so that the synchronous motor 200 stops at the set rotational position. In general, the torque equation for a synchronous motor is shown in equation (7):

Figure 02_image015
(7)
Figure 02_image015
(7)

方程式(7)中,

Figure 02_image017
為同步馬達輸出的轉矩,P為同步馬達的極數,
Figure 02_image019
為同步座標軸的交軸電流,
Figure 02_image021
為同步座標軸的直軸電流,Ld代表直軸電感量,Lq代表交軸電感量,
Figure 02_image023
為轉子磁通等效至定子磁通。 In equation (7),
Figure 02_image017
is the output torque of the synchronous motor, P is the number of poles of the synchronous motor,
Figure 02_image019
is the quadrature current of the synchronous coordinate axis,
Figure 02_image021
is the direct-axis current of the synchronous coordinate axis, Ld represents the direct-axis inductance, Lq represents the quadrature-axis inductance,
Figure 02_image023
Equivalent to the rotor flux to the stator flux.

將方程式(7)轉換成靜止座標軸(α軸及β軸),且假設估測值θv為零度,可以得到方程式(8),如下所示:Converting equation (7) into stationary coordinate axes (α-axis and β-axis), and assuming that the estimated value θv is zero degrees, equation (8) can be obtained as follows:

Figure 02_image025
(8)
Figure 02_image025
(8)

由方程式(8)中,一般的同步馬達的控制裝置可以依據直流激磁電壓,控制同步馬達的轉子運轉至旋轉位置而停止。因此,於本揭示內容中,同步馬達200(磁阻馬達)也可以運用相同的前述原理,使得同步馬達200的轉子運轉至旋轉位置而停止。另外,由方程式(8)可知,基於磁阻馬達的結構特性,磁阻馬達的直軸電感量Ld不同於交軸電感量Lq。因此,方程式(8)中的輸出轉矩包含磁鐵成分產生的電磁轉矩及電感差異(Ld、Lq)產生的磁阻轉矩。當進行直流激磁(步驟S303)時,由於兩種不同轉矩的合成,使得在轉矩為零時,估測座標軸(δ軸、γ軸)與實際的同步座標軸(d軸及q軸)之間的角度不會為零。From equation (8), the control device of a general synchronous motor can control the rotor of the synchronous motor to rotate to a rotating position and stop according to the DC excitation voltage. Therefore, in the present disclosure, the synchronous motor 200 (reluctance motor) can also use the same aforementioned principle to make the rotor of the synchronous motor 200 rotate to a rotating position and then stop. In addition, as can be seen from equation (8), based on the structural characteristics of the reluctance motor, the direct-axis inductance Ld of the reluctance motor is different from the quadrature-axis inductance Lq. Therefore, the output torque in Equation (8) includes the electromagnetic torque generated by the magnet component and the reluctance torque generated by the inductance difference (Ld, Lq). When performing DC excitation (step S303 ), due to the synthesis of two different torques, when the torque is zero, the difference between the estimated coordinate axis (δ axis, γ axis) and the actual synchronous coordinate axis (d axis and q axis) The angle between them will not be zero.

於步驟S304中,回授運算單元130擷取三相激磁電流Ia、Ib、Ic,並且依據三相激磁電流Ia、Ib、Ic建立估測座標軸,以計算估測電流訊號(包含:估測直軸電流Iδ及估測交軸電流Iγ),其中估測電流訊號的一電流分量係相應於穩態電壓值。特別注意,由於估測電壓命令及估測電流訊號對應同一估測座標軸上且馬達已被停止(步驟S303),所以估測直軸電流Iδ相應於估測直軸電壓Vδ,且估測交軸電流Iγ相應於估測交軸電壓Vγ。如果角度誤差Θer(第1B圖)很小,則估測座標軸(δ軸、γ)與同步座標軸(d軸、q軸)可視為對齊。當估測座標軸與同步座標軸對齊時,相應於穩態電壓值的估測交軸電流Iγ(即:當估測交軸電壓Vγ被調整為穩態電壓值時)是觀測不到相近估測直軸電壓Vδ的高頻交流訊號之頻率。因此,估測交軸電流Iγ維持於穩態電流值。反之,如果角度誤差Θer(第1B圖)很大,則估測座標軸(δ軸、γ)與同步座標軸(d軸、q軸)沒有對齊。當估測座標軸與同步座標軸沒有對齊時,相應於穩態電壓值的估測交軸電流Iγ(即:當估測交軸電壓Vγ被調整為穩態電壓值時)觀測得到相近估測直軸電壓Vδ的高頻交流訊號的頻率。In step S304, the feedback operation unit 130 captures the three-phase excitation currents Ia, Ib, and Ic, and establishes an estimated coordinate axis according to the three-phase excitation currents Ia, Ib, and Ic, so as to calculate the estimated current signal (including: estimated direct current signal). shaft current Iδ and estimated quadrature-axis current Iγ), wherein a current component of the estimated current signal corresponds to a steady-state voltage value. Note that since the estimated voltage command and the estimated current signal correspond to the same estimated coordinate axis and the motor has been stopped (step S303 ), the estimated direct-axis current Iδ corresponds to the estimated direct-axis voltage Vδ, and the estimated quadrature axis The current Iγ corresponds to the estimated quadrature axis voltage Vγ. If the angle error Θer (Fig. 1B) is small, the estimated coordinate axes (δ axis, γ) and the synchronous coordinate axis (d axis, q axis) can be regarded as aligned. When the estimated coordinate axis is aligned with the synchronous coordinate axis, the estimated quadrature axis current Iγ corresponding to the steady-state voltage value (ie: when the estimated quadrature axis voltage Vγ is adjusted to the steady-state voltage value) is not observed close to the estimated direct current value. The frequency of the high frequency AC signal of the shaft voltage Vδ. Therefore, the estimated quadrature-axis current Iγ is maintained at the steady-state current value. Conversely, if the angle error Θer (Fig. 1B) is large, the estimated coordinate axes (δ axis, γ) and the synchronous coordinate axes (d axis, q axis) are not aligned. When the estimated coordinate axis is not aligned with the synchronous coordinate axis, the estimated quadrature axis current Iγ corresponding to the steady-state voltage value (ie: when the estimated quadrature axis voltage Vγ is adjusted to the steady-state voltage value) is observed to obtain a similar estimated quadrature axis. The frequency of the high frequency AC signal of the voltage Vδ.

