TWI757110B - 低溫泵及低溫泵的控制方法 - Google Patents

低溫泵及低溫泵的控制方法 Download PDF

Info

Publication number
TWI757110B
TWI757110B TW110107842A TW110107842A TWI757110B TW I757110 B TWI757110 B TW I757110B TW 110107842 A TW110107842 A TW 110107842A TW 110107842 A TW110107842 A TW 110107842A TW I757110 B TWI757110 B TW I757110B
Authority
TW
Taiwan
Prior art keywords
pressure
cryopump
valve
vent valve
controller
Prior art date
Application number
TW110107842A
Other languages
English (en)
Other versions
TW202136643A (zh
Inventor
髙橋走
Original Assignee
日商住友重機械工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友重機械工業股份有限公司 filed Critical 日商住友重機械工業股份有限公司
Publication of TW202136643A publication Critical patent/TW202136643A/zh
Application granted granted Critical
Publication of TWI757110B publication Critical patent/TWI757110B/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • F04B37/085Regeneration of cryo-pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • F04B37/16Means for nullifying unswept space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/03Stopping, starting, unloading or idling control by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/03Pressure in the compression chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Safety Valves (AREA)
  • Details Of Valves (AREA)

Abstract

[課題]提供一種低溫泵,在低溫泵的再生期間使通氣閥在確切的時刻開啟。 [解決手段]低溫泵(10)具備:低溫泵容器(16);壓力感測器(22),測定低溫泵容器(16)內的壓力,並生成表示測定壓力之時序壓力資料;通氣閥(28),設置於低溫泵容器(16),可藉由控制而開閉,且可藉由低溫泵容器(16)內外的壓差而機械性開啟;及控制器(20),係控制成在低溫泵再生期間,根據來自壓力感測器(22)的時序壓力資料來檢測測定壓力的穩定化,在檢測到測定壓力的穩定化之情況下開啟通氣閥(28)。

