TWI759950B - Method for making metal compound nanotubes - Google Patents

Method for making metal compound nanotubes Download PDF

Info

Publication number
TWI759950B
TWI759950B TW109138795A TW109138795A TWI759950B TW I759950 B TWI759950 B TW I759950B TW 109138795 A TW109138795 A TW 109138795A TW 109138795 A TW109138795 A TW 109138795A TW I759950 B TWI759950 B TW I759950B
Authority
TW
Taiwan
Prior art keywords
nanotubes
metal
seed layer
layer
metal oxide
Prior art date
Application number
TW109138795A
Other languages
Chinese (zh)
Other versions
TW202218990A (en
Inventor
章詠湟
陳元宗
黃建盛
Original Assignee
國立雲林科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立雲林科技大學 filed Critical 國立雲林科技大學
Priority to TW109138795A priority Critical patent/TWI759950B/en
Application granted granted Critical
Publication of TWI759950B publication Critical patent/TWI759950B/en
Publication of TW202218990A publication Critical patent/TW202218990A/en

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

一種金屬化合物奈米管的製作方法,沉積一厚度介於10nm~100nm的金屬晶種層在一基板上,再沉積一鋁層在該金屬晶種層上,且該金屬晶種層與該鋁層的材料不同。接著,以陽極氧化法對該鋁層形成一具有多個能讓該金屬晶種層露出的孔洞的陽極氧化鋁模板,並以陽極氧化法讓該金屬晶種層在該等孔洞中成長成金屬氧化物奈米管,隨後移除該陽極氧化鋁模板,以在該基板上形成該等金屬氧化物奈米管。最後,對該等金屬氧化物奈米管進行退火的同時,將一物質汽化以取代每一該金屬氧化物奈米管的氧元素,以讓該等金屬氧化物奈米管形成多個金屬化合物奈米管。A method for manufacturing a metal compound nanotube, which comprises depositing a metal seed layer with a thickness of 10 nm to 100 nm on a substrate, and then depositing an aluminum layer on the metal seed layer, and the metal seed layer and the aluminum The materials of the layers are different. Next, an anodized aluminum template having a plurality of holes for exposing the metal seed layer is formed on the aluminum layer by anodizing method, and the metal seed layer is grown into metal in the holes by anodizing method. oxide nanotubes, followed by removal of the anodized aluminum template to form the metal oxide nanotubes on the substrate. Finally, while the metal oxide nanotubes are annealed, a substance is vaporized to replace the oxygen element of each metal oxide nanotube, so that the metal oxide nanotubes form a plurality of metal compounds nanotubes.

Description

金屬化合物奈米管的製作方法Method for making metal compound nanotubes

本發明是有關於一種奈米管的製作方法,特別是指一種金屬化合物奈米管的製作方法。The present invention relates to a method for fabricating nanotubes, in particular to a method for fabricating metal compound nanotubes.

三氧化鎢屬於過渡金屬氧化物半導體材料,其能帶寬度較窄(2.6~3.0 eV),在可見光範圍內具有良好的光催化特性,且鎢原子有不同氧化態(常見為W 4+、W 5+與W 6+),使其在氣體感測與電致變色等領域皆有廣闊的應用前景。 Tungsten trioxide is a transition metal oxide semiconductor material with narrow energy band width (2.6~3.0 eV), good photocatalytic properties in the visible light range, and tungsten atoms have different oxidation states (commonly W 4+ , W 5+ and W 6+ ), which make it have broad application prospects in the fields of gas sensing and electrochromic.

現有常透過陽極氧化鋁(andic aluminum oxide,AAO)奈米模板來形成三氧化鎢奈米柱,以作為後續例如氣體感測器元件等應用,然而,以此方式成長的三氧化鎢是多根奈米柱,其比表面積較差。At present, tungsten trioxide nanopillars are often formed through anodized aluminum oxide (AAO) nanotemplates for subsequent applications such as gas sensor elements. However, there are many tungsten trioxide grown in this way. Nanopillars have poor specific surface area.

因此,本發明的目的,即在提供一種金屬化合物奈米管的製作方法。Therefore, the purpose of the present invention is to provide a method for manufacturing metal compound nanotubes.