特別注意的是,如果馬達沒有被停止,估測電壓命令及估測電流訊號之間會出現耦合量,以致於估測直軸電流Iδ無法準確地相應估測直軸電壓Vδ,且估測交軸電流Iγ無法準確地相應估測交軸電壓Vγ。因此,如果控制運算單元110調整估測交軸電壓Vγ為穩態電壓值(步驟S301),則估測交軸電流Iγ相應於穩態電壓值。相對地,如果控制運算單元110調整估測直軸電壓Vδ為穩態電壓值(步驟S301),則估測直軸電流Iδ相應於穩態電壓值。It should be noted that, if the motor is not stopped, there will be a coupling between the estimated voltage command and the estimated current signal, so that the estimated direct-axis current Iδ cannot accurately estimate the direct-axis voltage Vδ, and the estimated AC The axis current Iγ cannot accurately estimate the quadrature axis voltage Vγ accordingly. Therefore, if the control arithmetic unit 110 adjusts the estimated quadrature-axis voltage Vγ to be the steady-state voltage value (step S301 ), the estimated quadrature-axis current Iγ corresponds to the steady-state voltage value. On the other hand, if the control arithmetic unit 110 adjusts the estimated direct-axis voltage Vδ to be the steady-state voltage value (step S301 ), the estimated direct-axis current Iδ corresponds to the steady-state voltage value.

如第2圖所示,回授運算單元130包括電流感測處理單元131、三相轉二相轉換器132及位置估測器133。其中,電流感測處理單元131會擷取三相激磁電流Ia、Ib、Ic的交流分量,而輸出回授交流訊號分量Ia_ac~Ic_ac給三相轉二相轉換器132。As shown in FIG. 2 , the feedback operation unit 130 includes a current sensing processing unit 131 , a three-phase to two-phase converter 132 and a position estimator 133 . The current sensing processing unit 131 captures the AC components of the three-phase excitation currents Ia, Ib, and Ic, and outputs the feedback AC signal components Ia_ac to Ic_ac to the three-phase-to-two-phase converter 132 .

三相轉二相轉換器132依據回授交流訊號分量Ia_ac~Ic_ac,建立估測座標軸,以計算出估測電流訊號(Iδ、Iγ)。由於三相轉二相轉換器132的運作原理為本領域之技術人員所熟知的技術,故本揭示內容不再贅述。在一些實施例中,電流感測處理單元131包括複數個電流感測器(未圖示),且每一複數個電流感測器分別用來擷取回授交流訊號分量Ia_ac~Ic_ac。The three-phase to two-phase converter 132 establishes an estimated coordinate axis according to the feedback AC signal components Ia_ac~Ic_ac, so as to calculate the estimated current signals (Iδ, Iγ). Since the operation principle of the three-phase-to-two-phase converter 132 is well known to those skilled in the art, the content of this disclosure will not be repeated. In some embodiments, the current sensing processing unit 131 includes a plurality of current sensors (not shown), and each of the plurality of current sensors is used to capture the feedback AC signal components Ia_ac˜Ic_ac respectively.

於步驟S305中,位置估測器133判斷相應於穩態電壓值的電流分量是否維持於穩態電流值。理論上,如果控制運算單元110調整估測交軸電壓Vγ為穩態電壓值(步驟S301),則估測交軸電流Iγ應維持於穩態電流值。相對地,如果控制運算單元110調整估測直軸電壓Vδ為穩態電壓值(步驟S301),則估測直軸電流Iδ應維持於穩態電流值。In step S305, the position estimator 133 determines whether the current component corresponding to the steady-state voltage value is maintained at the steady-state current value. Theoretically, if the control arithmetic unit 110 adjusts the estimated quadrature-axis voltage Vγ to a steady-state voltage value (step S301 ), the estimated quadrature-axis current Iγ should be maintained at the steady-state current value. On the other hand, if the control arithmetic unit 110 adjusts the estimated direct-axis voltage Vδ to be the steady-state voltage value (step S301 ), the estimated direct-axis current Iδ should be maintained at the steady-state current value.

然而,如第1A圖所示,由於同步座標軸(用以代表轉子實際位置)及估測座標軸之間存在角度誤差(即:轉子之實際位置Θa),所以造成相應於穩態電壓值的電流分量包含高頻交流訊號,而無法維持於穩態電流值。例如:如果控制運算單元110調整估測交軸電壓Vγ為穩態電壓值,則估測交軸電流Iγ包含高頻交流訊號。相同地,如果控制運算單元110調整估測直軸電壓Vδ為穩態電壓值,則估測直軸電流Iδ包含高頻交流訊號。如果位置估測器133判斷相應於穩態電壓值的電流分量(估測直軸電流Iδ或估測交軸電流Iγ)沒有維持於穩態電流值,則馬達控制裝置100進入步驟S306。However, as shown in Fig. 1A, due to the angular error between the synchronous coordinate axis (used to represent the actual position of the rotor) and the estimated coordinate axis (ie: the actual position of the rotor Θa), the current component corresponding to the steady-state voltage value is caused Contains high-frequency AC signals, and cannot maintain a steady-state current value. For example, if the control arithmetic unit 110 adjusts the estimated quadrature-axis voltage Vγ to be a steady-state voltage value, the estimated quadrature-axis current Iγ includes a high-frequency AC signal. Similarly, if the control operation unit 110 adjusts the estimated direct-axis voltage Vδ to be a steady-state voltage value, the estimated direct-axis current Iδ includes a high-frequency AC signal. If the position estimator 133 determines that the current component (the estimated direct-axis current Iδ or the estimated quadrature-axis current Iγ) corresponding to the steady-state voltage value is not maintained at the steady-state current value, the motor control apparatus 100 proceeds to step S306 .