Description

低溫泵及低溫泵的控制方法
本發明有關低溫泵及低溫泵的控制方法。 本申請案係主張基於2020年3月18申請之日本專利申請第2020-048148號的優先權。該日本申請案的全部內容係藉由參閱而援用於本說明書中。
低溫泵係將氣體分子藉由凝結或吸附捕集到被冷卻至極低溫之低溫板上並排出之真空泵。通常,低溫泵為了實現半導體電路製造程序等中所要求之潔淨之真空環境而被利用。由於低溫泵係所謂氣體儲存式真空泵,因此需要進行將捕集到之氣體定期排出到外部的再生。
有一種已知的低溫泵,用於排出氣體的通氣閥的開閉動作係根據藉由壓力感測器測定之低溫泵內壓而控制。又,該通氣閥係作為藉由低溫泵內外的壓差機械性開啟之安全閥,能夠釋放在再生期間可能在低溫泵內產生之過度的高壓。 [先前技術文獻]
[專利文獻1]日本特開2012-149530號公報
[發明所欲解決之問題]
本發明人針對上述低溫泵進行探討,認識到以下待解決之問題。作為設置於低溫泵之壓力感測器,是採用可以測定真空之類型,較佳為採用可以測定從真空至大氣壓之類型。多數情況下,這種壓力感測器不是直接測定壓力,而是根據氣體與感測器的相互作用而間接測定壓力。例如,皮拉尼真空計(Pirani gauge)係根據熱傳導進行測定,其具有高溫的金屬細線,與金屬細線碰撞後之氣體分子將熱帶走而冷卻金屬細線,藉此測定壓力。這種間接測定方式,取決於氣體溫度或氣體物性之測定誤差是不可避免的。
在低溫泵的再生期間,低溫泵的溫度會從極低溫到室溫或比其更高溫而發生廣溫度範圍的變動,而且,在低溫泵內含有捕集到之各種類型的氣體氣化並混合而成之氣體。從而,在低溫泵的再生期間得到之壓力感測器的測定壓力可能含有很大的誤差。結果,基於壓力感測器的測定壓力之通氣閥的開閉動作亦有可能變得不確切。
本發明的一態樣的示例性目的之一為,在低溫泵的再生期間使通氣閥在確切的時刻開啟。 [解決問題之技術手段]
根據本發明的一態樣,低溫泵具備:低溫泵容器;壓力感測器,測定低溫泵容器內的壓力,並生成表示測定壓力之時序壓力資料;通氣閥,設置於低溫泵容器,可以藉由控制而開閉,並且可以藉由低溫泵容器內外的壓差而機械性開啟;及控制器,係控制成在低溫泵再生期間,根據來自壓力感測器之時序壓力資料來檢測測定壓力的穩定化,在檢測到測定壓力的穩定化之情況下開啟通氣閥。
根據本發明的一態樣,提供一種低溫泵的控制方法。低溫泵具備:低溫泵容器;壓力感測器;及通氣閥,設置於低溫泵容器,可以藉由控制而開閉,並且可以藉由低溫泵容器內外的壓差機械性開啟。控制方法具備如下步驟:使用壓力感測器,測定低溫泵容器內的壓力,並生成表示測定壓力之時序壓力資料;及根據時序壓力資料來檢測測定壓力的穩定化,在檢測到測定壓力的穩定化之情況下開啟通氣閥。
另外,將以上構成要件的任意組合、將本發明的構成要件或表述方式於方法、裝置、系統等之間彼此替換,作為本發明的實施態樣亦是有效的。 [發明之效果]
根據本發明,能夠在低溫泵的再生期間使通氣閥於確切時刻開啟。
以下,參閱圖式,對用於實施本發明的形態進行詳細說明。在說明及圖式中,對相同或等同之構成要件、構件及處理標註相同之符號,並適當地省略重複說明。圖示之各部分的比例或形狀是為了便於說明而適當設定的,除非另有說明,否則不會被限定性地解釋。實施形態為示例,對本發明的範圍不作任何限定。實施形態中記載之所有特徵及其組合未必限定為發明的本質性部分。
圖1概略顯示實施形態之低溫泵10。低溫泵10安裝於例如離子植入裝置、濺鍍裝置、蒸鍍裝置或其他真空程序裝置的真空腔室,為了將真空腔室內部的真空度提高至所期望的真空程序中所要求之水準而被使用。例如,在真空腔室中實現10-5 Pa至10-8 Pa程度的高真空度。
低溫泵10具備壓縮機12、冷凍機14、低溫泵容器16、低溫板18及控制器20。又,低溫泵10具備壓力感測器22、粗抽閥24、清洗閥26、通氣閥28,該等設置於低溫泵容器16。
壓縮機12構成為從冷凍機14回收冷媒氣體,將所回收之冷媒氣體進行升壓,再次將冷媒氣體供給到冷凍機14。冷凍機14亦被稱為膨脹機或冷頭(cold head),與壓縮機12一同構成極低溫冷凍機。壓縮機12與冷凍機14之間的冷媒氣體的循環係藉由冷凍機14內的冷媒氣體的適當之壓力變動和容積變動的組合來進行的,藉此構成製冷之熱力學循環,使冷凍機14的冷卻台冷卻至所期望的極低溫。藉此,能夠將與冷凍機14的冷卻台熱耦合之低溫板18冷卻至目標冷卻溫度(例如10K~20K)。冷媒氣體通常係氦氣,但是亦可使用適合之其他氣體。為了便於理解,圖1中用箭頭來表示冷媒氣體的流動方向。作為一例,極低溫冷凍機係二段式的吉福特-麥克馬洪(Gifford-McMahon;GM)冷凍機,但是亦可以係脈衝管冷凍機、斯特林冷凍機或其他類型的極低溫冷凍機。
低溫泵容器16係一種真空容器,其被設計成在低溫泵10的真空排氣運轉中保持真空,並可承受周圍環境的壓力(例如大氣壓)。低溫泵容器16具備:具有吸氣口17之低溫板容納部16a和冷凍機容納部16b。低溫板容納部16a具有吸氣口17開放且其相反側封閉之圓頂狀形狀,低溫板18與冷凍機14的冷卻台一同容納於其內部。冷凍機容納部16b具有圓筒狀形狀,其一端固定於冷凍機14的室溫部,另一端連接於低溫板容納部16a,冷凍機14插入其內部。從低溫泵10的吸氣口17進入之氣體藉由凝結或吸附被捕集到低溫板18。由於低溫板18的配置、形狀等之低溫泵10的結構能夠適當地採用各種公知的結構,因此在此不作詳述。
控制器20構成為控制低溫泵10。控制器20可以一體地設置於低溫泵10,亦可構成為與低溫泵10不同個體的控制裝置。
在低溫泵10的真空排氣運轉中,控制器20可以根據低溫板18的冷卻溫度來控制冷凍機14。在低溫泵容器16內可以設置有測定低溫板18的溫度之溫度感測器23,控制器20可以與溫度感測器23連接,以接收表示低溫板18的測定溫度之溫度感測器輸出訊號。
