TWI759950B - Method for making metal compound nanotubes - Google Patents
Method for making metal compound nanotubes Download PDFInfo
- Publication number
- TWI759950B TWI759950B TW109138795A TW109138795A TWI759950B TW I759950 B TWI759950 B TW I759950B TW 109138795 A TW109138795 A TW 109138795A TW 109138795 A TW109138795 A TW 109138795A TW I759950 B TWI759950 B TW I759950B
- Authority
- TW
- Taiwan
- Prior art keywords
- nanotubes
- metal
- seed layer
- layer
- metal oxide
- Prior art date
Links
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
一種金屬化合物奈米管的製作方法,沉積一厚度介於10nm~100nm的金屬晶種層在一基板上,再沉積一鋁層在該金屬晶種層上,且該金屬晶種層與該鋁層的材料不同。接著,以陽極氧化法對該鋁層形成一具有多個能讓該金屬晶種層露出的孔洞的陽極氧化鋁模板,並以陽極氧化法讓該金屬晶種層在該等孔洞中成長成金屬氧化物奈米管,隨後移除該陽極氧化鋁模板,以在該基板上形成該等金屬氧化物奈米管。最後,對該等金屬氧化物奈米管進行退火的同時,將一物質汽化以取代每一該金屬氧化物奈米管的氧元素,以讓該等金屬氧化物奈米管形成多個金屬化合物奈米管。A method for manufacturing a metal compound nanotube, which comprises depositing a metal seed layer with a thickness of 10 nm to 100 nm on a substrate, and then depositing an aluminum layer on the metal seed layer, and the metal seed layer and the aluminum The materials of the layers are different. Next, an anodized aluminum template having a plurality of holes for exposing the metal seed layer is formed on the aluminum layer by anodizing method, and the metal seed layer is grown into metal in the holes by anodizing method. oxide nanotubes, followed by removal of the anodized aluminum template to form the metal oxide nanotubes on the substrate. Finally, while the metal oxide nanotubes are annealed, a substance is vaporized to replace the oxygen element of each metal oxide nanotube, so that the metal oxide nanotubes form a plurality of metal compounds nanotubes.
Description
本發明是有關於一種奈米管的製作方法,特別是指一種金屬化合物奈米管的製作方法。The present invention relates to a method for fabricating nanotubes, in particular to a method for fabricating metal compound nanotubes.
三氧化鎢屬於過渡金屬氧化物半導體材料,其能帶寬度較窄(2.6~3.0 eV),在可見光範圍內具有良好的光催化特性,且鎢原子有不同氧化態(常見為W 4+、W 5+與W 6+),使其在氣體感測與電致變色等領域皆有廣闊的應用前景。 Tungsten trioxide is a transition metal oxide semiconductor material with narrow energy band width (2.6~3.0 eV), good photocatalytic properties in the visible light range, and tungsten atoms have different oxidation states (commonly W 4+ , W 5+ and W 6+ ), which make it have broad application prospects in the fields of gas sensing and electrochromic.
現有常透過陽極氧化鋁(andic aluminum oxide,AAO)奈米模板來形成三氧化鎢奈米柱,以作為後續例如氣體感測器元件等應用,然而,以此方式成長的三氧化鎢是多根奈米柱,其比表面積較差。At present, tungsten trioxide nanopillars are often formed through anodized aluminum oxide (AAO) nanotemplates for subsequent applications such as gas sensor elements. However, there are many tungsten trioxide grown in this way. Nanopillars have poor specific surface area.
因此,本發明的目的,即在提供一種金屬化合物奈米管的製作方法。Therefore, the purpose of the present invention is to provide a method for manufacturing metal compound nanotubes.
於是,本發明金屬化合物奈米管的製作方法事先沉積一厚度介於10nm~100nm的金屬晶種層在一基板上,再沉積一鋁層在該金屬晶種層上,且該金屬晶種層與該鋁層的材料不同。Therefore, the manufacturing method of the metal compound nanotube of the present invention deposits a metal seed crystal layer with a thickness of 10 nm-100 nm on a substrate in advance, and then deposits an aluminum layer on the metal seed crystal layer, and the metal seed crystal layer Different from the material of the aluminum layer.