於步驟S306中,位置估測器133依據估測電流訊號(Iδ及Iγ),計算同步馬達200的旋轉位置的估測值Θv給控制運算單元110及三相轉二相轉換器132。其中,三相轉二相轉換器132依據估測值Θv,調整估測電流訊號的估測直軸電流Iδ及估測交軸電流Iγ,以提升估測值Θv的精準度。In step S306 , the position estimator 133 calculates the estimated value Θv of the rotational position of the synchronous motor 200 to the control arithmetic unit 110 and the three-phase to two-phase converter 132 according to the estimated current signals (Iδ and Iγ). The three-phase to two-phase converter 132 adjusts the estimated direct-axis current Iδ and the estimated quad-axis current Iγ of the estimated current signal according to the estimated value Θv, so as to improve the accuracy of the estimated value Θv.

承上所述,位置估測器133依據估測直軸電流Iδ或估測交軸電流Iγ,計算同步馬達200的旋轉位置的估測值Θv。其中計算方式是參考文獻:Chen, J., Tseng, S., & Liu, T. (2012). Implementation of high-performance sensorless interior permanent-magnet synchronous motor control systems using a high-frequency injection technique. IET Electric Power Applications, 6(8), 533. doi:10.1049/iet-epa.2011.0303。因此,本揭示內容不再贅述其計算方式,但本揭示內容不限於此。As mentioned above, the position estimator 133 calculates the estimated value Θv of the rotational position of the synchronous motor 200 according to the estimated direct-axis current Iδ or the estimated quadrature-axis current Iγ. The calculation method is the reference: Chen, J., Tseng, S., & Liu, T. (2012). Implementation of high-performance sensorless interior permanent-magnet synchronous motor control systems using a high-frequency injection technique. IET Electric Power Applications, 6(8), 533. doi:10.1049/iet-epa.2011.0303. Therefore, the present disclosure will not repeat its calculation method, but the present disclosure is not limited thereto.

於步驟S307中,控制運算單元110依據旋轉位置的估測值Θv,調整估測電壓命令的另一電壓分量,使得相應穩態電壓值的電流分量維持於穩態電流值。舉例說明,當控制運算單元110調整估測直軸電壓Vδ為穩態電壓值時,控制運算單元110依據旋轉位置的估測值Θv調整估測交軸電壓Vγ,使得相應穩態電壓值的估測直軸電流Iδ維持於穩態電流值。In step S307, the control arithmetic unit 110 adjusts another voltage component of the estimated voltage command according to the estimated value Θv of the rotational position, so that the current component of the corresponding steady-state voltage value is maintained at the steady-state current value. For example, when the control arithmetic unit 110 adjusts the estimated direct-axis voltage Vδ to be a steady-state voltage value, the control and arithmetic unit 110 adjusts the estimated quadrature-axis voltage Vγ according to the estimated value Θv of the rotational position, so that the estimated value of the corresponding steady-state voltage value is estimated. The measured direct axis current Iδ is maintained at the steady state current value.

或著,在其他的實施例中,當控制運算單元110調整估測交軸電壓Vγ為穩態電壓值時,控制運算單元110依據旋轉位置的估測值Θv調整估測直軸電壓Vδ,使得相應穩態電壓值的估測交軸電流Iγ維持於穩態電流值。當馬達控制裝置100完成步驟S307時,馬達控制裝置100回到步驟S305:位置估測器133判斷相應於穩態電壓值的電流分量是否維持於穩態電流值。Or, in other embodiments, when the control arithmetic unit 110 adjusts the estimated quadrature axis voltage Vγ to be a steady-state voltage value, the control arithmetic unit 110 adjusts the estimated quadrature axis voltage Vδ according to the estimated value Θv of the rotational position, such that The estimated quadrature axis current Iγ corresponding to the steady-state voltage value is maintained at the steady-state current value. When the motor control device 100 completes step S307, the motor control device 100 returns to step S305: the position estimator 133 determines whether the current component corresponding to the steady-state voltage value is maintained at the steady-state current value.

其中當位置估測器133判斷相應於穩態電壓值的電流分量維持穩態電流值時,馬達控制裝置100進入步驟S308。When the position estimator 133 determines that the current component corresponding to the steady-state voltage value maintains the steady-state current value, the motor control device 100 proceeds to step S308 .

在步驟S308中,控制運算單元110依據穩態電壓值、估測電壓命令的另一電壓分量、穩態電流值及估測電流訊號的另一電流分量,計算該同步馬達的有效電感量(直軸電感量Ld或交軸電感量Lq)。請參閱下方表格1所示,來說明調整各個參數的計算方式: 穩態電壓值 另一電壓分量 穩態電流值 另一電流分量 有效電感量 估測交軸電壓Vγ 估測直軸電壓Vδ 估測交軸電流Iγ 估測直軸電流Iδ 直軸電感量Ld 估測直軸電壓Vδ 估測交軸電壓Vγ 估測直軸電流Iδ 估測交軸電流Iγ 交軸電感量Lq 表1 In step S308, the control arithmetic unit 110 calculates the effective inductance (direct current) of the synchronous motor according to the steady-state voltage value, another voltage component of the estimated voltage command, the steady-state current value, and another current component of the estimated current signal. Axial inductance Ld or quadrature inductance Lq). Please refer to Table 1 below to illustrate the calculation method for adjusting each parameter: steady state voltage another voltage component Steady state current value another current component Effective inductance Estimated quadrature axis voltage Vγ Estimated direct axis voltage Vδ Estimated quadrature axis current Iγ Estimated direct axis current Iδ Direct axis inductance Ld Estimated direct axis voltage Vδ Estimated quadrature axis voltage Vγ Estimated direct axis current Iδ Estimated quadrature axis current Iγ Quadrature axis inductance Lq Table 1

