TWI755413B - 分散機與漿體中粒子的分散方法以及乳化製造方法 - Google Patents
分散機與漿體中粒子的分散方法以及乳化製造方法 Download PDFInfo
- Publication number
- TWI755413B TWI755413B TW106126090A TW106126090A TWI755413B TW I755413 B TWI755413 B TW I755413B TW 106126090 A TW106126090 A TW 106126090A TW 106126090 A TW106126090 A TW 106126090A TW I755413 B TWI755413 B TW I755413B
- Authority
- TW
- Taiwan
- Prior art keywords
- slurry
- rotor
- cylindrical container
- disperser
- particles
- Prior art date
Links
Images
Landscapes
- Crushing And Grinding (AREA)
- Mixers Of The Rotary Stirring Type (AREA)
Abstract
本發明關於一種分散機,其在圓筒容器內配置有構成葉輪的形態的轉子8,且將在溶媒中混入有粒子的漿體導入填充有珠粒的圓筒容器內,藉由旋轉驅動轉子8,將漿體中的粒子分散、粉碎。為了提高分散率,減少一次粒子的破壞,上述轉子係直徑D與該轉子8的軸向長度L的比L/D設為0.3~1.6。
Description
本發明係關於一種對在液體中分散有固體或液體的粒子的懸浮液(以下稱為漿體)中的凝聚的粒子進行粉碎並使之分散的分散機、與使用該分散機的漿體中粒子的分散方法、以及乳化製造方法。
本發明中所稱的分散,係指將凝聚數個至數十個由單一的結晶粒子或非晶質粒子構成的一次粒子而形成的二次粒子在溶液中分散進行分離之情況,此外,本發明中所稱的粉碎,係指將單一粒子分解為複數個粒子之情況。
先前的分散機,具有:被區分為進行擔當分散、粉碎的攪拌的部分、及將分散、粉碎用的珠粒分離之分離器部分的構造;及於分離器構造中同時進行分散、粉碎與珠粒分離的構造。作為前者的裝置區分的分散機,例如揭示有下述專利文獻1所示的濕式球磨機。於該裝置中,包含由填充有珠粒的圓筒容器、與容器同軸地被配置於該圓筒容器內且被固定於以馬達作為驅動源而被旋轉驅動的軸上的攪拌翼、及分離器,攪拌翼具有分散、粉碎功能,此外,分離器係由固定於軸的上下之圓板狀的圓盤、及於圓周方向以一定間隔連結上下的圓盤間的攪拌翼所構成,而構成葉輪的形態。藉由將漿體導入填充有粉碎及分散用的珠粒的該容器內,且旋轉驅動攪拌翼及分離器,將漿體中的粒子分散、粉碎,而將粒子微細化。此時,藉由離心加速度的作用使分離珠粒後之漿體從分離器的外周端朝內周端移動,且通過軸的中空的軸心而排出,藉此,製造經分散、粉碎處理後之珠粒混入少的漿體。
此外,專利文獻2係一種相當於後者的裝置區分的分散機之適合於先前技術中的分散、粉碎的粉碎機。於該裝置中,揭示一種圓筒容器及分離器皆為大徑,軸向長度L較直徑D小且比率(L/D)小的粉碎機。此外,專利文獻3雖為前者的裝置區分的分散機,但在構造上是接近於後者的裝置區分的分散機,且是於上下的圓盤之間放入間隔板的圓盤的發明,其是一種於下方的室內藉由攪拌進行分散、粉碎、且於最上層的室內進行珠粒分離及分散、粉碎的裝置。
此外,分散機還具有一種藉由使封閉的圓筒容器的圓柱狀構件高,速旋轉,使用在圓筒容器與圓柱狀構件間的剪切流產生之間隙所產生的剪切力,進行漿體中的凝聚粒子之分散的裝置。例如,於下述專利文獻4揭示的發明中,於裝置下部具有攪拌器,其可使一次粒子凝聚而成的二次粒子分散。為了有效率地實施分散,使直徑0.05~0.5mm左右的硬質粒子(珠粒)混入漿體中。然後,以上部的分離裝置對完成分散的漿體進行珠粒分離。
於下述專利文獻5揭示有同樣的分散機,於文獻5還記載著:亦可於圓筒容器內周面與圓柱狀構件的外周面中的一者或兩者,全面或局部地形成凹凸。
此外,油乳化係被應用於化妝品的乳液、食品等,於水中懸浮有油的微粒液滴,且油液滴的直徑,通常為0.5~10μm。為了以工業方式製造數μm的乳化液,雖以真空式攪拌容器等進行處理,但該處理係分批式處理,需要於前步驟進行預備混合處理,此外,還需要從處理後的乳化液中除去氣泡,並且還需要設置用於保存的儲存槽或液輸送用裝置。其結果,存在有製程變得複雜,且會增加處理費用及設備費用的問題。因此,期待有一種能以簡易的裝置進行連續處理的裝置。
專利文獻1 日本特開2008-253928號公報
專利文獻2 日本特開2003-144950號公報
專利文獻3 日本特開2002-143707號公報
專利文獻4 日本專利第3703148號公報
專利文獻5 日本特開2008-238005號公報
於專利文獻1記載的分散機中,因為具有攪拌翼及分離器兩者,因而裝置複雜且製造原價高。並且,分離器的葉片的位置在構造上靠近旋轉軸且較短,因此存在有分離性能劣化的問題。為因應此問題,雖有提高分離器的葉片的設置密度,但其結果,存在有漿體通過截面積變小,進而造成漿體處理量降低並且漿體輸液動力增加的問題。
此外,於在分離器位置進行分散、粉碎與珠粒分離兩種處理之類型的後者的裝置區分中,如於專利文獻3之例中可見,在分離器的直徑D與軸向長度L的比、即L/D大的構成中,容器的漿體中的珠粒濃度的誤差,於旋轉軸的方向上變大。其結果,存在有成為分散不足的粒子與粒子被過量地破壞的粒子混合之狀態,進而變得無法獲得粒徑一致且均勻分散的漿體的問題。特別是在高黏性的漿體中,該現象特別顯著。
