TWI756634B - 用於大腸直腸癌預後之生物標記 - Google Patents

用於大腸直腸癌預後之生物標記 Download PDF

Info

Publication number
TWI756634B
TWI756634B TW109104699A TW109104699A TWI756634B TW I756634 B TWI756634 B TW I756634B TW 109104699 A TW109104699 A TW 109104699A TW 109104699 A TW109104699 A TW 109104699A TW I756634 B TWI756634 B TW I756634B
Authority
TW
Taiwan
Prior art keywords
mir
colorectal cancer
mirna
expression
cells
Prior art date
Application number
TW109104699A
Other languages
English (en)
Other versions
TW202130818A (zh
Inventor
周楠華
朱建安
劉校生
李忠達
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Priority to TW109104699A priority Critical patent/TWI756634B/zh
Publication of TW202130818A publication Critical patent/TW202130818A/zh
Application granted granted Critical
Publication of TWI756634B publication Critical patent/TWI756634B/zh

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本揭露提供一種評估在受試者之大腸直腸癌組織中的精確靈敏表徵和預後的方法。該方法包括從受試者獲得癌組織並確認miRNA的表現量和該miRNA的標靶基因的表現量。本揭露亦提供用於有此需要受試者的大腸直腸癌預後套組。

Description

用於大腸直腸癌預後之生物標記
本揭露係關於用於有此需要的受試者大腸直腸組織中癌預後的生物標記和方法。本揭露亦關於用於有此需要的受試者中預後、表徵化和治療大腸直腸癌的方法、組成物和套組。
大腸直腸癌(colorectal cancer,CRC)已成為最常見的癌症類型之一。在2018年,大腸直腸癌是全球第三大最常見的人類癌症,新報告的病例為1,096,601例,癌症相關死亡中佔551,269例(5.8%)。在台灣,大腸直腸癌是2018年與癌症相關死亡的第三大主要原因(24.7%)。
有效的癌症治療方案係關於許多不同的考慮因素和策略。在確診癌症之後,對癌症分期進行詳實而準確的表徵化,對於確認適當的治療方案至關重要。對於大腸直腸癌,根據美國癌症聯合委員會(AJCC)訂定的腫瘤-淋巴結-轉移(TNM)系統,在診斷時將其分為0至IV期。大腸直腸癌0期意指腫瘤局限於黏膜。當癌細胞入侵黏膜下層或固有肌層時,被認為是I期。如果癌細胞入侵漿膜下層但尚未穿過,則將II期大腸直腸癌歸為IIA期;如果它們穿透內臟腹膜表面,則歸為IIB期;或者如果它們直接侵入或黏附於其他器官或結構,則進入IIC期。大腸直腸癌的晚期包括癌細胞擴散到淋巴結的III期,如果癌細胞已轉移到遠 端器官則為IV期。腫瘤分期目前是確認大腸直腸癌患者預後的基本因子,並且是選擇合適治療方案的基礎。
在大多數情況下,建議對診斷為I期和II期大腸直腸癌患者進行手術切除,對III期大腸直腸癌患者除進行手術外,還要接受輔助化療。然而,儘管新輔助療法和大腸直腸癌輔助療法取得了進展,但近一半的大腸直腸癌患者仍可能復發,甚至有一部分發生癌症轉移。例如,II期大腸直腸癌患者可能仍具有25%至30%的復發率。此外,化學療法對某些III期患者無效。因此,被診斷患有相同分期大腸直腸癌的患者對治療的反應仍然非常不同,因此預後也不同。該等事實表明,一般的分期分類並不足以預測大腸直腸癌患者的預後。
因此,需要更可靠的生物標記和更有效的方法來確定大腸直腸癌患者的預後。
在此,本揭露內容提供用於預測受試者中大腸直腸癌的進展或復發的生物標記和方法。
在本揭露的一種態樣中,提供一種用於評估有此需要的受試者中大腸直腸癌預後的方法。該方法包括從有此需要的受試者獲得癌組織,並藉由一對寡核苷酸測量癌組織中與大腸直腸癌相關的至少一種miRNA的表現量;然後藉由另一對寡核苷酸測量癌症組織中miRNA的至少一種標靶基因的第二表現量;確認miRNA的第一表現量與標靶基因的第二表現量之間的比率,以指示受試者的大腸直腸癌的預後。
在本揭露的一個具體實施例中,預後指示大腸直腸癌的轉移潛 力、大腸直腸癌的腫瘤分期或受試者的存活。在本揭露的另一個具體實施例中,預後指示大腸直腸癌轉移至肝、肺、淋巴結、腹膜、腹壁、小腸、胃、胰腺、膽道、脾、子宮、卵巢、輸卵管、頭部、頸部、腦部、呼吸器官、皮膚、骨骼和遠端軟組織的潛力。在本揭露的另一個具體實施例中,預後指示大腸直腸癌轉移至肝或肺的潛力。在本揭露的一個具體實施例中,預後指示存活是無復發存活、無疾病存活、疾病特異性存活、總體存活或無轉移存活。
在本揭露的一個具體實施例中,用於評估受試者中大腸直腸癌預後的方法進一步包括基於預後確認療法,並以該療法治療受試者。在一個具體實施例中,該療法是手術、放射療法、化學療法、標靶療法、免疫療法或其組合。
在本揭露的一個具體實施例中,用於評估受試者中大腸直腸癌預後的方法包括擴增法或雜合法,以測量第一表現量和第二表現量。在一個具體實施例中,藉由即時PCR測量第一表現量和第二表現量。在另一個具體實施例中,用於測量表現量的第一對寡核苷酸包含SED ID NO.1的序列。在另一個具體實施例中,用於測量表現量的第二對寡核苷酸包含SED ID NO.2的序列、SED ID NO.3的序列或其組合。
在本揭露的一種態樣中,一種用於評估有此需要的受試者的大腸直腸癌預後的方法包括測量miRNA-338-5p(miR-338-5p)在組織中的表現量。在另一個具體實施例中,一種用於評估有此需要的受試者中大腸直腸癌預後的方法包括:測量編碼選自下列所組成群組的蛋白質的標靶基因之表現量:發芽同源物2(sprouty homolog 2,SPRY2)、血紅素(HEMGN)、DNA結合蛋白抑制劑ID-1(ID1)、DEAD框蛋白5(DDX5)、電壓門控鈉通道NaV1.7(SCN9A)、同源框蛋白Hox-A5(HOXA5)、磷脂醯肌醇3激酶催化次單元第3型(PIK3C3)、Ras 相關蛋白Rab-1A(RAB1A)、Ras相關蛋白Rab-28(RAB28)、原鈣黏蛋白-20(PCDH20)、Cullin-2蛋白(CUL2)、含捲曲螺旋結構域的蛋白126(coiled-coil domain-containing protein 126,CCDC126)、類Krueppel因子2(KLF2)、NEDD4家族相互作用蛋白1(NDFIP1)、RB1誘導的捲曲螺旋蛋白1(RB1CC1)、磷脂醯肌醇N-乙醯胺基葡萄糖胺基轉移酶次單元P(PIGP)、腎上腺髓質素(ADM)、細胞質蛋白NCK2(NCK2)、核糖-5-磷酸異構酶(RPIA)、神經營養蛋白3(NTF3)、Ras相關蛋白Rab-23(RAB23)、氯離子胞內通道蛋白4(CLIC4)、在ES細胞中表現的同源框蛋白1(HESX1)、絲胺酸/蘇胺酸蛋白磷酸酶2A 56kDa調節次單元α亞型(PPP2R5A)、蛋白Tob1(TOB1)、含HORMA結構域的蛋白(HORMAD1)、E3泛素蛋白連接酶RBX1(RBX1)、富含酸性亮胺酸的核磷蛋白32家族成員E(ANP32E)、絲胺酸/蘇胺酸蛋白激酶17B(STK17B)、類芳基烴受體核轉運蛋白之蛋白2(ARNTL2)、蛋白轉化(protein inturned,INTU)、核受體亞家族1組D成員1(NR1D1)、色素框蛋白同源物3(chromobox protein homolog 3,CBX3)、硫酸乙醯肝素胺基葡萄糖3-O-磺基轉移酶5(HS3ST5)、雙特異性蛋白磷酸酶2(DUSP2)、四肽重複蛋白33(TTC33)、岩藻糖-1-磷酸鳥苷基轉移酶(FPGT)、黑素瘤相關抗原10(MAGEA10)、細胞黏附分子2(CADM2)、E3泛素蛋白連接酶RNF170(RNF170)、V型質子ATP酶116kDa次單元a亞型4、V-ATP酶116kDa次單元a4(ATP6V0A4)、介白素22受體亞基α-2(IL22RA2)及其組合。
在本揭露的一種態樣中,提供一種治療大腸直腸癌的方法,其包括向有此需要的受試者施用組成物以抵消與大腸直腸癌相關的miRNA的第一表現量與該miRNA之標靶基因的第二表現量之間的比率。在一個具體實施例中,該方法包括向有此需要的受試者施用,藉由抑制標靶基因的生物活性來抵消該比 率的組成物。在另一個具體實施例中,該組成物藉由增強標靶基因的生物活性來抵消該比率。在另一個具體實施例中,組成物包括小分子抑制性RNA(siRNA)、短髮夾RNA(shRNA)、反義寡核苷酸、抗體或自噬誘導劑和自噬抑制劑。
在本揭露的一種態樣中,提供與SEQ ID NO.1、SEQ ID NO.2或SEQ ID NO.3的序列具有至少85%之同一性的人工寡核苷酸。在本揭露的另一態樣中提供一種套組,其包含一種或多種與SEQ ID NO.1、SEQ ID NO.2或SEQ ID NO.3的序列具有至少85%同一性的人工寡核苷酸,以及用於擴增的試劑。
本揭露的方法藉由測量癌組織中至少一種與大腸直腸癌相關的miRNA的表現量和癌組織中至少一種miRNA標靶基因的表現量,並確認miRNA的第一表現量與標靶基因的第二表現量之間的比率,以指示受試者的大腸直腸癌的預後,從而提供準確的大腸直腸癌預後預測。在本揭露的另一態樣中,提供包含多種寡核苷酸的套組,用於測量一種以上miRNA的表現量和一種以上該miRNA標靶基因的表現量,以便同時確認一種以上之該miRNA第一表現量和該標靶基因的第二表現量之間的比率,如上所述,提供該受試者大腸直腸癌的預後預測。
與當前用於分期大腸直腸癌的方法相比,本揭露的方法為大腸直腸癌患者提供可靠且準確的預後。
藉由參考以下描述並結合附圖,本揭露將變得更加容易理解,其中:
圖1(a)至圖1(e)顯示藉由即時qPCR測定的miR-338-5p或PIK3C3 mRNA表現與miR-338-5p與腫瘤分期和患者存活的關係。圖1(a)顯示miR-338-5p在良性息肉和大腸直腸癌腫瘤組織中的相對表現(T/N比率)(n=95)。圖1(b)顯示在所有不同分期,良性息肉和大腸直腸癌腫瘤組織(n=95)中miR-338-5p的相對表現(T/N比率)。圖1(c)顯示與III期和IV期相比,I期和II期大腸直腸癌患者中miR-338-5p的相對表現(T/N比率)。圖1(d)顯示與M1相比,M0期大腸直腸癌患者中miR-338-5p的相對表現(T/N比率)。圖1(e)顯示總體存活率小於3年的大腸直腸癌患者相較於大於3年的大腸直腸癌患者(n=66)中miR-338-5p的相對表現。(使用曼-懷特尼檢定(Mann-Whitney test)分析p值)。
圖2(a)至圖2(f)顯示PIK3C3表現和PIK3C3/miR-338-5p的表現比率與腫瘤分期和患者存活的關係。圖2(a)顯示良性息肉和大腸直腸癌腫瘤組織中PIK3C3的相對RNA表現(T/N比率)(n=95)。圖2(b)顯示在所有不同分期的良性息肉和大腸直腸癌腫瘤組織(n=95)中PIK3C3的相對RNA表現(T/N比率)。圖2(c)顯示息肉和大腸直腸癌腫瘤組織(n=95)中估計的miR-338-5p與PIK3C3 mRNA表現的相關性,使用史皮爾曼(Spearman)檢定進行線性回歸分析。圖2(d)顯示在良性息肉、大腸直腸癌腫瘤組織的早期(I期)和晚期(II至IV期)(n=95)中計算的miR-338-5p/PIK3C3比率。數據以中位數(IQR)表示,p值藉由曼-懷特尼檢定進行分析。圖2(e)顯示相對於II至IV期大腸直腸癌腫瘤組織的良性息肉和I期大腸直腸癌腫瘤組織的ROC曲線的曲線下面積(AUC)、臨界值、特異性和敏感性(n=95)。圖2(f)顯示使用miR-338-5p/PIK3C3比率進行的卡普蘭-麥爾(Kaplan-Meier)分析結果,用於評估息肉和術後6年之大腸直腸癌患者(n=95)的總體存活率(p值藉由對數等級檢定(Log Rank test)分析)。