於是,本發明金屬化合物奈米管的製作方法事先沉積一厚度介於10nm~100nm的金屬晶種層在一基板上,再沉積一鋁層在該金屬晶種層上,且該金屬晶種層與該鋁層的材料不同。Therefore, the manufacturing method of the metal compound nanotube of the present invention deposits a metal seed crystal layer with a thickness of 10 nm-100 nm on a substrate in advance, and then deposits an aluminum layer on the metal seed crystal layer, and the metal seed crystal layer Different from the material of the aluminum layer.

接著,以陽極氧化法對該鋁層形成一具有多個能讓該金屬晶種層露出的孔洞的陽極氧化鋁模板,並以陽極氧化法讓該金屬晶種層在該等孔洞中成長成金屬氧化物奈米管。Next, an anodized aluminum template having a plurality of holes for exposing the metal seed layer is formed on the aluminum layer by anodizing method, and the metal seed layer is grown into metal in the holes by anodizing method. oxide nanotubes.

隨後移除該陽極氧化鋁模板,以在該基板上形成該等金屬氧化物奈米管,最後,對該等金屬氧化物奈米管進行退火的同時,將一物質汽化以取代每一該金屬氧化物奈米管的氧元素,以讓該等金屬氧化物奈米管形成多個金屬化合物奈米管。The anodized aluminum template is then removed to form the metal oxide nanotubes on the substrate, and finally, while the metal oxide nanotubes are annealed, a substance is vaporized to replace each of the metal Oxygen element of the oxide nanotubes, so that the metal oxide nanotubes form a plurality of metal compound nanotubes.

本發明的功效在於,透過控制該金屬晶種層的厚度介於10nm~100nm,並搭配陽極氧化鋁模板,而能成長多個金屬氧化物奈米管,其奈米管結構能增加元件的比表面積,應用在例如氣體感測或產氫電極均有較佳的效能表現,此外,進一步在後續退火同時,將一物質汽化以取代每一該金屬氧化物奈米管中的氧元素,以讓該等金屬氧化物奈米管形成多個金屬化合物奈米管,而可視應用以此簡單製程製備出所需的金屬化合物奈米管。The effect of the present invention lies in that by controlling the thickness of the metal seed layer to be between 10 nm and 100 nm and matching with an anodized aluminum oxide template, a plurality of metal oxide nanotubes can be grown, and the nanotube structure can increase the ratio of components. surface area, which has better performance in applications such as gas sensing or hydrogen production electrodes. In addition, at the same time of subsequent annealing, a substance is vaporized to replace the oxygen element in each of the metal oxide nanotubes, so that the The metal oxide nanotubes form a plurality of metal compound nanotubes, and the desired metal compound nanotubes can be prepared according to this simple process.

在本發明被詳細描述的前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that in the following description, similar elements are designated by the same reference numerals.

參閱圖1與圖2,本發明金屬化合物奈米管的製作方法包含一提供步驟、一成形步驟,及一後處理步驟。Referring to FIG. 1 and FIG. 2 , the fabrication method of the metal compound nanotube of the present invention includes a providing step, a forming step, and a post-processing step.

該提供步驟是提供一基板單元2。該基板單元2包括一基板21、一設置在該基板21表面的金屬晶種層22,及一設置在該金屬晶種層22上的鋁層23;其中,該金屬晶種層22與該鋁層23的材料不同。The providing step is to provide a substrate unit 2 . The substrate unit 2 includes a substrate 21, a metal seed layer 22 disposed on the surface of the substrate 21, and an aluminum layer 23 disposed on the metal seed layer 22; wherein, the metal seed layer 22 and the aluminum The material of layer 23 is different.