於使用從此種漿體中獲得的粒子的最終產品中,存在有如下的問題。例如,於藉由氧化物的燒結而製造的介電體中,存在有燒結體中的結晶粒徑的誤差變大,起因於巨大化而使粒子的局部之介電率異常降低的問題。此外,於印墨等的色材中,存在有無法確保顏色的均勻性的問題。
藉此,如專利文獻2所記載,藉由將前述的L/D設小,於分離器所有區域進行均勻的處理是有效的方法。然而,於該裝置中也存在有處理上的問題。若欲增加處理量而增大分離器直徑,則靠近分離器外周的部分之離心加速度與靠近中心的部分之離心加速度的差變得過大,珠粒僅存在於外周部分的結果,存在有於分離器外周部,間隔板捲入珠粒,致使珠粒混入率惡化的問題。
因此,如專利文獻2記載的裝置,發明了一種著眼於攪拌分離器外周部的作業且葉片的分離器直徑方向的長度短的裝置。然而,其結果存在有分散效果變小,且珠粒分離不充分的問題。因此,其係一種分散不充分且珠粒引起的產品的汙染多的裝置。此外,存在有分離器的葉片長度過短,珠粒分離效率差,產品漿體中混入有雜質的問題。
為因應此問題,完成了一種於將容器及分離器設定為豎長的情況下,如專利文獻3所記載,於上下的圓盤之間放入間隔板的圓盤的發明。然而,於該裝置中,漿體係依序通過由間隔板區隔的室內而被處理,雖具有滯留時間長的優點,但存在有裝置大型化的問題及引起過量粉碎的問題。特別是在高黏性的漿體中,漿體的流動複雜且無法進行充分的處理。
於先前技術型的漿體中的粒子之分散機中,還存在有如下的問題。於專利文獻4記載的效率佳的分散機中,由於將珠粒使用於攪拌用,因此粒子分散良好,但卻存在有在進行分散的同時,連同一次粒子也被破碎的問題。於同時進行破碎與分散的處理中,雖無問題,但於極力想抑制一次粒子的破碎的原料之處理的情況下,存在有對一次粒子的傷害大的問題。此外,還存在有粉碎用的珠粒的碎片混入產品漿體中的問題。
另一方面,專利文獻5記載的裝置,係不使用珠粒的分散裝置。為了對漿體施加剪切力,僅想僅只要擾亂轉子與圓筒容器之間的漿體的流動即可。因此, 作為分散功能並不充分。為了進行改善,雖曾想過以於圓筒容器或轉子的表面設置凹坑狀的凹凸較佳,但就這部分並未完成適當的設計,所以僅為設置凹凸即可之想法,並非可形成充分的剪切力者。因此,雖是分散處理中對一次粒子之傷害小的構成,但存在有分散功能小的問題。
此外,於此種裝置中,還存在有漿體會藉由起因於圓筒容器與轉子之間的剪切力的摩擦而被加熱的問題。於專利文獻5的裝置中,如上述,由於不是可產生充分的剪切力的裝置設計,因此摩擦熱少,且與漿體冷卻對應的技術手段不充分。於該裝置中,由於僅僅只考慮到散熱,因此散熱並不充分,從而無法提升轉子的周速進行運轉。
本發明之第1目的在於提供一種分散機,其可謀求L/D的最佳化,並且,藉由將分離器葉片的設置條件合理化,可在不降低生產性下使漿體中的二次粒子均勻分散,進而可提高產品特性,及提供一種使用該分散機之漿體中微粒子的處理方法。
第2目的在於提供一種即使是高黏性的流體也可在不破壞一次粒子之下使二次粒子均勻分散的分散機、及漿體中的粒子分散的方法以及乳化製造方法。
本發明係構成為:於圓筒容器的內部配置有被固定在與該圓筒容器同軸設置的旋轉軸的轉子,且使形成於上述圓筒容器與轉子之間的間隙產生剪切力,以處理漿體。
就較佳的態樣而言,分散機係於上述圓筒容器內配置有與該圓筒容器配置在同軸心上而旋轉的具備漿體排出用中空部的中空軸7、與該中空軸7同軸的軸6、及固定於該軸6的轉子8,且形成有漿體路徑,該轉子包含多個呈放射狀或偏心地以適當間隔配置於圓周方向的間隔板9且於圓筒容器內進行旋轉,並且使從設置於該圓筒容器的漿體供給口13供給的漿體經由間隔板9之間而從中空軸7的中空部朝裝置外排出,且間隔板9的外周端連接的圓的直徑D與轉子8之軸向長度L的比L/D為0.3~3.2。
就另一較佳之態樣而言,分散機係在由圓筒體22、上蓋23及下蓋24所構成的圓筒容器內設置有轉子25,該轉子25係與該圓筒容器成為同軸且將外周面形成為凹凸,形成於圓筒體22的內面與轉子25的外周面之間的剪切流產生間隙28係形成漿體通路,且由設置於該圓筒容器的一端側的原料漿體入口27及設置於該圓筒容器的另一端側的產品漿體出口29、以及旋轉驅動該圓筒容器與轉子25中的任一者的驅動裝置所構成之分散機中,利用液體冷卻圓筒體22,並於圓筒體22的內周面及轉子25的外周面形成凹凸,且將該凹凸的凹部的深度設為較1mm或剪切流產生間隙28的0.5倍中的任一較小者深,且將剪切流產生間隙28設為0.6~4mm。
於本發明中,藉由適切設計分散機之構成,可於漿體中的一次粒子破壞少之狀態下,獲得二次粒子被分解且一次粒子均勻地分散的產品漿體,並且可降低粉碎用的珠粒混入經處理後的漿體的比率。此外,還可進行在先前的分散機中無法處理的高黏性漿體中的微細粒子的分散。特別是在包含0.5μm以下的粒子之500mPa‧s以上的高黏度漿體中,本發明的分散機相當有效。並且,於本發明中,藉由使用較佳態樣的分散機,可穩定地實現分散率高且一次粒子破壞少的處理。
藉由使用另一較佳態樣的分散機,不僅可有效率地分散懸浮有1μm以下的粒徑之漿體,而且於大幅地超過先前裝置中的極限黏度即200~500mPa‧s之30000mPa‧s以上的漿體中,也可分散粒子。並且,除了分散處理外,還可活用於液體的混合處理等,而且亦可進行先前裝置中所無法處理的高黏性流體彼此的混合處理、及油與水等的乳化處理。
