TWI756766B - 氣相層析質譜資料的分析方法 - Google Patents

氣相層析質譜資料的分析方法 Download PDF

Info

Publication number
TWI756766B
TWI756766B TW109126129A TW109126129A TWI756766B TW I756766 B TWI756766 B TW I756766B TW 109126129 A TW109126129 A TW 109126129A TW 109126129 A TW109126129 A TW 109126129A TW I756766 B TWI756766 B TW I756766B
Authority
TW
Taiwan
Prior art keywords
gas chromatography
mass spectrometry
signal peak
standard
chromatography mass
Prior art date
Application number
TW109126129A
Other languages
English (en)
Other versions
TW202206808A (zh
Inventor
陳勁源
許旭志
楊泓穎
許榮郎
潘東憲
吳富鉉
Original Assignee
臺灣塑膠工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臺灣塑膠工業股份有限公司 filed Critical 臺灣塑膠工業股份有限公司
Priority to TW109126129A priority Critical patent/TWI756766B/zh
Publication of TW202206808A publication Critical patent/TW202206808A/zh
Application granted granted Critical
Publication of TWI756766B publication Critical patent/TWI756766B/zh

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本發明提供一種氣相層析質譜資料的分析方法。上述分析方法包含提供標準品及待測物,並對標準品及待測物進行氣相層析質譜分析,再依序進行第一判斷步驟、轉換步驟及第二判斷步驟,以分析待測物之組成。利用滯留時間差及向量餘弦值,可快速並準確地判斷待測物之組成,從而提高分析之效率。

