TWI759237B - Ingot evaluation method - Google Patents

Ingot evaluation method Download PDF

Info

Publication number
TWI759237B
TWI759237B TW110126859A TW110126859A TWI759237B TW I759237 B TWI759237 B TW I759237B TW 110126859 A TW110126859 A TW 110126859A TW 110126859 A TW110126859 A TW 110126859A TW I759237 B TWI759237 B TW I759237B
Authority
TW
Taiwan
Prior art keywords
tsd
ted
statistical
bpd
defect types
Prior art date
Application number
TW110126859A
Other languages
Chinese (zh)
Other versions
TW202305208A (en
Inventor
王上棋
李佳融
陳苗霈
蔡佳琪
李依晴
Original Assignee
環球晶圓股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 環球晶圓股份有限公司 filed Critical 環球晶圓股份有限公司
Priority to TW110126859A priority Critical patent/TWI759237B/en
Application granted granted Critical
Publication of TWI759237B publication Critical patent/TWI759237B/en
Priority to CN202210408236.3A priority patent/CN115688543A/en
Publication of TW202305208A publication Critical patent/TW202305208A/en

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

An ingot evaluation method is provided. A wafer image corresponding to each of the plurality of wafers cut by multiple ingots is divided into a plurality of regions. A plurality of statistical number of multiple defect types included in each region are calculated. A plurality of statistical parameters are obtained based on the plurality of statistical number of the defect types included in in each region. A regression analysis is performed using the statistical parameters and a bow value corresponding to each wafer to obtain multiple regression coefficients. A curvature prediction equation set is established based on the regression coefficients.

Description

晶錠評估方法Ingot Evaluation Method

本發明是有關於一種評估檢測方法,且特別是有關於一種晶錠評估方法。The present invention relates to an evaluation and inspection method, and in particular, to an ingot evaluation method.

半導體製造業對產品品質的要求相當嚴謹,而晶錠來料的品質對於加工後所獲得的晶圓的品質影響甚鉅。因此如何在晶錠加工前便過濾掉品質不佳的晶錠,將是本領域的課題之一。The semiconductor manufacturing industry has strict requirements on product quality, and the quality of incoming ingots has a great impact on the quality of wafers obtained after processing. Therefore, how to filter out the ingots with poor quality before processing the ingots will be one of the subjects in this field.

本發明提供一種晶錠評估方法,可由晶錠的評價片來預測晶錠的品質。The invention provides a method for evaluating a crystal ingot, which can predict the quality of the crystal ingot from the evaluation piece of the crystal ingot.

本發明的晶錠評估方法,包括:將由多個晶錠所切割的多個晶圓各自對應的晶圓影像分割成複數個區域;計算各區域所包括的多個缺陷種類的統計數量;基於所述區域中所包括的缺陷種類的統計數量,獲得多個統計參數;利用各晶圓對應的統計參數以及彎曲值來執行回歸分析,而獲得多個回歸係數;以及基於所述回歸係數來建立彎曲度預測方程式組。The ingot evaluation method of the present invention includes: dividing respective wafer images corresponding to a plurality of wafers cut from a plurality of ingots into a plurality of regions; calculating the statistical quantity of a plurality of defect types included in each region; obtain a plurality of statistical parameters; perform regression analysis by using the statistical parameters corresponding to each wafer and the warp value to obtain a plurality of regression coefficients; and establish warpage based on the regression coefficients Degree prediction equation system.

在本發明的一實施例中,基於所述區域中所包括的缺陷種類的統計數量,獲得統計參數的步驟包括:針對任一種缺陷種類,執行下述步驟。計算各區域中對應於所述缺陷種類的統計數量;計算所述區域對應於所述缺陷種類的統計數量的標準差來作為其中一個統計參數;以及排序所述區域中對應於所述缺陷種類的統計數量,並以由數值大至數值小的方式取出數值最高的A個統計數量來計算平均值來作為其中一個統計參數,其中A為正整數。In an embodiment of the present invention, based on the statistical number of defect types included in the area, the step of obtaining statistical parameters includes: for any defect type, performing the following steps. calculating the statistical quantity corresponding to the defect type in each area; calculating the standard deviation of the statistical quantity corresponding to the defect type in the area as one of the statistical parameters; and sorting the areas corresponding to the defect type Statistical quantity, and take out the A statistical quantity with the highest numerical value in a manner from large value to small value to calculate the average value as one of the statistical parameters, where A is a positive integer.

在本發明的一實施例中,所述缺陷種類包括貫通刃狀位錯(threading edge dislocation,TED)、貫通螺旋位錯(threading screw dislocation,TSD)和基面位錯(basal plane dislocation,BPD)。利用各晶圓對應的統計參數以及彎曲值來執行回歸分析,而獲得回歸係數的步驟包括:將各晶圓對應的統計參數與彎曲值輸入下述公式來執行回歸分析。 Bow(k)=P1×Std(TED)+P2×Avg(TED); Bow(k)=P3×Std(TSD)+P4×Avg(TSD); Bow(k)=P5×Std(BPD)+P6×Avg(BPD)。 其中,Bow(k)為第k個晶圓的彎曲值,P1~P6為回歸係數,Std(TED)、Std(TSD)、Std(BPD)分別為所述區域對應於貫通刃狀位、貫通螺旋位錯和基底面位錯三種缺陷種類的統計數量的標準差,Avg(TED)、Avg(TSD)、Avg(BPD)分別為對應於貫通刃狀位錯、貫通螺旋位錯和基底面位錯三種缺陷種類的最高的A個統計數量的平均值。 In an embodiment of the present invention, the defect types include threading edge dislocation (TED), threading screw dislocation (TSD) and basal plane dislocation (BPD). . The regression analysis is performed using the statistical parameters and the warp values corresponding to each wafer, and the step of obtaining the regression coefficient includes: inputting the statistical parameters and warp values corresponding to each wafer into the following formula to perform the regression analysis. Bow(k)=P1×Std(TED)+P2×Avg(TED); Bow(k)=P3×Std(TSD)+P4×Avg(TSD); Bow(k)=P5×Std(BPD)+P6×Avg(BPD). Among them, Bow(k) is the bending value of the kth wafer, P1-P6 are regression coefficients, and Std(TED), Std(TSD), and Std(BPD) are the regions corresponding to the through edge position and through The standard deviation of the statistical quantity of the three defect types of screw dislocation and basal plane dislocation, Avg(TED), Avg(TSD), Avg(BPD) are corresponding to threading edge dislocation, threading thread dislocation and basal plane position, respectively The average of the highest A statistics for the three defect types.

在本發明的一實施例中,基於所述區域中所包括的缺陷種類的統計數量,獲得統計參數的步驟包括:針對任兩種缺陷種類,執行下述步驟。計算各區域中所述任兩種缺陷種類合計的統計數量;計算所述區域對應於所述任兩種缺陷種類合計的統計數量的標準差來作為其中一個統計參數;以及排序所述區域中對應於所述任兩種缺陷種類合計的統計數量,取出最高的A個統計數量來計算平均值以作為其中一個統計參數。In an embodiment of the present invention, based on the statistical number of defect types included in the area, the step of obtaining statistical parameters includes: for any two defect types, performing the following steps. calculating the total statistical quantity of the two types of defects in each area; calculating the standard deviation of the total statistical quantity corresponding to the two types of defects in the area as one of the statistical parameters; and sorting the corresponding areas in the area From the total statistics of any two defect types, the highest A statistics are taken out to calculate the average value as one of the statistical parameters.