因為可進行此種處理,故能製造在先前技術中無法以單一處理進行製造的高黏性的粒子分散糊狀物。此外,就高黏性流體而言,只能作分批處理,故能獲得可採用無需前處理裝置或混合物的一次儲備裝置之大型機器設備、或可簡化將分批式乳化處理連續化的大型機器設備之功效。
此外,於另一較佳態樣的分散機中,由於可在不使用珠粒之下進行分散處理,因此可活用於當受到粒子傷害時會降低最終產品的性能之粒子的漿體處理。特別是,在不會對有機物或低強度的氧化物等的粒子帶來傷害下可進行分散處理。此外,不會有珠粒碎片混入產品漿體,可防止因珠粒成份所引起的產品汙染。
1、21‧‧‧分散機
2、22‧‧‧圓筒體
3、23‧‧‧上蓋
4、24‧‧‧下蓋
5‧‧‧冷卻水路
6‧‧‧軸
7‧‧‧中空軸
8、25‧‧‧轉子
9‧‧‧間隔板
10‧‧‧上部圓板
11‧‧‧下部圓板
12‧‧‧貫通孔
13、14‧‧‧漿體供給口
26‧‧‧旋轉軸
26a‧‧‧旋轉軸保持器
27‧‧‧漿體入口
28‧‧‧剪切流產生間隙
29‧‧‧漿體出口
30‧‧‧冷卻水路
31‧‧‧凹槽
32‧‧‧凸條
33‧‧‧凹坑
圖1為本發明的分散機的剖視圖。
圖2為圖1中之A-A線的剖視圖。
圖3為圖2所示的轉子的主要部分的尺寸圖。
圖4為相對於L/D繪製表示以本發明之裝置進行處理時的分散性能的平均粒徑(D50)的曲線圖。
圖5為相對於L/D繪製使表示以本發明之裝置進行處理時的粒子破碎程度的D50分散為0.3μm時的比表面積的曲線圖。
圖6為其他態樣的分散機的主要部分之概略剖視圖。
圖7為構成圖1所示的分散機的轉子之俯視圖。
圖8為該轉子之前視圖。
圖9為構成圖6所示的分散機的圓筒體之俯視圖。
圖10為該圓筒體之縱剖視圖。
圖11為圓筒容器與轉子的主要部分之放大圖。
圖12為表示凹凸的另一例的一部分之放大展開圖。
以下,參照圖式,對本發明之一實施形態的分散機進行說明。於本圖中,雖將裝置的旋轉軸記載為在垂直方向,但也可設置於水平等之其他方向。
圖1為以符號1表示整體的分散機的剖面,圖2為表示圖1中的A-A線之剖面,分散機1包含封閉形狀的圓筒容器及轉子8,該圓筒容器係由上蓋3及下蓋4將 圓筒體2的上下固定而成,該轉子8係於該圓筒容器內與該圓筒容器同軸配置,且固定於以未圖示的馬達作為驅動源而被旋轉驅動的軸6,軸6的上側部為橫截面圓形,下側部為橫截面大致正方形,且轉子8不可旋轉地被嵌合於軸6的下側部。再者,該圓筒容器未必需要是分割成圓筒體2、上蓋3及下蓋4所構成,例如,也可將圓筒體2與下蓋4作成一體。
轉子8係包含:一對圓板,其由固定於軸6的上部圓板10、及與上部圓板10相隔一定間隔而被固定於軸6的下部圓板11所構成;及軸向的間隔板9,其被等間隔地配置於圓周方向,且上下端分別連結於上部圓板10及下部圓板11,並且,於分級時,轉子8係於間隔板9的外周端,以周速3~30m/秒的程序進行旋轉。
中空軸7係將比轉子8的上部圓板10靠上方之軸心部設為中空,形成具有中空部的中空軸7,且中空軸7的下端,藉由直徑方向的貫通孔12而朝間隔板內之轉子8內部開口。圖1中,作為漿體的供給口,記載有設置於圓筒容器下側的下蓋4之第1漿體供給口即下部漿體供給口13、及設置於圓筒容器上側的上蓋3之第2漿體供給口即上部漿體供給口14的2個供給口,但亦有設置任一者的情況。在進行處理中,漿體從下部供給口13或上部漿體供給口14中的任一者或兩者供給,且經由圓筒體2的內周面附近,朝轉子8的中心方向流動,隨後通過中空軸7的中空部排出至裝置外。
如圖1之箭頭所示,冷媒即冷卻水進出於圓筒容器內,且從圓周側面將冷卻水路5冷卻,但也可對上蓋3及下蓋4供給冷卻水,且不僅是從圓周側面,且還從上下對圓筒體2進行冷卻。
在此,本發明中,於僅從一個方向供給漿體的情況下,將轉子8的間隔板9的外周端的直徑(D)與旋轉軸方向之長度(L)的關係設定為0.3≦L/D≦1.6。於此條件下,可進行漿體中粒子的適當的分散及粉碎,且處理後的漿體中之珠粒汙染變少。特別是在高黏性漿體中,以具備本發明的設計要件的裝置進行處理的功效大。
於L/D為0.3以下的情況下,珠粒混入率增加,在將漿體作為產品原料時,會成為有問題的級別。這是因為轉子過於扁平,層積於圓筒體2的周邊的珠粒因離心加速度而被攪亂,導致珠粒與漿體一起流入轉子8內部之緣故。
另一方面,於L/D≧1.6的情況下,由於該圓筒容器、轉子8皆為豎長型,因此於該圓筒容器中的漿體中的珠粒濃度上存在有誤差,特別是在旋轉軸方向(圖中的縱向)上變大。其結果,於珠粒密集的部分中,產生局部的剪切力上升,造成珠粒的剪切應力(shearing stress)變大,此外,於珠粒稀疏的部分中,剪切力不足。並且,漿體的滯留時間的誤差也增大,滯留時間短的粒子變得分散不足,另一方面,於滯留時間長的粒子中,所謂的一次粒子破壞會增加。其結果,會成為分散不足的粒子與粒子被過量破壞的粒子混合存在的狀態,從而產生無法獲得粒徑一致且均勻分散的粒子的漿體的問題。
另一方面,於有效地實施本發明方面,也希望能從上下的漿體供給口、即相當於第1及第2漿體供給口的下部漿體供給口13及上部漿體供給口14供給漿體。藉由上下供給漿體,具有可增加裝置的高度,且將裝置大型化的優點。於漿體供給口存在於上下雙方的情況下,由於漿體在上下方向流動的中立點為圓筒容器中央,因此與來自單一方向的漿體供給比較,具有可形成約2倍的高度之優點。再者,為了對漿體流進行整流、或者為了容易製作,有時在上部圓板10與下部圓板11之間設置中間圓板。此外,亦有該中間圓板具有開口部的情況。
在從上下雙方供給漿體的裝置中,可將L/D設定為請求項2記載的上限、即最大3.2。此外,由於漿體流係上下對稱,珠粒分離與漿體供給口為一個的情況相同或變得良好,因此可將L/D設定為最小值的0.3。