圖3(a)至圖3(d)顯示大腸直腸癌中miR-338-5p的標靶基因的 驗證。圖3(a)顯示在三種不同的大腸直腸癌細胞株SW480、SW620和HCT116中的miR-338-5p表現。數據顯示為平均值±SEM(n=5)。圖3(b)顯示將miR-338-5p(50nM或100nM)或陰性對照(N.C.)(100nM)瞬時轉染到HCT116細胞後的miR-338-5p表現。圖3(c)顯示抗miR-338-5p(50nM或100nM)或抗N.C.(100nM)被瞬時轉染到SW480細胞後的miR-338-5p表現。數據以中位數(IQR)(n=3)表示(使用曼-懷特尼檢定分析p值)。圖3(d)顯示在將miR-338-5p轉染到HCT116細胞或抗miR-338-5p轉染到SW480細胞後,藉由qPCR測量miR-338-5p標靶基因的mRNA表現,包括SPRY2、HEMGN、NDFIP1、ID1、ADM、PPP2R5A、DDX5、SCN9A、PIK3C3和HOXA5。
圖4(a)至圖4(d)顯示使用核糖核蛋白免疫沉澱(RIP)將miR-338-5p與大腸直腸癌中的PIK3C3結合,以從具有穩定miR-338-5p過表現或shGFP對照細胞的HCT116細胞中沉澱出Ago2複合物。圖4(a)顯示用於確認RIP質量的西方墨點法。圖4(b)顯示在qGFP對照細胞中藉由qPCR測定法測量的IgG對照或Ago2 RIP級分中miR-338-5p的表現。圖4(c)和圖4(d)顯示藉由RT-qPCR測定法測量的IgG或Ago2 RIP級分中miR-338-5p和PIK3C3的mRNA表現量。數據以中位數(IQR)(n=5)表示(使用曼-懷特尼檢定分析p值)。
圖5(a)至圖5(c)顯示大腸直腸癌中PIK3C3作為miR-338-5p的標靶基因。圖5(a)顯示構建在p-miR-報告螢光素酶質體的螢光素酶基因下游3’-UTR中的PIK3C3的野生型(WT)和突變型(Mut)標靶序列。CMV是指巨細胞病毒啟動子。圖5(b)顯示定量數據,以平均值±SEM(n=5)表示(使用曼-懷特尼檢定分析P值)。圖5(c)顯示使用西方墨點法評估的PIK3C3蛋白在大腸直腸癌細胞株中的表現。將miR-338-5p或它的N.C.瞬時轉染到HCT116細胞中,然後 將抗miR-338-5p或抗N.C.瞬時轉染到SW480細胞中。使用西方墨點法評估PIK3C3蛋白的表現。β-肌動蛋白作為負載對照。
圖6(a)至圖6(c)顯示miR-338-5p對大腸直腸癌的腹膜轉移的作用及其與體內存活的關係。將穩定的miR-338-5p過表現細胞、miR-338-5p和PIK3C3共過表現細胞或shGFP對照細胞注射入NOD-SCID小鼠的脾臟中,並分析其腫瘤轉移情況。圖6(a)顯示用於計算注射有不同細胞的小鼠的存活率的卡普蘭-麥爾測定結果(使用對數等級檢定分析P值)。圖6(b)顯示小鼠的脾臟重量和脾臟腫瘤體積。圖6(c)顯示劉氏染色(Liu’s stain)顯現的腹水中腫瘤細胞的照片,並以條形圖量化腹水的體積和腹水中腫瘤細胞的數量。數據以中位數(IQR)(n=5)表示(使用曼-懷特尼檢定分析p值)。照片中的比例尺為200μm。
圖7(a)至圖7(e)顯示miR-338-5p在體內促進大腸直腸癌轉移,且可被PIK3C3抑制。圖7(a)顯示藉由蘇木精和曙紅(H & E)染色和PIK3C3免疫組織化學染色(IHC)檢查的脾臟、肝臟和肺臟轉移性腫瘤(100×)。轉移瘤以箭頭指出。免疫組織化學染色顯示,當PIK3C3過表現時,PIK3C3在原發性和轉移性腫瘤中皆是高表現。圖7(b)顯示分別在肝和肺中測量的轉移性腫瘤的數量和體積。比例尺代表200μm。數據以中位數(IQR)表示(n=5)(使用曼-懷特尼檢定分析p值)。圖7(c)藉由qPCR顯示miR-338-5p和PIK3C3 mRNA在脾原發性腫瘤中的表現(n=5)。使用線性回歸計算相關性(數據藉由斯皮爾曼檢定進行分析)。圖7(d)顯示藉由免疫組織化學染色檢查的PIK3C3在脾原發性腫瘤和在肝和/或肺的轉移性腫瘤中的表現量。圖7(e)顯示在脾原發性腫瘤和肝之轉移性腫瘤中測得的miR-338-5p/PIK3C3的比率。數據表示為中位數(IQR)(n=5)(使用曼-懷特尼檢定分析P值)。
圖8(a)至圖8(f)顯示藉由傷口癒合和Transwell測定法評估miR-338-5p對體外移行(migration)和入侵的影響。圖8(a)顯示以miR-338-5p或陰性對照(N.C.)(100nM)瞬時轉染並在96孔板(4000/孔)中培養24小時的HCT116細胞之細胞增生。使用MTT測定連續四天、每24小時計算一次細胞數。圖8(b)顯示將miR-338-5p或N.C.(100nM)瞬時轉染到HCT116細胞後傷口癒合的結果。產生傷口後二十四小時,使用光學顯微鏡(40x)記錄傷口癒合圖像。使用qPCR確認miR-338-5p表現。在每個時間點計算傷口之間的寬度,並表示為相對於零時間的百分比。圖8(c)顯示將抗miR-338-5p或抗陰性對照(抗N.C.)(100nM)瞬時轉染到SW480細胞中後傷口癒合的結果。創傷後二十四小時,使用光學顯微鏡(40x)記錄傷口癒合圖像。比例尺代表100μm。移行和miR-338-5p表現比率顯示為中位數(IQR)(n=5)(使用曼-懷特尼檢定分析P值)。數據以平均值表示(n=6)(使用ANOVA分析P值)。圖8(d)和圖8(e)顯示在以miR-338-5p或抗miR-338-5p轉染到HCT116或SW480細胞中48小時後,使用Transwell移行測定法分析的細胞移行結果。將轉染的細胞接種在Transwell板上,且計算膜底部的移行細胞。比例尺代表50μm。移行的HCT116細胞數量顯示為平均值±SEM(n=8)(使用t檢定分析P值)。移行的SW480細胞數量顯示為中位數(IQR)(n=5)(使用曼-懷特尼檢定分析P值)。圖8(f)顯示在將抗miR-338-5p(100nM)瞬時轉染到SW480細胞中96小時後,使用Transwell入侵測定法分析的細胞入侵結果。Transwell柱以Matrigel膜包覆。將轉染的細胞接種在Transwell板上。僅計數96小時後膜底部的入侵細胞。比例尺代表50μm。數據顯示為中位數(IQR)(n=5)(使用曼-懷特尼檢定分析P值)。
圖9(a)和圖9(b)顯示PIK3C3抑制體外大腸直腸癌移行和入侵 的結果。圖9(a)顯示pCMV-Vps34質體瞬時轉染到SW480細胞中,並在48小時後分析PIK3C3蛋白表現。使用Transwell測定法評估細胞移行。轉染後48小時,將SW480細胞接種在Transwell板上,並對出現在膜底部的細胞進行計數(n=8)。圖9(b)顯示瞬時轉染到SW480細胞中的pCMV-Vps34質體對細胞的入侵結果。Transwell柱以Matrigel膜包覆,並在48小時後接種轉染的細胞。在96小時後計數在膜底部的入侵細胞(n=8)。比例尺代表50μm。數據以平均值±SEM表示,並且使用t檢定分析P值。
圖10(a)至圖10(c)顯示PIK3C3參與miR-338-5p介導的細胞移行和入侵。圖10(a)顯示miR-338-5p或pCMV-Vps34質體瞬時轉染到SW480細胞中並在48小時後分析PIK3C3蛋白表現結果,同時使用Transwell測定法和照相評估細胞移行。將SW480細胞接種在Transwell板上,並對出現在膜底部的細胞進行計數。數據表示為平均值±SEM(n=8)(使用t檢定分析P值)。圖10(b)顯示將miR-338-5p和pCMV-Vps34質體瞬時轉染到SW480細胞中並分析細胞入侵的結果。Transwell柱以Matrigel膜包覆,並在48小時後接種轉染的細胞。96小時後計數在膜底部的入侵細胞。數據表示為平均值±SEM(n=8)(使用t檢定分析P值)。比例尺代表50μm。圖10(c)顯示傷口癒合測定結果,以分析感染miR-338-5p或shGFP慢病毒的PIK3C3穩定過表現細胞HCT116,並在24小時後對移行的細胞進行計數。比例尺代表100μm。數據以中位數(IQR)表示(n=4~5)(使用曼-懷特尼檢定分析p值)。
圖11(a)和圖11(b)顯示體外抑制PIK3C3誘導的大腸直腸癌移行和入侵結果。圖11(a)顯示以sh-Vps34慢病毒轉染並測定PIK3C3蛋白表現的SW480細胞。使用Transwell測定法測定SW480細胞的移行。48小時後計數移行的 大腸直腸癌細胞數(n=8)。圖11(b)顯示感染sh-Vps34慢病毒的SW480細胞,並在96小時後計數入侵細胞(n=8)。比例尺代表50μm。數據以平均值±SEM表示,並且使用t檢定分析P值。
圖12(a)和圖12(b)顯示PIK3C3參與miR-338-5p介導的細胞移行和入侵抑制。圖12(a)顯示以抗miR-338-5p(100nM)和sh-Vps34慢病毒瞬時轉染SW480細胞的結果,然後分析PI4803C3蛋白表現和SW480細胞的移行。以Transwell測定48小時後計數移行的大腸直腸癌細胞數量。數據以平均值±SEM表示(n=8)(使用t檢定分析P值)。圖12(b)顯示用於分析經抗miR-338-5p或sh-Vps34慢病毒轉染的SW480細胞的Transwell入侵測定結果,並在96小時後對入侵細胞進行計數。數據以平均值±SEM表示(n=8)(使用t檢定分析P值)。比例尺代表50μm。
圖13(a)和圖13(b)顯示SPRY2參與miR-338-5p活化ERK和AKT。圖13(a)顯示進行RIP分析結果,以從穩定的miR-338-5p過表現或shGFP對照細胞中沉澱出Ago2複合物。藉由RT-qPCR測定法測量Ago2 RIP級分中SPRY2 RNA表現量。數據以中位數(IQR)表示(n=6)(使用曼-懷特尼檢定分析p值)。圖13(b)顯示以miR-338-5p轉染SW480和HCT116細胞的結果,並藉由西方墨點法分別分析SPRY2、P-ERK、ERK、P-AKT、AKT和β-肌動蛋白的表現。
圖14(a)至圖14(f)顯示自噬參與miR-338-5p相關的大腸直腸癌體外移行和入侵。圖14(a)顯示胺碘酮誘導的LC3點形成結果。以抗LC3抗體和螢光異硫氰酸酯偶聯的山羊抗兔IgG(綠色螢光)標記LC3點。SW480細胞核以赫斯特(Hoechst)33258染色(藍色螢光)。使用螢光顯微鏡拍攝圖像(比例尺代表10μm)。數據以中位數(IQR)(n=5)表示(使用曼-懷特尼檢定分析p值)。 圖14(b)顯示以10μM胺碘酮處理48小時,然後以miR-338-5p或N.C.(100nM)轉染SW480細胞中之PIK3C3和LC3的西方墨點法結果。圖14(c)顯示對以10μM胺碘酮處理,然後有100nM miR-338-5p轉染或無100nM miR-338-5p轉染的SW480細胞進行Transwell測定結果。數據以中位數(IQR)表示((n=5)使用曼-懷特尼檢定分析p值)。比例尺代表50μm。圖14(d)顯示在以攜帶miR-338-5p或shGFP的慢病毒感染,然後以胺碘酮(10μM)處理48小時之穩定細胞HCT116中的PIK3C3和LC3的西方墨點法結果。圖14(e)顯示穩定細胞HCT116的傷口癒合測定結果,該細胞是以攜帶miR-338-5p或shGFP的慢病毒感染,然後以10μM的胺碘酮處理48小時,24小時後計數移行的細胞數。比例尺代表100μm。數據以中位數(IQR)表示(n=6)(使用曼-懷特尼檢定分析P值)。圖14(f)顯示HCT116細胞的Transwell入侵測定結果,該細胞是以miR-338-5p或shGFP慢病毒感染,並且在48小時後對入侵的細胞進行計數。比例尺代表50μm。數據以平均值±SEM表示(n=8)(使用t檢定分析P值)。