又,在低溫泵10的再生運轉中,控制器20可以根據低溫泵容器16內的壓力(或者,按照需要,根據低溫板18的溫度及低溫泵容器16內的壓力)來控制冷凍機14、粗抽閥24、清洗閥26、通氣閥28。控制器20亦可與壓力感測器22連接,以接收表示低溫泵容器16內的測定壓力之壓力感測器輸出訊號(例如,包括後述時序壓力資料D1)。
詳細內容雖隨後敘述,控制器20係控制成,在低溫泵再生期間,根據來自壓力感測器22的時序壓力資料D1來檢測測定壓力的穩定化,在檢測到測定壓力的穩定化之情況下開啟通氣閥28。
控制器20的內部結構中,作為硬體結構可藉由以計算機的CPU或記憶體為代表之元件或電路來實現,作為軟體結構可藉由計算機程式等來實現,但是在圖中適當地繪製成藉由它們的協作來實現的功能方塊。本領域技術人員當然可以理解,該等功能方塊係藉由硬體、軟體的組合以各種形式來實現的。
例如,控制器20能夠藉由CPU(Central Processing Unit:中央處理單元)、微型計算機等的處理器(硬體)、處理器(硬體)執行之軟體程式的組合進行安裝。該種硬體處理器例如可以由FPGA(Field Programmable Gate Array:現場可編程邏輯閘陣列)等可編程邏輯設備構成,亦可以係如同可編程邏輯控制器(PLC)之控制電路。軟體程式可以係用於使控制器20執行低溫泵10的再生之計算機程式。
壓力感測器22測定低溫泵容器16內的壓力,並生成表示測定壓力之時序壓力資料D1。壓力感測器22安裝於低溫泵容器16,例如安裝於冷凍機容納部16b。壓力感測器22可以藉由依次輸出應蓄積於控制器20中之所測定之壓力值的資料而生成時序壓力資料D1。由於壓力感測器22週期性地測定低溫泵容器16內的壓力,因此時序壓力資料D1表示低溫泵容器16內的測定壓力的時間變化。換言之,時序壓力資料D1包括在彼此不同至時間點測定之至少兩個以上的壓力測定值。
壓力感測器22具有包括真空(例如,低溫泵10的動作開始壓力1~10Pa)和大氣壓兩者之寬廣的測量範圍。較佳為至少將可能在再生處理中生成之壓力範圍包括在測量範圍內。在本實施形態中,作為壓力感測器22係使用大氣壓皮拉尼真空規(可以測定大氣壓之皮拉尼真空計)。或者,壓力感測器22可以係例如水晶真空計(crystal gauge)、或根據氣體與感測器的相互作用而間接測定壓力之其他壓力感測器。
粗抽閥24安裝於低溫泵容器16,例如安裝於冷凍機容納部16b。粗抽閥24連接於在低溫泵10的外部設置之粗抽泵(未圖示)。粗抽泵係用於將低溫泵10真空抽吸至其動作開始壓力之真空泵。當粗抽閥24藉由控制器20的控制而開放時,低溫泵容器16連通於粗抽泵,當粗抽閥24關閉時,低溫泵容器16與粗抽泵被阻斷。開啟粗抽閥24並使粗抽泵進行動作,藉此能夠對低溫泵10進行減壓。
清洗閥26安裝於低溫泵容器16,例如安裝於低溫板容納部16a。清洗閥26連接於在低溫泵10的外部設置之淨化氣體供給裝置(未圖示)。當清洗閥26藉由控制器20的控制而開放時,淨化氣體供給到低溫泵容器16,當清洗閥26關閉時,對低溫泵容器16的淨化氣體的供給被阻斷。淨化氣體可以係例如氮氣或其他乾燥的氣體,淨化氣體的溫度例如被調整為室溫,或者可以被加熱為比室溫更高的溫度。藉由開啟清洗閥26並將淨化氣體導入到低溫泵容器16,能夠將低溫泵10進行升壓。又,能夠將低溫泵10從極低溫升溫至室溫或比其更高的溫度。
通氣閥28安裝於低溫泵容器16,例如安裝於冷凍機容納部16b。通氣閥28係為了將流體從低溫泵10的內部排出到外部而設置。通氣閥28連接於排出管線30,該排出管線30將排出之流體向低溫泵10的外部儲槽(未圖示)進行導流。或者,在所排出之流體無害之情況下,通氣閥28可以構成為將所排出之流體排放到周圍環境。從通氣閥28排出之流體基本上係氣體,但是亦可以係液體或氣液的混合物。
通氣閥28可以藉由控制而開閉,並且可以藉由低溫泵容器16內外的壓差而機械性開啟。通氣閥28例如係常閉型控制閥,構成為還具有所謂安全閥的功能。通氣閥28預先設定有閉閥力,當既定的壓差作用時可機械性開放。該開閥壓差,例如能夠考慮到可能作用於低溫泵容器16之內壓或結構耐久性等而適當地設定。由於低溫泵10的外部環境通常為大氣壓,因此開閥壓差以大氣壓為基準而設定為既定值。關於通氣閥28的閉閥力的設定,參閱圖2隨後敘述。
通氣閥28按照從控制器20輸入之指令訊號S1而開閉。例如,當如再生期間等般從低溫泵10排放流體時,通氣閥28由控制器20開放。當不應排放時,通氣閥28由控制器20關閉。另一方面,當開閥壓差作用時,通氣閥28機械性開放。因此,當低溫泵內部因某種原因而成為高壓時,通氣閥28機械性開放而不需要控制。藉此,能夠釋放內部高壓。如此,通氣閥28具有安全閥的功能。如此,藉由將通氣閥28兼作安全閥,與分別設置兩個閥之情況相比,可以獲得降低成本或節省空間之優點。
圖2係更詳細地顯示圖1所示通氣閥28之示意圖。在圖2中用實線表示之關閉狀態下,通氣閥28阻斷從真空埠84向排氣埠86的流通。真空埠84連接於低溫泵容器16,排氣埠86連接於排出管線30(或者可以向外部環境直接開放)。另一方面,在開放狀態下,通氣閥28容許從真空埠84向排氣埠86的排出流A。用虛線來表示在開放狀態下的閥體的位置。從真空埠84流入通氣閥28中之排出流A在通氣閥28的內部向垂直方向折彎,並從排氣埠86流出。
通氣閥28具有藉由閥殼體88來與外部隔離之閥室90及活塞室92。閥室90與活塞室92相鄰並由隔板94隔離。隔板94係與真空埠84對向之閥室90的內壁。在閥室90中設置有兩個開口,一個開口係上述真空埠84,另一個開口係排氣埠86。
在閥室90中容納有作為通氣閥28的閥體的閥板96。閥板96的外形尺寸大於真空埠84的開口尺寸,以使閥板96的外周部緊壓於真空埠84的周圍部分98。例如,閥板96及真空埠84均為同心的圓形,閥板96的直徑大於真空埠84的直徑。閥板96的外周部緊壓於真空埠84的周圍部分98的區域(例如環狀區域)是作為密封面100發揮功能。在密封面100上設置有用於密封的O型環(未圖示)。該O型環容納於例如在密封面100內且形成於閥板96上之溝槽部。