若間隔板9在直徑方向過短,則珠粒分離性能劣化。這是因為珠粒朝圓筒器的內側輸送的功能因為間隔板9而降低。此外,若間隔板9過長,則會導致在中空軸7的漿流彎曲,若欲增加流量時,則存在有壓力變得過大的問題。因此,間隔板9的內周端所位處的圓周的直徑,可為間隔板9的外周端所位處的圓周的直徑的50~85%,理想為50~70%。
如圖3所示,構成轉子8的間隔板9與通過軸心的半徑所夾的角α,可為5~30度。這是因為藉由適當地設定角α,使得漿體透過旋轉而朝轉子8的內側 適當地流動,只要為適當的角度,則漿體朝轉子8內部的流動係在轉子8的高度方向被均勻化。其結果,可防止因朝轉子8內部的漿體流過多地集中在下部而引起的在圓筒體2上方的漿體流的減少,或者也可防止此相反的現象。
間隔板9的間隔係本發明的重要的要件。若將在間隔板的內周端的間隔板間隔間距設為G1,且在外周端的間隔板間隔間距設為G2,則G1可為1~7mm,G2可為1.5~10mm。此外,若G2在珠粒粒徑的20倍~100倍的範圍內則更佳。此外,間隔板外周端與容器內周面的間隔t,可為3~30mm。前述的間隔板9的總數n越多,越可提高珠粒的分離性能,且變得可因應於500mPa‧s以上的高黏度。在該情況下,G1可為1~5mm,G2可為1.5~7mm。
間隔板9之間的間隔間距比率,針對珠粒外漏也是重要的設計要件。作為表示間隔間距比率的指標,使用以下的值進行說明。若將內周端位處的圓周上之直徑設為D1,將外周端位處的圓周上之直徑設為D2,將於直徑為D1的內周上的間隔板內周端之間距設為G1,將於直徑為D2的圓周上的間隔板外周端之間距設為G2,且將間隔板9的總數設為n,則內周端的間隔板間隔間距的總和與內周端之圓周長的比率成為nG1/πD1,在間隔板外周端的比率成為nG2/πD2。
為了有效率地實施本發明,於前述的內周端與外周端的間隔板間隔間距的對圓周長的比率適宜的條件的情況下,由於間隔板間距間隔的推拔比也重要,因此,若將外周端與內周端的間隔板間距間隔的比率,也設定於適宜的範圍、1.2≦G2/G1≦3,則更佳。於間隔板9的間隔間距在內周側變得過窄的情況下,珠粒僅存在於圓筒體2與間隔板9之間,破碎的程度變得過大,此外,若比率過小,則間隔間距內的漿體流速變為恆定,珠粒更深地進入內部的結果,珠粒分離率降低。在此,假定0.15≦nG1/πD1≦0.6,且0.2≦nG2/πD2≦0.8。亦即,藉由將在內周端的間隔板間隔間距的比率設為15~60%,且將在外周端的間隔板間隔間距的比率設為20~80%,可對在圓筒體2與轉子8的間隔板9之間的珠粒進行之粒子的分散.粉碎與漿體的朝轉子8內部的流入量兩者取得適宜的平衡。其結果,可無珠粒外漏而進行適宜的分散、粉碎處理。
於該圓筒容器的下蓋4中央設置有下部漿體供給口13或上部漿體供給口14,溶媒中混入有粒子的原料漿體,藉由泵壓而從下部漿體供給口13或上部漿體供給口14供給到該圓筒容器內,但較佳為可在供給於該圓筒容器之前,使用例如攪拌機、勻漿製造器等預先將漿體混合。此外,亦可從下部漿體供給口13或上部漿體供給口14的兩者供給原料漿體。
從下部漿體供給口13或上部漿體供給口14供給到該圓筒容器內的原料漿體,藉由轉子8的旋轉而與填充於該圓筒容器內的珠粒進行攪拌混合,使凝聚的粒子解開而分散,且藉由離心加速度的作用,分離粒子
後的漿體從作為分離部的間隔板9外周端且經由間隔板9之間的漿體路徑而朝內周側移動,然後從形成於中空軸7的開口12,通過中空軸7的中空部朝上方脫出而排出,作為產品漿體而被回收、或再次被傳送至供給口13而與該圓筒容器內的珠粒進行攪拌混合。
再者,珠粒朝向該圓筒容器內的供給,可從上方供給到已拆下上蓋3的狀態之該圓筒容器內、或者雖未圖示但也可於上蓋3設置漿體供給口且通過該供給口而進行。
本裝置的運轉,較佳為以如下的條件進行。間隔板9外周端的周速也是重要的處理條件。適宜的運轉條件為:間隔板9的外周端的周速為3~30m/秒,離心加速度為8000m/s2。若離心加速度小,雖然珠粒分離性能降低,但對一次粒子的傷害變小。相反,若離心加速度大,雖然能提高珠粒分離性能,但對一次粒子的傷害變大。特別是在500mPa‧s以上的高黏性漿體的情況下,間隔板9外周端的周速以5~25m/秒者佳,離心加速度以8000m/s2以下者佳。若離心加速度過弱,則會引起珠粒外漏,因此較佳可為800~8000m/s2。再者,其中,離心加速度係根據間隔板9的外周端周速v,間隔板9的外周端的直徑D,以G=2v2/D(m/s2)計算所得之值。
在間隔板9外周與圓筒體2形成的空間內的作用於漿體的剪切(剪切力),也是重要的處理條件。本發明中,根據間隔板9外周端的周速v(m/秒),及間隔板9外周端與圓筒體2的間隔t(m),計算圓筒體2與間隔板9外周端形成的空隙中的剪切率(s),於利用此而以S=v/t進行計算的情況下,S係以1000~8000(1/s)的條件進行運轉。若剪切率低,則有分散降低的問題,若剪切率高,則對一次粒子的傷害變大。
本裝置中使用的珠粒,通常為氧化物粒子、金屬粒子等,具體而言,可使用二氧化鋯、二氧化鈦、玻璃、氧化鋁、鋯石、不鏽鋼等,其比重只要比原料漿體大即可,若為漿體比重的2倍以上則更佳。如此的珠粒係使用直徑0.01~1mm程度的粒徑者,且其形狀較佳可為球狀。作為漿體溶媒,可使用水、乙醇類有機物、甲苯、丙酮、乙二醇類、高黏性的糊狀物等,為了提高處理效率,有時可使用分散劑。漿體黏度最大可對應至3000mPa‧s。本實施形態中作為對象的漿體的粒子,係氧化鈦粉或鈦酸鋇等的氧化物、銀或鎳等的金屬微粒子、微細碳纖維等。以下,例示本實施形態的實施例。