接著,以陽極氧化法對該鋁層形成一具有多個能讓該金屬晶種層露出的孔洞的陽極氧化鋁模板,並以陽極氧化法讓該金屬晶種層在該等孔洞中成長成金屬氧化物奈米管。Next, an anodized aluminum template having a plurality of holes for exposing the metal seed layer is formed on the aluminum layer by anodizing method, and the metal seed layer is grown into metal in the holes by anodizing method. oxide nanotubes.
隨後移除該陽極氧化鋁模板,以在該基板上形成該等金屬氧化物奈米管,最後,對該等金屬氧化物奈米管進行退火的同時,將一物質汽化以取代每一該金屬氧化物奈米管的氧元素,以讓該等金屬氧化物奈米管形成多個金屬化合物奈米管。The anodized aluminum template is then removed to form the metal oxide nanotubes on the substrate, and finally, while the metal oxide nanotubes are annealed, a substance is vaporized to replace each of the metal Oxygen element of the oxide nanotubes, so that the metal oxide nanotubes form a plurality of metal compound nanotubes.
本發明的功效在於,透過控制該金屬晶種層的厚度介於10nm~100nm,並搭配陽極氧化鋁模板,而能成長多個金屬氧化物奈米管,其奈米管結構能增加元件的比表面積,應用在例如氣體感測或產氫電極均有較佳的效能表現,此外,進一步在後續退火同時,將一物質汽化以取代每一該金屬氧化物奈米管中的氧元素,以讓該等金屬氧化物奈米管形成多個金屬化合物奈米管,而可視應用以此簡單製程製備出所需的金屬化合物奈米管。The effect of the present invention lies in that by controlling the thickness of the metal seed layer to be between 10 nm and 100 nm and matching with an anodized aluminum oxide template, a plurality of metal oxide nanotubes can be grown, and the nanotube structure can increase the ratio of components. surface area, which has better performance in applications such as gas sensing or hydrogen production electrodes. In addition, at the same time of subsequent annealing, a substance is vaporized to replace the oxygen element in each of the metal oxide nanotubes, so that the The metal oxide nanotubes form a plurality of metal compound nanotubes, and the desired metal compound nanotubes can be prepared according to this simple process.
在本發明被詳細描述的前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are designated by the same reference numerals.
參閱圖1與圖2,本發明金屬化合物奈米管的製作方法包含一提供步驟、一成形步驟,及一後處理步驟。Referring to FIG. 1 and FIG. 2 , the fabrication method of the metal compound nanotube of the present invention includes a providing step, a forming step, and a post-processing step.
該提供步驟是提供一基板單元2。該基板單元2包括一基板21、一設置在該基板21表面的金屬晶種層22,及一設置在該金屬晶種層22上的鋁層23;其中,該金屬晶種層22與該鋁層23的材料不同。The providing step is to provide a substrate unit 2 . The substrate unit 2 includes a
適用於本實施例的該基板21並沒有特別限制,能直接選用導電基板或在一絕緣基板表面上形成由導電材料構成的導電層來構成該基板21,在本實施例中,該基板21是以選自矽基板為例作說明;而該金屬晶種層22則選自鎢(W)金屬,但不限於此,也可以例如是鈦(Ti)、鈮(Nb),或鉭(Ta)等其他金屬。The
具體地說,該提供步驟所提供的基板單元2,是以例如濺鍍或蒸鍍等物理氣相沉積方式依序沉積該金屬晶種層22與該鋁層23在該基板21上而構成。較佳地,在本實施例中,是先以電子束蒸鍍(Electron beam(E-beam) evaporation)方式在該基板21上沉積厚介於10nm~100nm的鎢金屬來構成該金屬晶種層22,接著再以熱蒸鍍(thermal coater)方式沉積該鋁層23在該金屬晶種層22上,而完成該基板單元2。要說明的是,該金屬晶種層22與該鋁層23的形成方式並沒有特別限制,除了本實施例所述物理氣相沉積方式之外,也可以是以化學氣相沉積方式,或是其他只要能將該金屬晶種層22與該鋁層23依序設置在該基板21便可。Specifically, the substrate unit 2 provided in the providing step is formed by sequentially depositing the