在本發明的一實施例中,所述缺陷種類包括貫通刃狀位錯、貫通螺旋位錯和基底面位錯,利用所述晶圓對應的統計參數以及彎曲值來執行回歸分析,而獲得回歸係數的步驟包括:將各晶圓對應的統計參數與彎曲值輸入下述公式來執行回歸分析。 Bow(k)=P7×Std(TED&TSD)+P8×Avg(TED&TSD); Bow(k)=P9×Std(TSD&BPD)+P10×Avg(TSD&BPD); Bow(k)=P11×Std(TED&BPD)+P12×Avg(TED&BPD)。 其中,Bow(k)為第k個晶圓的彎曲值,P7~P12為回歸係數。Std(TED&TSD)為所述區域對應於貫通刃狀位錯與貫通螺旋位錯兩種缺陷種類合計的統計數量的標準差,Avg(TED&TSD)為對應於貫通刃狀位錯與貫通螺旋位錯兩種缺陷種類合計的統計數量中最高的A個統計數量的平均值。Std(TSD&BPD)為所述區域對應於貫通螺旋位錯與基底面位錯兩種缺陷種類合計的統計數量的標準差,Avg(TSD&BPD)為對應於貫通螺旋位錯與基底面位錯兩種缺陷種類合計的統計數量中最高的A個統計數量的平均值。Std(TED&BPD)為所述區域對應於貫通刃狀位錯與基底面位錯兩種缺陷種類合計的統計數量的標準差,Avg(TED&BPD)為對應於貫通刃狀位錯與基底面位錯兩種缺陷種類合計的統計數量中最高的A個統計數量的平均值。 In an embodiment of the present invention, the defect types include threading edge dislocations, threading screw dislocations, and basal plane dislocations. Regression analysis is performed using statistical parameters and bending values corresponding to the wafer to obtain regression analysis. The step of coefficient includes: inputting the statistical parameters and bending values corresponding to each wafer into the following formula to perform regression analysis. Bow(k)=P7×Std(TED&TSD)+P8×Avg(TED&TSD);Bow(k)=P9×Std(TSD&BPD)+P10×Avg(TSD&BPD); Bow(k)=P11×Std(TED&BPD)+P12×Avg(TED&BPD). Among them, Bow(k) is the bending value of the k-th wafer, and P7-P12 are regression coefficients. Std(TED&TSD) is the standard deviation of the statistical quantity corresponding to the sum of the two defect types of threading edge dislocations and threading screw dislocations in the region, and Avg(TED&TSD) is corresponding to the two types of threading edge dislocations and threading screw dislocations. The average of the highest A statistics among the total statistics of the defect types. Std(TSD&BPD) is the standard deviation of the statistical number corresponding to the sum of the two defect types of threading dislocation and basal plane dislocation in the region, Avg(TSD&BPD) is the defect corresponding to threading dislocation and basal plane dislocation The average of the highest A statistics in the category total statistics. Std(TED&BPD) is the standard deviation of the statistical number corresponding to the sum of the two defect types of threading edge dislocations and basal plane dislocations in the region, Avg(TED&BPD) is corresponding to the two types of threading edge dislocations and basal plane dislocations The average of the highest A statistics among the total statistics of the defect types.

在本發明的一實施例中,基於所述區域中所包括的缺陷種類的統計數量,獲得統計參數的步驟包括:計算各區域中所述缺陷種類合計的統計數量;計算所述區域對應於缺陷種類合計的統計數量的標準差來作為其中一個統計參數;以及排序所述區域中對應於缺陷種類合計的統計數量,取出最高的A個統計數量來計算平均值以作為其中一個統計參數,其中A為正整數。In an embodiment of the present invention, based on the statistical quantity of defect types included in the area, the step of obtaining statistical parameters includes: calculating the total statistical quantity of the defect types in each area; calculating that the area corresponds to the defect The standard deviation of the total statistical quantities of the types is used as one of the statistical parameters; and the statistical quantities corresponding to the total defect types in the area are sorted, and the highest A statistical quantities are taken out to calculate the average value as one of the statistical parameters, wherein A is a positive integer.

在本發明的一實施例中,利用各晶圓對應的統計參數以及彎曲值來執行回歸分析,而獲得回歸係數的步驟包括:將各晶圓對應的統計參數與彎曲值輸入下述公式來執行回歸分析。 Bow(k)=P13×Std(TED&TSD&BPD)+P14×Avg(TED&TSD&BPD)。 其中,Bow(k)為第k個晶圓的彎曲值,P13~P14為回歸係數。Std(TED&TSD&BPD)為所述區域對應於貫通刃狀位錯、貫通螺旋位錯與基底面位錯三種缺陷種類合計的統計數量的標準差,Avg(TED&TSD&BPD)為對應於貫通刃狀位錯、貫通螺旋位錯與基底面位錯三種缺陷種類合計的統計數量中最高的A個統計數量的平均值。 In an embodiment of the present invention, the regression analysis is performed using the statistical parameters and the warp values corresponding to each wafer, and the step of obtaining the regression coefficients includes: inputting the statistical parameters and warp values corresponding to each wafer into the following formula to execute regression analysis. Bow(k)=P13×Std(TED&TSD&BPD)+P14×Avg(TED&TSD&BPD). Among them, Bow(k) is the bending value of the k-th wafer, and P13-P14 are regression coefficients. Std(TED&TSD&BPD) is the standard deviation of the statistics corresponding to the total of three defect types of threading edge dislocations, threading screw dislocations and basal plane dislocations in the region, Avg(TED&TSD&BPD) is corresponding to threading edge dislocations, threading The average value of the highest A statistics among the total statistics of the three defect types of screw dislocations and basal plane dislocations.

在本發明的一實施例中,在基於該些回歸係數來建立該彎曲度預測方程式組之後,更包括:利用該彎曲度預測方程式組來計算由待測晶錠加工而得的待測晶圓之彎曲值;判斷該加工後彎曲值是否位於一規格範圍內;倘若該加工後彎曲值位於該規格範圍內,判定該待測晶錠的品質良好;以及倘若該加工後彎曲值不在該規格範圍內,判定該待測晶錠的品質不佳。In an embodiment of the present invention, after establishing the tortuosity prediction equation set based on the regression coefficients, the method further includes: using the tortuosity prediction equation set to calculate the wafer to be tested processed from the ingot to be tested If the bending value after processing is within a specification range, it is judged that the quality of the ingot to be tested is good; and if the bending value after processing is not within the specification range , it is judged that the quality of the ingot to be tested is not good.

在本發明的一實施例中,在將由晶錠所切割的所述晶圓各自對應的晶圓影像分割成所述區域的步驟之後,更包括:捨棄位於晶圓影像的四個角落的區域,而計算剩餘的區域中所包括的缺陷種類的統計數量。In an embodiment of the present invention, after the step of dividing the respective wafer images of the wafers cut from the ingot into the regions, the step further includes: discarding regions located at four corners of the wafer images, Instead, the statistical number of defect types included in the remaining area is calculated.

基於上述,利用已知晶錠經加工後的晶圓來建立彎曲度預測方程式組,藉此,通過彎曲度預測方程式組來預測待測晶錠的品質,進而過濾掉會造成加工幾何品質不佳的晶錠,可大幅提高整體的加工品質並降低生產成本。Based on the above, a set of curvature prediction equations is established by using the processed wafers of the known ingots, thereby predicting the quality of the ingot to be tested through the set of curvature prediction equations, and then filtering out the poor processing geometry quality. The ingot can greatly improve the overall processing quality and reduce the production cost.

圖1是依照本發明一實施例的分析系統的方塊圖。請參照圖1,分析系統包括量測儀器110以及分析裝置120。量測儀器110與分析裝置120之間例如可透過有線或無線通訊方式來進行數據傳輸。FIG. 1 is a block diagram of an analysis system according to an embodiment of the present invention. Referring to FIG. 1 , the analysis system includes a measuring instrument 110 and an analysis device 120 . Data transmission between the measuring instrument 110 and the analysis device 120 can be performed, for example, through wired or wireless communication.