圖1記載的分散機的主要尺寸,於一個漿體供給口的裝置中,D為100mm,L為15mm~226mm,L/D為0.15~2.26。於具有2個漿體供給口的裝置中,D為100mm,L為35mm~320mm。間隔板9的構成中,其間隔G1為2~4mm、G2為3~6mm,外周直徑D2係與D相同,D1相對於D2而為記載於表1的比率,此外,角度α為5~30度。此外,於2個漿體供給口的裝置中,D為100mm,L為30mm~280mm,其他尺寸等係與上述裝置相同。作為比較例,顯示在先前技術型的珠磨機中 的實驗結果,該先前技術型的珠磨機,具有離心式珠粒分離裝置及8根攪拌針,且L為100mm、D為40mm。原料漿體為鈦酸鋇,且為一次粒子300nm、二次粒子粒徑100μm者,以漿體濃度10%進行了處理。漿體黏度為30mPa‧s。粉碎、分散用的珠粒為50μm的二氧化鋯。
啟動本裝置之後,按每一既定的處理時間從研磨機的排出口採取試樣。粒徑測定係使用堀場製作所股份有限公司製造的雷射繞射‧散射式粒度測定器LA-950。並且,使用micrometrics公司製的FlowSorbII2300,以BET一點法測量用以進行一次粒子破壞判定的比表面積測定。
為了評價處理結果所採用的值,於比較例及實施例1~4及6~10中,滯留時間為1分40秒,此外,於實施例5中為進行3分鐘的處理後的處理成績。評價指標係使用二次粒子的平均粒徑(D50:50%的二次粒子為此尺寸以下的粒徑)及使二次粒子平均分散至0.3μm時的比表面積。於前者的值中,評價分散性能。此值越小則分散性能越佳。於後者的值中,評價一次粒子的破壞程度。若引起粒子破壞,即使同為平均二次粒徑,比表面積仍增大,於不想破壞一次粒子的情況下,此值越小則越佳。
以下的表1顯示實施例與比較例。首先,比較例係以由先前技術型的攪拌滾筒及珠粒分離器所構成的珠磨機的測試機進行處理的例子。該裝置的圓筒容器係使用與本裝置相同者,但旋轉體係使用於下部具有攪 拌桿、且於上部具有分離器者。其結果,雖然分散性能良好,但一次粒子破壞不斷進行,對欲降低粒子破壞的處理並不合適。
表1的實施例,皆滿足本發明之裝置要件,L/D處在請求項2之發明的範圍內,D1/D2、G1/G2也在請求項2及3之發明的範圍內。實施例1至7,係一個漿體供給口的裝置的例子,實施例9至11,係2個漿體供給口的裝置的例子。經對實施例進行解析,在分散性能上,二次粒子粒徑(D50)為0.4μm以下而獲得了良好的分散能力。另一方面,於比較例2中,由於L/D為0.15而較小,因此二次粒子粒徑為0.46μm,其分散性能差。將轉子的間隔板外周的周速12m/s者的處理結果以L/D進行整理,繪製成圖4。由該曲線圖可知,L/D為0.3以下,分散性能急遽惡化。
關於粒子破壞降低的評價結果,於實施例1~5及7中,比表面積為7m2/g以下,成為粒子破壞少的結果。於比較例3中,L/D為2.26而較大,因此比表面積成為8.8m2/g,證明粒子破壞會不斷進行。再者,於比較例2中,由於平均二次粒子粒徑在既定時間內沒有達到3μm以下,因此無法進行比表面積的評價。於L/D為2.26的比較例3中,將比表面積為轉子的間隔板外周的周速12m/s者的處理結果整理成L/D,繪製成圖5。證明若L/D超過1.6,則粒子的比表面積增加,粒子破壞容易進行。因此,分散性與一次粒子破壞降低兩者皆優的條件,係在L/D為0.3~1.6的範圍內。此外,若D1/D2、G1/G2也在適宜的範圍內,則處理成績更佳。
即使於相同實施例中,證明也會有處理條件的影響。如表1所記載,於離心加速度為既定範圍者、
與剪切率為既定範圍者中,處理成績特別優異。另一方面,於離心加速度過強的實施例即實施例6中,比表面積相對較大,粒子破壞略有進行。於離心加速度弱的實施例5中,雖然珠粒外漏微少,但仍有產生,此外,於實施例7中,由於間隔板9短,且D1/D2為0.85,因此雖然產生有些微的珠粒外漏,但於處理上皆不會成為問題。
實施例8~10,係從上下方向供給漿體的裝置的實施例,在L/D為0.35、1.6及3.2下完成了有效率的處理。
圖6為表示其他實施形態的分散機的概要之截面,方便起見將旋轉軸設為縱向,但旋轉軸的方向也可為水平等之其他角度。圖示的分散機21,係將轉子25放入由圓筒體22、上蓋23及下蓋24所形成的圓筒容器內的構造,以下,將由圓筒體22、上蓋23及下蓋24所形成的構造物稱為圓筒容器。固定於旋轉軸26的轉子25係藉由旋轉軸26而高速旋轉。原料漿體係從漿體入口27供給到分散機21的內部空間,且藉由圓筒體22內周面與轉子25外周面之間的剪切流產生間隙28,供給剪切力,而實施分散處理,然後作為產品漿體,從漿體出口29朝裝置外排出。
圓筒體22、上蓋23及下蓋24,係於其內部分別具有冷卻水路30,於此水路中流入冷卻水,對分散機21內部的漿體進行冷卻。再者,也可不於上蓋23或下蓋24設置冷卻水路30。冷卻水路30與圓筒容器的內部空間之間的構造體的材料,係採用熱傳導率佳的材料,且以適宜的厚度施工。圖6中,旋轉軸26係設置於漿體出口29的方向,但也可設置於漿體入口27的方向。
於本發明的裝置中,藉由轉子25進行旋轉,使剪切力作用於上述剪切流產生間隙28的漿體,藉此,使漿體中的凝聚粒子(二次粒子)分散,而使單獨粒子(一次粒子)分散於液體中。惟,於如先前技術中由平滑的面所構成、或由僅施以單純的凹凸之圓筒內周面及轉子外周面所構成的裝置中,藉轉子25的旋轉所產生的剪切力小,即使為周速10m/s以上且間隙1~3mm,仍無法使由漿體中的一次粒子粒徑為1μm以下的粒子所構成的二次粒子適宜地分散。