在活塞室92中容納有通氣閥28的閥驅動機構的一部分、亦即活塞102。活塞102之外側面被活塞室92的內壁可滑動地支承。活塞室92由活塞102分割為兩個室。活塞102透過連結軸104和閥板96連結。連結軸104係從閥板96的與密封面100相反方向的表面的中心部垂直地延伸並固定於活塞102的棒狀構件。連結軸104貫穿隔板94,在隔板94之貫穿孔中可在軸向上移動地藉由例如軸承(未圖示)支承。因此,活塞102可以沿著活塞室92的內壁在連結軸104的軸向上滑動。藉由透過連結軸104固定,閥板96可與活塞102一體地在軸向上移動。
閥驅動機構例如係壓縮空氣式的驅動機構。亦即,藉由將壓縮空氣供給到活塞室92而驅動活塞102。閥驅動機構亦可以包括電磁閥,該電磁閥用於切換將壓縮空氣供給及停止供給到活塞室92。在由活塞102分割之活塞室92的一個室中設置有壓縮空氣供給口及排出口,該等供給口及排出口連接於包括上述電磁閥之壓縮空氣供給系統。控制器20控制電磁閥的開閉。若電磁閥開放,則壓縮空氣供給到活塞室92,活塞102從初始位置移動。若電磁閥關閉,則壓縮空氣從活塞室92排放,活塞102藉由後述彈簧106的作用而返回到初始位置。
另外,閥驅動機構亦可以係其他任意的驅動機構。例如,可以係利用螺線管的電磁吸引力來直接驅動活塞102之所謂直動式,或者亦可以係由線性馬達、步進馬達等適當的馬達來驅動閥體之方式。
通氣閥28具備包括彈簧106之閉閥機構。彈簧106係為了使閥板96的外周部緊壓於真空埠84的周圍部分98而使密封壓力作用於密封面100所設置。彈簧106朝向與從真空埠84流入之排出流A相反之方向將閥板96彈壓。彈簧106的一端安裝於閥板96的與密封面100相反之方向的表面,另一端安裝於隔板94,並且沿著連結軸104設置。如此,通氣閥28構成為常閉型控制閥。
彈簧106以既定的壓縮力的安裝荷重被安裝,該安裝荷重決定通氣閥28的閉閥力。亦即,當因壓差而作用於閥板96上之壓差力超過彈簧安裝荷重、亦即閉閥力時,閥板96因壓差力而稍微移動,從而通氣閥28開啟(一點鏈線)。藉由此機械性開閥而容許從真空埠84向排氣埠86的流動。在低溫泵10的真空排氣運轉中,真空側的壓力低於排氣側的壓力。由於彈簧106將閥板96朝向真空埠84彈壓,因此通氣閥28不會機械性開啟。在真空埠84側的壓力高於排氣埠86側的壓力之特殊情況下,通氣閥28可機械性開放。
另外,通氣閥28的閉閥機構並不限定於彈簧式。例如,亦可以係基於磁力之閉閥機構。亦可以藉由以磁力的吸引力將閥板96與真空埠84的周圍部分98固定在一起而賦予所期望的閉閥力。在該情況下,在閥板96和真空埠84的周圍部分98中的至少一方,設置用於使吸引力作用在兩者之間之磁鐵。或者,亦可以係基於靜電吸附之閉閥機構、或其他適合之閉閥機構。
通氣閥28係根據壓力感測器22的測定結果而由控制器20控制之控制閥。控制器20判定由壓力感測器22測定之低溫泵容器16的內壓是否超過設定壓力。在判定為超過設定壓力之情況下,控制器20藉由閥驅動機構來開放通氣閥28。亦即,控制器20將活塞102及閥板96從閉閥狀態的位置(以下,有時將其稱為關閉位置或初始位置)移動到開放狀態的位置(以下,有時將其稱為開放位置)。在圖2中,用實線來表示關閉位置,用虛線來表示開放位置。
另一方面,在判定為由壓力感測器22測定之低溫泵容器16的內壓未達到設定壓力之情況下,控制器20將活塞102及閥板96維持在關閉位置。在該情況下,控制器20不啟動閥驅動機構,活塞102及閥板96藉由彈簧106的閉閥力保持在關閉位置。
用於開閉控制通氣閥28之設定壓力被設定為低溫泵10的外部環境的壓力。或者,在重視確實地防止當開放通氣閥28時從外部向泵內部的逆流的情況下,設定壓力被設定為比外部環境的壓力稍微高。由於外部環境的壓力典型的係大氣壓,因此用於開閉控制通氣閥28之設定壓力被設定為大氣壓或者比其稍微高的壓力(例如,表壓為0.1大氣壓以內的大小)。如此,當低溫泵10的內部例如在再生期間相對於外部成為高壓時,通氣閥28藉由控制而開啟,能夠將內壓釋放到外部。
多數情況下,控制閥構成為,在設想之使用環境下,當藉由控制而開放(或關閉)時確實地維持開放狀態(或關閉狀態)。若為常閉型控制閥,閉閥力設為大於設想最大壓差,以免在關閉狀態下在設想為作用於閥之壓差範圍內任意地開閥。
然而,通氣閥28的特徵之一為,閉閥力被調整為可在設想之壓力範圍內機械性開放通氣閥28。通氣閥28的閉閥力被調整為,當控制器20關閉通氣閥28時,藉由在低溫泵容器16的內部產生之正壓與外部壓的壓差的作用而機械性開放通氣閥28。具體而言,通氣閥28的閉閥力被調整為,藉由超過低溫泵10正常運轉時所設想之壓差的開閥壓差而機械性開放通氣閥28。在此的正常運轉包括低溫泵10的排氣運轉和再生運轉兩者。例如,在通氣閥28本身的控制系統中發生異常時、或者因某種原因而使低溫泵容器16的內部過度升壓時,使通氣閥28機械性開放。
使通氣閥28機械性開啟之開閥壓差,可以與控制器20進行控制以開啟通氣閥28之設定壓力相等或者高於設定壓力。開閥壓差及設定壓力可以係表壓為例如1大氣壓以內或0.5大氣壓以內,亦可為例如0.2大氣壓至0.3大氣壓的範圍內。
基於控制器20之通氣閥28的閥體之開閉行程D,係大於基於壓差作用之機械性開閥之閥體移動量。亦即,通氣閥28構成為,基於閥驅動機構之開閉行程D大於當開閥壓差作用時之閥板96的移動量。機械性開閥的開閉行程很小。與機械性開閥相比,基於控制器20之通氣閥28的開閉控制能夠減小通氣閥28咬入排出流A中所含之異物粒子之風險。因此,能夠良好地維持通氣閥28的密封性。
藉由持續真空排氣運轉,氣體蓄積於低溫泵10中。為了將所蓄積之氣體排出到外部而進行低溫泵10的再生。再生運轉包括升溫製程、排出製程及冷卻製程。