Description

氣相層析質譜資料的分析方法
本發明是有關於一種質譜資料的分析方法,特別是關於一種氣相層析質譜資料的分析方法。
石化產品與日常的食衣住行息息相關,然而這些石化產品從原料開採過程、製造過程,乃至使用過程中,都容易產生粒狀污染物、硫氧化物、氮氧化物及/或揮發性有機物(Volatile organic compounds,VOCs)等空氣汙染,其中揮發性有機物是最主要的汙染物。
揮發性有機物具有滲透性、脂溶性及揮發性,而可藉由吸入、食入及接觸等方式進入人體中,從而造成炫暈、噁心、眼鼻及/或喉嚨刺痛等問題,甚至對肝臟、腎臟、神經系統、造血系統及/或消化系統造成傷害,還可能致癌。此外,揮發性有機物在照射紫外線後會形成自由基,其中自由基的化學活性大,而容易與其他汙染物及有機化合物反應,從而形成臭氧、硫氧化物、氮氧化物、醛類及/或PM 2.5等汙染物,進而造成更大的環保及健康問題。
監控揮發性有機物之含量有助於避免健康上的危害及/或空氣汙染。揮發性有機物之檢測方式可例如抽氣式霍氏紅外光光譜分析法、徑式傅立葉轉換紅外光光譜分析法及/或氣相層析質譜儀法,其中氣相層析質譜(gas chromatography mass spectrometry,GC-MS)法主要是偵測4碳至12碳之有機化合物,且其偵測極限可到兆分之一。然而,依據法規規定,需要檢測的揮發性有機物有60幾種以上,如果以人工方式逐一判讀氣相層析質譜資料,不僅耗力且費時,還有誤判的可能。
有鑑於此,亟須提供一種氣相層析質譜資料的分析方法,以精準並快速判斷試樣之組成。
因此,本發明之一態樣是在提供一種氣相層析質譜資料的分析方法,其中氣相層析質譜資料是藉由進行氣相層析質譜步驟獲得,且分析方法是先比對標準品及待測物之層析訊號對應的滯留時間來篩選可能含有目標物質(如揮發性有機物等)的待測物,再進一步計算待測物之質譜訊號峰之向量和標準品之質譜訊號峰的向量的餘弦值,以由餘弦值之大小判斷待測物之組成。利用上述分析方法,可精準而迅速的判斷待測物中是否含有目標物質。
根據本發明之一態樣,提出一種氣相層析質譜資料的分析方法,可包含提供標準品及待測物,並對標準品及待測物進行氣相層析質譜分析,以獲得標準品之至少一第一訊號峰及相對應之至少一第一時間,以及待測物之至少一第二訊號峰及相對應之至少一第二時間。接著,進行第一判斷步驟,其中第一判斷步驟可包含判斷每一至少一第一時間及每一至少一第二時間之差值是否不大於單位時間。當差值不大於單位時間時,對差值相對應之第一訊號峰與第二訊號峰進行轉換步驟,以依據質荷比(mass-to-charge ratio)範圍分別將第一訊號峰與第二訊號峰轉換為標準向量及樣本向量。接下來,進行第二判斷步驟,其中第二判斷步驟可包含判斷標準向量及樣本向量之餘弦值是否大於0.99,其中當餘弦值是大於0.99時,待測物包含標準向量對應之組成,或者當餘弦值不大於0.99時,待測物不包含標準向量對應之組成。
依據本發明之一實施例,在第一判斷步驟前,分析方法可包含但不限於進行降噪步驟,以扣除氣相層析質譜分析之空白背景值,並移除雜訊比小於3之第二訊號峰。
依據本發明之一實施例,標準品可包含多個物質。
依據本發明之一實施例,物質可包含但不限揮發性有機物(Volatile organic compounds,VOCs)。
依據本發明之一實施例,標準向量對應之組成可包含至少一多個物質。
依據本發明之一實施例,質荷比範圍可例如45至255。
依據本發明之一實施例,單位時間可例如0.2分鐘。
依據本發明之一實施例,在第二判斷步驟後,分析方法可包含但不限於分析樣本向量對應之第二訊號峰之積分值,以獲得待測物中樣本向量對應之物質之含量。
應用本發明之氣相層析質譜資料的分析方法,其係藉由比對待測物與標準品之層析結果之滯留時間差來篩選資料,以分別獲得此滯留時間差對應於待測物與標準品之特定訊號峰,再進一步計算待測物與標準品之特定訊號峰的向量餘弦值,以快速且精確判斷待測物是否含有標準品(如揮發性有機物等)之組成。
以下仔細討論本發明實施例之製造和使用。然而,可以理解的是,實施例提供許多可應用的發明概念,其可實施於各式各樣的特定內容中。所討論之特定實施例僅供說明,並非用以限定本發明之範圍。
本發明提供一種氣相層析質譜資料的分析方法。上述氣相層析質譜資料是自氣相層析質譜(gas chromatography mass spectrometry,GC-MS)分析所獲得,其中氣相層析質譜分析包含氣相層析分析及質譜分析步驟,以進行物質之分離及分析。
所述氣相層析分析是藉由物質對移動相與固定相之親和作用之不同導致之滯留時間的差異,從而將試樣分離成多個層析片段(chromatographic fractions)。所述「氣相」表示移動相為氣態,可例如載體氣體,且載體氣體是具有化學惰性的氣體,可選自於由氫氣、氮氣、氦氣、氬氣、二氧化碳及其組合所組成之族群。所述固定相是固定於層析管柱中的液態物質(氣液相層析)或是固態物質(氣固相層析)。當試樣被載體氣體推動而通過管柱時,試樣中的物質會因為對移動相與固定相之親和作用(如吸附能力、分配係數及其他作用)之不同而被分離,而以不同的速度通過管柱,依據不同的滯留時間蒐集通過管柱之物質,可蒐集到不同的層析片段。值得注意的是,氣相層析分析係根據親和作用進行分離,因此層析片段中可能含有單一物質或是混合有多種物質。
利用偵測器來偵測層析片段可獲得層析訊號強度,以反應層析片段中物質之含量,偵測器可例如火燄離子偵檢器、熱導電度偵檢器、電子捕獲偵檢器、光游離偵檢器、硫化學發光偵測器、原子發射偵測器、熱離子偵測器或火燄激發偵檢器,但以非破壞性的偵測方法為佳。
由層析片段之滯留時間及其層析訊號強度,可獲得氣相層析圖譜,其中氣相層析圖譜之橫軸為滯留時間,且縱軸為層析訊號強度。當偵測器偵測到層析片段時,氣相層析圖譜中會對應產生層析訊號峰。層析訊號峰之最大值為峰值,峰值對應之時間為層析片段之滯留時間。
所述質譜分析是將物質離子化後,利用電場及磁場分離質荷比不相同之離子,並在偵測質荷比之訊號後,於質譜圖譜上對應產生質譜訊號峰。上述質譜圖譜之橫軸為質荷比,且縱軸為質譜強度。由於不同物質之質譜圖譜不相同,因此可藉由將試樣之質譜圖譜與標準質譜圖譜進行比對來判斷試樣之組成。在一實施例中,標準質譜圖譜是目標物質之習知質譜圖譜。在一實施例中,標準質譜圖譜是藉由對標準品進行氣相層析質譜分析後獲得,其中標準品是以特定比例之目標物質配製而成。
請參閱圖1,其係繪示根據本發明之一實施例之分析方法100。首先,如步驟分析方法100所示,提供標準品及待測物,其中標準品包含特定比例的目標物質。在一實施例中,標準品可例如純物質。在另一實施例中,標準品可包含多個物質。在一具體例中,目標物質包含63種揮發性有機物(Volatile organic compounds,VOCs)。待測物是待檢測的樣本,包含未知的組成,可例如工廠排放之廢氣或廢水,或是環境中的空氣或地下水。