在完成該提供步驟之後,接著進行該成形步驟,先以陽極氧化法(anodization)對該鋁層23形成一具有多個能讓該金屬晶種層22露出的孔洞230的陽極氧化鋁(andic aluminum oxide,AAO)模板231。After the providing step is completed, the forming step is followed by forming an
具體地說,該陽極氧化鋁(AAO)模板231的製作方式主要是將該鋁層23浸入酸性溶液中,並施予陽極氧化處理,讓該鋁層23進電化學蝕刻反應,以讓該鋁層23氧化成具有奈米尺寸的該等孔洞230的該陽極氧化鋁(AAO)模板231。Specifically, the manufacturing method of the anodic aluminum oxide (AAO)
在該陽極氧化鋁模板231成形後,持續地,以陽極氧化法讓該金屬晶種層22在該等孔洞230中成長成金屬氧化物奈米管24。要說明的是,由於本實施例中,該金屬晶種層22是選用鎢(W)金屬,且控制該鎢金屬的厚度介於10nm~100nm之間,因此,當以陽極氧化法施加電壓時,便能在奈米尺寸的該等孔洞230中形成三氧化鎢(WO
3)奈米管;其中,可視應用進一步地調整施加電壓的大小來控制該等三氧化鎢奈米管的管徑大小,而透過調整該金屬晶種層22的厚度來調整三氧化鎢奈米管的高度,此外,該等三氧化鎢奈米管的排列方式分別可透過該陽極氧化鋁(AAO)模板231的該等孔洞230來調整。配合參閱圖3,圖3便是顯示出該等金屬氧化奈米管24在該陽極氧化鋁模板231形成的SEM影像圖。
After the anodized
在本實施例中,陽極氧化鋁模板231的成形與該等金屬氧化物奈米管24的成長過程中,是在同一個陽極氧化處理條件持續進行,換句話說,在本實施例中,是將具有該金屬晶種層22與該鋁層23的該基板單元2設置在該酸性溶液中,而在該酸性溶液中持續施加電壓,使該鋁層23逐漸形成該陽極氧化鋁模板時,該金屬晶種層22也能直接在該等孔洞230成長成該等金屬氧化物奈米管24。本實施例中,是以濃度為0.3M的草酸溶液作為該酸性液體,並控制溶液溫度介於4℃~25℃,且施予電壓10V~130V進行為例做說明,前述進行陽極氧化處理的原理為本領域技術人員所熟知,在此不加以詳述。In the present embodiment, the forming of the anodized
當該等金屬氧化物奈米管24在該等孔洞230中成形後,便能移除該陽極氧化鋁模板231,以讓該等金屬氧化物奈米管24露出在該基板21上,而構成一奈米管試片3。在本實施例中,是將該陽極氧化鋁模板231浸入至濃度為6wt%的磷酸溶液中,並維持溫度約為60℃,浸泡8分鐘,以能將該陽極氧化鋁模板231移除。要說明的是,移除該陽極氧化鋁模板231也可以使用例如氫氧化鈉(NaOH)等鹼性溶液,只要不會破壞該等金屬氧化奈米管24便可。After the
本實施例透過控制該金屬晶種層22的厚度,並搭配陽極氧化鋁模板231,成長出彼此間隔的該等金屬氧化物奈米管24,以藉由奈米管結構來增加元件的比表面積,進而增進元件的應用效能,更佳地,為了進一步增加不同的應用,本實施例在成形步驟之後,還實施該後處理步驟。In this embodiment, the
參閱圖4,該後處理步驟是將該奈米管試片3放置在一退火裝置4中,以對該等金屬氧化物奈米管24進行高溫退火,且在退火的同時,將一物質30汽化以取代每一該金屬氧化物奈米管24的氧元素,以讓該等金屬氧化物奈米管24形成多個金屬化合物奈米管。Referring to FIG. 4 , in the post-processing step, the
具體地說,在本實施例中,該物質30能選自例如硫、硒,或碲等硫族化物,因此,在該後處理步驟便是以300℃~800℃高溫退火而將硫、硒,或碲等硫族化物進行汽化,讓該等三氧化鎢奈米管進行硫化、硒化,或碲化處理而能分別形成多個二硫化鎢(WS
2)奈米管、多個二硒化鎢(WSe
2)奈米管,或多個二碲化鎢(WTe
2)奈米管。要說明的是,汽化該物質30的溫度是能視該物質30的種類來調整,舉例來說,當汽化硫時,使用溫度大於300℃便可,而當要汽化硒時,則須提高溫度至400℃,才能提供足夠的能量讓硒取代三氧化鎢中的氧,但當溫度大於800℃時,三氧化鎢容易有晶粒成長而影響奈米管型態。
Specifically, in this embodiment, the
參閱圖5,圖5是本實施例以陽極氧化鋁模板231成長三氧化鎢奈米管,並利用硫作為該物質30而對該等三氧化鎢奈米管進行硫化的後處理為例做說明,由圖5的拉曼(Raman)光譜量測分析可知,從退火溫度大於400℃後,便可以偵測到二硫化鎢的訊號,且隨著工作環境的溫度升高,偵測到二硫化鎢的訊號也更加強烈。Referring to FIG. 5 , FIG. 5 illustrates the post-treatment of growing tungsten trioxide nanotubes using an anodized
本實施例透過進一步執行該後處理步驟,在後續退火同時,以硫作為該物質30來取代該等三氧化鎢奈米管的氧元素,使該等三氧化鎢奈米管經硫化而形成多個二硫化鎢(WS
2)奈米管,其二硫化鎢具有更佳的產氫效果,能在後續應用於例如氣體感測或產氫電極均有較佳的效能表現。
In this embodiment, by further performing the post-processing step, at the same time of subsequent annealing, sulfur is used as the