在升溫製程中,藉由經由清洗閥26供給到低溫泵容器16之淨化氣體或其他加熱機構,低溫泵10從極低溫升溫至室溫或比其高的再生溫度(例如,約290K至約300K)。同時,捕集到低溫泵10之氣體再次氣化,並且被供給淨化氣體,因此低溫泵容器16內的壓力朝向大氣壓或比其稍微高的壓力(亦即,通氣閥28的開閥壓差或設定壓力)增加。
在排出製程中,氣體通過通氣閥28或粗抽閥24從低溫泵容器16排出到外部。低溫泵容器16內的壓力減壓至低溫泵10的動作開始壓力程度,若檢測到壓力上升率低於既定值,則結束排出製程。接著,低溫泵10藉由冷卻製程從再生溫度再次冷卻至極低溫。如此再生完畢,低溫泵10能夠再次開始真空排氣運轉。
在低溫泵10的再生期間,雖取決於壓力感測器22的測定方式,壓力感測器22的測定壓力(絕對壓力)可能含有測定誤差。例如,皮拉尼真空計由於是根據氣體分子與金屬細線之間的熱傳導,因此取決於氣體溫度或氣體物性之測定誤差是不可避免的。尤其,在升溫製程中,低溫泵10的溫度從極低溫到室溫或比其高的溫度而發生廣溫度範圍的變動,並且在低溫泵10內含有捕集到之各種類型的氣體氣化並混合而成之氣體。從而,壓力感測器22的測定壓力可能含有很大的誤差。
如此般在壓力感測器22的測定壓力偏離低溫泵容器16內的真實壓力時,若藉由控制器20對通氣閥28進行開閉控制,會有上述設定壓力成為測定壓力與真實壓力的中間值的情形。此時,考慮到設定壓力與大氣壓為相同程度,可能會出現以下所例示之問題。
在測定壓力超過設定壓力且真實壓力低於設定壓力之情況下,可能產生從排出管線30通過通氣閥28向低溫泵容器16內的逆流。這是因為,由於測定壓力超過設定壓力,控制器20開啟通氣閥28,但是此時低溫泵容器16內的真實壓力低於設定壓力,亦即低於大氣壓。會有在排出管線30中讓半導體製造程序中通常使用之需要慎重處理之氣體(例如,具有毒性、易燃性及/或腐蝕性之氣體)流過的情形。期望盡量避免這種氣體逆流到低溫泵10中。
為了避免這種情況,若將設定壓力設定為更高的壓力,則不易進行開啟通氣閥28之控制。當低溫泵10的內壓變高時,通氣閥28不是藉由控制而開啟,而是作為安全閥機械性開啟之可能性提高。由控制器20對通氣閥28進行之控制有效地發揮功能的情況被限定,將通氣閥28構成為可控制的閥可能變得沒有意義。又,如上所述般,當通氣閥28機械性開啟時,由於閥體移動量小,因此容易導致咬入異物,這也是不希望的。
相反地,在測定壓力低於設定壓力且真實壓力超過設定壓力之情況下,儘管真實壓力超過設定壓力,控制器20亦不會開啟通氣閥28。在此情況下,當真實壓力超過通氣閥28的開閥壓差時,通氣閥28機械性開啟。同樣地,由控制器20對通氣閥28進行之控制有效地發揮功能之情況被限定。通氣閥28的安全閥動作可能導致咬入異物。為了避免該該種情況,若將設定壓力設定為更低的壓力,則逆流的風險提高。
圖3係顯示在低溫泵10的再生期間可能發生之低溫泵容器16的內壓上升之示意圖。圖3中示出在升溫製程中在低溫泵容器16內設想之壓力的時間變化。
如圖所示,若開始再生,則低溫泵容器16內的壓力因所捕集之氣體的再氣化和淨化氣體的供給而增加。在此,不考慮由控制器20對通氣閥28進行之控制。當低溫泵容器16內的壓力達到通氣閥28的開閥壓差P0時,通氣閥28作為安全閥進行動作並機械性開啟。低溫泵容器16內的壓力,在通氣閥28機械性開啟的瞬間從開閥壓差P0稍微降低,然後維持在大致恆定的壓力P1。這是根據通氣閥28的閥體從通過通氣閥28的排出流所受到之力與通氣閥28的閉閥力的平衡。
從而,在本實施形態中,控制器20控制成,在低溫泵再生期間,根據來自壓力感測器22的時序壓力資料D1來檢測測定壓力的穩定化,在檢測到測定壓力的穩定化之情況下開啟通氣閥28。時序壓力資料D1包括在彼此不同之時間點測定之至少兩個以上的測定壓力值。因此,控制器20亦可根據時序壓力資料D1的該等測定壓力值來運算低溫泵容器16內的測定壓力的變化量。此外,控制器20亦可控制成,根據所運算出之測定壓力的變化量來檢測測定壓力的穩定化,在檢測到測定壓力的穩定化之情況下開啟通氣閥28。
將低溫泵容器16內的壓力的降低或將此後的維持視為壓力的穩定化,藉由檢測該等情況,能夠獲知通氣閥28作為安全閥機械性開啟之時刻,亦即獲知低溫泵10的內壓達到通氣閥28的開閥壓差P0之時刻。
在通氣閥28作為安全閥機械性開啟之時刻,是在物理上保證低溫泵內壓高於外壓。因此,即使在該時刻藉由控制開啟通氣閥28,亦不會引起通過通氣閥28之向低溫泵容器16的逆流。又,如上述般,由控制器20進行之通氣閥28的開閉行程比機械性開閥的開閉行程大,因此通氣閥28咬入異物之風險亦降低。
起因於壓力感測器22的測定誤差,測定壓力(絕對壓力)值本身可能偏離低溫泵容器16內的真實壓力。然而,直至通氣閥28開啟為止持續上升而當通氣閥28開啟則變得穩定化之測定壓力的變化方式(亦即,測定壓力變化量的變遷),幾乎不受壓力感測器22的測定誤差的影響。
通氣閥28的機械性開放之檢測,是根據由壓力感測器22測定之壓力變動(相對壓力)。因此,檢測準確度不是取決於所使用之壓力感測器22的絕對壓力的測定精度。不管是使用哪種類型的壓力感測器之情況下,皆可期待相同程度的精度。
如此,在低溫泵10的再生期間,在應開啟通氣閥28之時刻,能夠確切地開啟通氣閥28。
通常,高精度地測定絕對壓力之壓力感測器的價格昂貴,但是高精度地測定相對壓力之壓力感測器能夠以相對低廉之價格獲得。因此,作為壓力感測器22能夠採用價格低廉者。這會降低低溫泵10的製造成本。
又控制器20亦可控制成,在將低溫泵10從極低溫升溫至再生溫度的期間,根據時序壓力資料D1來檢測測定壓力的穩定化,在檢測到測定壓力的穩定化之情況下開啟通氣閥28。在低溫泵10升溫中,溫度大幅變動。而且,在低溫泵容器16內可能含有各種氣體,並且該等各種氣體混合而成之氣體的組成也不明。因此,在升溫中,壓力感測器22的測定誤差(絕對壓力)有變得特別大的傾向。從而,在低溫泵10的升溫中,檢測壓力感測器22之測定壓力的穩定化並藉由控制而開啟通氣閥28是特別有效的。