接著,進行步驟103,以對標準品及待測物進行氣相層析質譜分析。其中,氣相層析質譜分析係先對標準品與待測物進行氣相層析分析,從而獲得標準品之至少一第一層析訊號峰,以及每一個第一層析訊號峰所對應之第一滯留時間,並獲得待測物之至少一第二訊號峰,以及每一個第二層析訊號峰對應之第二滯留時間。可理解的,當標準品或待測物具有多個物質時,其可依據每個物質的層析片段獲得相應的層析訊號峰。在一實施例中,在進行步驟103前,會進行降噪步驟,以扣除氣相層析質譜資料之空白背景值,並移除雜訊比小於3之第二訊號峰。
上述第一時間及第二時間為「絕對時間」,然而,氣相層析之結果可能會受到樣品注入量等因素而有所差異,因此需藉由建立「滯留時窗」來補償偏差。建立「滯留時窗」的方法可如步驟105所示,進行第一判斷步驟,以判斷每個第一時間及每個第二時間之差值是否不大於單位時間。在一實施例中,單位時間是0.2分鐘。在其他實施例中,基於儀器之設計及/或組成之差異,具有通常知識者可選擇適當之單位時間,以提升分析效能。如果差值是不大於單位時間,則將第一時間所對應之第一層析訊號峰及第二時間所對應之第二層析訊號峰歸類在同一滯留時窗(即第一層析訊號峰與第二層析訊號峰所對應之層析片段可能具有相同組成)。反之,如果差值是大於單位時間,則第一時間所對應之第一層析訊號峰及第二時間所對應之第二層析訊號不歸類在相同的滯留時窗,表示待測物不包含第一層析訊號峰對應之層析片段之組成,因此不進行後續如轉換步驟等動作,如步驟191所示。
為判斷第一層析訊號峰與第二層析訊號峰所對應之層析片段是否具有相同組成,接續進行步驟107。當進行轉換步驟時,是先將在相同滯留時窗之第一層析訊號峰與第二訊號峰轉換為第一質譜訊號峰與第二質譜峰。須說明的是,轉換步驟係藉由具有通常知識者所熟知之方法、儀器與其軟體程式,或其他常用之方法來將第一層析訊號峰與第二層析峰轉換為第一質譜訊號峰與第二質譜訊號峰,故在此不另贅述。接著,將第一質譜訊號峰及第二質譜訊號峰依據質荷比範圍轉換為標準向量及樣本向量。詳細而言,標準向量及樣本向量之維度個數等同於質荷比範圍之個數,且每個維度對應質荷比。此外,每個維度之分量是質荷比對應第一質譜訊號峰及第二質譜訊號峰之質譜強度。在一實施例中,質荷比範圍是45至255。在一實施例中,質荷比取到整數。在一實施例中,質荷比取到小數以下第一位。在一實施例中,質荷比取到小數以下第二位。
接下來,進行第二判斷步驟,如步驟109所示,其中第二判斷步驟包含計算標準向量及樣本向量之餘弦(cosine;cos)值是否大於0.99,其中餘弦值係藉由下式(1)來計算。 cos(θ)=(A.B)/|A|×|B|    (1)
其中A表示標準向量,B表示樣本向量,θ表示標準向量與樣本向量之夾角,且|A|與|B|分別表示標準向量之長度及樣本向量之長度。
當餘弦值是大於0.99時,表示待測物包含此標準向量對應之第一層析訊號峰所代表的組成(步驟111)。當餘弦值不大於0.99時,待測物不包含此標準向量對應之第一層析訊號峰所代表的組成(步驟193)。
在一實施例中,於步驟111後,由於標準品的組成及比例已知,因此可藉由比對標準向量對應之第一層析訊號峰之第一積分值、此第一層析訊號峰之組成的具體含量,以及樣本向量對應之第二層析訊號峰之第二積分值來計算待測物中樣本向量對應之物質之含量。
以下利用數個實施例以說明本發明之應用,然其並非用以限定本發明,本發明技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。
實施例一、以已知組成之試樣評估本發明之氣相層析質譜資料的分析方法之精確性
配置試樣1,其中試樣1包含行政院環境保護署環境檢驗所提供之「水中揮發性有機化合物檢測方法-吹氣捕捉/氣相層析質譜儀法(NIEA W785.56B)」表三中所示之63種揮發性有機物,且63種揮發性有機物分別有對應的習知氣相層析質譜資料(包含習知氣相層析圖譜及習知質譜圖譜)。為清楚說明,以下以甲苯為例說明。在甲苯氣相層析圖譜中,在16.00分鐘時具有甲苯層析訊號,且對應於第16.00分鐘之層析訊號峰,其轉換所得之甲苯質譜圖譜中,在質荷比為91及質荷比為92分別具有質譜強度為4000及7000之質譜訊號。
對試樣1進行氣相層析質譜分析,以獲得試樣1之氣相層析圖譜及質譜圖譜。結果顯示,在16.00分鐘前後0.2分鐘的滯留時窗中,只有一個訊號峰,且此訊號峰對應的滯留時間為第16.01分鐘。
接著,將甲苯之質譜圖譜於第16.00分鐘之甲苯層析訊號峰轉換為甲苯質譜向量,如式(2)所示: A(X 45, X 46,…, X i,…, X 255)      (2)
其中A表示甲苯質譜向量,X i分別表示對應質荷比(即45至255)之質譜強度。依據前述由第16.00分鐘之層析訊號峰所轉換之甲苯之質譜圖譜,X 45至X 90、X 93至X 255為0,且X 91及X 92分別為7000及4000。
然後,對前述試樣1之質譜訊號峰(滯留時間為16.01分鐘)進行上述轉換步驟,以獲得此訊號峰所對應之質譜向量B。
依照式(1)計算甲苯質譜向量A及質譜向量B之餘弦值,其結果為0.999679。故,可判斷試樣1含有甲苯。以相同方式比對式樣1及其他62種揮發性有機物,所獲得之餘弦值皆大於0.99,顯示本發明之氣相層析質譜資料的分析方法精確性高。
實施例二、以未知試樣評估氣相層析質譜資料的分析方法之精確性
此外,以相同分析方法來分析23支未知試樣,其中未知試樣是蒐集自環境。另一方面,對上述未知試樣之氣相層析圖譜及試樣1之氣相層析質資料進行人工比對,再比對未知試樣之質譜圖譜及試樣1質譜圖譜。由於相層析質資料的習知分析方法透過人工比對進行,且透過人工比對可精準分析試樣1之相層析質資料,因此如果本發明之分析方法之結果與人工比對之結果相同,則表示本發明之分析方法的精準度高。結果顯示,1449筆資料中(23支試樣、63種揮發性有機物),只有4筆資料相異,精確度達99.7%,顯示本發明之氣相層析質譜資料的分析方法精確地分析氣相層析質譜資料,且由於不用以人工方式對63種物質進行比對,因此效率大增。
綜言之,本發明雖以特定的組成或特定的評估方式作為例示,說明氣相層析質譜資料的分析方法之精確性,惟本發明所屬技術領域中任何具有通常知識者可知,本發明並不限於此,在不脫離本發明之精神和範圍內,本發明亦可使用其他組成或其他的評估方式進行。
雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100:方法 101,103,105,107,109,111,191,193:步驟
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之詳細說明如下: [圖1]係繪示根據本發明之一實施例之分析方法。
100:方法 101,103,105,107,109,111,191,193:步驟