由上方表1可知,如果控制運算單元110選擇估測交軸電壓Vγ為被調整為穩態電壓值的電壓分量(即:當估測交軸電壓Vγ被調整為穩態電壓值時),則:估測電壓命令的另一電壓分量係估測直軸電壓Vδ;相應於穩態電壓值的電流分量係估測交軸電流Iγ;估測電流訊號的另一電流分量係估測直軸電流Iδ;以及計算出的有效電感量為直軸電感量Ld。As can be seen from Table 1 above, if the control arithmetic unit 110 selects the estimated quadrature-axis voltage Vγ as the voltage component adjusted to the steady-state voltage value (ie: when the estimated quadrature-axis voltage Vγ is adjusted to the steady-state voltage value), then : The other voltage component of the estimated voltage command is to estimate the direct-axis voltage Vδ; the current component corresponding to the steady-state voltage value is to estimate the quadrature-axis current Iγ; the other current component of the estimated current signal is to estimate the direct-axis current Iδ; and the calculated effective inductance is the direct-axis inductance Ld.

如果控制運算單元110選擇估測直軸電壓Vδ為被調整為穩態電壓值的電壓分量(即:當估測直軸電壓Vδ被調整為穩態電壓值時),則:估測電壓命令的另一電壓分量係估測交軸電壓Vγ;相應於穩態電壓值的電流分量係估測直軸電流Iδ;估測電流訊號的另一電流分量係估測交軸電流Iγ;以及計算出的有效電感量為交軸電感量Lq。If the control arithmetic unit 110 selects the estimated direct-axis voltage Vδ as the voltage component adjusted to the steady-state voltage value (ie: when the estimated direct-axis voltage Vδ is adjusted to the steady-state voltage value), then: The other voltage component is the estimated quadrature axis voltage Vγ; the current component corresponding to the steady state voltage value is the estimated quadrature axis current Iδ; the other current component of the estimated current signal is the estimated quadrature axis current Iγ; and the calculated The effective inductance is the quadrature inductance Lq.

在較佳的實施例中,穩態電壓值為零,但本揭示內容不限於此。特別注意的是,在步驟S303中,驅動運算單元將直流激磁命令Vdc加入靜止座標軸(Vα、Vβ)中。由於直流激磁命令Vdc的因素,當估測交軸電壓Vγ被調整為零時,估測交軸電流Iγ維持於非零的穩態電流值。相同地,由於直流激磁命令Vdc的因素,當估測直軸電壓Vδ被調整為零時,估測直軸電流Iδ維持於非零的穩態電流值。In a preferred embodiment, the steady-state voltage value is zero, but the present disclosure is not limited thereto. It should be noted that, in step S303, the drive arithmetic unit adds the DC excitation command Vdc to the stationary coordinate axes (Vα, Vβ). Due to the factor of the DC excitation command Vdc, when the estimated quadrature axis voltage Vγ is adjusted to zero, the estimated quadrature axis current Iγ is maintained at a non-zero steady-state current value. Likewise, due to the DC excitation command Vdc, when the estimated direct-axis voltage Vδ is adjusted to zero, the estimated direct-axis current Iδ is maintained at a non-zero steady-state current value.

第4圖為根據本揭示內容之部份實施例之馬達控制裝置的示意圖。第5A圖為根據本揭示內容之部份實施例之馬達控制方法的流程圖。第5B圖為根據本揭示內容之部份實施例之產生三相激磁電流的方法的流程圖。請同時參閱第4圖、第5A圖及第5B圖,來說明以下各個實施例。FIG. 4 is a schematic diagram of a motor control apparatus according to some embodiments of the present disclosure. 5A is a flowchart of a motor control method according to some embodiments of the present disclosure. 5B is a flowchart of a method of generating a three-phase excitation current according to some embodiments of the present disclosure. Please refer to FIG. 4 , FIG. 5A and FIG. 5B at the same time to describe the following embodiments.

本揭示內容提出一種馬達控制方法500,且馬達控制方法500適用於有位置感測器140(例如:編碼器)的同步馬達200,且位置感測器140耦接於同步馬達200。馬達控制方法500是被馬達控制裝置100所執行,且馬達控制方法500包含:步驟S501~S508。The present disclosure provides a motor control method 500 , and the motor control method 500 is suitable for a synchronous motor 200 having a position sensor 140 (eg, an encoder), and the position sensor 140 is coupled to the synchronous motor 200 . The motor control method 500 is executed by the motor control device 100, and the motor control method 500 includes steps S501-S508.

其中步驟S501~S505的操作方法,相同於步驟S301~S305。故,本揭示內容不再贅述。The operation methods of steps S501 to S505 are the same as those of steps S301 to S305. Therefore, the content of this disclosure will not be repeated here.

在步驟S506中,位置感測器140量測同步馬達200的轉子210的旋轉位置,並輸出量測值Θm給回授運算單元130的位置估測器133。因此,回授運算單元130的位置估測器133藉由位置感測器140取得旋轉位置的量測值Θm。接著,位置估測器133輸出旋轉位置的量測值Θm給控制運算單元110。此外,當馬達控制裝置100執行步驟S506時,回授運算單元130仍會擷取同步馬達200的三相激磁電流Ia~Ic的回授交流訊號分量Ia_ac~ Ic_ac,來計算出估測電流訊號(Iδ、Iγ)(同於步驟S304,故不再贅述)。In step S506 , the position sensor 140 measures the rotational position of the rotor 210 of the synchronous motor 200 and outputs the measured value Θm to the position estimator 133 of the feedback operation unit 130 . Therefore, the position estimator 133 of the feedback operation unit 130 obtains the measured value Θm of the rotational position through the position sensor 140 . Next, the position estimator 133 outputs the measured value Θm of the rotational position to the control arithmetic unit 110 . In addition, when the motor control device 100 executes step S506, the feedback computing unit 130 still captures the feedback AC signal components Ia_ac~Ic_ac of the three-phase excitation currents Ia~Ic of the synchronous motor 200 to calculate the estimated current signal ( Iδ, Iγ) (same as step S304, so it is not repeated here).