量測儀器110例如為自動光學檢查(Automated Optical Inspection,簡稱AOI)儀器。AOI儀器為高速高精度光學影像檢測系統,包含量測鏡頭技術、光學照明技術、定位量測技術、電子電路測試技術、影像處理技術及自動化技術應用等,其運用機器視覺做為檢測標準技術。量測儀器110利用光學儀器取得成品的表面狀態,再以電腦影像處理技術來檢出異物或圖案異常等瑕疵。The measuring instrument 110 is, for example, an automated optical inspection (Automated Optical Inspection, AOI for short) instrument. AOI instrument is a high-speed and high-precision optical image inspection system, including measurement lens technology, optical lighting technology, positioning measurement technology, electronic circuit testing technology, image processing technology and automation technology application, etc. It uses machine vision as the detection standard technology. The measuring instrument 110 uses an optical instrument to obtain the surface state of the finished product, and then uses computer image processing technology to detect defects such as foreign objects or abnormal patterns.

分析裝置120為具有運算功能的電子裝置,其可採用個人電腦、筆記型電腦、平板電腦、智慧型手機等或任何具有運算功能的裝置來實現,本發明不以此為限。分析裝置120自量測儀器110接收多個已知晶圓的量測資料(即,具有缺陷的座標位置以及缺陷種類),藉此來進行訓練以獲得一預測模型(彎曲度預測方程式組),以供後續利用待測晶圓的量測資料來獲得待測晶錠經加工成晶圓後的品質。The analysis device 120 is an electronic device with computing function, which can be implemented by a personal computer, a notebook computer, a tablet computer, a smart phone, etc. or any device with computing function, and the present invention is not limited thereto. The analysis device 120 receives the measurement data (ie, the coordinate position and the type of the defect) of a plurality of known wafers from the measurement instrument 110, thereby performing training to obtain a prediction model (a set of curvature prediction equations), For the subsequent use of the measurement data of the wafer under test to obtain the quality of the wafer under test after being processed into a wafer.

圖2是依照本發明一實施例的晶錠的示意圖。請參照圖2,晶錠20-1~20-N經加工製程後,分別在每個晶錠上各取一片晶圓,可獲得多個晶圓21-1~21-N,其中加工製程可以為切割、研磨和拋光,本發明不以此為限。利用量測儀器110來逐一進行光學檢查,以檢測晶圓21-1~21-N各自所包括多個座標位置是否有缺陷,並記錄具有缺陷的座標位置及其缺陷種類。所述缺陷種類包括貫通刃狀位錯(threading edge dislocation,TED)、貫通螺旋位錯(threading screw dislocation,TSD)和基底面位錯(basal plane dislocation,BPD),其中多個晶圓21-1~21-N可以是晶錠上任何位置加工後所得的晶圓,在一些較佳實施例中,多個晶圓21-1~21-N是接近晶錠20-1~20-N的第一端E1與第二端E2(頭尾兩端)的位置加工後所得的晶圓,在其他實施例中,可以為晶錠20-1~20-N頭尾兩端區域外的位置加工後所得的晶圓,本發明不以此為限。2 is a schematic diagram of an ingot according to an embodiment of the present invention. Referring to FIG. 2, after the ingots 20-1 to 20-N are processed, a wafer is taken from each ingot to obtain a plurality of wafers 21-1 to 21-N. For cutting, grinding and polishing, the present invention is not limited thereto. The measuring instrument 110 is used to perform optical inspection one by one to detect whether the plurality of coordinate positions included in each of the wafers 21 - 1 to 21 -N are defective, and record the coordinate positions with defects and the types of defects. The defect types include threading edge dislocation (TED), threading screw dislocation (TSD) and basal plane dislocation (BPD), among which multiple wafers 21-1 ~21-N can be wafers obtained after processing at any position on the ingot. In some preferred embodiments, the plurality of wafers 21-1~21-N are the first wafers close to the ingots 20-1~20-N. The wafer obtained after processing at the positions of one end E1 and the second end E2 (both ends of the head and tail) can be processed at positions outside the regions of the head and tail ends of the ingots 20-1 to 20-N in other embodiments. The obtained wafer is not limited in the present invention.

圖3是依照本發明一實施例的晶錠評估方法的流程圖。請參照圖3,在步驟S305中,將多個晶錠20-1~20-N所切割的多個晶圓21-1~21-N各自對應的晶圓影像分割成複數個區域。圖4是依照本發明一實施例的晶圓影像的示意圖。請參照圖4,晶圓影像400被分割成複數個區域C1~C36。在此切割數量僅為其中一種示例,在其他實施例中可以依照需求將晶圓影像400分割成任何數量的區域,本發明並不以此為限。晶圓21-1~21-N中的任一個皆有對應的類似於晶圓影像400的一張晶圓影像。FIG. 3 is a flowchart of an ingot evaluation method according to an embodiment of the present invention. Referring to FIG. 3 , in step S305 , the respective wafer images corresponding to the plurality of wafers 21 - 1 to 21 -N cut by the plurality of ingots 20 - 1 to 20 -N are divided into a plurality of regions. FIG. 4 is a schematic diagram of a wafer image according to an embodiment of the present invention. Referring to FIG. 4 , the wafer image 400 is divided into a plurality of regions C1 - C36 . The number of cuttings here is only one example. In other embodiments, the wafer image 400 can be divided into any number of regions according to requirements, and the present invention is not limited thereto. Each of the wafers 21 - 1 to 21 -N has a corresponding wafer image similar to the wafer image 400 .

接著,在步驟S310中,計算各區域所包括的多個缺陷種類的統計數量。例如,以晶圓21-1而言,並且以晶圓影像400作為晶圓21-1的晶圓影像來進行說明。分析裝置120根據晶圓21-1對應的量測資料(即,具有缺陷的座標位置以及缺陷種類),計算晶圓21-1對應的晶圓影像400的區域C1~C36各自所包括的TED的統計數量、TSD的統計數量以及BPD的統計數量。其他晶圓21-2~21-N亦相同。Next, in step S310, the statistical number of a plurality of defect types included in each area is calculated. For example, the wafer 21-1 will be described, and the wafer image 400 will be described as the wafer image of the wafer 21-1. The analysis device 120 calculates the TED values included in the regions C1 to C36 of the wafer image 400 corresponding to the wafer 21-1 according to the measurement data corresponding to the wafer 21-1 (ie, the coordinate position and the type of the defect) of the wafer 21-1. Statistics, TSD statistics, and BPD statistics. The same applies to the other wafers 21-2 to 21-N.

另外,由於晶圓影像400的四個角落中圓W所佔的比例偏低,因此,在統計缺陷種類的步驟中,可捨棄位於晶圓影像400的四個角落的區域C33~C36,而計算剩餘的區域C1~C32中所包括的缺陷種類的統計數量。例如,表1記載了N個晶圓21-2~21-N各自的區域C1~C32中的各種缺陷種類的統計數量。In addition, since the proportion of the circle W in the four corners of the wafer image 400 is relatively low, in the step of counting defect types, the regions C33 to C36 located at the four corners of the wafer image 400 can be discarded, and the calculation The statistical number of defect types included in the remaining areas C1 to C32. For example, Table 1 describes the statistical numbers of various defect types in the regions C1 to C32 of the N wafers 21 - 2 to 21 -N.

表1 晶圓 區域 缺陷種類 統計數量 21-1 C1 TED C 1-1-TED TSD C 1-1-TSD BPD C 1-1-BPD C32 TED C 1-32-TED TSD C 1-32-TSD BPD C 1-32-BPD 21-N C1 TED C N-1-TED TSD C N-1-TSD BPD C N-1-BPD C32 TED C N-32-TED TSD C N-32-TSD BPD C N-32-BPD Table 1 wafer area Defect type total number 21-1 C1 TED C 1-1-TED TSD C 1-1-TSD BPD C 1-1-BPD C32 TED C 1-32-TED TSD C 1-32-TSD BPD C 1-32-BPD 21-N C1 TED CN-1-TED TSD CN-1-TSD BPD CN-1-BPD C32 TED CN-32-TED TSD CN-32-TSD BPD CN-32-BPD

接著,在步驟S315中,基於所述區域中所包括的缺陷種類的統計數量,獲得多個統計參數。在此,可利用計算標準差、平均值來作為統計參數。Next, in step S315, a plurality of statistical parameters are obtained based on the statistical number of defect types included in the area. Here, the calculated standard deviation and the mean value can be used as statistical parameters.