另一方面,於本發明的裝置中,只要為具有以適宜的設計條件施工的凹凸的圓筒容器與轉子25之構造,即可充分增大剪切力。於本發明的裝置中,漿體伴隨轉子25的旋轉而進入圓筒容器內周面的凹部之後,藉由反復進入轉子外周的凹部,可大幅提升漿體的亂流密度,增加漿體的剪切力。其結果,可增加使漿體中集合的粒子群(二次粒子)分散的效果。
在此,對本發明的裝置中的凹凸的形狀及尺寸進行說明。圖7為轉子25的俯視圖,圖8為轉子25的前視圖,圖9為圓筒體22的俯視圖,圖10為圓筒體22的縱剖視圖。圖7~圖10為於圓周方向等間隔且交互地形成凹槽31及凸條32的例子。設置於圓筒體22及轉子25的凹凸,可作成前述的凹槽31、凸條32或圖12所示的凹坑33以外的任意之形狀。例如,圖11所示的 凹槽31或凸條32,係於軸向為相同寬度,且形成為相同間距,但也可使寬度不同,此外,也可改變間距而隨機形成,或者不形成於軸向而形成為相對於圓筒體22及轉子25的軸心的傾斜角傾斜10度以下。凹槽31或凸條32,例如也可形成為曲折、交錯或彎曲狀。此時,不需要拘泥於角度10度。圖11為表示轉子25與圓筒體22的咬合的圖。
此外,圖12中,作為凹凸的又一其他例子,表示不連續的凹部(凹坑33)。形成有凹部相互獨立的形態之圓形凹坑33,凹坑33以外成為凸部。凹坑33也可作成長圓、橢圓、多邊形或不定形的槽或由該等之組合所構成的槽。此外,也可將轉子25的表面設為凹凸槽,且以不連續的凹部構成圓筒體22的內面,也可相反。
根據本發明者等的研究,進一步證明以下的情況。形成於該圓筒容器及轉子25的表面的凹凸之形狀中,可知於該圓筒容器、轉子25的旋轉軸的方向旋轉方向設置凹凸,最能對剪切力提高產生貢獻。於圓筒容器及轉子25形成凹槽31及凸條32。於凹槽31的相對於轉子之軸心的傾斜角大的情況下,由於會阻礙漿體朝圖1的上方方向的流動,因此其角度為10度以內極為重要。此外,凹凸也可為由非連續且相互獨立地形成的凹部所構成之凹凸。惟,任一的情況下,凹凸係以以下諸點為特徵。
關於本發明的功效,發現了凹凸的深度對剪切力的影響大。於剪切流產生間隙28小的情況下,於凹 凸的凹部深度h為1mm以下,認為不具充分的功效。此外,於此間隙大的情況下,需要具有間隙間隔的0.5倍以上的深度。另一方面,即使過度增大凹部的深度,仍不會有特別的功效增加,並且,於凹部的深處存在有未受到剪切力的漿體的結果,會有分散效率降低的問題。因此,較佳為,凹部的深度可為8mm以下。
剪切流產生間隙28的寬度也是重要的設計要素。為了將剪切流產生間隙28設為0.6mm以下,對圓筒容器及轉子25的製作要求高精度,這還會存在不僅製作變得困難,且因剪切而產生的熱容易蓄積於狹窄的容積中的問題。另一方面,若較4mm寬,則於通常的黏度(300cP以下)的液體中,剪切力大幅降低。因此,若將剪切流產生間隙28設為0.6~4mm,則不會給圓筒容器及轉子25的製作帶來難度,且可提高分散性能。在此,剪切流產生間隙28的寬度,係指以圖11的t表示的間隔,該間隔t係設置於圓筒體22及轉子25的凹凸的凸部相切的圓周之間隔。
並且,本發明者等發現了無論該凹部的寬度是寬還是窄,漿體中粒子的分散效果皆小。最適寬度係剪切流產生間隙28的0.8~6倍。其中,假若凸部是由曲面所構成的情況,該凹凸的情況係指從凸部的頂點降至凹部深度的1/10之位置的最大寬度。該凹部的寬度為剪切流產生間隙28的寬度t的0.8~6倍,也為設計要件。於凹部的寬度t窄的情況下,漿體朝凹部的出入變得不活躍,從而存在有分散劣化的問題。另一方面,於 凹部的寬度t過大的情況下,雖有漿體的出入,但凹凸數減少,因此分散仍會降低。並且,若凹部的面積為所有周面的30%以上及80%以下,則漿體的朝圓筒容器內面與轉子5的外周的凹部之出入變得活躍,粒子分散變得良好。此外,於槽狀凹凸的情況下,若凸部分的寬度長,則變成與平滑形狀相同的性能,將漿體作成亂流狀態的效果降低,因此分散性能降低。因此,若將凸部分的寬度設為剪切流產生間隙28的寬度t的5倍以下,可解消如此的問題。
於本發明的裝置中,於圓筒體22與轉子25的間隙(剪切流產生間隙28)內,會對漿體作用強大的剪切力,因此影響而會使發熱增大。藉此,為了防止因發熱而引起的漿體中粒子的劣化或液體的沸騰,需要進行超強的冷卻。於本發明的裝置中,需要強力地冷卻該部分,只要以水等的液體冷卻圓筒體22的與轉子25對面的部分的100%以上即可。
特別是於剪切流產生間隙28的內部,漿體溫度接近於沸點的處理的情況下,於上蓋23部分的冷卻也變得重要。由於本發明的裝置內部為正壓,因此即使漿體溫度上升至沸點附近,仍不會沸騰,但於裝置外的位置,由於變為大氣壓或負壓,因此有可能沸騰。因此,此種的情況下,從剪切流產生間隙28到產品漿體出口之間的冷卻,變得相當重要。因此,以水等的液體冷卻上蓋23。較佳為冷卻上蓋23的50%以上。
圓筒體22的側面、特別是與轉子25對面的部分即剪切流產生間隙28的冷卻,係按以下的條件進行。冷卻部分的材質,係使用金屬、陶瓷、硬質樹脂,但熱傳導率(λ)高者較佳,熱傳導率為15W/mK以上者較佳。若熱傳導率為25W/mK以上,則更佳。若為金屬,可為銅或銅合金(λ:300~430W/mK)、鋁或鋁合金(λ:約110W/mK)、鐵(λ:約50W/mK)等。若為陶瓷,可為高密度氧化鋁(含放入添加劑)(λ:15~30W/mK)、氮化鋁(λ:100W/mK以上)、氮化矽(λ:15~30W/mK)、碳化矽(λ:約200W/mK)。其中,熱傳導率係指0℃或20℃的值。