圖15(a)至圖15(c)顯示自噬或EMT途徑參與miR-338-5p相關的體外大腸直腸癌移行。圖15(a)顯示西方墨點法,用以測量經shATG5慢病毒感染的SW480細胞中ATG5-ATG12和LC3的表現,並顯示Transwell測定的代表性結果。比例尺代表50μm。數據以平均值±SEM表示(n=8)(使用t檢定分析P值)。圖15(b)顯示以西方墨點法測量經shATG5慢病毒感染,然後以抗miR-338-5p或抗N.C.(100nM)轉染的SW480細胞中ATG5-ATG12和LC3的表現,並顯示Transwell測定的代表性結果。比例尺代表50μm。移行的細胞數以平均值±SEM表示(n=8)(使用t檢定分析P值)。圖15(c)顯示以西方墨點法分別分析感染帶有miR-338-5p的慢病毒的HCT116細胞中PIK3C3、LC3、p62、蝸牛蛋白、扭曲蛋白(twist)、 N-鈣黏蛋白、E-鈣黏蛋白、波形蛋白(vimentin)、纖連蛋白(fibronectin)和β-肌動蛋白的表現。
本揭露提供藉由分析miRNA及其標靶基因的表現量來預測受試者存活和大腸直腸癌復發的方法和生物標記,更具體地,分析miRNA及其標靶基因表現量之間的比率來確定大腸直腸癌患者的預後。
MiR-338屬於凋亡相關酪胺酸激酶(AATK)基因內含子區域中大腦特異性miRNA前體家族。miR-338莖環包含miR-338-3p和miR-338-5p。MiR-338-3p體外抑制大腸直腸癌的移行和入侵,而在晚期大腸直腸癌患者中觀察到血清miR-338-5p升高。研究表明,MiR-338-5p可促進人類膠質瘤的體外入侵。然而相反地,miR-338-5p抑制食道鱗狀細胞癌(ESCC)的增生、集落形成、移行和順鉑耐藥性。因此,miR-338-5p與癌症的相關性尚存爭議,而miR-338-5p在人類大腸直腸癌發病機理中的臨床相關性和機制尚不清楚。
磷脂醯肌醇3-激酶(PIK3-激酶)催化次單元第3型(PIK3C3)包含三類催化次單元:I類、II類和III類(35)。PIK3C3由酵母液泡分選蛋白34(Vps34)基因編碼,與細胞內膜運輸有關。PIK3C3還藉由將磷脂醯肌醇的3-OH磷酸化為磷脂醯肌醇-3-磷酸而與Beclin 1、自噬相關14(Atg14)和抗紫外線輻射相關(UVRAG)形成複合物,來誘導自噬成核。此外,PIK3C3複合物藉由活化乳腺癌細胞的自噬和降解蝸牛蛋白和扭曲蛋白來抑制上皮細胞間質轉化(EMT),從而抑制細胞移行、腫瘤形成和轉移。
發芽蛋白(SPRY)於1998年首次發現,它是果蠅中纖維母細胞生 長因子(FGF)和表皮生長因子(EGF)信號傳導途徑的常見拮抗劑。Hacohen等人確認果蠅基因的三種人類同源物(hSPRY1、hSPRY2、hSPRY3),而在小鼠和人類中發現了第四個成員hSPRY4。SPRY可回應包括FGF、血小板衍生生長因子(PDGF)、血管內皮生長因子(VEGF)和神經生長因子(NGF)等多種營養因子,從而抑制細胞外信號調節激酶(ERK)的活化。SPRY2藉由抑制纖維母細胞生長因子受體受質2(FRS2)、cbl原致癌基因(CBL)、生長因子受體結合蛋白2(GRB2)和快速加速纖維肉瘤(RAF)激酶而作為EGF和FGF途徑的拮抗劑。此外,SPRY2增強EGF誘導的絲裂原活化的蛋白激酶(MAPK)活化。
自噬是一種適應性細胞過程,可藉由自噬小體的組成來緩解壓力,自噬小體包含微管相關蛋白輕鏈3 II(LC3 II)。自噬小體吞噬胞漿細胞胞器和蛋白質,與溶酶體融合,回收用於合成必需成分的大分子作為能量源。自噬與許多人類疾病有關。關於致癌作用,自噬扮演多種角色,可抑制腫瘤發生,並藉由不同機制促進腫瘤形成。
自噬可以抑制癌細胞的移行。例如,自噬的誘導藉由抑制VEGF和MMP9來抑制子宮頸癌細胞的移行和入侵。自噬還可藉由降解β 1整合素來調節細胞移行。上調的Beclin 1藉由自噬抑制體外大腸直腸癌的移行和轉移。在原發性大腸直腸癌中觀察到下調的自噬相關基因(ATG5和Beclin 1)。此外,缺少ATG5、Beclin 1和LC3B與大腸直腸癌患者的預後不良有關。miR-338-3p藉由PI3K/AKT/mTOR信號通路抑制人類子宮頸癌細胞的自噬。然而,在本揭露之前,miR-338-5p在自噬中的潛在重要性仍然不清楚。
為了在此應用中進行統計分析,選擇參數檢定(學生t檢定或變異數分析(ANOVA))來分析具有常態分佈的數據,結果表示為平均值±均值標準 差(SEM)。對於異常分佈的數據或較小樣本量,使用非參數檢定(曼-懷特尼U檢定或克拉斯卡-瓦立斯(Kruskal-Wallis)H檢定)。以中位數(四分位間距,IQR)表示結果。使用斯皮爾曼檢定分析miR-338-5p與PIK3C3 mRNA表現的相關性。使用對數等級檢定計算存活分析。使用Cox比例風險回歸模型評估單變量和多變量與總體存活率的關聯,並使用95%信賴區間(CI)的風險比值比進行估計。
在本文使用的所有用語,包括描述性用語或技術性用語,應被解釋為具有對本發明所屬領域普通技術人員顯而易見的含義。但是,根據本發明所屬領域普通技術人員的意圖、先例或新技術的出現,該等用語可能具有不同的含義。另外,申請人可以任意選擇一些用語,並且在這種情況下,將在本揭露的全面描述中詳述所選擇用語的含義。因此,必須基於用語的含義以及整個說明書中的描述來定義本文中使用的用語。
此外,當部件「包括(include)」或「包括(comprise)」成分或步驟時,除非有與之相反的特定描述,否則部件可以進一步包括其他成分或其他步驟,而不排除其他成分或步驟。
小分子RNA(miRNA)是一類短的、內源性非編碼RNA,長度為18至24個核苷酸(nt),標靶特定mRNA 3'非轉譯區(3'-UTR),並降解或抑制其標靶mRNA的轉譯。MiRNA藉由調節腫瘤抑制基因或致癌基因,在調節細胞增殖、腫瘤入侵和轉移中作為表觀遺傳因子。如本文所使用,用語「小分子RNA」(miRNA或miR)包括人類miRNA、成熟的單股miRNA、前體miRNA(pre-miR)及其變體,其可以是天然存在的或人工合成的。在一些情況下,用語「miRNA」亦包括初級miRNA(pri-miR)轉錄體和雙螺旋miRNA。除非另有說明,否則本文中使用的特定miRNA的名稱是指成熟的miRNA。例如,miR-122a是指源自pre-miR- 122的成熟miRNA序列。特定的miRNA序列,包括人類成熟序列和前體序列,已在下述資料中報告:miRBase:序列資料庫;Griffiths-Jones等人,《核酸研究》(Nucleic Acids Research),2008年,第36期,資料庫專輯(Database Issue),D154-D158;Griffiths-Jones等人,《核酸研究》(Nucleic Acids Research),2006年,第34期,資料庫專輯(Database Issue),D140-D144;Griffiths-Jones等人,《核酸研究》(Nucleic Acids Research),2004年,第32期,資料庫專輯(Database Issue),D109-D111。對於某些miRNA,單個前體包含一種以上的成熟miRNA序列。在其他情況下,多個前體miRNA包含相同的成熟序列。在某些情況下,成熟的miRNA已根據新的科學共識重新命名。技術人員將理解,關於給定的miRNA,特別是成熟形式的miRNA的精確核酸序列的科學共識可能隨時間改變。藉由本揭露內容的測定法檢測的miRNA包括miRNA天然存在或人工合成的序列。
可設計基於標靶序列的核苷酸序列引子,以用於標靶序列的擴增。為了用於擴增反應,例如PCR,可以使用一對引子。該引子可以在本發明所屬領域已知的嚴格條件下,如高嚴格條件下,與探針組的特定序列雜合。通常選擇引子對,以產生至少約50個核苷酸的擴增產物,例如,至少約100個核苷酸、至少約200個核苷酸、至少約300個核苷酸、至少約400個核苷酸、至少約500個核苷酸、至少約600個核苷酸、至少約700個核苷酸、至少約800個核苷酸、至少約900個核苷酸、或至少約1000個核苷酸。選擇引子序列的演算法是本發明所屬領域週知的,並且可在商業套裝軟體中獲得。該等引子可用於基於標准定量或定性PCR的分析中,以評估RNA的轉錄表現量。或者,該等引子可與探針(例如分子信標)結合使用,以即時PCR進行擴增。
如本發明所屬領域中已知的,核苷是鹼基-糖的組合,而核苷酸 是核苷進一步包括與核苷的糖部分共價連接的磷酸基團。在形成寡核苷酸時,磷酸基團將相鄰的核苷彼此共價連接以形成線性聚合化合物,具有RNA和DNA的正常鍵或主鏈為3'至5'磷酸二酯鍵。可用於本揭露的多核苷酸探針或引子的特定實施例包括含有修飾的主鏈或非天然核苷間鍵的寡核苷酸。如本揭露中所定義的,主鏈中保留磷原子的寡核苷酸和在主鏈中缺少磷原子的寡核苷酸都包括在具有修飾主鏈的寡核苷酸。對於本揭露,且如本發明所屬領域中有時提到的,在其核苷間主鏈中不具有磷原子的修飾寡核苷酸也可以被認為是寡核苷酸。
相對於本文提供的每個核酸序列和/或本文提供的每個SEQ ID NO,至少80%的序列同一性包括至少82%、至少84%、至少86%、至少88%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%和100%序列同一性。
可使用多種序列比對方法中的任何一種來確定同一性百分比,包括但不限於全局方法(global method)、局部方法和雜合方法,例如分段式法(segment approach method)。確定同一性百分比的流程是本發明所屬領域技術人員範圍內的一般程序。全局方法從分子的開始到末端比對序列,並藉由累加各別殘基對的分數並施加空位罰分來確定最佳比對。非限制性方法包括例如CLUSTAL W(例如,參見Julie D.Thompson等人,《CLUSTAL W:藉由序列加權、特定位置的空位罰分和權重矩陣選擇提高漸進多序列比對的敏感性》(CLUSTAL W:Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting,Position-Specific Gap Penalties and Weight Matrix Choice,22(22)Nucleic Acids Research 4673-4680(1994)),以及迭代優化(例如,參見Osamu Gotoh,《多重蛋白質準確性的顯著提高。藉由迭代優化進行序列比對,參考結構比對進 行評估》(Significant Improvement in Accuracy of Multiple Protein.Sequence Alignments by Iterative Refinement as Assessed by Reference to Structural Alignments,264(4)J.Mol.Biol.823-838(1996))。局部方法藉由確認所有輸入序列共有的一個或多個保守基序來比對序列。非限制性方法包括例如Match-box(參見,例如Eric Depiereux和Ernest Feytmans,Match-Box:《一種同時對齊多個蛋白質序列的根本新算法》(A Fundamentally New Algorithm for the Simultaneous Alignment of Several Protein Sequences,8(5)CABIOS 501-509(1992))、吉布斯採樣(參見,例如C.E.Lawrence等人,《檢測微妙的序列信號:多重對齊的吉布斯採樣策略》(Detecting Subtle Sequence Signals:A Gibbs Sampling Strategy for Multiple Alignment,262(5131)Science 208-214(1993)),和Align-M(例如,參見Ivo Van Wale等人,Align-M:《一種用於高度發散序列的多重比對的新演算法》(ANew Algorithm for Multiple Alignment of Highly Divergent Sequences,20(9)Bioinformatics:1428-1435(2004))。因此,序列同一性百分比藉由一般方法確定。參見例如,Altschul等人,《數理生物學通報》(Bull.Math.Bio.48:603-16,1986 and Henikoff and Henikoff,Proc.Natl.Acad.Sci.USA 89:10915-19,1992)。