特別注意的是,依據不同的情況,位置感測器140可以設置於馬達控制裝置100的內部或者外部,但本揭示內容不限於此。It is particularly noted that, according to different situations, the position sensor 140 may be disposed inside or outside the motor control device 100 , but the present disclosure is not limited thereto.

在步驟S507中,控制運算單元110依據旋轉位置的量測值Θm,調整估測電壓命令的另一電壓分量,使得相應穩態電壓值的電流分量維持於穩態電流值(方法相近於步驟S307)。其中步驟S507~S508的操作方法,相同於步驟S307及S308。故,本揭示內容不再贅述。In step S507, the control arithmetic unit 110 adjusts another voltage component of the estimated voltage command according to the measured value Θm of the rotational position, so that the current component of the corresponding steady-state voltage value is maintained at the steady-state current value (the method is similar to that of step S307). ). The operation methods of steps S507 to S508 are the same as those of steps S307 and S308. Therefore, the content of this disclosure will not be repeated here.

因此,在有位置感測器140的同步馬達200中,馬達控制裝置100同樣能根據第3圖所示的步驟,當相應穩態電壓值的電流分量維持於穩態電流值時,根據直軸電壓Vδ、交軸電壓Vγ、直軸電流訊號Iδ及交軸電流訊號Iγ,計算同步馬達200之直軸電感量或交軸電感量。馬達控制裝置100是透過位置感測器140量測同步馬達200的旋轉位置,而不是透過估測電流訊號(Iδ、Iγ)評估同步馬達200的旋轉位置。因此,於此實施例中,馬達控制裝置100可以省略複雜的計算,且能更有效地減少轉子之實際位置Θa所造成的影響。Therefore, in the synchronous motor 200 having the position sensor 140, the motor control device 100 can also follow the steps shown in FIG. 3, when the current component corresponding to the steady-state voltage value is maintained at the steady-state current value, according to The voltage Vδ, the quadrature axis voltage Vγ, the direct axis current signal Iδ and the quadrature axis current signal Iγ are used to calculate the direct axis inductance or quadrature axis inductance of the synchronous motor 200 . The motor control device 100 measures the rotational position of the synchronous motor 200 through the position sensor 140 instead of evaluating the rotational position of the synchronous motor 200 by estimating the current signals (Iδ, Iγ). Therefore, in this embodiment, the motor control device 100 can omit the complicated calculation, and can more effectively reduce the influence caused by the actual position Θa of the rotor.

綜上所述,本揭示內容的重點在於依據估測電壓命令,計算出激磁角度值,並且控制同步馬達200的轉子運轉至旋轉位置而停止。接著,藉由偵測或計算同步馬達200的轉子位置,來減少轉子位置及激磁角度值之間位置誤差。如此一來,本揭示內容可以更精準地計算同步馬達200之直軸電感量或交軸電感量。To sum up, the key point of the present disclosure is to calculate the excitation angle value according to the estimated voltage command, and to control the rotor of the synchronous motor 200 to rotate to the rotating position and then stop. Next, by detecting or calculating the rotor position of the synchronous motor 200, the position error between the rotor position and the excitation angle value is reduced. In this way, the present disclosure can more accurately calculate the direct-axis inductance or the quadrature-axis inductance of the synchronous motor 200 .

前述各實施例中的各項元件、方法步驟或技術特徵,係可相互結合,而不以本發明內容中的文字描述順序或圖式呈現順序為限。The various elements, method steps or technical features in the foregoing embodiments can be combined with each other, and are not limited by the order of text description or the order of presentation of the drawings in the content of the present disclosure.

雖然本發明內容已以實施方式揭露如上,然其並非用以限定本發明內容,任何熟習此技藝者,在不脫離本發明內容之精神和範圍內,當可作各種更動與潤飾,因此本發明內容之保護範圍當視後附之申請專利範圍所界定者為準。Although the content of the present invention has been disclosed in the above embodiments, it is not intended to limit the content of the present invention. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the content of the present invention. Therefore, the present invention The scope of protection of the content shall be determined by the scope of the appended patent application.

100:馬達控制裝置 110:控制運算單元 111:座標轉換器 112:電感運算單元 120:驅動運算單元 121:二相轉三相轉換器 122:PWM調變電路 130:回授運算單元 131:電流感測處理單元 132:三相轉二相轉換器 133:位置估測器 140:位置感測器 200:同步馬達 210:轉子 220:定子 Vδ:估測直軸電壓 Vγ:估測交軸電壓 Vdc:直流激磁電壓命令: Vα:第一電壓分量 Vβ:第二電壓分量 Vt:激磁驅動電壓 Va-Vc:三相驅動電壓 Ia~Ic:三相激磁電流 Ia_ac:回授交流訊號分量 Ib_ac:回授交流訊號分量 Ic_ac:回授交流訊號分量 Iδ:估測直軸電流 Iγ:估測交軸電流 Θv:估測值 Θm:量測值 Θer:角度誤差 Ld:直軸電感量 Lq:交軸電感量 300、500:馬達控制方法 S301-S308:步驟 S3031-S3034:步驟 S501-S508:步驟 S5031-S5034:步驟100: Motor control device 110: Control arithmetic unit 111: Coordinate Converter 112: Inductance operation unit 120: Drive arithmetic unit 121: Two-phase to three-phase converter 122: PWM modulation circuit 130: Feedback operation unit 131: Current Sensing Processing Unit 132: Three-phase to two-phase converter 133: Position Estimator 140: Position Sensor 200: Synchronous motor 210: Rotor 220: Stator Vδ: estimated direct axis voltage Vγ: Estimated quadrature axis voltage Vdc: DC excitation voltage Command: Vα: first voltage component Vβ: the second voltage component Vt: excitation drive voltage Va-Vc: Three-phase driving voltage Ia~Ic: Three-phase excitation current Ia_ac: Feedback AC signal component Ib_ac: Feedback AC signal component Ic_ac: Feedback AC signal component Iδ: estimated direct axis current Iγ: estimated quadrature axis current Θv: estimated value Θm: measured value Θer: angle error Ld: direct axis inductance Lq: quadrature axis inductance 300, 500: Motor control method S301-S308: Steps S3031-S3034: Steps S501-S508: Steps S5031-S5034: Steps