適用於本實施例的該基板21並沒有特別限制,能直接選用導電基板或在一絕緣基板表面上形成由導電材料構成的導電層來構成該基板21,在本實施例中,該基板21是以選自矽基板為例作說明;而該金屬晶種層22則選自鎢(W)金屬,但不限於此,也可以例如是鈦(Ti)、鈮(Nb),或鉭(Ta)等其他金屬。The substrate 21 suitable for this embodiment is not particularly limited, and a conductive substrate can be directly selected or a conductive layer made of conductive material is formed on the surface of an insulating substrate to constitute the substrate 21. In this embodiment, the substrate 21 is Taking silicon substrate as an example for illustration; and the metal seed layer 22 is selected from tungsten (W) metal, but not limited to this, and can also be titanium (Ti), niobium (Nb), or tantalum (Ta) and other metals.

具體地說,該提供步驟所提供的基板單元2,是以例如濺鍍或蒸鍍等物理氣相沉積方式依序沉積該金屬晶種層22與該鋁層23在該基板21上而構成。較佳地,在本實施例中,是先以電子束蒸鍍(Electron beam(E-beam) evaporation)方式在該基板21上沉積厚介於10nm~100nm的鎢金屬來構成該金屬晶種層22,接著再以熱蒸鍍(thermal coater)方式沉積該鋁層23在該金屬晶種層22上,而完成該基板單元2。要說明的是,該金屬晶種層22與該鋁層23的形成方式並沒有特別限制,除了本實施例所述物理氣相沉積方式之外,也可以是以化學氣相沉積方式,或是其他只要能將該金屬晶種層22與該鋁層23依序設置在該基板21便可。Specifically, the substrate unit 2 provided in the providing step is formed by sequentially depositing the metal seed layer 22 and the aluminum layer 23 on the substrate 21 by physical vapor deposition such as sputtering or vapor deposition. Preferably, in the present embodiment, the metal seed layer 22 is formed by depositing tungsten metal with a thickness of 10 nm-100 nm on the substrate 21 by electron beam (E-beam) evaporation. Then, the aluminum layer 23 is deposited on the metal seed layer 22 by a thermal coater method to complete the substrate unit 2 . It should be noted that the formation methods of the metal seed layer 22 and the aluminum layer 23 are not particularly limited. In addition to the physical vapor deposition method described in this embodiment, chemical vapor deposition methods can also be used, or Others can be as long as the metal seed layer 22 and the aluminum layer 23 can be sequentially disposed on the substrate 21 .

在完成該提供步驟之後,接著進行該成形步驟,先以陽極氧化法(anodization)對該鋁層23形成一具有多個能讓該金屬晶種層22露出的孔洞230的陽極氧化鋁(andic aluminum oxide,AAO)模板231。After the providing step is completed, the forming step is followed by forming an anodized aluminum layer 23 with a plurality of holes 230 through which the metal seed layer 22 can be exposed by anodization. oxide, AAO) template 231.

具體地說,該陽極氧化鋁(AAO)模板231的製作方式主要是將該鋁層23浸入酸性溶液中,並施予陽極氧化處理,讓該鋁層23進電化學蝕刻反應,以讓該鋁層23氧化成具有奈米尺寸的該等孔洞230的該陽極氧化鋁(AAO)模板231。Specifically, the manufacturing method of the anodic aluminum oxide (AAO) template 231 is mainly to immerse the aluminum layer 23 in an acid solution, and perform anodization treatment, so that the aluminum layer 23 undergoes an electrochemical etching reaction, so that the aluminum layer 23 is subjected to an electrochemical etching reaction. Layer 23 is oxidized to the anodic aluminum oxide (AAO) template 231 with nanometer-sized pores 230 .