用語「擴增」是指產生至少一個複本核酸的任何方法,例如許多情況下表現的RNA產生多個複本。擴增產物可以是RNA或DNA,且可包括與表現的標靶序列互補的股。DNA擴增產物可首先藉由反向轉譯產生,然後視需要地藉由進一步擴增反應產生。擴增產物可以包括全部或部分標靶序列,並且可以視需要地被標記。適合使用多種擴增方法,包括基於聚合酶的方法和基於連接的方法。示例性擴增技術包括聚合酶鏈反應(PCR)方法、脂酶鏈反應(LCR)、基於核酶的方法、自我維持序列複製(self-sustained sequence replication,3SR)、基 於核酸序列的擴增(NASBA)、使用Q Beta複製酶、反轉錄、鏈裂移位(nick translation)等。
基於聚合酶的方法中的第一個擴增循環通常形成與模版股互補的引子延伸產物。如果模版是單股RNA,則在第一次擴增中使用具有逆轉錄酶活性的聚合酶將RNA反轉錄為DNA,且可執行其他擴增循環以複製引子延伸產物。可將用於PCR的引子設計為與其相應模版中可產生可擴增片段的區域雜合;因此,每個引子都可雜合,以使其3'核苷酸與互補模版股中的核苷酸配對,該核苷酸位於用於複製PCR中互補模版股的引子3'核苷酸的3'末端。
擴增標靶多核苷酸可藉由使標靶多核苷酸的一股或多股與引子和具有合適活性以延伸該引子並複製標靶多核苷酸的聚合酶接觸,以產生全長互補多核苷酸或其較小部分。可使用具有可複製標靶多核苷酸的聚合酶活性的任何酶,包括DNA聚合酶、RNA聚合酶、逆轉錄酶、具有一種以上類型的聚合酶或酶活性的酶。該酶可以是不耐熱的或熱穩定的。也可以使用酶的混合物。示例性酶包括:DNA聚合酶,例如DNA聚合酶I(「Pol I」)、PolI的克列諾(Klenow)片段、T4、T7、Sequenase T7、Sequenase Version 2.0 T7、Tub、Taq、Tth、Pfic、Pfu、Tsp、Tfl、Tli和火球菌(菌株GB-D)DNA聚合酶;RNA聚合酶,例如大腸桿菌、SP6、T3和T7 RNA聚合酶;逆轉錄酶,例如AMV、M-MuLV、MMLV、RNAse H MMLV(SuperScript)、SuperScript II、ThermoScript、HIV-1和RAV2逆轉錄酶。所有該等酶都是可商購的。具有多種特異性的示例性聚合酶包括RAV2和Tli(exo-)聚合酶。示例性的熱穩定聚合酶包括Tub、Taq、Tth、Pfic、Pfu、Tsp、Tfl、Tli和火球菌(菌株GB-D)DNA聚合酶。
選擇合適的反應條件以允許標靶多核苷酸的擴增,包括pH、緩衝 液、離子強度、一種或多種鹽的存在和濃度、反應物和輔因子例如核苷酸和鎂和/或其他金屬離子(例如,錳)、視需要的助溶劑、溫度、用於包含聚合酶鏈反應的擴增方案的熱循環曲線,並且可能部分取決於所使用的聚合酶以及樣本的性質。助溶劑包括甲醯胺(通常為約2%至約10%)、甘油(通常為約5%至約10%)和DMSO(通常為約0.9%至約10%)。可以在擴增方案中使用技術以最小化在擴增期間產生的偽陽性或假象的產生。這些包括「遞減(touchdown)」PCR、熱啟動技術、嵌套引子的使用或設計PCR引子,以使它們在形成引子二聚體時形成莖環結構,因此不會被擴增。可以使用加速PCR的技術,例如,離心PCR,它允許樣本內更大的對流,並包括用於快速加熱和冷卻樣本的紅外線加熱步驟。可以進行一個或多個擴增循環。過量的一種引子可用於PCR期間產生過量的一種引子延伸產物。例如,過量產生的引子延伸產物是用於檢測的擴增產物。可以使用多種不同的引子來擴增樣本內的不同標靶多核苷酸或特定標靶多核苷酸的不同區域。
擴增反應可以在允許視需要標記的感應器多核苷酸在擴增循環的至少一部分期間與擴增產物雜合的條件下進行。當以這種方式進行測定時,如本發明所屬領域中已知的,可以藉由監測擴增期間的發光或螢光來進行該雜合事件的即時檢測。
如本文所使用,癌症的預後可以包括預測患者的臨床結果、評估癌症復發的風險、確定治療方式或確定治療功效。
如本文所使用,用語「轉移」描述癌症從身體的一部分擴散到身體的另一部分。由擴散的細胞形成的腫瘤可以稱為「轉移性(metastatic)腫瘤」或「轉移(metastasis)」。轉移性腫瘤通常含有與原始(原發性)腫瘤相似的細 胞。
如本文所使用,用語「進展」描述疾病例如癌症的病程,因為其變得更糟或在體內擴散。
用語「受試者」、「患者」和「個體(individual)」在本文可互換使用,指的是溫血動物,例如罹患或懷疑患有、易患或易患以下疾病的哺乳動物,或正在接受癌症篩查,尤其是實際或疑似癌症。該等用語包括但不限於家畜、運動動物(sports animal)、靈長類動物和人類。例如,該等用語是指人類。
還應注意,如在本揭露中所使用的,單數形式「一種(a)」、「一種(an)」和「該(the)」除非明確地限於一個指示物,包括複數個指示物。除非上下文另外明確指出,否則用語「或」與用語「和/或」可互換使用。
實施例
在以下實施例中進一步描述本揭露的示例性具體實施例,其不限制本揭露的範圍。
下列實施例描述了分析miRNA及其標靶基因表現量的方法,以作為大腸直腸癌患者的預後生物標記。
實施例1:miR-338-5p和PIK3C3表現量的臨床意義
總共收集29對樣本,包括大腸息肉和鄰近正常標本,以及66對樣本,包括大腸直腸癌和鄰近正常標本。
使用Trizol(1000μL,生工有限公司,台北,台灣)從標本中提取總RNA,然後添加氯仿(200μL),搖動混合,並在室溫(RT)下培養5分鐘。 然後,將混合物在4℃下以12,000rpm離心8分鐘。將上清液(600μL)轉移到新的微量離心管中,並在-20℃下與異丙醇(600μL)培養30分鐘。在4℃下以12,000rpm離心8分鐘後,將沉澱以75%的乙醇(1mL)沖洗,在7,500rpm下於4℃離心兩次,然後在室溫下風乾10分鐘。最後,將RNA沉澱物重新懸浮於焦碳酸二乙酯(DEPC)處理過的水(50至200μL)中,並在OD260下測量RNA濃度。
使用miScript II RT套組(QGENE)或Ncode VILO miRNA cDNA合成套組(Invitrogen)對miRNA進行反轉錄,並將產物在37℃下培養60分鐘。使用miScript SYBR green(QGENE)或SYBR®Green Supermix(Application Biosystems,Birchwood,英國)藉由定量聚合酶鏈反應(qPCR)測量miR-338-5p和U54(參考對照)的表現。PCR循環程序包括40個循環,在94℃時每個循環具有30秒的DNA變性,接著在60℃時進行引子黏合30秒,最後在72℃時進行延伸30秒。
使用SYBR Green Supermix(Application Biosystems,Birchwood,英國)藉由qPCR測量PIK3C3和β肌動蛋白(參考對照)mRNA的表現量。PCR循環程序包括40個循環,在94℃時,每個循環具有30秒鐘的DNA變性,接著在55℃時進行引子黏合30秒,最後在72℃時進行延伸30秒。
PCR中使用的引子示於下表1中:
表1. PCR中用於確定MiR-338-5p和PIK3C3表現量的引子序列
Figure 109104699-A0202-12-0023-1
使用比較性CT方法,以內源性U54或β-肌動蛋白作為參考對照,對表現量數據進行標準化,其中miR-338-5p表現的相對量由log10(2-△CT)表示(-△CT=CT miR-338-5p-CT U54)和以log10(2-△CT)表示的PIK3C3表現的相對量(-△CT=CT PIK3C3-CT β-肌動蛋白)。將miR-338-5p或PIK3C3的表現量估計為其在腫瘤中的表現與相鄰的非腫瘤組織的表現之比率。然後,計算miR-338-5p/PIK3C3比率。
對於異常分佈的數據或較小的樣本量,使用非參數檢定(曼-懷特尼U檢定或克拉斯卡-瓦立斯H檢定)。結果以中位數(四分位間距,IQR)表示。使用斯皮爾曼檢定分析miR-338-5p與PIK3C3 mRNA表現的相關性。使用對數等級檢定計算存活分析。使用Cox比例風險回歸模型評估單變量和多變量與總體存活率的關聯,並使用95%信賴區間(CI)的風險比值進行估計。
分析miR-338-5p表現量與臨床病理指標和患者預後的關係。如圖1(a)和下表2所示,藉由即時PCR測量,在良性息肉中證實miR-338-5p表現的比率明顯低於大腸直腸癌(腫瘤/鄰近正常,T/N)。
表2. 大腸息肉和大腸直腸癌腫瘤組織中miR-338-5p表現與臨床病理特徵的相關性(T/N比率)(n=95)
Figure 109104699-A0202-12-0024-2
如圖1(b)所示,在大腸腫瘤形成的早期(息肉或I期大腸直腸癌),miR-338-5p的表現低於大腸直腸癌晚期(II-IV期)。如下表3所示,進一步的分析表明,miR-338-5p的過度表現與個別腫瘤分期(P=0.0019,克拉斯卡-瓦立斯檢定)、晚期腫瘤(I-II期與III-IV期,P=0.0145,檢定)(圖1(c))、遠端轉移(P=0.0076,曼-懷特尼檢定)(圖1(d))和較差的總體存活率(P=0.0144,曼-懷特尼檢定)(圖1(e))正相關。
表3. 大腸直腸癌患者與miR-338-5p表現的臨床病理特徵的相關性(T/N比率)(n=66)
Figure 109104699-A0202-12-0025-3
對於PIK3C3,良性息肉中PIK3C3的相對mRNA表現(T/N)顯著高於I至IV期的大腸直腸癌腫瘤組織,如圖2(a)、圖2(b)和下表4所示。
表4. 大腸息肉和大腸直腸癌腫瘤組織中PIK3C3表現與臨床病理特徵的相關性(T/N比率)(n=95)
Figure 109104699-A0202-12-0026-4
磷脂醯肌醇3-激酶(PIK3-激酶)催化次單元第3型(PIK3C3)包含三類催化次單元:I類、II類和III類。PIK3C3由酵母液泡分選蛋白34(Vps34)基因編碼,與細胞內膜運輸有關。PIK3C3還藉由將磷脂醯肌醇的3-OH磷酸化為磷脂醯肌醇-3-磷酸而與Beclin 1、自噬相關14(Atg14)和抗紫外線輻射相關(UVRAG)形成複合物,來誘導自噬成核。此外,PIK3C3複合物藉由活化乳腺癌細胞的自噬和降解蝸牛蛋白和扭曲蛋白來抑制EMT,從而抑制細胞移行、腫瘤形成和轉移。
發現PIK3C3 mRNA表現本身與臨床病理指標和患者結果沒有顯著關聯,如下表5所示。
表5. 大腸直腸癌患者的臨床病理特徵與PIK3C3表現的相關性(T/N比率)(n=66)
Figure 109104699-A0202-12-0027-5
進一步的分析發現PIK3C3的表現與miR-338-5p負相關,如圖2(c)所示。線性回歸分析表明,PIK3C3的表現與體內miR-338-5p呈負相關(P<0.0001,r=-0.4115,斯皮爾曼檢定)。如圖2(d)所示,II至IV期的晚期腫瘤具有比早期大腸腫瘤形成更高的miR-338-5p/PIK3C3比率(P<0.0001,曼-懷特尼檢定)。發現miR-338-5p/PIK3C3之比率可有效區分腫瘤分級,其區域AUC值估計為0.9061,臨界值設定為4.405,如圖2(e)所示。0.5至0.6之間的AUC被定義為非可識別性,0.6至0.7之間為可接受,0.7至0.8之間為優異(excellent),0.8至0.9之間為卓越(outstanding)。大於或等於4.405的miR-338-5p/PIK3C3比率也顯著預測患者的總體存活不良(P=0.001,對數等級檢定),如圖2(f)所示。卡普蘭-麥爾測定用於評估息肉和術後6年大腸直腸癌患者(n=95)的總體存活率,而在4.405處的miR-338-5p/PIK3C3比率可作為大腸直腸癌患者的預後生物標記。該等發現支持miR-338-5p和PIK3C3參與大腸直腸癌腫瘤發生的進程。
下表6中的單因素分析結果表明,息肉或大腸直腸癌的miR-338-5p/PIK3C3比率>4.405的息肉或大腸直腸癌的死亡風險是比率<4.405的5.418倍(P=0.002,Cox比例風險回歸模型)和II至IV期大腸直腸癌患者的死亡風險比息肉或I期大腸直腸癌高20.908倍(P=0.003,Cox比例風險回歸模型)。