第1A圖為根據傳統的技術繪示之座標軸轉換的示意圖。 第1B圖為根據本揭示內容之部份實施例之座標轉換示意圖。 第2圖為根據本揭示內容之部份實施例之馬達控制裝置的示意圖。 第3A圖為根據本揭示內容之部份實施例之馬達控制方法的流程圖。 第3B圖為根據本揭示內容之部份實施例之產生三相激磁電流的方法的流程圖。 第4圖為根據本揭示內容之部份實施例之馬達控制裝置的示意圖。 第5A圖為根據本揭示內容之部份實施例之馬達控制方法的流程圖。 第5B圖為根據本揭示內容之部份實施例之產生三相激磁電流的方法的流程圖。 FIG. 1A is a schematic diagram of coordinate axis transformation according to a conventional technique. FIG. 1B is a schematic diagram of coordinate conversion according to some embodiments of the present disclosure. FIG. 2 is a schematic diagram of a motor control apparatus according to some embodiments of the present disclosure. 3A is a flowchart of a motor control method according to some embodiments of the present disclosure. 3B is a flowchart of a method of generating a three-phase excitation current according to some embodiments of the present disclosure. FIG. 4 is a schematic diagram of a motor control apparatus according to some embodiments of the present disclosure. 5A is a flowchart of a motor control method according to some embodiments of the present disclosure. 5B is a flowchart of a method of generating a three-phase excitation current according to some embodiments of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date and number) none Foreign deposit information (please note in the order of deposit country, institution, date and number) none

300:馬達控制方法 300: Motor Control Method

S301-S308:步驟 S301-S308: Steps

Claims (14)