在該陽極氧化鋁模板231成形後,持續地,以陽極氧化法讓該金屬晶種層22在該等孔洞230中成長成金屬氧化物奈米管24。要說明的是,由於本實施例中,該金屬晶種層22是選用鎢(W)金屬,且控制該鎢金屬的厚度介於10nm~100nm之間,因此,當以陽極氧化法施加電壓時,便能在奈米尺寸的該等孔洞230中形成三氧化鎢(WO 3)奈米管;其中,可視應用進一步地調整施加電壓的大小來控制該等三氧化鎢奈米管的管徑大小,而透過調整該金屬晶種層22的厚度來調整三氧化鎢奈米管的高度,此外,該等三氧化鎢奈米管的排列方式分別可透過該陽極氧化鋁(AAO)模板231的該等孔洞230來調整。配合參閱圖3,圖3便是顯示出該等金屬氧化奈米管24在該陽極氧化鋁模板231形成的SEM影像圖。 After the anodized aluminum template 231 is formed, the metal seed layer 22 is continuously grown into the metal oxide nanotubes 24 in the holes 230 by anodization. It should be noted that, in this embodiment, the metal seed layer 22 is made of tungsten (W) metal, and the thickness of the tungsten metal is controlled to be between 10 nm and 100 nm. Therefore, when a voltage is applied by anodization method , tungsten trioxide (WO 3 ) nanotubes can be formed in the nano-sized holes 230; wherein, the size of the applied voltage can be further adjusted according to the application to control the diameter of the tungsten trioxide nanotubes , and by adjusting the thickness of the metal seed layer 22 to adjust the height of the tungsten trioxide nanotubes, in addition, the arrangement of the tungsten trioxide nanotubes can pass through the anodic aluminum oxide (AAO) template 231 respectively. Wait for hole 230 to adjust. Referring to FIG. 3 , FIG. 3 is an SEM image showing the formation of the metal oxide nanotubes 24 on the anodized aluminum template 231 .

在本實施例中,陽極氧化鋁模板231的成形與該等金屬氧化物奈米管24的成長過程中,是在同一個陽極氧化處理條件持續進行,換句話說,在本實施例中,是將具有該金屬晶種層22與該鋁層23的該基板單元2設置在該酸性溶液中,而在該酸性溶液中持續施加電壓,使該鋁層23逐漸形成該陽極氧化鋁模板時,該金屬晶種層22也能直接在該等孔洞230成長成該等金屬氧化物奈米管24。本實施例中,是以濃度為0.3M的草酸溶液作為該酸性液體,並控制溶液溫度介於4℃~25℃,且施予電壓10V~130V進行為例做說明,前述進行陽極氧化處理的原理為本領域技術人員所熟知,在此不加以詳述。In the present embodiment, the forming of the anodized aluminum template 231 and the growth of the metal oxide nanotubes 24 are continuously performed under the same anodizing treatment conditions. In other words, in this embodiment, the The substrate unit 2 with the metal seed layer 22 and the aluminum layer 23 is placed in the acidic solution, and a voltage is continuously applied in the acidic solution, so that the aluminum layer 23 gradually forms the anodized aluminum template, the The metal seed layer 22 can also be grown directly into the metal oxide nanotubes 24 in the holes 230 . In this embodiment, an oxalic acid solution with a concentration of 0.3M is used as the acidic liquid, the temperature of the solution is controlled to be between 4°C and 25°C, and the applied voltage is 10V to 130V. The principle is well known to those skilled in the art and will not be described in detail here.

當該等金屬氧化物奈米管24在該等孔洞230中成形後,便能移除該陽極氧化鋁模板231,以讓該等金屬氧化物奈米管24露出在該基板21上,而構成一奈米管試片3。在本實施例中,是將該陽極氧化鋁模板231浸入至濃度為6wt%的磷酸溶液中,並維持溫度約為60℃,浸泡8分鐘,以能將該陽極氧化鋁模板231移除。要說明的是,移除該陽極氧化鋁模板231也可以使用例如氫氧化鈉(NaOH)等鹼性溶液,只要不會破壞該等金屬氧化奈米管24便可。After the metal oxide nanotubes 24 are formed in the holes 230, the anodized aluminum template 231 can be removed to expose the metal oxide nanotubes 24 on the substrate 21 to form A nanotube coupon 3. In this embodiment, the anodized aluminum template 231 is immersed in a phosphoric acid solution with a concentration of 6 wt %, and the temperature is maintained at about 60° C. for 8 minutes, so that the anodized aluminum template 231 can be removed. It should be noted that an alkaline solution such as sodium hydroxide (NaOH) can also be used to remove the anodized aluminum template 231 , as long as the metal oxide nanotubes 24 are not damaged.