此部分的材料的厚度也是重要的技術條件。為了滿足本發明的冷卻條件,材料部的傳熱阻力小相當重要。由於傳熱阻力與厚度成正比,且與熱傳導率成反比,因此於以(厚度:T m)/(熱傳導率:λ W/mK)表示傳熱阻力的情況,T/λ為0.0005K/W以下,相當重要。惟,於剪切力更大的剪切流產生間隙28為2mm以下或轉子25的周速大等的情況下,T/λ可為0.00035K/W以下。例如,於使用λ=17的氧化鋁的情況下,於前者的條件下T<8.5mm,後者的情況下T<5.95mm,即為設計條件。裝置的上蓋23的冷卻,也希望為相同的條件。於該構造體藉由複數層所構成的情況,將ΣTn/λn設為0.0005K/W或0.00035K/W以下。其中,λn係指從內側算起第n層的材料層之熱傳導率,Tn係指從內側算起第n層的材料層之厚度。
轉子25的軸向長度L與直徑D的比,對裝置設計而言也是重要的指標。於L/D大的情況下,熱產生區域即剪切流產生間隙28的縱向長度變長,相對於圓筒容器的側面,上面的面積比率降低。其結果,上蓋23的冷卻效果變小。
單位面積的冷卻能力,剪切流產生間隙28的部分相對較大。這是因為在剪切流產生間隙28的間隔的亂流密度高,因此液體側的熱傳導良好。另一方面,於上蓋23的部分中,由於漿體流速慢,因此液體側的熱傳導低。於本發明的裝置中,單位面積的冷卻能力,若將剪切流產生間隙28的部分設為1,則於上蓋23的部分為0.4左右。為了於剪切流產生間隙28中被加熱至接近沸點的溫度之漿體流出裝置外時不產生沸騰,需要於上蓋23進行5℃以上的冷卻,若可能則進行10℃的冷卻。再者,較沸點降低溫度的理由,係因為因在裝置外部配管內的漿流的關係,而會局部產生負壓,進而容易沸騰。
於本發明的裝置中,由於在接近沸點的運轉條件下,於剪切流產生間隙28冷卻有60~70℃的溫度上升量,因此為了5℃的降溫,於上蓋23中對於剪切流產生間隙28的部分也需要具有7~8%以上的冷卻能力。考慮到上蓋23的單位面積的冷卻能力的比率為0.4,上蓋23的冷卻間面積,可為圓筒體22的冷卻面積的約18%以上。因此,為了能於面積上滿足此條件,需要使L/D為1.2以下。此外,宜將L/D設為1以下,且將上蓋23 的面積對剪切流產生間隙28的面積的比率設為25%以下,則更佳。惟,若L/D過小,則每裝置尺寸的生產性降低,因此,以比會加速使裝置變大的限度、即L/D為0.2還大者較佳。
作為本發明的裝置的運轉方法,其內容如下。供給於容器內的原料漿體,係包含凝聚於溶媒中的粒子者,作為溶媒,可例示水、乙醇類溶液、甲苯類溶液、丙酮、乙二醇類等,但不限於此。較佳為,於朝分散機1供給原料漿體之前,例如添加粉體、分散劑等,且使用攪拌機、勻漿製造器等進行預備混合。能應用的漿體的黏度為10~40000mPa‧s的寬廣範圍者,特別是針對在先前裝置中所無法因應的500mPa‧s以上的高黏性漿體之處理,最適合。
本實施形態的分散機,以如下的條件進行運轉為宜。
轉子25的外周的周速設為10~80m/秒。提高在漿體中的粒子的剪切流產生間隙28內的剪切率,藉由剪切力將漿體中的二次粒子分解,作成獨立的一次粒子分散的狀態。於將轉子25的外周的周速設為v,且將剪切流產生間隙28的徑向的寬度設為t時,以S=v/t表示剪切率。於本發明的裝置中,適宜更狹窄的範圍。本發明的裝置中適當的範圍為8000~70000(1/s)。於剪切率S為8000以下,無法進行平均粒徑1μm以下的分散。另一方面,若為高剪切率,則存在有漿體溫度上升的問題。於本發明的裝置之冷卻能力中,於剪切率S為70000(1/s) 以上,由於熱產生變得過大,變得冷卻能力不足,因此可將最大值設定為該值。
本發明的裝置,除了漿體中的粒子分散外,還可活用於流體混合及乳化處理。於先前裝置中,即使為40000mPa‧s以上的高黏性流體,也可處理,因此可進行2種類以上連續處理困難的高黏性流體的混合。將2種類以上的流體預先混合,且以漿體泵供給於本發明的裝置。以剪切率S為8000(1/s)以上處理此混合流體,可形成均勻性極高的混合物。例如,可使用於食品的糊狀物的混合、高黏性電極材糊狀物等的混合。此外,將水及油類(植物性、動物性、礦物性)與界面活性劑混合,且以剪切率S為15000(1/s)以上進行處理,可製造由10μm程度以下的油乳化液所構成的乳化物。此外,於本裝置中,作為最大值,若剪切率為70000(1/s),可形成1μm程度的粒子,因此對於普通的處理,以該剪切率以下進行處理,可使動力損失保持在最低限度而經濟實惠。以下,例示本實施形態的實施例。
以下,表示本實施例中使用的分散機的裝置規格及運轉狀況。分散機為圖7所示的構造者,主要規格如以下的表2所示,轉子5的直徑(D)為93mm,長度(L)為90mm及25mm。剪切流產生間隙28的寬度t為0.8~4mm,於實施例中以1mm及2mm進行處理。該分散機係能以轉子25的周速為10~50m/秒的條件進行運轉的裝置。並且對裝置的圓筒容器中的圓筒體22、上蓋 23、及下蓋24進行冷卻。冷卻部的構造表示於表2。表4顯示使用本裝置對記載於表3的原料漿體進行分散處理的結果。再者,於啟動分散機之後,按每一既定時間從分散機的排出口採取試樣。對於處理後的漿體中的粒徑的測定,係使用堀場製作所股份有限公司製造的雷射繞射‧散射式粒度測定器LA-950。
作為用以評價分散之指標,使用平均粒徑(D50:表示50%質量的粒子是此值以下的粒徑之數值)及1μm以上的粒子比率。於比較例4中,無論是圓筒體22還是轉子25,皆為在無凹凸的裝置中的處理例。其他的處理條件,雖然在本發明的範圍內,但於如此無凹凸的情況,平均粒徑只能降低至2.96μm,1μm以上的粒子比率也為72%而處於高位。比較例5係僅於轉子25附加凹凸的處理例。如此,就僅於一者設置凹凸而言,平均粒徑為2.18μm且1μm以上粒子比率也為69%,其為不充分的結果。