例如,針對每一種缺陷種類計算在同一個晶圓所劃分的複數個區域的統計數量的標準差與平均值。倘若缺陷種類為3種,可獲得6個統計參數。以表1的晶圓21-1而言,以區域C1~C32的統計數量C 1-1-TED~C 1-32-TED,來計算晶圓21-1對應的TED的標準差Std(TED)。以區域C1~C32的統計數量C 1-1-TSD~C 1-32-TSD,來計算晶圓21-1對應的TSD的標準差Std(TSD)。以區域C1~C32的統計數量C 1-1-BPD~C 1-32-BPD,來計算晶圓21-1對應的BPD的標準差Std(BPD)。並且,排序C 1-1-TED~C 1-32-TED以取出最高的A個(例如5個),並計算平均值Avg(TED)。排序C 1-1-TSD~C 1-32-TSD以取出最高的5個,並計算平均值Avg(TSD)。排序C 1-1-BPD~C 1-32-BPD以取出最高的5個,並計算平均值Avg(BPD)。 For example, for each defect type, the standard deviation and average value of the statistical quantities of a plurality of regions divided on the same wafer are calculated. If there are 3 types of defects, 6 statistical parameters can be obtained. For the wafer 21-1 in Table 1, the standard deviation Std (TED (TED) of the TED corresponding to the wafer 21-1 is calculated based on the statistical quantities C 1-1-TED to C 1-32-TED of the regions C1 to C32 . ). The standard deviation Std(TSD) of the TSD corresponding to the wafer 21-1 is calculated by using the statistical quantities C1-1-TSD to C1-32-TSD of the regions C1-C32. The standard deviation Std(BPD) of the BPD corresponding to the wafer 21-1 is calculated by using the statistical quantities C1-1-BPD to C1-32-BPD of the regions C1 to C32. And, sort C 1-1-TED to C 1-32-TED to take out the highest A (for example, 5), and calculate the average value Avg(TED). Sort C 1-1-TSD to C 1-32-TSD to take the top 5 and calculate the average Avg(TSD). Sort C 1-1-BPD to C 1-32-BPD to take the top 5, and calculate the average Avg(BPD).

之後,在步驟S320中,利用各晶圓(21-1~21-N)對應的統計參數以及各晶圓(21-1~21-N)經加工製程後之彎曲(BOW)值來執行回歸分析,而獲得多個回歸係數。例如,將統計參數以及彎曲值輸入下述方程式(1)~(3)來執行回歸分析,而獲得多個回歸係數P1~P6。其中,Bow(k)為第k個晶圓經加工製程後之的彎曲值。 (1) Bow(k)=P1×Std(TED)+P2×Avg(TED); (2) Bow(k)=P3×Std(TSD)+P4×Avg(TSD); (3) Bow(k)=P5×Std(BPD)+P6×Avg(BPD)。 After that, in step S320 , regression is performed using the statistical parameters corresponding to each wafer (21-1 to 21-N) and the bending (BOW) value of each wafer (21-1 to 21-N) after the processing process. analysis to obtain multiple regression coefficients. For example, regression analysis is performed by inputting statistical parameters and bending values into the following equations (1) to (3), and a plurality of regression coefficients P1 to P6 are obtained. Among them, Bow(k) is the bending value of the kth wafer after the processing process. (1) Bow(k)=P1×Std(TED)+P2×Avg(TED); (2) Bow(k)=P3×Std(TSD)+P4×Avg(TSD); (3) Bow(k)=P5×Std(BPD)+P6×Avg(BPD).

最後,在步驟S325中,基於所述回歸係數來建立彎曲度預測方程式組。基於所獲得的回歸係數P1~P6來建立下述彎曲度預測方程式組(A): Bow1=P1×T Std(TED)+P2×T Avg(TED); Bow2=P3×T Std(TSD)+P4×T Avg(TSD); Bow3=P5×T Std(BPD)+P6×T Avg(BPD); Pre_Bow=(Bow1+Bow2+Bow3)/3。 Finally, in step S325, a set of tortuosity prediction equations is established based on the regression coefficients. Based on the obtained regression coefficients P1 to P6, the following set of tortuosity prediction equations (A) are established: Bow1=P1×T Std(TED) +P2×T Avg(TED) ; Bow2=P3×T Std(TSD) + P4×T Avg(TSD) ; Bow3=P5×T Std(BPD) +P6×T Avg(BPD) ; Pre_Bow=(Bow1+Bow2+Bow3)/3.

在預測方程式組(A)中,利用待測晶圓中TED對應的標準差T Std(TED)與平均值T Avg(TED)獲得彎曲度Bow1,利用待測晶圓中TSD對應的標準差T Std(TSD)與平均值T Avg(TSD)獲得彎曲度Bow2,利用待測晶圓中BPD對應的標準差T Std(BPD)與平均值T Avg(BPD)獲得彎曲度Bow3。之後,將彎曲度Bow1、Bow2、Bow3取平均值來作為加工後彎曲值Pre_Bow。 In the prediction equation group (A), the standard deviation T Std(TED) corresponding to the TED in the wafer to be tested and the average value T Avg(TED) are used to obtain the curvature Bow1, and the standard deviation T corresponding to the TSD in the wafer to be tested is used. Std(TSD) and the average T Avg(TSD) to obtain the bow2, and use the standard deviation T Std(BPD) corresponding to the BPD in the wafer to be tested and the average T Avg(BPD) to obtain the bow3. After that, the bending degrees Bow1 , Bow2 , and Bow3 are averaged as the post-processing bending value Pre_Bow.

而後,判斷加工後彎曲值Pre_Bow是否位於規格範圍內。倘若加工後彎曲值Pre_Bow位於規格範圍內,判定此待測晶圓所對應的待測晶錠的品質良好。倘若加工後彎曲值Pre_Bow不在規格範圍內,判定此待測晶圓所對應的待測晶錠的品質不佳,其中,待測晶圓所對應的待測晶錠,為由該待測晶錠經加工製程而獲得的待測晶圓。Then, it is judged whether the post-processing bending value Pre_Bow is within the specification range. If the bending value Pre_Bow after processing is within the specification range, it is determined that the quality of the ingot to be tested corresponding to the wafer to be tested is good. If the bending value Pre_Bow after processing is not within the specification range, it is determined that the quality of the ingot to be tested corresponding to the wafer to be tested is not good. The wafer to be tested obtained through the processing process.

另外,除了上述針對每一種缺陷種類來計算其標準差及平均值。還可針對每兩種缺陷種類、每三種缺陷種類等來計算其合計的統計數量,藉此獲得對應的標準差及平均值。In addition, the standard deviation and the average value are calculated for each defect type in addition to the above. The total statistical quantity can also be calculated for every two defect types, every three defect types, etc., thereby obtaining the corresponding standard deviation and average value.

例如,針對任兩種缺陷種類,執行下述步驟。計算各區域中所述任兩種缺陷種類合計的統計數量;計算所述區域對應於所述任兩種缺陷種類合計的統計數量的標準差來作為其中一個統計參數;以及排序所述區域中對應於所述任兩種缺陷種類合計的統計數量,取出最高的A個統計數量來計算平均值以作為其中一個統計參數。For example, for any two defect types, the following steps are performed. calculating the total statistical quantity of the two types of defects in each area; calculating the standard deviation of the total statistical quantity corresponding to the two types of defects in the area as one of the statistical parameters; and sorting the corresponding areas in the area From the total statistics of any two defect types, the highest A statistics are taken out to calculate the average value as one of the statistical parameters.

表2記載了N個晶圓21-2~21-N各自的區域C1~C32中的任兩種缺陷種類的統計數量。Table 2 describes the statistical numbers of any two types of defects in the regions C1 to C32 of the N wafers 21-2 to 21-N.