表6. 息肉和大腸直腸癌患者死亡的單變量關聯
Figure 109104699-A0202-12-0029-6
如下表7所示的多變量分析結果表明,II至IV期的大腸直腸癌患者的死亡風險比息肉或I期大腸直腸癌的患者高13.921倍(P=0.014,Cox比例風險回歸模型)。
表7. 息肉和大腸直腸癌患者死亡的多因素關聯
Figure 109104699-A0202-12-0029-7
因此,miR-338-5p與PIK3C3表現呈負相關,並參與大腸直腸癌的進程。miR-338-5p/PIK3C3比率是確認可能需要積極治療策略的大腸直腸癌患者的預後生物標記。
實施例2:在大腸直腸癌中確認miR-338-5p的潛在標靶基因
為了確定大腸直腸癌腫瘤發生中miR-338-5p的潛在標靶基因,藉由TargetScan、EBI和DIANA-microT軟體進行分析,並結合使用NCBIPubMed查詢的生物信息學分析。如下表8所示,在前42個共有標靶基因中,發現SPRY2、HEMGN、ID1、ADM、DDX5、SCN9A、PIK3C3和HOXA5與大腸直腸癌高度相關。
表8. EBI、Target Scan和DIANA預測的miR-338-5p在大腸直腸癌腫瘤發生中的潛在標靶基因,結合使用NCBI PubMed查詢的生物信息學分析
Figure 109104699-A0202-12-0030-9
Figure 109104699-A0202-12-0031-10
為了驗證潛在的標靶基因,首先在人類大腸癌細胞株中藉由qPCR測量miR-338-5p表現量,然後在以miR-338-5p或抗miR-338-5p(miR-338-5p的抑制劑)轉染細胞株後藉由qPCR測量候選基因的mRNA量。
人類大腸癌細胞株SW480、SW620和HCT116購自美國典型菌種保 存中心(ATCC,Rockville,MD,美國)。在L15培養基(Thermo Fisher Scientific,Carlsbad,CA)中添加10%胎牛血清(FBS)(Hyclone,Logan,UT)和抗生素/抗真菌溶液(Caisson Laboratories,Smithfield,UT),於37℃潮濕的環境中培養SW480和SW620。在補充10%FBS和抗生素/抗真菌溶液(Caisson Laboratories)的Dulbecco改良Eagle培養基(DMEM)(Thermo Fisher Scientific,Carlsbad,CA)中培養HCT116,5%CO2,溫度為37℃。
從細胞株中提取總RNA的方法與從上述組織樣本中提取總RNA的方法相同。使用SYBR Green Supermix(Application Biosystems,Birchwood,英國)藉由qPCR測量miR-338-5p的表現。使用YEAtaq DNA聚合酶(益生生技開發股份有限公司,台北,台灣)測量PIK3C3、SPRY2、ADM、DDX5、HEMGN、HOXA5、ID1、NDFIP1、PPP2R5A、SCN9A和β-肌動蛋白RNA的表現。
如圖3(a)所示,分別發現miR-338-5p在SW480細胞中的表現顯著高於SW620細胞(P=0.0238,曼-懷特尼檢定)和HCT116細胞(P=0.0006,曼-懷特尼檢定)。因此,SW480和HCT116細胞分別用於體外miR-338-5p減弱(knockdown)和轉染實驗。使用Lipofectamine 2000(Invitrogen),將miR-338-5p(mirVana miRNA mimic,Ambion,Invitrogen)瞬時轉染至HCT116細胞後,藉由qPCR測量潛在標靶基因的RNA量(圖3(b)),以及將抗miR-338-5p(mirVana miRNA抑制劑,Ambion,Invitrogen)瞬時轉染至SW480細胞後,藉由qPCR測量潛在標靶基因的RNA量(圖3(c))。
發現在miR-338-5p過表現的HCT116細胞中,SPRY2、HEMGN、NDFIP1、ID1、DDX5、SCN9A、PIK3C3和HOXA5的表現受到抑制。除了NDFIP1,在抑制miR-338-5p後,SPRY2、HEMGN、ID1、DDX5、SCN9A、PIK3C3和HOXA5 的表現均被上調(圖3(d))。因此,SPRY2、HEMGN、ID1、DDX5、SCN9A、PIK3C3和HOXA5是miR-338-5p的標靶基因。
實施例3:PIK3C3是大腸直腸癌中miR-338-5p的標靶基因
為了闡明PIK3C3和miR-338-5p與大腸直腸癌的關係,建立穩定的過表現miR-338-5p和shGFP對照細胞株的HCT116細胞用於RIP分析。
miR-338-5p過表現的慢病毒系統購自GE Healthcare Dharmacon(Lafayette,CO)。根據供應商的標準生產表現miR-338-5p或短髮夾RNA(shRNA)的慢病毒。使用嘌呤黴素(P8833;Sigma-Aldrich)選擇穩定的過表現細胞(SW480細胞為15ng/μL,HCT116細胞為1ng/μL)。標靶GFP的shRNA購自國家RNAi核心設施(中央研究院,台北,台灣)。
miR-338-5p和PIK3C3的RIP分析是藉由小分子RNA的RIP分析套組(RN1005,MBL)在具有穩定過表現miR-338-5p的HCT116細胞中進行。約4至2000萬個細胞與25μg RIP認證的抗EIF2C2/AGO2小鼠單株抗體(RN003M,MBL)在4℃過夜共免疫沉澱,該抗體先前已與瓊脂糖蛋白G珠綴合(17-0618-01,GE Healthcare Biosciences,Uppsala,瑞典)。兔IgG作為陰性對照(RN1005,MBL)。
Argonaute-2蛋白(Ago2)是RNAi誘導的沉默複合體(RISC)的核心。在RNAi途徑中,RISC與miRNA及其標靶基因結合,導致mRNA降解或轉譯抑制。圖4(a)顯示西方墨點法證實RIP質量的結果。西方墨點法是測量蛋白質表現的公認方法,可由本發明所屬領域一般技術人員進行。在該具體實施例中,西方墨點法是使用針對EIF2C2/AGO2(RN003M,MBL International,Nagoya,日本)、PIK3C3(# 4263;Cell Signaling Technology,Beverly,MA)和β-肌動蛋白(A5441; Sigma-Aldrich,St.Louis,MO)的抗體(Abs)進行。圖4(b)的結果表明,與抗IgG組相比,在shGFP對照細胞株中,Ago2抗體與miR-338-5p特異性沉澱(P=0.004,曼-懷特尼檢定),表明miR-338-5p結合至Ago2。當IgG或Ago2沉澱時,與shGFP對照細胞相比,在miR-338-5p過表現細胞中證明了miR-338-5p的更高表現(P=0.004,曼-懷特尼檢定),如圖4(c)所示。與shGFP對照細胞相比,如圖4(d)所示,在miR-338-5p過表現細胞的RIP-IgG裂解物中觀察到較低量的PIK3C3 mRNA(P=0.0375,曼-懷特尼檢定),表明miR-338-5p抑制PIK3C3的mRNA表現。相反地,在穩定過表現miR-338-5p的HCT116細胞的RIP-Ago2裂解物中證明了更高量的PIK3C3 RNA。該等結果表明PIK3C3 RNA與miR-338-5p結合。
此外,構建野生型(WT)和突變型(Mut)PIK3C3 3’-UTR標靶序列以確認PIK3C3為miR-338-5p的標靶基因。如圖5(a)所示,將PIK3C3的野生型(WT)和突變型(Mut)標靶序列構建在p-miR-報告螢光素酶質體的螢光素酶基因下游的3’-UTR中。
表9. 野生型(WT)和突變型(Mut)PIK3C3 3'-UTR標靶序列構建到p-miR-報告螢光素酶質體的3'-UTR中
Figure 109104699-A0202-12-0034-11
然後將SW480細胞以WT或Mut p-miR-PIK3C3質體(5μg/mL)轉染,並分別與miR-338-5p、抗miR-338-5p、N.C.或抗N.C.(100nM)共轉染。從轉染的細胞中獲得細胞裂解物,並使用Dual-Glo螢光素酶測定系統(E1960,Promega, Madison,WI)進行測定,並使用光度計(EG & G Berthold,Wildbad,德國)測量結果。
如圖5(b)所示,在將miR-338-5p和WT p-miR-PIK3C3都轉染到SW480細胞中後,觀察到p-miR-PIK3C3的螢光素酶活性明顯降低(P=0.002,曼-懷特尼檢定)。相反地,在將miR-338-5p抑制劑轉染到SW480細胞後,證明p-miR-PIK3C3螢光素酶活性明顯更高(P=0.0317,曼-懷特尼檢定)。但是,當將Mutp-miR-PIK3C3螢光素酶報告基因質體轉染到SW480細胞中時,這種調節作用便消失了。該等結果支持miR-338-5p定位於PI3KC3的3'-UTR。
此外,如圖5(c)所示,使用西方墨點法評估大腸直腸癌細胞株中PIK3C3蛋白的表現,發現其與miR-338-5p的表現呈負相關。SW480細胞的PIK3C3蛋白表現量最低,而HCT116細胞的量最高。同樣地,轉染miR-338-5p後,HCT116細胞中PIK3C3的表現也受到抑制。相反地,當轉染抗miR-338-5p時,SW480細胞中PIK3C3的表現較高。所有該等結果都支持PIK3C3作為大腸直腸癌中miR-338-5p的標靶基因。
實施例4:miR-338-5p過表現觸發大腸直腸癌轉移並抑制PIK3C3表現
藉由建立具有HCT116細胞和異種移植小鼠模型的miR-338-5p過表現和PIK3C3過表現的穩定細胞株,研究miR-338-5p在大腸直腸癌體內的參與,證實miR-338-5p在體內的致瘤潛力。
為了建立穩定的PIK3C3過表現細胞株,將殺稻瘟菌素基因(BSD)複製到pCMV-Vps34質體(pCMV-Vps34-BSD),並轉染到HCT116細胞中。穩定的 細胞株係由BSD(塞魯士生技有限公司,台北,台灣)以5ng/μL的濃度選擇。將pTRE2-BSD作為對照載體。
將穩定的miR-338-5p過表現細胞、miR-338-5p和PIK3C3共過表現細胞以及shGFP對照細胞注入八周大的雌性NOD/SCID小鼠的脾臟中,以檢查其對大腸直腸癌轉移的潛在影響。使用腹膜內(i.p.)注射Zoletil 50(25mg/kg)(Virbac Laboratories,Carros,法國)和2%甲苯噻嗪(Rompun;Bayer HealthCare,LLC,Leverkusen,德國)麻醉每組小鼠(n=5)。藉由在左上腹部的1到2cm切口,將100μL DMEM中的細胞(1×106)注入脾臟。42天後,犧牲小鼠,並以劉氏染色法(Liu’s stain)對腹水進行染色以進行細胞學分析。
如圖6(a)所示,注射了miR-338-5p過表現細胞的小鼠存活率較低(P=0.0372,對數等級檢定)。但是,當PIK3C3在穩定的miR-338-5p過表現細胞中也過表現時,小鼠的存活率得以恢復。圖6(b)顯示miR-338-5p的過表現不影響脾臟中的腫瘤生長,但是當PIK3C3也過表現時,脾臟腫瘤體積減小。結果支持miR-338-5p的過表現藉由抑制PIK3C3來負調控小鼠的存活,而PIK3C3在體內表現為腫瘤抑制因子並抑制腫瘤的生長。
另外,在miR-338-5p過表現的小鼠腹水中觀察到的腫瘤細胞數量明顯多於shGFP對照(P=0.006,曼-懷特尼檢定)。但是,當PIK3C3在穩定的miR-338-5p過表現細胞中也過表現時,腹水的量(P=0.0278,曼-懷特尼檢定)和腹水中的腫瘤細胞數量(P=0.004,曼-懷特尼檢定)都是減少,如圖6(c)所示。因此,miR-338-5p可能促進大腸直腸癌的腹膜轉移,並且PIK3C3可以逆轉該作用。