本實施例透過控制該金屬晶種層22的厚度,並搭配陽極氧化鋁模板231,成長出彼此間隔的該等金屬氧化物奈米管24,以藉由奈米管結構來增加元件的比表面積,進而增進元件的應用效能,更佳地,為了進一步增加不同的應用,本實施例在成形步驟之後,還實施該後處理步驟。In this embodiment, the metal oxide nanotubes 24 spaced apart from each other are grown by controlling the thickness of the metal seed layer 22 and matching with the anodized aluminum oxide template 231 to increase the specific surface area of the device through the nanotube structure. Further, the application performance of the element is improved, and preferably, in order to further increase different applications, in this embodiment, the post-processing step is also implemented after the forming step.

參閱圖4,該後處理步驟是將該奈米管試片3放置在一退火裝置4中,以對該等金屬氧化物奈米管24進行高溫退火,且在退火的同時,將一物質30汽化以取代每一該金屬氧化物奈米管24的氧元素,以讓該等金屬氧化物奈米管24形成多個金屬化合物奈米管。Referring to FIG. 4 , in the post-processing step, the nanotube test piece 3 is placed in an annealing apparatus 4 to perform high temperature annealing on the metal oxide nanotubes 24 , and a substance 30 is annealed at the same time as the annealing. Vaporization replaces the oxygen element of each of the metal oxide nanotubes 24 to allow the metal oxide nanotubes 24 to form a plurality of metal compound nanotubes.

具體地說,在本實施例中,該物質30能選自例如硫、硒,或碲等硫族化物,因此,在該後處理步驟便是以300℃~800℃高溫退火而將硫、硒,或碲等硫族化物進行汽化,讓該等三氧化鎢奈米管進行硫化、硒化,或碲化處理而能分別形成多個二硫化鎢(WS 2)奈米管、多個二硒化鎢(WSe 2)奈米管,或多個二碲化鎢(WTe 2)奈米管。要說明的是,汽化該物質30的溫度是能視該物質30的種類來調整,舉例來說,當汽化硫時,使用溫度大於300℃便可,而當要汽化硒時,則須提高溫度至400℃,才能提供足夠的能量讓硒取代三氧化鎢中的氧,但當溫度大於800℃時,三氧化鎢容易有晶粒成長而影響奈米管型態。 Specifically, in this embodiment, the substance 30 can be selected from chalcogenides such as sulfur, selenium, or tellurium. Therefore, in the post-processing step, annealing at a high temperature of 300° C. to 800° C. is used to anneal sulfur and selenium. , or chalcogenides such as tellurium are vaporized, and these tungsten trioxide nanotubes are subjected to sulfurization, selenization, or tellurization to form a plurality of tungsten disulfide (WS 2 ) nanotubes, a plurality of diselenide nanotubes, respectively. Tungsten carbide (WSe 2 ) nanotubes, or multiple tungsten ditelluride (WTe 2 ) nanotubes. It should be noted that the temperature for vaporizing the substance 30 can be adjusted according to the type of the substance 30 . For example, when vaporizing sulfur, the operating temperature can be higher than 300°C, and when vaporizing selenium, the temperature must be increased When the temperature reaches 400°C, enough energy can be provided for selenium to replace oxygen in tungsten trioxide. However, when the temperature is higher than 800°C, tungsten trioxide is prone to grain growth and affects the shape of nanotubes.

參閱圖5,圖5是本實施例以陽極氧化鋁模板231成長三氧化鎢奈米管,並利用硫作為該物質30而對該等三氧化鎢奈米管進行硫化的後處理為例做說明,由圖5的拉曼(Raman)光譜量測分析可知,從退火溫度大於400℃後,便可以偵測到二硫化鎢的訊號,且隨著工作環境的溫度升高,偵測到二硫化鎢的訊號也更加強烈。Referring to FIG. 5 , FIG. 5 illustrates the post-treatment of growing tungsten trioxide nanotubes using an anodized aluminum template 231 and using sulfur as the substance 30 to vulcanize these tungsten trioxide nanotubes as an example. , it can be seen from the Raman spectrum measurement analysis in Figure 5 that the signal of tungsten disulfide can be detected after the annealing temperature is greater than 400 ℃, and as the temperature of the working environment increases, the disulfide disulfide can be detected. The tungsten signal is also stronger.