表2 晶圓 區域 缺陷種類 統計數量 21-1 C1 TED+TSD C 1-1-TED&TSD TSD+BPD C 1-1-TSD&BPD TED+BPD C 1-1-TED&BPD C32 TED+TSD C 1-32-TED&TSD TSD+BPD C 1-32-TSD&BPD TED+BPD C 1-32-TED&BPD 21-N C1 TED+TSD C N-1-TED&TSD TSD+BPD C N-1-TSD&BPD TED+BPD C N-1-TED&BPD C32 TED+TSD C N-32-TED&TSD TSD+BPD C N-32-TSD TED+BPD C N-32-TED&BPD Table 2 wafer area Defect type total number 21-1 C1 TED+TSD C 1-1-TED&TSD TSD+BPD C 1-1-TSD&BPD TED+BPD C 1-1-TED&BPD C32 TED+TSD C 1-32-TED&TSD TSD+BPD C 1-32-TSD&BPD TED+BPD C 1-32-TED&BPD 21-N C1 TED+TSD CN-1-TED&TSD TSD+BPD CN-1-TSD&BPD TED+BPD CN-1-TED&BPD C32 TED+TSD CN-32-TED&TSD TSD+BPD CN-32-TSD TED+BPD CN-32-TED&BPD

以表2的晶圓21-1而言,以區域C1~C32的統計數量C 1-1-TED&TSD~C 1-32-TED&TSD,來計算晶圓21-1對應TED與TSD的標準差Std(TED&TSD)。並且,排序C 1-1-TED&TSD~C 1-32-TED&TSD以取出最高的A個(例如5個),並計算平均值Avg(TED&TSD)。以此類推,獲得對應TSD與BPD的標準差Std(TSD&BPD)與平均值Avg(TSD&BPD),以及對應TED與BPD的標準差Std(TED&BPD)與平均值Avg(TED&BPD)。將上述統計參數以及彎曲值輸入下述方程式(4)~(6)來執行回歸分析,而獲得多個回歸係數P7~P12。其中,Bow(k)為第k個晶圓的彎曲值。 (4) Bow(k)=P7×Std(TED&TSD)+P8×Avg(TED&TSD); (5) Bow(k)=P9×Std(TSD&BPD)+P10×Avg(TSD&BPD); (6) Bow(k)=P11×Std(TED&BPD)+P12×Avg(TED&BPD)。 For the wafer 21-1 in Table 2, the standard deviation Std ( TED&TSD). And, sort C 1-1-TED&TSD to C 1-32-TED&TSD to take out the highest A (for example, 5), and calculate the average Avg(TED&TSD). By analogy, the standard deviation Std(TSD&BPD) and the mean value Avg(TSD&BPD) corresponding to TSD and BPD, and the standard deviation Std(TED&BPD) and mean value Avg(TED&BPD) corresponding to TED and BPD are obtained. The above-mentioned statistical parameters and bending values are input into the following equations (4) to (6), and regression analysis is performed to obtain a plurality of regression coefficients P7 to P12. Among them, Bow(k) is the bow value of the kth wafer. (4) Bow(k)=P7×Std(TED&TSD)+P8×Avg(TED&TSD); (5) Bow(k)=P9×Std(TSD&BPD)+P10×Avg(TSD&BPD); (6) Bow(k )=P11×Std(TED&BPD)+P12×Avg(TED&BPD).

表3記載了N個晶圓21-2~21-N各自的區域C1~C32中的三種缺陷種類的統計數量。Table 3 describes the statistics of the three types of defects in the regions C1 to C32 of the N wafers 21 - 2 to 21 -N.

表3 晶圓 區域 缺陷種類 統計數量 21-1 C1 TED+TSD+BPD C 1-1-TED&TSD&BPD C32 TED+TSD+BPD C 1-32-TED&TSD&BPD 21-N C1 TED+TSD+BPD C N-1-TED&TSD&BPD C32 TED+TSD+BPD C N-32-TED&TSD&BPD table 3 wafer area Defect type total number 21-1 C1 TED+TSD+BPD C 1-1-TED&TSD&BPD C32 TED+TSD+BPD C 1-32-TED&TSD&BPD 21-N C1 TED+TSD+BPD CN-1-TED&TSD&BPD C32 TED+TSD+BPD CN-32-TED&TSD&BPD

以表3的晶圓21-1而言,以區域C1~C32的統計數量C 1-1-TED&TSD&BPD~C 1-32-TED&TSD&BPD來計算晶圓21-1對應TED、TSD與BPD三者合計的標準差Std(TED&TSD&BPD)。並且,由數值大至數值小的方式來排序C 1-1-TED&TSD&BPD~C 1-32-TED&TSD&BPD以取出最高的A個(例如數值最高的前5個),並計算平均值Avg(TED&TSD&BPD)。將上述統計參數以及彎曲值輸入下述方程式(7)來執行回歸分析,而獲得回歸係數P13~P14。其中,Bow(k)為第k個晶圓的彎曲值。 (7) Bow(k)=P13×Std(TED&TSD&BPD)+ P14×Avg(TED&TSD&BPD)。 For the wafer 21-1 in Table 3, the total of TED, TSD and BPD corresponding to the wafer 21-1 is calculated based on the statistical quantities C1-1-TED&TSD&BPD to C1-32-TED&TSD&BPD of the regions C1-C32. Standard Deviation Std (TED&TSD&BPD). And, sort C 1-1-TED&TSD&BPD to C 1-32-TED&TSD&BPD in a manner from the largest value to the smallest value to take out the highest A (for example, the top 5 highest in value), and calculate the average value Avg(TED&TSD&BPD). The above-mentioned statistical parameters and bending values were input into the following equation (7) to perform regression analysis, and regression coefficients P13 to P14 were obtained. Among them, Bow(k) is the bow value of the kth wafer. (7) Bow(k)=P13×Std(TED&TSD&BPD)+P14×Avg(TED&TSD&BPD).

以缺陷種類包括TED、TSD和BPD三種而言,可採用14個統計參數,即包括:TED、TSD和BPD各自的標準差與平均值共6個統計參數、任意兩種缺陷種類的標準差與平均值共6個統計參數以及三種缺陷種類的標準差與平均值2個統計參數。As far as the defect types include TED, TSD and BPD, 14 statistical parameters can be used, including: the standard deviation and average value of TED, TSD and BPD, a total of 6 statistical parameters, and the standard deviation and average value of any two defect types. There are 6 statistical parameters for the average value and 2 statistical parameters for the standard deviation and the average value of the three defect types.

表4所示為各晶圓對應的14個統計參數。經由上述方程式(1)~(7)來執行回歸分析,而獲得多個回歸係數P1~P14。Table 4 shows the 14 statistical parameters corresponding to each wafer. A plurality of regression coefficients P1 to P14 are obtained by performing regression analysis through the above equations (1) to (7).