接著,參閱實施例,對低溫泵10的例示性控制結構進行說明。
圖4係實施例之控制器20的方塊圖。圖5係表示實施例之低溫泵10的控制方法之流程圖。
如圖4所示,控制器20具備處理部40,該處理部40從壓力感測器22接收時序壓力資料D1,並對時序壓力資料D1進行運算處理。處理部40具備:變化量運算部42,根據時序壓力資料D1來運算低溫泵容器16內的測定壓力的變化量ΔP;及比較部44,將測定壓力的變化量ΔP與變化量閾值進行比較。控制器20按照比較部44的輸出而生成指令訊號S1,並輸出到通氣閥28。
圖5所示之控制處理,係在低溫泵10的再生期間,例如至少在升溫製程中,藉由控制器20執行。當通氣閥28關閉時,進行該處理。
首先,控制器20獲取時序壓力資料D1(S10)。例如,表示由壓力感測器22測定之最新測定壓力的資料從壓力感測器22輸入到控制器20,該資料附加到已蓄積於控制器20中之時序壓力資料D1。
控制器20判定測定壓力是否超過壓力閾值(S12)。該判定係為了防止因錯誤動作而開放通氣閥28所進行的。這是因為,在再生期間,甚至在通過了粗抽閥24之減壓下,也可能引起低溫泵容器16內的壓力穩定化。或者,可以設想如下情況:起因於例如清洗閥的故障、淨化氣體的供給停止等之某種異常,低溫泵容器16內的壓力保持在充分小於大氣壓的水準。為了防止在這樣的減壓下藉由控制而開放通氣閥28,壓力閾值可以是小於大氣壓的值,例如從0.9大氣壓至0.5大氣壓的範圍中進行選擇。
在測定壓力低於壓力閾值之情況下(S12為“否”),暫且結束本處理,再次從頭開始執行。另一方面,在測定壓力超過壓力閾值之情況下(S12為“是”),持續本處理。
另外,控制器20亦可代替判定測定壓力是否超過壓力閾值,或者除了該判定以外,判定清洗閥26是否開放。
接著,控制器20根據時序壓力資料D1來檢測測定壓力的穩定化(S14)。在該穩定化檢測處理中,首先,控制器20根據時序壓力資料D1來運算測定壓力的變化量ΔP(S16)。例如,變化量運算部42可以從時序壓力資料D1中提取此次的測定壓力和上一次的測定壓力,運算它們的差值作為變化量ΔP。在此,“測定壓力”並不僅限於一次的測定值,可以係連續複數次的測定值的平均值。例如,在壓力感測器22每隔0.1秒測定壓力之情況下,變化量可以係最新測定值與其0.1秒之前的測定值之差,亦可以係最新的1秒內的測定值的平均值與在此之前的1秒內的測定值的平均值之差。變化量亦可以係移動平均值之差(亦即,此次運算之測定值的移動平均值與上一次運算出之測定值的移動平均值之差)。又,變化量ΔP亦可以用比率的形式運算,可以係此次與上一次測定壓力的比率、或者此次與上一次測定壓力的平均值(或移動平均值)的比率。
比較部44將測定壓力的變化量ΔP與變化量閾值進行比較(S18)。變化量閾值可以用相對壓力或比率的形式設定為例如0.1大氣壓或10%等值。變化量閾值可以根據設計者的經驗知識、或者由設計者進行之實驗和模擬等適當地設定。
如上所述般,在因低溫泵容器16內的氣體的再氣化(及/或淨化氣體的供給)而使壓力上升之期間,測定壓力的變化量ΔP應會超過變化量閾值。另一方面,由於壓力充分提高而使通氣閥28機械性開啟,低溫泵容器16內的壓力穩定化,可預料測定壓力的變化量ΔP變得小於變化量閾值。
因此,在測定壓力的變化量ΔP小於變化量閾值之情況下(S18為“是”),控制器20生成指示通氣閥28開放之指令訊號S1,並將其輸出到通氣閥28。通氣閥28按照指令訊號S1而開放(S20)。另一方面,在測定壓力的變化量ΔP超過變化量閾值之情況下(S18為“否”),控制器20不生成指示通氣閥28開放之指令訊號S1,或者生成指示通氣閥28關閉之指令訊號S1並輸出到通氣閥28。從而,通氣閥28保持關閉狀態。如此,結束本處理。
如此,在低溫泵10的再生期間,配合通氣閥28機械性開啟之時刻,控制器20能夠進行控制以開啟通氣閥28。
在圖5所示處理中,控制器20亦可為,在檢測到測定壓力的穩定化之情況下,從時序壓力資料D1中獲取藉由控制將通氣閥28即將開啟之前及/或開閥之後的測定壓力,並根據所獲取之測定壓力來設定設定壓力。在此,如上述般,設定壓力係控制器20進行控制以開啟通氣閥28之壓力閾值,在低溫泵容器16內的測定壓力超過設定壓力之情況下,控制器20開放通氣閥28。藉此,能夠根據通氣閥28機械性開啟時(亦即,測定壓力穩定化時)的測定壓力來更新設定壓力。設定壓力可以更新為與測定壓力相等的值,或者亦可更新為對測定壓力加上(或者減去)既定裕餘(margin)之值。
從而,圖5所示處理在低溫泵10的再生期間可以至少執行一次。例如,該處理可以在將低溫泵10從極低溫升溫至再生溫度之期間或者在升溫完畢之後至少執行一次。
藉此,控制器20能夠配合通氣閥28機械性開啟的時刻而更新設定壓力,並使用所更新之設定壓力進行控制以開啟通氣閥28。
以上,根據實施例對本發明進行了說明。本發明並不限定於上述實施形態而可以進行各種設計變更,對本領域技術人員而言,可以理解能夠有各種變形例,並且該等變形例亦包括於本發明的範圍內。
10:低溫泵 16:低溫泵容器 20:控制器 22:壓力感測器 28:通氣閥
[圖1]概略顯示實施形態之低溫泵。 [圖2]係更詳細地顯示圖1所示通氣閥之示意圖。 [圖3]係顯示在低溫泵的再生期間可能發生之低溫泵容器的內壓上升的示意圖。 [圖4]係實施例之控制器的方塊圖。 [圖5]係顯示實施例之低溫泵的控制方法之流程圖。
10:低溫泵
12:壓縮機
14:冷凍機
16:低溫泵容器
16a:低溫板容納部
16b:冷凍機容納部
17:吸氣口
18:低溫板
20:控制器
22:壓力感測器
23:溫度感測器
24:粗抽閥
26:清洗閥
28:通氣閥
30:排出管線
D1:時序壓力資料
S1:指令訊號