本實施例透過進一步執行該後處理步驟,在後續退火同時,以硫作為該物質30來取代該等三氧化鎢奈米管的氧元素,使該等三氧化鎢奈米管經硫化而形成多個二硫化鎢(WS 2)奈米管,其二硫化鎢具有更佳的產氫效果,能在後續應用於例如氣體感測或產氫電極均有較佳的效能表現。 In this embodiment, by further performing the post-processing step, at the same time of subsequent annealing, sulfur is used as the substance 30 to replace the oxygen element of the tungsten trioxide nanotubes, so that the tungsten trioxide nanotubes are vulcanized to form many A tungsten disulfide (WS 2 ) nanotube, the tungsten disulfide has better hydrogen production effect, and can have better performance in subsequent applications such as gas sensing or hydrogen production electrodes.

綜上所述,本發明金屬化合物奈米管的製作方法,透過控制該金屬晶種層22(W)的厚度介於10nm~100nm,並搭配陽極氧化鋁模板231(AAO),而能成長多個金屬氧化物奈米管24(WO 3nanotubes),其奈米管結構能增加元件的比表面積,應用在例如氣體感測或產氫電極均有較佳的效能表現,此外,進一步在後續退火同時,將一物質汽化以取代每一該金屬氧化物奈米管的氧元素,以讓該等金屬氧化物奈米管24形成多個金屬化合物奈米管,而可視應用製備出所需的金屬化合物奈米管,故確實能達成本發明的目的。 To sum up, in the method for fabricating metal compound nanotubes of the present invention, by controlling the thickness of the metal seed layer 22 (W) to be between 10 nm and 100 nm, and matching with the anodic aluminum oxide template 231 (AAO), it is possible to grow more A metal oxide nanotube 24 (WO 3 nanotubes), the nanotube structure can increase the specific surface area of the device, and it has better performance in applications such as gas sensing or hydrogen production electrodes. At the same time, a substance is vaporized to replace the oxygen element of each of the metal oxide nanotubes, so that the metal oxide nanotubes 24 can form a plurality of metal compound nanotubes, and the desired metal can be prepared according to the application. The compound nanotube can indeed achieve the purpose of the present invention.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above are only examples of the present invention, and should not limit the scope of implementation of the present invention. Any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the contents of the patent specification are still included in the scope of the present invention. within the scope of the invention patent.

2:基板單元2: Substrate unit

21:基板21: Substrate

22:金屬晶種層22: Metal seed layer

23:鋁層23: Aluminum layer

230:孔洞230: Hole

231:陽極氧化鋁模板231: Anodized Aluminum Template

24:金屬氧化物奈米管24: Metal oxide nanotubes

3:奈米管試片3: Nanotube test piece

30:物質30: Substance

4:退火裝置4: Annealing device

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一製作流程示意圖,說明本發明金屬化合物奈米管的製作方法的一實施例中的一提供步驟; 圖2是一製作流程示意圖,說明本發明該實施例中的一成形步驟; 圖3是一掃描式電子顯微鏡(scanning electron microscope,SEM)影像圖,說明該成形步驟中的一陽極氧化鋁模板與多個金屬氧化物奈米管的SEM影像圖; 圖4是一示意圖,說明本發明該實施例中的一後處理步驟;及 圖5是一拉曼光譜圖,說明該實施例的奈米管試片在不同退火溫度的拉曼光譜圖。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, wherein: 1 is a schematic diagram of a fabrication process, illustrating a provision step in an embodiment of a fabrication method of a metal compound nanotube of the present invention; FIG. 2 is a schematic diagram of a manufacturing process, illustrating a forming step in this embodiment of the present invention; 3 is a scanning electron microscope (SEM) image, illustrating an SEM image of an anodized aluminum template and a plurality of metal oxide nanotubes in the forming step; FIG. 4 is a schematic diagram illustrating a post-processing step in this embodiment of the present invention; and FIG. 5 is a Raman spectrogram illustrating the Raman spectrogram of the nanotube test piece of this embodiment at different annealing temperatures.