表4 統計參數 晶圓 21-1 晶圓 21-2 晶圓 21-3 Std(TED) 666.812567 845.660688 1555.3768 Std(TSD) 356.080047 82.8070045 301.826109 Std(BPD) 960.610223 418.983293 1136.59931 Avg(TED) 1413.93069 1738.43033 2795.59296 Avg(TSD) 623.201412 157.225952 530.207507 Avg(BPD) 1590.54079 843.729815 2150.92073 Std(TED&TSD) 712.081456 846.248781 1567.21313 Std(TSD&BPD) 1008.85827 874.634781 1587.50496 Std(TED&BPD) 919.302453 418.580936 1131.86793 Avg(TED&TSD) 1535.54079 1743.3072 2830.61124 Avg(TSD&BPD) 1965.97558 1849.94595 3139.78662 Avg(TED&BPD) 1608.47132 853.920371 2168.88912 Std(TED&TSD&BPD) 985.160901 875.104565 1596.44449 Avg(TED&TSD&BPD) 1995.02882 1854.52959 3163.80467 Table 4 Statistical parameters Wafer 21-1 Wafer 21-2 Wafer 21-3 Std (TED) 666.812567 845.660688 1555.3768 Std(TSD) 356.080047 82.8070045 301.826109 Std(BPD) 960.610223 418.983293 1136.59931 Avg(TED) 1413.93069 1738.43033 2795.59296 Avg(TSD) 623.201412 157.225952 530.207507 Avg(BPD) 1590.54079 843.729815 2150.92073 Std(TED&TSD) 712.081456 846.248781 1567.21313 Std(TSD&BPD) 1008.85827 874.634781 1587.50496 Std(TED&BPD) 919.302453 418.580936 1131.86793 Avg(TED&TSD) 1535.54079 1743.3072 2830.61124 Avg(TSD&BPD) 1965.97558 1849.94595 3139.78662 Avg(TED&BPD) 1608.47132 853.920371 2168.88912 Std(TED&TSD&BPD) 985.160901 875.104565 1596.44449 Avg(TED&TSD&BPD) 1995.02882 1854.52959 3163.80467

基於所獲得的回歸係數P1~P14來建立下述彎曲度預測方程式組(B): Bow1=P1×T Std(TED)+P2×T Avg(TED); Bow2=P3×T Std(TSD)+P4×T Avg(TSD); Bow3=P5×T Std(BPD)+P6×T Avg(BPD); Bow4=P7×T Std(TED&TSD)+P8×T Avg(TED&TSD); Bow5=P9×T Std(TSD&BPD)+P10×T Avg(TSD&BPD); Bow6=P11×T Std(TED&BPD)+P12×T Avg(TED&BPD); Bow7=P13×T Std(TED&TSD&BPD)+P14×T Avg(TED&TSD&BPD); Pre_Bow=(Bow1+Bow2+Bow3+Bow4+Bow5+Bow6+Bow7)/7。 Based on the obtained regression coefficients P1 to P14, the following set of tortuosity prediction equations (B) are established: Bow1=P1×T Std(TED) +P2×T Avg(TED) ; Bow2=P3×T Std(TSD) + P4×T Avg(TSD) ; Bow3=P5×T Std(BPD) +P6×T Avg(BPD) ; Bow4=P7×T Std(TED&TSD) +P8×T Avg(TED&TSD) ; Bow5=P9×T Std (TSD&BPD) +P10×T Avg(TSD&BPD) ; Bow6=P11×T Std(TED&BPD) +P12×T Avg(TED&BPD) ; Bow7=P13×T Std(TED&TSD&BPD) +P14×T Avg(TED&TSD&BPD) ; Pre_Bow= (Bow1+Bow2+Bow3+Bow4+Bow5+Bow6+Bow7)/7.

在預測方程式組(B)中,利用待測晶圓中TED對應的標準差T Std(TED)與平均值T Avg(TED)獲得彎曲度Bow1,利用待測晶圓片中TSD對應的標準差T Std(TSD)與平均值T Avg(TSD)獲得彎曲度Bow2,利用待測晶圓中BPD對應的標準差T Std(BPD)與平均值T Avg(BPD)獲得彎曲度Bow3。並且,利用待測晶圓中TED+TSD、TSD+BPD以及TED+BPD任兩種缺陷種類對應的標準差T Std(TED&TSD)、T Std(TSD&BPD)、T Std(TED&BPD)與平均值T Avg(TED&TSD)、T Avg(TED&TSD)、T Avg(TSD&BPD)獲得彎曲度Bow4、Bow5、Bow6。利用待測晶圓中TED+TSD+BPD三種缺陷種類對應的標準差T Std(TED&TSD&BPD)與平均值T Avg(TED&TSD&BPD)獲得彎曲度Bow7。之後,將彎曲度Bow1~Bow7取平均值來作為加工後彎曲值Pre_Bow。 In the prediction equation group (B), the standard deviation T Std(TED) corresponding to the TED in the wafer to be tested and the average value T Avg(TED) are used to obtain the curvature Bow1, and the standard deviation corresponding to the TSD in the wafer to be tested is used. T Std(TSD) and the average T Avg(TSD) to obtain the bow2, and use the standard deviation T Std(BPD) corresponding to the BPD in the wafer to be tested and the average T Avg(BPD) to obtain the bow3. And, use the standard deviation T Std(TED&TSD) , T Std(TSD&BPD) , T Std(TED&BPD) and the average value T Avg corresponding to any two defect types of TED+TSD, TSD+BPD and TED+BPD in the wafer to be tested (TED&TSD) , T Avg(TED&TSD) , T Avg(TSD&BPD) to obtain the curvature Bow4, Bow5, Bow6. Bow7 is obtained by using the standard deviation T Std (TED&TSD&BPD) and the average value TAvg (TED&TSD&BPD) corresponding to the three defect types of TED+TSD+BPD in the wafer to be tested. After that, the mean values of the degrees of curvature Bow1 to Bow7 were taken as the post-processing curvature value Pre_Bow.

綜上所述,本發明利用已知晶錠經加工後的晶圓來建立彎曲度預測方程式組,藉此,可通過彎曲度預測方程式組來預測待測晶錠的品質,進而過濾掉會造成加工幾何品質不佳的晶錠,可大幅提高整體的加工品質並降低生產成本。To sum up, the present invention uses the processed wafers of the known ingots to establish the tortuosity prediction equation set, whereby the quality of the ingot to be tested can be predicted through the tortuosity prediction equation set, and then the quality of the ingot to be tested can be filtered out Processing ingots with poor geometric quality can greatly improve the overall processing quality and reduce production costs.

110:量測儀器 120:分析裝置 20-1~20-N:晶錠 21-1~21-N、W:晶圓 400:晶圓影像 C1~C36:區域 E1:第一端 E2:第二端 S305~S325:晶錠評估方法的步驟110: Measuring instruments 120: Analysis device 20-1~20-N: Ingot 21-1~21-N, W: Wafer 400: Wafer Image C1~C36: Area E1: first end E2: second end S305~S325: Steps of Ingot Evaluation Method

圖1是依照本發明一實施例的分析系統的方塊圖。 圖2是依照本發明一實施例的晶錠的示意圖。 圖3是依照本發明一實施例的晶錠評估方法的流程圖。 圖4是依照本發明一實施例的晶圓影像的示意圖。 FIG. 1 is a block diagram of an analysis system according to an embodiment of the present invention. 2 is a schematic diagram of an ingot according to an embodiment of the present invention. FIG. 3 is a flowchart of an ingot evaluation method according to an embodiment of the present invention. FIG. 4 is a schematic diagram of a wafer image according to an embodiment of the present invention.

S305~S325:晶錠評估方法的步驟 S305~S325: Steps of Ingot Evaluation Method

Claims (9)