Claims (6)

  1. 一種低溫泵,係具備:低溫泵容器;壓力感測器,係測定前述低溫泵容器內的壓力,並生成表示測定壓力的時序壓力資料;通氣閥,係設置於前述低溫泵容器,可以藉由控制而開閉,並且可以藉由前述低溫泵容器內外的壓差而機械性開啟;以及控制器,係控制成,在低溫泵再生期間,根據來自前述壓力感測器的前述時序壓力資料來檢測前述測定壓力的穩定化,在檢測到前述測定壓力的穩定化之情況下開啟前述通氣閥。
  2. 如請求項1所述之低溫泵,其中,前述控制器係控制成,在將前述低溫泵係從極低溫升溫到再生溫度的期間,根據前述時序壓力資料來檢測前述測定壓力的穩定化,在檢測到前述測定壓力的穩定化之情況下開啟前述通氣閥。
  3. 如請求項1或請求項2所述之低溫泵,其中,前述控制器係控制成,在前述測定壓力超過壓力閾值且檢測到前述測定壓力的穩定化之情況下開啟前述通氣閥。
  4. 如請求項1或請求項2所述之低溫泵,其中, 前述控制器係控制成,根據前述時序壓力資料運算前述測定壓力的變化量,並將前述測定壓力的變化量與變化量閾值進行比較,在前述測定壓力的變化量小於變化量閾值的情況下開啟前述通氣閥。
  5. 如請求項1或請求項2所述之低溫泵,其中,前述控制器,係在檢測到前述測定壓力的穩定化之情況下,從前述時序壓力資料中獲取藉由控制將前述通氣閥即將打開之前及/或開閥之後的前述測定壓力,並根據所獲取的前述測定壓力來設定設定壓力,前述控制器係控制成,將前述測定壓力與前述設定壓力進行比較,當前述測定壓力超過前述設定壓力時開啟前述通氣閥。
  6. 一種低溫泵的控制方法,前述低溫泵係具備:低溫泵容器;壓力感測器;及通氣閥,設置於前述低溫泵容器,可以藉由控制而開閉,並且可以藉由前述低溫泵容器內外的壓差而機械性開啟,前述控制方法具備以下步驟:使用前述壓力感測器,測定前述低溫泵容器內的壓力,並生成表示測定壓力之時序壓力資料;根據前述時序壓力資料來檢測前述測定壓力的穩定化,在檢測到前述測定壓力的穩定化之情況下開啟前述通氣閥。
TW110107842A 2020-03-18 2021-03-05 低溫泵及低溫泵的控制方法 TWI757110B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020048148A JP7369071B2 (ja) 2020-03-18 2020-03-18 クライオポンプおよびクライオポンプの制御方法
JP2020-048148 2020-03-18