21:基板 21: Substrate

22:金屬晶種層 22: Metal seed layer

23:鋁層 23: Aluminum layer

230:孔洞 230: Hole

231:陽極氧化鋁模板 231: Anodized Aluminum Template

24:金屬氧化物奈米管 24: Metal oxide nanotubes

3:奈米管試片 3: Nanotube test piece

Claims (8)

一種金屬化合物奈米管的製作方法,包含:沉積一厚度介於10nm~100nm的金屬晶種層在一基板上;沉積一鋁層在該金屬晶種層上,且該金屬晶種層與該鋁層的材料不同;以陽極氧化法對該鋁層形成一具有多個能讓該金屬晶種層露出的孔洞的陽極氧化鋁模板;以陽極氧化法讓該金屬晶種層在該等孔洞中成長成金屬氧化物奈米管;移除該陽極氧化鋁模板,以在該基板上形成該等金屬氧化物奈米管;及對該等金屬氧化物奈米管進行退火的同時,將一選自硫族化物的物質汽化,以取代每一該金屬氧化物奈米管的氧元素,以讓該等金屬氧化物奈米管形成多個金屬硫族化物奈米管。 A method for fabricating a metal compound nanotube, comprising: depositing a metal seed layer with a thickness of 10 nm to 100 nm on a substrate; depositing an aluminum layer on the metal seed layer, and the metal seed layer and the metal seed layer The material of the aluminum layer is different; an anodized aluminum template with a plurality of holes that can expose the metal seed layer is formed on the aluminum layer by anodizing method; the metal seed layer is formed in the holes by anodizing method growing into metal oxide nanotubes; removing the anodized aluminum template to form the metal oxide nanotubes on the substrate; and annealing the metal oxide nanotubes while annealing a selected The substance from the chalcogenide vaporizes to replace the oxygen element of each of the metal oxide nanotubes, so that the metal oxide nanotubes form a plurality of metal chalcogenide nanotubes. 如請求項1所述的金屬化合物奈米管的製作方法,其中,該金屬晶種層選自鎢,使該等金屬硫族化物奈米管形成多個硫族化鎢奈米管。 The method for fabricating metal compound nanotubes as claimed in claim 1, wherein the metal seed layer is selected from tungsten, so that the metal chalcogenide nanotubes form a plurality of tungsten chalcogenide nanotubes. 如請求項1所述的金屬化合物奈米管的製作方法,其中,該硫族化物選自硫、硒,或碲,使該等金屬氧化物奈米管分別形成多個二硫化鎢奈米管、多個二硒化鎢奈米管,或多個二碲化鎢奈米管。 The method for fabricating metal compound nanotubes as claimed in claim 1, wherein the chalcogenide is selected from sulfur, selenium, or tellurium, so that these metal oxide nanotubes are respectively formed into a plurality of tungsten disulfide nanotubes , a plurality of tungsten diselenide nanotubes, or a plurality of tungsten ditelluride nanotubes. 如請求項1所述的金屬化合物奈米管的製作方法,其中, 退火溫度介於300℃~800℃。 The method for producing a metal compound nanotube according to claim 1, wherein, The annealing temperature is between 300°C and 800°C. 如請求項1所述的金屬化合物奈米管的製作方法,其中,移除該陽極氧化鋁模板是將其浸入酸性溶液或鹼性溶液中進行移除。 The method for fabricating metal compound nanotubes as claimed in claim 1, wherein the removal of the anodized aluminum template is performed by immersing it in an acidic solution or an alkaline solution. 如請求項1所述的金屬化合物奈米管的製作方法,其中,該基板選自矽基板。 The method for fabricating metal compound nanotubes according to claim 1, wherein the substrate is selected from silicon substrates. 如請求項1所述的金屬化合物奈米管的製作方法,其中,以物理氣相沉積法依序在該基板上沉積該金屬晶種層及該鋁層。 The method for fabricating metal compound nanotubes as claimed in claim 1, wherein the metal seed layer and the aluminum layer are sequentially deposited on the substrate by a physical vapor deposition method. 如請求項7所述的金屬化合物奈米管的製作方法,其中,以濺鍍或蒸鍍方式來沉積該金屬晶種層與該鋁層。The method for fabricating metal compound nanotubes as claimed in claim 7, wherein the metal seed layer and the aluminum layer are deposited by sputtering or evaporation.
TW109138795A 2020-11-06 2020-11-06 Method for making metal compound nanotubes TWI759950B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109138795A TWI759950B (en) 2020-11-06 2020-11-06 Method for making metal compound nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109138795A TWI759950B (en) 2020-11-06 2020-11-06 Method for making metal compound nanotubes