一種馬達控制方法,用於一無位置感測器的一同步馬達,其中該馬達控制方法包含: 調整一估測電壓命令的一電壓分量為一穩態電壓值; 對該估測電壓命令的另一電壓分量及該穩態電壓值進行座標軸轉換,而產生一二軸電壓命令; 依據一直流激磁電壓命令及該二軸電壓命令,產生一三相激磁電流來驅動該同步馬達旋轉至一旋轉位置而停止; 擷取該三相激磁電流來計算一估測電流訊號,其中該估測電流訊號的一電流分量係相應於該穩態電壓值; 當判斷該電流分量沒有維持於一穩態電流值時,依據該估測電流訊號計算該旋轉位置的一估測值; 依據該旋轉位置的該估測值,調整該估測電壓命令的該另一電壓分量,使得相應該穩態電壓值的該電流分量維持於該穩態電流值;以及 當判斷該電流分量維持該穩態電流值時,依據該穩態電壓值、該估測電壓命令的該另一電壓分量、該穩態電流值及該估測電流訊號的另一電流分量,計算該同步馬達的一有效電感量。 A motor control method for a synchronous motor without a position sensor, wherein the motor control method comprises: adjusting a voltage component of an estimated voltage command to a steady-state voltage value; performing coordinate axis transformation on another voltage component of the estimated voltage command and the steady-state voltage value to generate a two-axis voltage command; According to the DC excitation voltage command and the two-axis voltage command, a three-phase excitation current is generated to drive the synchronous motor to rotate to a rotation position and stop; extracting the three-phase excitation current to calculate an estimated current signal, wherein a current component of the estimated current signal corresponds to the steady-state voltage value; when it is determined that the current component is not maintained at a steady-state current value, calculating an estimated value of the rotational position according to the estimated current signal; adjusting the other voltage component of the estimated voltage command according to the estimated value of the rotational position so that the current component corresponding to the steady-state voltage value is maintained at the steady-state current value; and When it is determined that the current component maintains the steady-state current value, according to the steady-state voltage value, the other voltage component of the estimated voltage command, the steady-state current value and the other current component of the estimated current signal, calculate an effective inductance of the synchronous motor. 如請求項1所述之馬達控制方法,其中該二軸電壓命令包括一第一電壓分量及一第二電壓分量,且該馬達控制方法更包括: 選擇該第一電壓分量及該第二電壓分量的其中之一,以作為一第一驅動命令; 選擇該第一電壓分量及該第二電壓分量的另外一個,以作為一第二驅動命令; 疊加該直流激磁電壓命令及該第一驅動命令,以產生一激磁驅動電壓;以及 依據該激磁驅動電壓及該第二驅動命令,產生該三相激磁電流。 The motor control method of claim 1, wherein the two-axis voltage command includes a first voltage component and a second voltage component, and the motor control method further comprises: selecting the first voltage component and the second voltage component One of them as a first drive command; selecting the other one of the first voltage component and the second voltage component as a second driving command; superimposing the DC excitation voltage command and the first driving command to generate an excitation driving voltage; and The three-phase excitation current is generated according to the excitation driving voltage and the second driving command. 如請求項1所述之馬達控制方法,其中該估測電壓命令包括一估測直軸電壓及一估測交軸電壓,且該估測電流訊號包括一估測直軸電流及一估測交軸電流。The motor control method of claim 1, wherein the estimated voltage command includes an estimated direct-axis voltage and an estimated quad-axis voltage, and the estimated current signal includes an estimated direct-axis current and an estimated quad-axis voltage shaft current. 如請求項3所述之馬達控制方法,更包括: 依據該旋轉位置的該估測值,調整該估測電流訊號的該估測直軸電流及該估測交軸電流。 The motor control method as claimed in claim 3, further comprising: The estimated direct-axis current and the estimated quadrature-axis current of the estimated current signal are adjusted according to the estimated value of the rotational position. 如請求項3所述之馬達控制方法,其中該估測電壓命令的該估測交軸電壓被調整為該穩態電壓值,該估測電壓命令的該另一電壓分量係該估測直軸電壓;相應於該穩態電壓值的該電流分量係該估測交軸電流;該估測電流訊號的該另一電流分量係該估測直軸電流;以及該有效電感量為一直軸電感量。The motor control method of claim 3, wherein the estimated quadrature axis voltage of the estimated voltage command is adjusted to the steady-state voltage value, and the other voltage component of the estimated voltage command is the estimated direct axis voltage; the current component corresponding to the steady state voltage value is the estimated quadrature current; the other current component of the estimated current signal is the estimated direct axis current; and the effective inductance is the direct axis inductance . 如請求項3所述之馬達控制方法,其中該估測電壓命令的該估測直軸電壓被調整為該穩態電壓值, 該估測電壓命令的該另一電壓分量係該估測交軸電壓;相應於該穩態電壓值的該電流分量係該估測直軸電流;該估測電流訊號的該另一電流分量係該估測交軸電流;以及該有效電感量為一交軸電感量。 The motor control method of claim 3, wherein the estimated direct-axis voltage of the estimated voltage command is adjusted to the steady-state voltage value, The other voltage component of the estimated voltage command is the estimated quadrature axis voltage; the current component corresponding to the steady state voltage value is the estimated direct axis current; the other current component of the estimated current signal is the estimated quadrature current; and the effective inductance is a quadrature inductance. 如請求項1所述之馬達控制方法,其中該穩態電壓值為零。The motor control method of claim 1, wherein the steady state voltage value is zero. 一種馬達控制方法,用於一同步馬達,其中一位置感測器耦接於該同步馬達,且該馬達控制方法包括: 調整一估測電壓命令的一電壓分量為一穩態電壓值; 對該估測電壓命令的另一電壓分量及該穩態電壓值進行座標軸轉換,而產生一二軸電壓命令; 依據一直流激磁電壓命令及該二軸電壓命令,產生一三相激磁電流來驅動該同步馬達旋轉至一旋轉位置而停止; 擷取該三相激磁電流來計算一估測電流訊號,其中該估測電流訊號的一電流分量係相應於該穩態電壓值; 當判斷該電流分量沒有維持於一穩態電流值時,藉由該位置感測器取得該旋轉位置的一量測值; 依據該旋轉位置的該量測值,調整該估測電壓命令的該另一電壓分量,使得相應該穩態電壓值的該電流分量維持於該穩態電流值;以及 當判斷該電流分量維持該穩態電流值時,依據該穩態電壓值、該估測電壓命令的該另一電壓分量、該穩態電流值及該估測電流訊號的另一電流分量,計算該同步馬達的一有效電感量。 A motor control method for a synchronous motor, wherein a position sensor is coupled to the synchronous motor, and the motor control method includes: adjusting a voltage component of an estimated voltage command to a steady-state voltage value; performing coordinate axis transformation on another voltage component of the estimated voltage command and the steady-state voltage value to generate a two-axis voltage command; According to the DC excitation voltage command and the two-axis voltage command, a three-phase excitation current is generated to drive the synchronous motor to rotate to a rotation position and stop; extracting the three-phase excitation current to calculate an estimated current signal, wherein a current component of the estimated current signal corresponds to the steady-state voltage value; When it is determined that the current component is not maintained at a steady-state current value, a measurement value of the rotational position is obtained by the position sensor; adjusting the other voltage component of the estimated voltage command according to the measured value of the rotational position so that the current component corresponding to the steady-state voltage value is maintained at the steady-state current value; and When it is determined that the current component maintains the steady-state current value, according to the steady-state voltage value, the other voltage component of the estimated voltage command, the steady-state current value and the other current component of the estimated current signal, calculate an effective inductance of the synchronous motor. 如請求項8所述之馬達控制方法,其中該二軸電壓命令包括一第一電壓分量及一第二電壓分量,且該馬達控制方法更包括: 選擇該第一電壓分量及該第二電壓分量的其中之一,以作為一第一驅動命令; 選擇該第一電壓分量及該第二電壓分量的另外一個,以作為一第二驅動命令; 疊加該直流激磁電壓命令及該第一驅動命令,以產生一激磁驅動電壓;以及 依據該激磁驅動電壓及該第二驅動命令,產生該三相激磁電流。 The motor control method of claim 8, wherein the two-axis voltage command includes a first voltage component and a second voltage component, and the motor control method further includes: selecting one of the first voltage component and the second voltage component as a first drive command; selecting the other one of the first voltage component and the second voltage component as a second driving command; superimposing the DC excitation voltage command and the first driving command to generate an excitation driving voltage; and The three-phase excitation current is generated according to the excitation driving voltage and the second driving command. 如請求項8所述之馬達控制方法,其中該估測電壓命令包括一估測直軸電壓及一估測交軸電壓,且該估測電流訊號包括一估測直軸電流及一估測交軸電流。The motor control method of claim 8, wherein the estimated voltage command includes an estimated direct-axis voltage and an estimated quadrature-axis voltage, and the estimated current signal includes an estimated direct-axis current and an estimated quadrature-axis voltage shaft current. 如請求項10所述之馬達控制方法,更包括:    依據該旋轉位置的該量測值,調整該估測電流訊號的該估測直軸電流及該估測交軸電流。The motor control method of claim 10, further comprising: adjusting the estimated direct-axis current and the estimated quadrature-axis current of the estimated current signal according to the measured value of the rotational position. 如請求項10所述之馬達控制方法,其中該估測電壓命令的該估測交軸電壓被調整為該穩態電壓值, 該估測電壓命令的該另一電壓分量係該估測直軸電壓;相應於該穩態電壓值的該電流分量係該估測交軸電流;該估測電流訊號的該另一電流分量係該估測直軸電流;以及該有效電感量為一直軸電感量。The motor control method of claim 10, wherein the estimated quadrature axis voltage of the estimated voltage command is adjusted to the steady-state voltage value, and the other voltage component of the estimated voltage command is the estimated direct axis voltage; the current component corresponding to the steady state voltage value is the estimated quadrature current; the other current component of the estimated current signal is the estimated direct axis current; and the effective inductance is the direct axis inductance . 如請求項10所述之馬達控制方法,其中該估測電壓命令的該估測直軸電壓被調整為該穩態電壓值的該電壓分量,  該估測電壓命令的該另一電壓分量係該估測交軸電壓;相應於該穩態電壓值的該電流分量係該估測直軸電流;該估測電流訊號的該另一電流分量係該估測交軸電流;以及該有效電感量為一交軸電感量。The motor control method of claim 10, wherein the estimated direct-axis voltage of the estimated voltage command is adjusted to the voltage component of the steady-state voltage value, and the other voltage component of the estimated voltage command is the estimated quadrature axis voltage; the current component corresponding to the steady-state voltage value is the estimated quadrature axis current; the other current component of the estimated current signal is the estimated quadrature axis current; and the effective inductance is A quadrature inductance. 如請求項8所述之馬達控制方法,其中該穩態電壓值為零。The motor control method of claim 8, wherein the steady state voltage value is zero.
TW110118195A 2021-05-20 2021-05-20 Motor control method TWI760228B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110118195A TWI760228B (en) 2021-05-20 2021-05-20 Motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110118195A TWI760228B (en) 2021-05-20 2021-05-20 Motor control method