此外,如圖7(a)和圖7(b)所示,在注射穩定的miR-338-5p過表現細胞後,小鼠的肝臟(P=0.0167,曼-懷特尼檢定)和肺臟(P=0.0216,曼-懷 特尼檢定)中觀察到轉移性結節明顯增加,且miR-338-5p的過表現促進肝轉移結節的生長(P=0.0056,曼-懷特尼檢定),而在miR-338-5p穩定細胞中過表現PIK3C3減少在肝臟中轉移結節的體積(P=0.0159,曼-懷特尼檢定)。
在初代異種移植腫瘤中,miR-338-5p過表現時,miR-338-5p RNA的表現與PIK3C3量呈負相關(P=0.0245,R=-0.6444,斯皮爾曼檢定),如圖7(c)所示。
使用抗PIK3C3 Ab(# 4263;Cell Signaling Technology)的免疫組織化學染色顯示,脾臟miR-338-5p過表現的腫瘤中,PIK3C3蛋白表現明顯高於肝臟(P=0.0082,曼-懷特尼檢定)和肺臟(P=0.0082,曼-懷特尼檢定)中轉移性腫瘤,如圖7(d)所示。與穩定的miR-338-5p過表現細胞相比,在注射有miR-338-5p和PIK3C3共表現穩定細胞的小鼠中,PIK3C3的表現在轉移至肝(P=0.0984,曼-懷特尼檢定)和肺(P=0.0156,曼-懷特尼檢定)的腫瘤中更高。
此外,如圖7(e)所示,miR-338-5p/PIK3C3比率在miR-338-5p過表現細胞的原發腫瘤中比對照組更高(P=0.004,曼-懷特尼檢定),PIK3C3的過表現逆轉在原發性腫瘤(P=0.0159,曼-懷特尼檢定)和肝轉移性腫瘤(P=0.0317,曼-懷特尼檢定)中miR-338-5p/PIK3C3的比率。在肝轉移性腫瘤中,與脾臟中的原發性腫瘤相比,miR-338-5p/PIK3C3比率有增加的趨勢(P=0.6905,曼-懷特尼檢定)。因此,miR-338-5p藉由沉默PIK3C3參與體內大腸直腸癌的轉移,而PIK3C3減少轉移性腫瘤的大小。
實施例5:miR-338-5p藉由PIK3C3誘導大腸直腸癌的移行和入侵
以miR-338-5p轉染HCT116細胞,並以甲基噻唑四唑(MTT)分析 觀察其生長速率差異。具體而言,轉染後,將HCT116細胞(8×103/孔)接種到96孔板中,分別培養24、48、72和96小時。將MTT溶液(M2128;Sigma)(在DMEM中為0.05mg/mL)加入每個孔中,並在37℃培養3小時。然後,除去培養基,並以100μL二甲基亞碸(D4540,Sigma)代替。96孔多掃描儀自動讀取儀(MRX II,Thermo Lab Systems,Franklin,MA)用於測量540nm細胞裂解物中甲
Figure 109104699-A0202-12-0038-79
(formazan)的吸光度,並計算活細胞的數量。如圖8(a)所示,在以miR-338-5p轉染的HCT116細胞中未觀察到生長速率的顯著差異。
然後,以在24小時分析的傷口癒合測定和在48小時分析的Transwell測定(Corning,Corning City,NY)評估以miR-338-5p轉染的HCT116細胞體外細胞移行情況。使用Transwell測定法評估體外細胞入侵情況,其中將細胞接種在塗有Matrigel膜的Transwell柱(BD Biosciences,San Jose,CA)上。然後,在96小時後計數膜底部的細胞。結果如圖8(b)和圖8(d)所示,藉由傷口癒合和Transwell移行測定,在miR-338-5p轉染的HCT116細胞中皆觀察到明顯更高的細胞移行。相反地,抗miR-338-5p轉染顯著抑制移行,如圖8(c)和圖8(e)所示,並且還顯示SW480細胞的Transwell入侵(圖8(f))。因此,miR-338-5p體外促進大腸直腸癌移行和入侵。
藉由製備pCMV-Vps34(PIK3C3)載體進行體外實驗,研究PIK3C3在miR-338-5p介導過程中的參與。pCMV-Vps34質體由蘇W.C.(中國醫藥大學,台中,台灣)贈予。在以PIK3C3載體轉染的SW480細胞中,體外細胞移行(P=0.0487)(圖9(a))和體外入侵(P<0.0001)(圖9(b))均受到顯著抑制。此外,過表現miR-338-5p時,SW480細胞顯著誘導移行(P=0.0009,t檢定)和入侵(P<0.0001,t檢定),而當PIK3C3重新活化時,細胞移行和入侵皆再次顯著被抑制 (分別為P=0.0016和P<0.0001,t檢定),如圖10(a)和圖10(b)所示。使用穩定的HCT116細胞的傷口癒合測定,證實PIK3C3的過表現藉由過表現miR-338-5p而回復對細胞移行的抑制,如圖10(c)所示。
相反地,如圖11(a)和圖11(b)所示,使用慢病毒sh-Vps34(PIK3C3)抑制細胞中PIK3C3表現,顯示轉染後SW480細胞移行和入侵增加。標靶PIK3C3(Vps34)的shRNA從國家RNAi核心實驗室(中央研究院,台北,台灣)購買。所選複製的ID分別為:sh-Vps34 # 1的TRCN0000037794和sh-Vps34 # 2的TRC0000296151。根據供應商的標準生產表現shRNA的慢病毒。使用嘌呤黴素(P8833;Sigma-Aldrich)以15ng/μL選擇SW480細胞和1ng/μL選擇HCT116細胞。
如圖12(a)和圖12(b)所示,轉染抗miR-338-5p可上調SW480細胞中PIK3C3的表現,並抑制移行(P=0.0003,t-test)和入侵(P=0.0012,t-測試)。相反地,sh-Vps34慢病毒轉染逆轉PIK3C3的表現以及體外移行和入侵的生物效應。結果支持miR-338-5p藉由抑制PIK3C3誘導大腸直腸癌移行和入侵。
實施例6:miR-338-5p藉由抑制SPRY2來調控大腸直腸癌
如上表8所示,預測miR-338-5p具有許多標靶基因。為了確認SPRY2為標靶基因之一,在HCT116細胞株中分別建立穩定的miR-338-5p過表現細胞和shGFP對照細胞用於RIP分析。
如圖13(a)所示,與shGFP對照細胞相比,miR-338-5p過表現細胞在RIP-IgG裂解物中具有較低量的SPRY2 RNA,支持miR-338-5p抑制SPRY2的表現。相反地,在穩定的miR-338-5p過表現HCT116細胞的RIP-Ago2裂解物中顯示更高量的SPRY2 RNA(P=0.0022,曼-懷特尼檢定)。該等結果證實SPRY2 RNA與 miR-338-5p結合。
為了闡明SPRY2對於大腸直腸癌細胞的重要性,將miR-338-5p分別轉染到SW480和HCT116細胞中。MiR-338-5p皆抑制兩種細胞株中SPRY2的表現。然而,如圖13(b)所示,只有HCT116細胞表現出miR-338-5p誘導的ERK和AKT的磷酸化。該結果表明,miR-338-5p藉由活化HCT116細胞中的ERK和AKT信號傳導抑制SPRY2,而其他獨立於ERK和AKT的途徑可能參與在SW480細胞中。
實施例7:自噬參與miR-338-5p誘導大腸直腸癌的移行和入侵
為了闡明miR-338-5p誘導大腸直腸癌移行和入侵的潛在機制,評估自噬的參與。具體而言,藉由免疫螢光法檢測以胺碘酮(自噬誘導劑)處理的細胞中LC3點(微管相關蛋白1A/1B-LC3)的形成和LC3 II型(LC3-II)蛋白的表現。胺碘酮處理(10μM)誘導LC3點形成(P<0.0001,曼-懷特尼檢定),如圖14(a)所示,以及大腸直腸癌細胞中活化的LC3-II表現,如圖14(b)和圖14(d)所示。圖14(c)和圖14(e)顯示對細胞移行的抑制,圖14(f)顯示在胺碘酮處理的細胞中對細胞入侵的抑制,其可在miR-338-5p過表現細胞中被回復。
此外,如圖14(a)、圖14(b)和圖14(d)所示,在miR-338-5p過表現細胞中,PIK3C3的壓抑顯著抑制胺碘酮誘導的自噬。結果表明,miR-338-5p藉由抑制自噬來誘導大腸直腸癌細胞的移行和入侵。
為了證實該觀察結果,將shATG5慢病毒用於體外調節自噬。如圖15(a)所示,在SW480細胞中減弱ATG5抑制與細胞移行增加有關的自噬活性(LC3 II)。瞬時轉染抗miR-338-5p後,PIK3C3和LC3-II的表現得以恢復,SW480細胞的移行受到抑制(P<0.0001,t檢定)。沉默ATG5可逆轉經抗miR-338-5p轉染的SW480 細胞的移行抑制(P<0.0001,t檢定)。然而,如圖15(b)所示,以抗miR-338-5p觀察到的移行細胞的數量甚至少於僅接受shATG5慢病毒感染的細胞數量(P<0.0001,t檢定),暗示在自噬相關細胞移行中存在miR-338-5p獨立機制。因此,miR-338-5p部分藉由抑制自噬而誘導大腸直腸癌細胞移行和入侵。
此外,藉由西方墨點法分析HCT116穩定的miR-338-5p過表現細胞株。當miR-338-5p過表現時,PIK3C3和LC3II蛋白的表現都受到抑制,同時作為自噬體降解標記的p62(SQSTM1)也增加了。另外,E-鈣黏著蛋白被上調的N-鈣黏著蛋白、蝸牛蛋白和扭曲蛋白下調,這表明EMT的表型,如圖15(c)所示。但是,波形蛋白和纖連蛋白的表現不受影響。結果表明,miR-338-5p可以在抑制自噬的同時調節EMT。總之,PIK3C3相關的自噬在miR-338-5p介導的大腸直腸癌體外移行、入侵和轉移中起作用。
前述實施例用於例示本揭露。基於本揭露的說明書、本發明所屬領域普通技術人員可想到本揭露的其他優點。本揭露還可如在不同示例中描述的方式實現或應用。可修飾和/或改變用於執行本揭露的實施例,而不背離其針對不同態樣和應用的精神和範圍。
<110> 國立成功大學
<120> 用於大腸直腸癌預後之生物標記
<130> 115091
<160> 8
<170> PatentIn version 3.5
<210> 1
<211> 24
<212> DNA
<213> 人工序列
<220>
<223> miRNA引子
<400> 1
Figure 109104699-A0202-12-0042-12
<210> 2
<211> 27
<212> DNA
<213> 人工序列
<220>
<223> miRNA u54引子
<400> 2
Figure 109104699-A0202-12-0042-13
<210> 3
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 引子
<220>
<221> 引子結合
<222> (1)..(21)
<400> 3
Figure 109104699-A0202-12-0043-15
<210> 4
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 引子
<220>
<221> 引子結合
<222> (1)..(21)
<400> 4
Figure 109104699-A0202-12-0043-14
<210> 5
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 引子
<220>
<221> 引子結合
<222> (1)..(21)
<400> 5
Figure 109104699-A0202-12-0044-16
<210> 6
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 引子
<220>
<221> 引子結合
<222> (1)..(21)
<400> 6
Figure 109104699-A0202-12-0044-17
<210> 7
<211> 22
<212> RNA
<213> 智人
<400> 7
Figure 109104699-A0202-12-0044-18
<210> 8
<211> 22
<212> RNA
<213> 人工序列
<220>
<223> 用於質體構建的人工突變序列
<220>
<221> 3'UTR
<222> (1)..(22)
<220>
<221> 突變
<222> (15)..(15)
<220>
<221> 突變
<222> (17)..(17)
<220>
<221> 突變
<222> (19)..(19)
<220>
<221> 突變
<222> (21)..(21)
<400> 8
Figure 109104699-A0202-12-0045-19