Claims (7)

  1. 一種氣相層析質譜資料的分析方法,包含:提供一標準品及一待測物;對該標準品及該待測物進行一氣相層析質譜分析,以獲得該標準品之至少一第一訊號峰及相對應之至少一第一時間,以及該待測物之至少一第二訊號峰及相對應之至少一第二時間;進行一降噪步驟,以扣除該氣相層析質譜分析之一空白背景值,並移除一雜訊比小於3之該第二訊號峰;在該降噪步驟之後,進行一第一判斷步驟,其中該第一判斷步驟包含判斷每一該至少一第一時間及每一該至少一第二時間之一差值是否不大於一單位時間;當該差值不大於該單位時間時,對該差值相對應之該第一訊號峰與該第二訊號峰進行一轉換步驟,以依據一質荷比(mass-to-charge ratio)範圍分別將該第一訊號峰與該第二訊號峰轉換為一標準向量及一樣本向量;以及進行一第二判斷步驟,其中該第二判斷步驟包含判斷該標準向量及該樣本向量之一餘弦值是否大於0.99,且當該餘弦值是大於0.99時,該待測物包含該標準向量對應之一組成,或者當該餘弦值不大於0.99時,該待測物不包含該標準向量對應之一組成。
  2. 如請求項1所述之氣相層析質譜資料的分析 方法,其中該標準品包含複數個物質。
  3. 如請求項2所述之氣相層析質譜資料的分析方法,其中該些物質包含揮發性有機物(Volatile organic compound,VOC)。
  4. 如請求項2所述之氣相層析質譜資料的分析方法,其中該標準向量對應之該組成包含至少一該些物質。
  5. 如請求項1所述之氣相層析質譜資料的分析方法,其中該質荷比範圍是45至255。
  6. 如請求項1所述之氣相層析質譜資料的分析方法,其中該單位時間是0.2分鐘。
  7. 如請求項1所述之氣相層析質譜資料的分析方法,在該第二判斷步驟後,該分析方法更包含分析該樣本向量對應之該第二訊號峰之一積分值,以獲得該待測物中該樣本向量對應之一物質之一含量。
TW109126129A 2020-07-31 2020-07-31 氣相層析質譜資料的分析方法 TWI756766B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109126129A TWI756766B (zh) 2020-07-31 2020-07-31 氣相層析質譜資料的分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109126129A TWI756766B (zh) 2020-07-31 2020-07-31 氣相層析質譜資料的分析方法