綜上所述,本發明金屬化合物奈米管的製作方法,透過控制該金屬晶種層22(W)的厚度介於10nm~100nm,並搭配陽極氧化鋁模板231(AAO),而能成長多個金屬氧化物奈米管24(WO
3nanotubes),其奈米管結構能增加元件的比表面積,應用在例如氣體感測或產氫電極均有較佳的效能表現,此外,進一步在後續退火同時,將一物質汽化以取代每一該金屬氧化物奈米管的氧元素,以讓該等金屬氧化物奈米管24形成多個金屬化合物奈米管,而可視應用製備出所需的金屬化合物奈米管,故確實能達成本發明的目的。
To sum up, in the method for fabricating metal compound nanotubes of the present invention, by controlling the thickness of the metal seed layer 22 (W) to be between 10 nm and 100 nm, and matching with the anodic aluminum oxide template 231 (AAO), it is possible to grow more A metal oxide nanotube 24 (WO 3 nanotubes), the nanotube structure can increase the specific surface area of the device, and it has better performance in applications such as gas sensing or hydrogen production electrodes. At the same time, a substance is vaporized to replace the oxygen element of each of the metal oxide nanotubes, so that the
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above are only examples of the present invention, and should not limit the scope of implementation of the present invention. Any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the contents of the patent specification are still included in the scope of the present invention. within the scope of the invention patent.
2:基板單元2: Substrate unit
21:基板21: Substrate
22:金屬晶種層22: Metal seed layer
23:鋁層23: Aluminum layer
230:孔洞230: Hole
231:陽極氧化鋁模板231: Anodized Aluminum Template
24:金屬氧化物奈米管24: Metal oxide nanotubes
3:奈米管試片3: Nanotube test piece
30:物質30: Substance
4:退火裝置4: Annealing device
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一製作流程示意圖,說明本發明金屬化合物奈米管的製作方法的一實施例中的一提供步驟; 圖2是一製作流程示意圖,說明本發明該實施例中的一成形步驟; 圖3是一掃描式電子顯微鏡(scanning electron microscope,SEM)影像圖,說明該成形步驟中的一陽極氧化鋁模板與多個金屬氧化物奈米管的SEM影像圖; 圖4是一示意圖,說明本發明該實施例中的一後處理步驟;及 圖5是一拉曼光譜圖,說明該實施例的奈米管試片在不同退火溫度的拉曼光譜圖。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, wherein: 1 is a schematic diagram of a fabrication process, illustrating a provision step in an embodiment of a fabrication method of a metal compound nanotube of the present invention; FIG. 2 is a schematic diagram of a manufacturing process, illustrating a forming step in this embodiment of the present invention; 3 is a scanning electron microscope (SEM) image, illustrating an SEM image of an anodized aluminum template and a plurality of metal oxide nanotubes in the forming step; FIG. 4 is a schematic diagram illustrating a post-processing step in this embodiment of the present invention; and FIG. 5 is a Raman spectrogram illustrating the Raman spectrogram of the nanotube test piece of this embodiment at different annealing temperatures.