Claims (17)

  1. 一種評估大腸直腸癌預後的方法,包括:藉由第一對寡核苷酸,測量有此需要的受試者的癌組織中至少一種與大腸直腸癌相關的miRNA的第一表現量;藉由第二對寡核苷酸,測量該癌組織中至少一種該miRNA的標靶基因的第二表現量;以及確認該miRNA的該第一表現量與該標靶基因的該第二表現量之間的比率,以指示該受試者的大腸直腸癌的預後,其中,該miRNA係miRNA-338-5p,且該miRNA的標靶基因為磷脂醯肌醇3激酶催化次單元第3型、發芽同源物2、血紅素、DNA結合蛋白抑制劑ID-1、DEAD框蛋白5、電壓門控鈉通道NaV1.7和同源框蛋白Hox-A5。
  2. 如請求項1所述的方法,其中,該預後係指示該大腸直腸癌的轉移潛力、該大腸直腸癌的腫瘤分期或該受試者的存活。
  3. 如請求項2所述的方法,其中,該大腸直腸癌的轉移潛力係轉移至肝、肺、淋巴結、腹膜、腹壁、小腸、胃、胰腺、膽道、脾臟、腎臟、子宮、卵巢、輸卵管、頭部、頸部、腦部、呼吸器官、皮膚、骨骼和遠端軟組織中至少一種的潛力。
  4. 如請求項2所述的方法,其中,該存活係無復發存活、無疾病存活、疾病特異性存活、總體存活或無轉移存活。
  5. 如請求項1所述的方法,進一步包括基於該預後確定療法,並以該療法治療該受試者。
  6. 如請求項5所述的方法,其中,該療法包括手術、放射療法、化學療法、標靶療法、免疫療法、熱療或其組合。
  7. 如請求項1所述的方法,其中,該第一表現量和該第二表現量的測量包括擴增法或雜合法。
  8. 如請求項1所述的方法,其中,該第一表現量和該第二表現量中的至少一種係藉由即時PCR測量。
  9. 如請求項8所述的方法,其中,該第一對寡核苷酸包含SED ID NO.1的序列。
  10. 如請求項8所述的方法,其中,該第二對寡核苷酸包含SED ID NO.3的序列、SED ID NO.4的序列或其組合。
  11. 一種醫藥組成物用於製備於個體中治療大腸直腸癌的藥物的用途,其中,該醫藥組成物抵消與該大腸直腸癌相關的miRNA的第一表現量與該miRNA的標靶基因的第二表現量之間的比率,以及其中,該miRNA係miRNA-338-5p,且該miRNA的標靶基因為磷脂醯肌醇3激酶催化次單元第3型、發芽同源物2、血紅素、DNA結合蛋白抑制劑ID-1、DEAD框蛋白5、電壓門控鈉通道NaV1.7和同源框蛋白Hox-A5。
  12. 如請求項11所述的用途,其中,該組成物藉由抑制該標靶基因的生物活性來抵消該比率。
  13. 如請求項11所述的用途,其中,該組成物藉由增強該標靶基因的生物活性來抵消該比率。
  14. 如請求項11所述的用途,其中,該組成物包含小分子抑制性RNA、短髮夾RNA、反義寡核苷酸、抗體或自噬誘導劑和自噬抑制劑。
  15. 一種人工寡核苷酸,其與SEQ ID NO.1、3或4的序列具有至少85%同一性。
  16. 一種套組,包含一個或多個如請求項15所述的人工寡核苷酸和用於擴增的試劑。
  17. 一種套組,包含多個寡核苷酸,該寡核苷酸用於測量如請求項1所述的一種以上的miRNA的表現量和一種以上的該miRNA之標靶基因的表現量,以確認一種以上的該miRNA的該第一表現量與該標靶基因的該第二表現量之間的比率,以指示該受試者的大腸直腸癌的預後,其中,該miRNA係miRNA-338-5p,且該miRNA的標靶基因為磷脂醯肌醇3激酶催化次單元第3型、發芽同源物2、血紅素、DNA結合蛋白抑制劑ID-1、DEAD框蛋白5、電壓門控鈉通道NaV1.7和同源框蛋白Hox-A5。
TW109104699A 2020-02-14 2020-02-14 用於大腸直腸癌預後之生物標記 TWI756634B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109104699A TWI756634B (zh) 2020-02-14 2020-02-14 用於大腸直腸癌預後之生物標記