Publications (2)

Publication Number Publication Date
TWI760228B true TWI760228B (en) 2022-04-01
TW202247573A TW202247573A (en) 2022-12-01

Family

ID=82198760

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110118195A TWI760228B (en) 2021-05-20 2021-05-20 Motor control method

Country Status (1)

Country Link
TW (1) TWI760228B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201526520A (en) * 2013-09-13 2015-07-01 Thk Co Ltd Control apparatus of linear motor and method thereof
TW201611509A (en) * 2014-07-11 2016-03-16 Toshiba Kk Motor driving device and motor driving method
TW201613249A (en) * 2014-07-25 2016-04-01 Thk Co Ltd Linear motor device and control method
TW201620243A (en) * 2014-11-26 2016-06-01 Univ Lunghwa Sci & Technology Method for reducing electrical power conversion loss of switched reluctance motor
US20180254722A1 (en) * 2016-01-12 2018-09-06 Hitachi Automotive Systems, Ltd. Drive Device and Method for Three-Phase Brushless Motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201526520A (en) * 2013-09-13 2015-07-01 Thk Co Ltd Control apparatus of linear motor and method thereof
TW201611509A (en) * 2014-07-11 2016-03-16 Toshiba Kk Motor driving device and motor driving method
TW201613249A (en) * 2014-07-25 2016-04-01 Thk Co Ltd Linear motor device and control method
TW201620243A (en) * 2014-11-26 2016-06-01 Univ Lunghwa Sci & Technology Method for reducing electrical power conversion loss of switched reluctance motor
US20180254722A1 (en) * 2016-01-12 2018-09-06 Hitachi Automotive Systems, Ltd. Drive Device and Method for Three-Phase Brushless Motor

Also Published As

Publication number Publication date
TW202247573A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP5324159B2 (en) Motor control device
CN104052361B (en) Electric machine control system to compensate torque pulsation
KR101046802B1 (en) Control device of AC rotor and electric constant measurement method of AC rotor using this controller
JP2007110837A (en) Method for estimating magnetic pole position and motor controller
US20150226776A1 (en) Method and device for measuring inductance of permanent magnet synchronous motor, and permanent magnet synchronous motor
JP2008086129A (en) Ac motor controller and constant measurement apparatus
JPH10174499A (en) Sensorless control method for permanent magnet type synchronous motor, and device
JP2001204190A (en) Device for estimating initial magnetic pole position and its error adjustment method
JP2010041839A (en) Control device for permanent-magnet synchronous motor
JP3253004B2 (en) Method of estimating speed of permanent magnet type synchronous motor, method of estimating rotor misalignment angle, and method of correcting rotor position
JP2009171680A (en) Controller for permanent-magnet synchronous motors
JP2000312493A (en) Sensorless control system for permanent magnet synchronous motor
Song et al. Sensorless control of surface permanent magnet synchronous motor using a new method
JP5648310B2 (en) Synchronous motor control device and synchronous motor control method
JP2009290962A (en) Controller of permanent magnet type synchronous motor
TWI760228B (en) Motor control method
JP2013146155A (en) Winding temperature estimating device and winding temperature estimating method
JP2006158046A (en) Sensorless control method and apparatus of ac electric motor
JP5332305B2 (en) Control device for permanent magnet type synchronous motor
JP2011067066A (en) Controller for permanent magnet type synchronous motor
JP2011239518A (en) Method and apparatus for estimating position and speed of rotor of stepping motor
JP2020039227A (en) Drive unit of electric motor
JP3692085B2 (en) Motor control method and apparatus
US11606054B2 (en) Motor control method
JP2007082380A (en) Synchronous motor control device