Publications (2)

Publication Number Publication Date
TW202136643A TW202136643A (zh) 2021-10-01
TWI757110B true TWI757110B (zh) 2022-03-01

Family

ID=77747744

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110107842A TWI757110B (zh) 2020-03-18 2021-03-05 低溫泵及低溫泵的控制方法

Country Status (5)

Country Link
US (1) US20210293230A1 (zh)
JP (1) JP7369071B2 (zh)
KR (1) KR20210117162A (zh)
CN (1) CN113494438B (zh)
TW (1) TWI757110B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220397322A1 (en) * 2021-06-15 2022-12-15 Applied Materials, Inc. Cryogenic Cooling System

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI599721B (zh) * 2015-02-20 2017-09-21 Sumitomo Heavy Industries 低溫泵系統,低溫泵控制裝置,及低溫泵再生方法
US9938968B2 (en) * 2010-09-21 2018-04-10 Sumitomo Heavy Industries, Ltd. Cryopump system and method for controlling the cryopump system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022195A (en) * 1988-09-13 2000-02-08 Helix Technology Corporation Electronically controlled vacuum pump with control module
JP2002303295A (ja) * 2001-04-06 2002-10-18 Matsushita Electric Ind Co Ltd 排気能力監視方法、真空処理方法及び装置
US20070131281A1 (en) * 2005-12-13 2007-06-14 Delaware Capital Formation, Inc. Underground fuel tank vent valve
JP2007309184A (ja) * 2006-05-17 2007-11-29 Sumitomo Heavy Ind Ltd クライオポンプ及びその再生方法
JP5296811B2 (ja) * 2011-01-17 2013-09-25 住友重機械工業株式会社 クライオポンプ及び真空バルブ装置
JP5679910B2 (ja) * 2011-06-03 2015-03-04 住友重機械工業株式会社 クライオポンプ制御装置、クライオポンプシステム、及びクライオポンプの真空度保持判定方法
JP6124626B2 (ja) * 2013-03-12 2017-05-10 住友重機械工業株式会社 クライオポンプ及びその再生方法
JP6253464B2 (ja) * 2014-03-18 2017-12-27 住友重機械工業株式会社 クライオポンプ、及びクライオポンプの再生方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9938968B2 (en) * 2010-09-21 2018-04-10 Sumitomo Heavy Industries, Ltd. Cryopump system and method for controlling the cryopump system
TWI599721B (zh) * 2015-02-20 2017-09-21 Sumitomo Heavy Industries 低溫泵系統,低溫泵控制裝置,及低溫泵再生方法

Also Published As

Publication number Publication date
CN113494438B (zh) 2023-06-23
KR20210117162A (ko) 2021-09-28
US20210293230A1 (en) 2021-09-23
TW202136643A (zh) 2021-10-01
JP7369071B2 (ja) 2023-10-25
JP2021148050A (ja) 2021-09-27
CN113494438A (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
US10156228B2 (en) Cryopump and method for regenerating the cryopump
US10054114B2 (en) Cryopump and method of monitoring cryopump
US10393099B2 (en) Cryopump system, cryopump controller, and cryopump regeneration method
US9810208B2 (en) Cryopump and method for regenerating the cryopump using two-stage discharge process
TWI757110B (zh) 低溫泵及低溫泵的控制方法
TWI752313B (zh) 低溫泵、低溫泵系統、低溫泵的再生方法
KR20130097094A (ko) 크라이오펌프, 크라이오펌프의 재생방법, 크라이오펌프의 제어장치
TWI509155B (zh) Cryogenic pump and vacuum valve device
US20220106949A1 (en) Cryopump and regeneration method of cryopump
JP2019203508A (ja) クライオポンプシステム、クライオポンプ制御装置、クライオポンプ再生方法、及びクライオポンプ
TWI824302B (zh) 低溫泵及低溫泵的再生方法
TWI710699B (zh) 低溫泵及低溫泵的監視方法
TW202338211A (zh) 低溫泵的再生方法及低溫泵
TW202334551A (zh) 低溫泵及低溫泵的運轉方法