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109104699A TWI756634B (zh) 2020-02-14 2020-02-14 用於大腸直腸癌預後之生物標記

Publications (2)

Publication Number Publication Date
TW202130818A TW202130818A (zh) 2021-08-16
TWI756634B true TWI756634B (zh) 2022-03-01

Family

ID=78282830

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109104699A TWI756634B (zh) 2020-02-14 2020-02-14 用於大腸直腸癌預後之生物標記

Country Status (1)

Country Link
TW (1) TWI756634B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408703A (zh) * 2019-08-15 2019-11-05 河北仁博科技有限公司 结直肠癌miRNA标志物及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110408703A (zh) * 2019-08-15 2019-11-05 河北仁博科技有限公司 结直肠癌miRNA标志物及其应用

Also Published As

Publication number Publication date
TW202130818A (zh) 2021-08-16

Similar Documents

Publication Publication Date Title
Dong et al. Activation of LncRNA TINCR by H3K27 acetylation promotes Trastuzumab resistance and epithelial-mesenchymal transition by targeting MicroRNA-125b in breast Cancer
Nicolini et al. Prognostic and predictive biomarkers in breast cancer: Past, present and future
Dong et al. MicroRNA dysregulation in colorectal cancer: a clinical perspective
Puiffe et al. Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, gene expression in an in vitro model of epithelial ovarian cancer
Xie et al. MicroRNA-1 acts as a tumor suppressor microRNA by inhibiting angiogenesis-related growth factors in human gastric cancer
EP2152900B1 (en) Methods for determining hepatocellular carcinoma subtype
KINoSHITA et al. Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in maxillary sinus squamous cell carcinoma
JP2022188086A (ja) 子宮内膜症についてのバイオマーカーとしてのマイクロrna
Zhang et al. Downregulation of miR-193a-5p correlates with lymph node metastasis and poor prognosis in colorectal cancer
CN105980576B (zh) 用于源自乳腺癌的骨转移癌的预后和治疗的方法
Tian et al. Decreased serum microRNA-206 level predicts unfavorable prognosis in patients with melanoma
Chen et al. MicroRNA‐18a modulates P53 expression by targeting IRF2 in gastric cancer patients
Luo et al. LncRNA SNHG7 promotes development of breast cancer by regulating microRNA-186.
Projetti et al. Epidermal growth factor receptor expression and KRAS and BRAF mutations: study of 39 sinonasal intestinal-type adenocarcinomas
Zhang et al. Knockdown of AXL receptor tyrosine kinase in osteosarcoma cells leads to decreased proliferation and increased apoptosis
WO2018048354A1 (en) A method of identifying risk of cancer and therapeutic options
Zhang et al. piR-001773 and piR-017184 promote prostate cancer progression by interacting with PCDH9
US11434537B2 (en) Biomarker for prognosis of colorectal cancer
Yang et al. lncRNA MAGI2-AS3 suppresses castration-resistant prostate cancer proliferation and migration via the miR-106a-5p/RAB31 axis
KR20110015013A (ko) 결장직장암의 평가 방법 및 여기에 사용하기 위한 조성물
Sim et al. Identification of recurrence-associated microRNAs in stage I lung adenocarcinoma
KR20170086469A (ko) Egfr 억제제를 사용한 치료에 대한 반응을 예측하는 방법
JP2010523134A (ja) Egfr/csf−1/caix発現に基づき非小細胞肺癌の化学療法計画および生存余命を決定する方法
TWI756634B (zh) 用於大腸直腸癌預後之生物標記
Khan et al. Integrated grade-wise profiling analysis reveals potential plasma miR-373-3p as prognostic indicator in Prostate Cancer & its target KPNA2