一種晶錠評估方法,包括: 將多個晶錠所切割的多個晶圓各自對應的晶圓影像分割成複數個區域; 計算每一所述複數個區域所包括的多個缺陷種類的統計數量; 基於該些區域中所包括的該些缺陷種類的統計數量,獲得多個統計參數; 利用每一該些晶圓對應的該些統計參數以及一彎曲值來執行一回歸分析,而獲得多個回歸係數;以及 基於該些回歸係數來建立一彎曲度預測方程式組。 An ingot evaluation method, comprising: Divide the respective wafer images corresponding to the plurality of wafers cut by the plurality of crystal ingots into a plurality of regions; calculating the statistical quantity of a plurality of defect types included in each of the plurality of regions; obtaining a plurality of statistical parameters based on the statistical quantities of the defect types included in the regions; performing a regression analysis using the statistical parameters and a warp value corresponding to each of the wafers to obtain a plurality of regression coefficients; and A tortuosity prediction equation system is established based on the regression coefficients. 如請求項1所述的晶錠評估方法,其中基於該些區域中所包括的該些缺陷種類的統計數量,獲得該些統計參數的步驟包括: 針對該些缺陷種類中任一種缺陷種類, 計算每一該些區域中該任一種缺陷種類的統計數量; 計算該些區域對應於該任一種缺陷種類的統計數量的標準差來作為該些統計參數其中一個;以及 排序該些區域中對應於該任一種缺陷種類的統計數量,並以由數值大至數值小的方式取出數值最高的A個統計數量來計算一平均值來作為該些統計參數其中一個,其中A為正整數。 The ingot evaluation method according to claim 1, wherein based on the statistical quantity of the defect types included in the regions, the step of obtaining the statistical parameters includes: For any of these defect types, calculating a statistical number of any defect type in each of those areas; calculating the standard deviation of the statistical quantities of the regions corresponding to any one of the defect types as one of the statistical parameters; and Sorting the statistical quantities corresponding to any of the defect types in the areas, and extracting the A statistical quantities with the highest numerical values in a manner from a large value to a small value to calculate an average value as one of the statistical parameters, where A is a positive integer. 如請求項2所述的晶錠評估方法,其中該些缺陷種類包括貫通刃狀位錯(threading edge dislocation,TED)、貫通螺旋位錯(threading screw dislocation,TSD)和基底面位錯(basal plane dislocation,BPD),利用每一該些晶圓對應的該些統計參數以及該彎曲值來執行該回歸分析,而獲得該些回歸係數的步驟包括: 將每一該些晶圓對應的該些統計參數與該彎曲值輸入下述公式來執行該回歸分析: Bow(k)=P1×Std(TED)+P2×Avg(TED); Bow(k)=P3×Std(TSD)+P4×Avg(TSD); Bow(k)=P5×Std(BPD)+P6×Avg(BPD); 其中,Bow(k)為第k個晶圓的該彎曲值,P1~P6為該些回歸係數,Std(TED)、Std(TSD)、Std(BPD)分別為該些區域對應於貫通刃狀位錯、貫通螺旋位錯和基底面位錯三種缺陷種類的統計數量的標準差,Avg(TED)、Avg(TSD)、Avg(BPD)分別為對應於貫通刃狀位錯、貫通螺旋位錯和基底面位錯三種缺陷種類的最高的A個統計數量的平均值。 The ingot evaluation method of claim 2, wherein the defect types include threading edge dislocations (TED), threading screw dislocations (TSD), and basal plane dislocations dislocation, BPD), using the statistical parameters corresponding to each of the wafers and the bending value to perform the regression analysis, and the steps of obtaining the regression coefficients include: The regression analysis is performed by inputting the statistical parameters and the warp value corresponding to each of the wafers into the following formula: Bow(k)=P1×Std(TED)+P2×Avg(TED); Bow(k)=P3×Std(TSD)+P4×Avg(TSD); Bow(k)=P5×Std(BPD)+P6×Avg(BPD); Among them, Bow(k) is the bending value of the kth wafer, P1-P6 are the regression coefficients, and Std(TED), Std(TSD), and Std(BPD) are the regions corresponding to the through-blade shape, respectively. The standard deviation of the statistical quantity of the three defect types of dislocation, threading dislocation and basal plane dislocation, Avg(TED), Avg(TSD), Avg(BPD) are corresponding to threading edge dislocation, threading thread dislocation, respectively and the average of the highest A statistics for the three defect types of basal plane dislocations. 如請求項1所述的晶錠評估方法,其中基於該些區域中所包括的該些缺陷種類的統計數量,獲得該些統計參數的步驟包括: 針對該些缺陷種類中任兩種缺陷種類, 計算每一該些區域中所述任兩種缺陷種類合計的統計數量; 計算該些區域對應於所述任兩種缺陷種類合計的統計數量的標準差來作為該些統計參數其中一個;以及 排序該些區域中對應於所述任兩種缺陷種類合計的統計數量,取出最高的A個統計數量來計算一平均值以作為該些統計參數其中一個。 The ingot evaluation method according to claim 1, wherein based on the statistical quantity of the defect types included in the regions, the step of obtaining the statistical parameters includes: For any two of these defect types, calculating a statistical number of the sum of any two defect types in each of those areas; calculating the standard deviation of the statistical quantities of the regions corresponding to the sum of any two defect types as one of the statistical parameters; and Sort the statistical quantities corresponding to the sum of any two defect types in the regions, and take out the highest A statistical quantities to calculate an average value as one of the statistical parameters. 如請求項4所述的晶錠評估方法,其中該些缺陷種類包括貫通刃狀位錯、貫通螺旋位錯和基底面位錯,利用每一該些晶圓對應的該些統計參數以及該彎曲值來執行該回歸分析,而獲得該些回歸係數的步驟包括: 將每一該些晶圓對應的該些統計參數與該彎曲值輸入下述公式來執行該回歸分析: Bow(k)=P7×Std(TED&TSD)+P8×Avg(TED&TSD); Bow(k)=P9×Std(TSD&BPD)+P10×Avg(TSD&BPD); Bow(k)=P11×Std(TED&BPD)+P12×Avg(TED&BPD); 其中,Bow(k)為第k個晶圓的該彎曲值,P7~P12為該些回歸係數, Std(TED&TSD)為該些區域對應於貫通刃狀位錯與貫通螺旋位錯兩種缺陷種類合計的統計數量的標準差,Avg(TED&TSD)為對應於貫通刃狀位錯與貫通螺旋位錯兩種缺陷種類合計的統計數量中最高的A個統計數量的平均值, Std(TSD&BPD)為該些區域對應於貫通螺旋位錯與基底面位錯兩種缺陷種類合計的統計數量的標準差,Avg(TSD&BPD)為對應於貫通螺旋位錯與基底面位錯兩種缺陷種類合計的統計數量中最高的A個統計數量的平均值, Std(TED&BPD)為該些區域對應於貫通刃狀位錯與基底面位錯兩種缺陷種類合計的統計數量的標準差,Avg(TED&BPD)為對應於貫通刃狀位錯與基底面位錯兩種缺陷種類合計的統計數量中最高的A個統計數量的平均值。 The ingot evaluation method of claim 4, wherein the defect types include threading edge dislocations, threading screw dislocations and basal plane dislocations, using the statistical parameters corresponding to each of the wafers and the warp value to perform the regression analysis, and the steps of obtaining the regression coefficients include: The regression analysis is performed by inputting the statistical parameters and the warp value corresponding to each of the wafers into the following formula: Bow(k)=P7×Std(TED&TSD)+P8×Avg(TED&TSD);Bow(k)=P9×Std(TSD&BPD)+P10×Avg(TSD&BPD);Bow(k)=P11×Std(TED&BPD)+P12×Avg(TED&BPD); Among them, Bow(k) is the bending value of the kth wafer, P7-P12 are the regression coefficients, Std(TED&TSD) is the standard deviation of the statistical quantity corresponding to the sum of the two defect types of threading edge dislocations and threading dislocations in these regions, Avg(TED&TSD) is corresponding to both threading edge dislocations and threading threading dislocations The average value of the highest A statistical quantities among the total statistical quantities of the defect types, Std(TSD&BPD) is the standard deviation of the statistical number of these regions corresponding to the sum of the two defect types of threading dislocation and basal plane dislocation, Avg(TSD&BPD) is the two defects corresponding to threading dislocation and basal plane dislocation The average of the highest A statistics in the category total statistics, Std(TED&BPD) is the standard deviation of the statistical quantity corresponding to the sum of the two defect types of threading edge dislocation and basal plane dislocation in these regions, and Avg(TED&BPD) is corresponding to the two types of threading edge dislocation and basal plane dislocation The average of the highest A statistics among the total statistics of the defect types. 如請求項1所述的晶錠評估方法,其中基於該些區域中所包括的該些缺陷種類的統計數量,獲得該些統計參數的步驟包括: 計算每一該些區域中該些缺陷種類合計的統計數量; 計算該些區域對應於該些缺陷種類合計的統計數量的標準差來作為該些統計參數其中一個;以及 排序該些區域中對應於該些缺陷種類合計的統計數量,取出最高的A個統計數量來計算一平均值以作為該些統計參數其中一個,其中A為正整數。 The ingot evaluation method according to claim 1, wherein based on the statistical quantity of the defect types included in the regions, the step of obtaining the statistical parameters includes: calculating the aggregated statistics of the defect types in each of the areas; calculating the standard deviation of the statistical quantities of the regions corresponding to the total defect types as one of the statistical parameters; and Sort the statistical quantities corresponding to the total of the defect types in the regions, and extract the highest A statistical quantities to calculate an average value as one of the statistical parameters, where A is a positive integer. 如請求項6所述的晶錠評估方法,其中該些缺陷種類包括貫通刃狀位錯、貫通螺旋位錯和基底面位錯,利用每一該些晶圓對應的該些統計參數以及該彎曲值來執行該回歸分析,而獲得該些回歸係數的步驟包括: 將每一該些晶圓對應的該些統計參數與該彎曲值輸入下述公式來執行該回歸分析: Bow(k)=P13×Std(TED&TSD&BPD)+P14×Avg(TED&TSD&BPD); 其中,Bow(k)為第k個晶圓的該彎曲值,P13~P14為該些回歸係數, Std(TED&TSD&BPD)為該些區域對應於貫通刃狀位錯、貫通螺旋位錯與基底面位錯三種缺陷種類合計的統計數量的標準差,Avg(TED&TSD&BPD)為對應於貫通刃狀位錯、貫通螺旋位錯與基底面位錯三種缺陷種類合計的統計數量中最高的A個統計數量的平均值。 The ingot evaluation method of claim 6, wherein the defect types include threading edge dislocations, threading screw dislocations and basal plane dislocations, using the statistical parameters corresponding to each of the wafers and the warp value to perform the regression analysis, and the steps of obtaining the regression coefficients include: The regression analysis is performed by inputting the statistical parameters and the warp value corresponding to each of the wafers into the following formula: Bow(k)=P13×Std(TED&TSD&BPD)+P14×Avg(TED&TSD&BPD); Among them, Bow(k) is the bending value of the kth wafer, P13-P14 are the regression coefficients, Std(TED&TSD&BPD) is the standard deviation of the statistical number corresponding to the total of three defect types of threading edge dislocation, threading screw dislocation and basal plane dislocation in these regions, Avg(TED&TSD&BPD) is corresponding to threading edge dislocation, threading The average value of the highest A statistics among the total statistics of the three defect types of screw dislocations and basal plane dislocations. 如請求項1所述的晶錠評估方法,其中在基於該些回歸係數來建立該彎曲度預測方程式組之後,更包括: 利用該彎曲度預測方程式組來計算由待測晶錠加工而得之待測晶圓的一加工後彎曲值; 判斷該加工後彎曲值是否位於一規格範圍內; 倘若該加工後彎曲值位於該規格範圍內,判定該待測晶錠的品質良好;以及 倘若該加工後彎曲值不在該規格範圍內,判定該待測晶錠的品質不佳。 The ingot evaluation method according to claim 1, wherein after establishing the tortuosity prediction equation system based on the regression coefficients, further comprising: Using the set of curvature prediction equations to calculate a post-processing curvature value of the wafer to be tested obtained by processing the ingot to be tested; Determine whether the bending value after processing is within a specification range; If the bending value after processing is within the specification range, the quality of the ingot to be tested is determined to be good; and If the bending value after processing is not within the specification range, it is determined that the quality of the ingot to be tested is not good. 如請求項1所述的晶錠評估方法,其中在將由該晶錠所切割的該些晶圓各自對應的該晶圓影像分割成該些區域的步驟之後,更包括: 捨棄位於該晶圓影像的四個角落的區域,而計算剩餘的該些區域中所包括的該些缺陷種類的統計數量。 The ingot evaluation method according to claim 1, wherein after the step of dividing the wafer images corresponding to the wafers cut from the ingot into the regions, further comprising: The regions located at the four corners of the wafer image are discarded, and the statistics of the defect types included in the remaining regions are calculated.
TW110126859A 2021-07-21 2021-07-21 Ingot evaluation method TWI759237B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110126859A TWI759237B (en) 2021-07-21 2021-07-21 Ingot evaluation method
CN202210408236.3A CN115688543A (en) 2021-07-21 2022-04-19 Ingot evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110126859A TWI759237B (en) 2021-07-21 2021-07-21 Ingot evaluation method