21:基板 21: Substrate
22:金屬晶種層 22: Metal seed layer
23:鋁層 23: Aluminum layer
230:孔洞 230: Hole
231:陽極氧化鋁模板 231: Anodized Aluminum Template
24:金屬氧化物奈米管 24: Metal oxide nanotubes
3:奈米管試片 3: Nanotube test piece
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109138795A TWI759950B (en) | 2020-11-06 | 2020-11-06 | Method for making metal compound nanotubes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109138795A TWI759950B (en) | 2020-11-06 | 2020-11-06 | Method for making metal compound nanotubes |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI759950B true TWI759950B (en) | 2022-04-01 |
TW202218990A TW202218990A (en) | 2022-05-16 |
Family
ID=82198888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109138795A TWI759950B (en) | 2020-11-06 | 2020-11-06 | Method for making metal compound nanotubes |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI759950B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI452186B (en) * | 2007-01-19 | 2014-09-11 | Nanogan Ltd | Production of single-crystal semiconductor material using a nanostructure template |
CN108046327A (en) * | 2017-12-26 | 2018-05-18 | 佛山科学技术学院 | A kind of preparation method of tungsten disulfide nanotube |
CN111437841A (en) * | 2020-05-15 | 2020-07-24 | 山西大学 | Tungsten telluride-tungsten boride heterojunction electrocatalyst and preparation method and application thereof |
-
2020
- 2020-11-06 TW TW109138795A patent/TWI759950B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI452186B (en) * | 2007-01-19 | 2014-09-11 | Nanogan Ltd | Production of single-crystal semiconductor material using a nanostructure template |
CN108046327A (en) * | 2017-12-26 | 2018-05-18 | 佛山科学技术学院 | A kind of preparation method of tungsten disulfide nanotube |
CN111437841A (en) * | 2020-05-15 | 2020-07-24 | 山西大学 | Tungsten telluride-tungsten boride heterojunction electrocatalyst and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
TW202218990A (en) | 2022-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4109809B2 (en) | Method for producing fine wire containing titanium oxide | |
CN108630750B (en) | Semiconductor device having two-dimensional lateral heterostructure and method of fabricating the same | |
US20060128155A1 (en) | Columnar structured material, electrode having columnar structured material, and production method therefor | |
KR101614322B1 (en) | Method for preparing graphene having controled layer number and method for fabricating electronic device using the same | |
CN108630761A (en) | Semiconductor device manufacturing method | |
JP2013535407A (en) | Large-scale graphene sheet, article incorporating the same, composition, method and apparatus | |
JPH11200090A (en) | Nanostructural body and its production | |
TWI526559B (en) | Process for forming carbon film or inorganic material film on substrate by physical vapor deposition | |
US10755939B2 (en) | Multilayer graphene using chemical vapor deposition and method of manufacturing same | |
Hussain et al. | Layer-modulated, wafer scale and continuous ultra-thin WS 2 films grown by RF sputtering via post-deposition annealing | |
KR102418187B1 (en) | Method for fabricating metal chalcogenide thin films | |
Xu et al. | Atomic‐precision repair of a few‐layer 2H‐MoTe2 thin film by phase transition and recrystallization induced by a heterophase interface | |
KR20130010603A (en) | Method of manufacturing a substrate and method of manufacturing an electronic device using the same | |
KR101946497B1 (en) | Method of manufacturing chalcogenide thin film | |
KR101905801B1 (en) | Direct Synthesis of Ag Nanowires on Graphene Layer | |
Taghavi et al. | Synthesizing tubular and trapezoidal shaped ZnO nanowires by an aqueous solution method | |
TWI759950B (en) | Method for making metal compound nanotubes | |
CN113235049A (en) | Transition metal sulfide thin film and preparation method and application thereof | |
KR20070110208A (en) | Nano imprint blankmask, nano imprint stamp and its manufacturing method | |
KR20130035617A (en) | Process for forming metal film on graphene | |
JP5246938B2 (en) | Carbon nanotube growth substrate, transistor, and method of manufacturing carbon nanotube growth substrate | |
RU2716700C1 (en) | Method of modifying the foil surface for electrolytic capacitors | |
TWI684661B (en) | Two dimensional material and preparing method thereof | |
Nautiyal et al. | Large-scale synthesis of nickel sulfide for electronic device applications | |
KR100919781B1 (en) | Manufacturing Method of Porous Substrate for Thin Film |