Publications (2)

Publication Number Publication Date
TW202206808A TW202206808A (zh) 2022-02-16
TWI756766B true TWI756766B (zh) 2022-03-01

Family

ID=81323536

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109126129A TWI756766B (zh) 2020-07-31 2020-07-31 氣相層析質譜資料的分析方法

Country Status (1)

Country Link
TW (1) TWI756766B (zh)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊韕Alkhalifah et al., "VOCCluster: Untargeted Metabolomics Feature Clustering Approach for Clinical Breath Gas Chromatography/Mass Spectrometry Data",韕 韕Analytical Chemistry,韕92(4)韕,韕2020 (Publication Date: December 3, 2019),韕pp 2937-2945.韕 *

Also Published As

Publication number Publication date
TW202206808A (zh) 2022-02-16

Similar Documents

Publication Publication Date Title
Riva et al. Evaluating the performance of five different chemical ionization techniques for detecting gaseous oxygenated organic species
Majchrzak et al. PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review
Daellenbach et al. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry
Müller et al. Direct sampling and analysis of atmospheric particulate organic matter by proton-transfer-reaction mass spectrometry
US20070023642A1 (en) Apparatus and method for processing of mass spectrometry data
O'Brien et al. Molecular characterization of S‐and N‐containing organic constituents in ambient aerosols by negative ion mode high‐resolution nanospray desorption electrospray ionization mass spectrometry: CalNex 2010 field study
Zhang et al. A novel approach for simple statistical analysis of high-resolution mass spectra
Zielinski et al. A new processing scheme for ultra-high resolution direct infusion mass spectrometry data
Amador-Muñoz et al. Quantification of polycyclic aromatic hydrocarbons based on comprehensive two-dimensional gas chromatography–isotope dilution mass spectrometry
Bi et al. Coupling a gas chromatograph simultaneously to a flame ionization detector and chemical ionization mass spectrometer for isomer-resolved measurements of particle-phase organic compounds
Watson et al. Air monitoring: New advances in sampling and detection
Vaclavik et al. GC–TOF-MS and DART–TOF-MS: Challenges in the analysis of soft drinks
Zha et al. Analysis of polycyclic aromatic hydrocarbons in the particulate phase of cigarette smoke using a gas chromatographic-high-resolution mass spectrometric technique
Hawkes et al. High-resolution mass spectrometry strategies for the investigation of dissolved organic matter
TWI756766B (zh) 氣相層析質譜資料的分析方法
CN110726785B (zh) 一种基于GC-Q-ToF-MS分析SF6中痕量永久性气体的方法
Fetterolf et al. Added resolution elements for greater informing power in tandem mass spectrometry
Sokol et al. Rapid hydrocarbon analysis using a miniature rectilinear ion trap mass spectrometer
Wang et al. Determination of hazardous volatile organic compounds in the Hoffmann list by ion‐molecule reaction mass spectrometry
CN107703243B (zh) 用于代谢组学的气相色谱-质谱分析处理方法和系统
Caudillo et al. An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles
Leite et al. Multifactorial optimization approach for the determination of polycyclic aromatic hydrocarbons in river sediments by gas chromatography–quadrupole ion trap selected ion storage mass spectrometry
Worton et al. Development of an International System of Units (SI)-traceable transmission curve reference material to improve the quantitation and comparability of proton-transfer-reaction mass-spectrometry measurements
Claflin et al. An in situ gas chromatograph with automatic detector switching between Vocus PTR-TOF-MS and EI-TOF-MS: Isomer resolved measurements of indoor air
Canonaco et al. SoFi, an Igor based interface for the efficient use of the generalized multilinear engine (ME-2) for source apportionment: application to aerosol mass spectrometer data.