Publications (2)

Publication Number Publication Date
TWI759237B true TWI759237B (en) 2022-03-21
TW202305208A TW202305208A (en) 2023-02-01

Family

ID=81710890

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110126859A TWI759237B (en) 2021-07-21 2021-07-21 Ingot evaluation method

Country Status (2)

Country Link
CN (1) CN115688543A (en)
TW (1) TWI759237B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI390636B (en) * 2006-12-01 2013-03-21 Siltronic Ag Silicon wafer and method for manufacturing the same
US9064823B2 (en) * 2013-03-13 2015-06-23 Taiwan Semiconductor Manufacturing Co., Ltd. Method for qualifying a semiconductor wafer for subsequent processing
TWI639192B (en) * 2015-06-26 2018-10-21 Sumco股份有限公司 A method of quality checking for silicon wafers, a method of manufacturing silicon wafers using said method of quality checking, and silicon wafers
CN109844966A (en) * 2016-09-08 2019-06-04 法国原子能及替代能源委员会 Method for sorting silicon wafer according to the body life time of silicon wafer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI390636B (en) * 2006-12-01 2013-03-21 Siltronic Ag Silicon wafer and method for manufacturing the same
US9064823B2 (en) * 2013-03-13 2015-06-23 Taiwan Semiconductor Manufacturing Co., Ltd. Method for qualifying a semiconductor wafer for subsequent processing
TWI639192B (en) * 2015-06-26 2018-10-21 Sumco股份有限公司 A method of quality checking for silicon wafers, a method of manufacturing silicon wafers using said method of quality checking, and silicon wafers
CN109844966A (en) * 2016-09-08 2019-06-04 法国原子能及替代能源委员会 Method for sorting silicon wafer according to the body life time of silicon wafer

Also Published As

Publication number Publication date
TW202305208A (en) 2023-02-01
CN115688543A (en) 2023-02-03

Similar Documents

Publication Publication Date Title
JP4552749B2 (en) Inspection standard setting device and method, and process inspection device
CN107063099B (en) A kind of online quality monitoring method of machinery manufacturing industry of view-based access control model system
US8627266B2 (en) Test map classification method and fabrication process condition setting method using the same
CN115100199B (en) Method for detecting wafer low-texture defects
CN112200806A (en) Wafer defect analysis method and system
CN109285791B (en) Design layout-based rapid online defect diagnosis, classification and sampling method and system
CN115015286B (en) Chip detection method and system based on machine vision
CN115360116B (en) Wafer defect detection method and system
CN101118422A (en) Virtual measurement prediction generated by semi-conductor, method for establishing prediction model and system
CN109494178A (en) A kind of work dispatching method detecting board
TWI759237B (en) Ingot evaluation method
JP2017183406A (en) Method of manufacturing semiconductor device
CN110763696A (en) Method and system for wafer image generation
CN116385331A (en) Flaw detection method, flaw detection system, electronic equipment and medium
CN110108713A (en) A kind of Superficial Foreign Body defect fast filtering method and system
CN116646281A (en) Abnormal test structure acquisition method, abnormal test structure verification method and related devices
CN104952750B (en) The early stage detecting system and method for a kind of silicon chip electrical testing
CN107767372B (en) Chip pin online visual detection system and method for layered parallel computing
TWI762364B (en) Ingot evaluation method
TWI647770B (en) Yield rate determination method for wafer and method for multiple variable detection of wafer acceptance test
CN110033470B (en) Wafer edge tube core judging method and system
TWI689888B (en) Method for determining abnormal equipment in semiconductor processing system and program product
TWI389245B (en) Chip sorter with prompt chip pre-position and optical examining process thereof
JP4276503B2 (en) Methods for narrowing down the causes of semiconductor defects
TWI651589B (en) Detecting method of circuit board and exposing method of circuit board