Publications (2)

Publication Number Publication Date
TWI759950B true TWI759950B (en) 2022-04-01
TW202218990A TW202218990A (en) 2022-05-16

Family

ID=82198888

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109138795A TWI759950B (en) 2020-11-06 2020-11-06 Method for making metal compound nanotubes

Country Status (1)

Country Link
TW (1) TWI759950B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452186B (en) * 2007-01-19 2014-09-11 Nanogan Ltd Production of single-crystal semiconductor material using a nanostructure template
CN108046327A (en) * 2017-12-26 2018-05-18 佛山科学技术学院 A kind of preparation method of tungsten disulfide nanotube
CN111437841A (en) * 2020-05-15 2020-07-24 山西大学 Tungsten telluride-tungsten boride heterojunction electrocatalyst and preparation method and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452186B (en) * 2007-01-19 2014-09-11 Nanogan Ltd Production of single-crystal semiconductor material using a nanostructure template
CN108046327A (en) * 2017-12-26 2018-05-18 佛山科学技术学院 A kind of preparation method of tungsten disulfide nanotube
CN111437841A (en) * 2020-05-15 2020-07-24 山西大学 Tungsten telluride-tungsten boride heterojunction electrocatalyst and preparation method and application thereof

Also Published As

Publication number Publication date
TW202218990A (en) 2022-05-16

Similar Documents

Publication Publication Date Title
JP4109809B2 (en) Method for producing fine wire containing titanium oxide
CN108630750B (en) Semiconductor device having two-dimensional lateral heterostructure and method of fabricating the same
US20060128155A1 (en) Columnar structured material, electrode having columnar structured material, and production method therefor
KR101614322B1 (en) Method for preparing graphene having controled layer number and method for fabricating electronic device using the same
CN108630761A (en) Semiconductor device manufacturing method
JP2013535407A (en) Large-scale graphene sheet, article incorporating the same, composition, method and apparatus
JPH11200090A (en) Nanostructural body and its production
TWI526559B (en) Process for forming carbon film or inorganic material film on substrate by physical vapor deposition
US10755939B2 (en) Multilayer graphene using chemical vapor deposition and method of manufacturing same
Hussain et al. Layer-modulated, wafer scale and continuous ultra-thin WS 2 films grown by RF sputtering via post-deposition annealing
KR102418187B1 (en) Method for fabricating metal chalcogenide thin films
Xu et al. Atomic‐precision repair of a few‐layer 2H‐MoTe2 thin film by phase transition and recrystallization induced by a heterophase interface
KR20130010603A (en) Method of manufacturing a substrate and method of manufacturing an electronic device using the same
KR101946497B1 (en) Method of manufacturing chalcogenide thin film
KR101905801B1 (en) Direct Synthesis of Ag Nanowires on Graphene Layer
Taghavi et al. Synthesizing tubular and trapezoidal shaped ZnO nanowires by an aqueous solution method
TWI759950B (en) Method for making metal compound nanotubes
CN113235049A (en) Transition metal sulfide thin film and preparation method and application thereof
KR20070110208A (en) Nano imprint blankmask, nano imprint stamp and its manufacturing method
KR20130035617A (en) Process for forming metal film on graphene
JP5246938B2 (en) Carbon nanotube growth substrate, transistor, and method of manufacturing carbon nanotube growth substrate
RU2716700C1 (en) Method of modifying the foil surface for electrolytic capacitors
TWI684661B (en) Two dimensional material and preparing method thereof
Nautiyal et al. Large-scale synthesis of nickel sulfide for electronic device applications
KR100919781B1 (en) Manufacturing Method of Porous Substrate for Thin Film