另一方面,於在轉子25及圓筒體22兩者附加凹凸的處理例、即實施例11~實施例15中,平均粒徑為0.15~0.22μm,分散被強化,且1μm以上的粒子比率也為21~41%而成績良好。此外,漿體溫度上升也被抑制在30℃以內,於漿體冷卻方面也為良好的成績。此外,冷卻面積比率高的裝置22,其漿體溫度上升相對較小。
此外,進行了確認在高黏性漿體進行處理可能性的實驗。使用以下的表5的實機1~3,處理羧甲基纖維素。於將轉子25的周速設為20m/秒進行處理後,如表5所示,雖然隨著漿體黏度上升,馬達動力增加,但可對37000mPa‧s以下的漿體進行混合處理。如此,若使用本發明的裝置,即使為高黏性的流體,仍可進行分散或混合處理。
於表2所示的實機1~3,使用分散處理的實施例14之凹凸構造者,進行了水與油的乳化處理。作為油,係使用椰子油,且以水:油比率為6:2,處理添加有界面活性劑的原料液體。將裝置21的剪切流產生間隔28的寬度設為1mm,且轉子25的周速設為10~30m/秒進行處理的結果,如表6所示,轉子25的周速為10m/秒,則油乳化液的平均粒徑為16μm,15m/秒則為8.2μm,20m/秒則為5.3μm,30m/秒則為3.9μm,油皆懸浮。將該等乳化液放置2日後的結果,於15m/秒以上的處理中,未引起油分離。如此,藉由利用裝置21,以15m/秒以上的周速進行處理,可連續地實施乳化。再者,15m/秒的周速下之剪切率為15000(1/s)。
本發明的分散機及漿體中粒子的分散方法,適用於包含微細粒子的漿體。漿體係碳粉、陶瓷粉、有 機物粉等,例如,適合於陶瓷顏料、印墨、塗料、介電體原料、磁性體原料、醫藥品用材料、食品用材料、微細金屬粉原料的粒子分散及粉碎。
Claims (16)
- 一種分散機,其特徵在於:於圓筒容器的內部配置有被固定在與上述圓筒容器同軸設置的旋轉軸的轉子,且使形成於上述圓筒容器與上述轉子之間的間隙產生剪切力,以處理漿體,於上述圓筒容器內配置有與上述圓筒容器配置在同軸心上而旋轉的具備漿體排出用中空部的中空軸、與上述中空軸同軸的軸、及固定於上述軸的上述轉子,且形成有漿體路徑,係上述轉子包含多個呈放射狀或偏心地以適當間隔配置於圓周方向的間隔板且於上述圓筒容器內進行旋轉,並且使從設置於上述圓筒容器的漿體供給口供給的漿體經由間隔板之間而自上述中空軸的中空部朝裝置外排出,且上述間隔板的外周端相接的圓的直徑D與上述轉子之軸向長度L的比L/D為0.3~3.2,以上述間隔板攪拌珠粒。
- 如請求項1之分散機,其中上述漿體供給口,係由第1漿體供給口、及第2漿體供給口的兩漿體供給口所構成,上述第1漿體供給口係設置於上述圓筒容器的一側,上述第2漿體供給口係設置於上述圓筒容器的另一側。
- 如請求項1或2之分散機,其中上述間隔板的內周端位處之圓周的直徑,係上述間隔板的上述外周端位處之圓周之直徑的50~85%。
- 如請求項1或2之分散機,其中上述間隔板在上述內周端與上述外周端的間距間隔的比率(G2/G1)為1.2<G2/G1<3。
- 如請求項1或2之分散機,其中上述間隔板的相對於從上述圓筒容器的中心朝上述圓筒容器之側面的直徑方向的線的角度為朝旋轉方向偏5~30度。
- 一種分散機,係於圓筒容器的內部配置有被固定在與上述圓筒容器同軸設置的旋轉軸的轉子,且使用產生在由上述圓筒容器及在上述圓筒容器中移動的上述轉子形成的間隙之間隙的剪切力,以處理漿體的無珠粒的濕式粉碎器,且在由上述圓筒體、上蓋及下蓋所構成的上述圓筒容器內設置有上述轉子,上述轉子係在上述圓筒容器內與上述圓筒容器形成同軸且將外周面形成為凹凸,形成於上述圓筒體的內面與上述轉子的外周面之間的剪切流產生間隙係形成漿體通路,且由設置於上述圓筒容器的一端側的原料漿體入口及設置於上述圓筒容器的另一端側的產品漿體出口、以及旋轉驅動上述圓筒容器與上述轉子的任一者的驅動裝置所構成,上述分散機之特徵在於:利用液體冷卻上述圓筒體,並於上述圓筒體的內周面及上述轉子的外周面形成凹凸,且將上述凹凸的凹部的深度設為較1mm或剪切流產生間隙的0.5倍中的任一者較小者深,且將上述剪切流產生間隙設為0.6~4mm。
- 如請求項6之分散機,其中於上述圓筒體及上述轉子構成有凹凸槽,上述凹凸槽係為上述轉子相對於軸心的傾斜角為10度以內的直線的凹凸槽、或彎曲的凹凸槽,並且,上述凹部的寬度,係剪切流產生間隙的0.8~6倍。
- 如請求項6之分散機,其中形成於上述圓筒容器及上述轉子的凹凸,係由非連續且相互獨立形成的凹部所構成,且上述凹部的寬度,係上述剪切流產生間隙的0.8~6倍。
- 如請求項6之分散機,其中於上述圓筒體及上述轉子中的一者構成有凹凸槽,上述凹凸槽係為上述轉子相對於軸心的傾斜角為10度以內的直線的凹凸槽、或彎曲的凹凸槽,且形成於上述圓筒容器及上述轉子中的另一者的凹凸,係由非連續且相互獨立形成的凹部所構成,並且,上述凹部的寬度,係上述剪切流產生間隙的0.8~6倍。
- 如請求項6至9中任一項之分散機,其中於設置在上述圓筒體的冷卻水路與上述圓筒體的內面之間的構造物中,熱傳導率(λ)與厚度(T)的關係為T/λ<0.0005K/W。
- 如請求項10之分散機,其中上述圓筒體的所有內面面積中之藉由液體冷卻的面積,係上述圓筒體的內面與上述轉子面對的部分的面積的100%以上,且藉由上述液體冷卻上述上蓋。
- 如請求項11之分散機,其中上述轉子的直徑D與上述轉子的高度L的關係為L/D<1.2。
- 一種漿體中粒子分散方法,其特徵在於:利用如請求項1至4中任一項之分散機,且以在構成上述轉子的上述間隔板的上述外周端的離心加速 度為8000m/s2以下的條件,對含有微細粒子的漿體進行處理。
- 一種漿體中粒子分散方法,其特徵在於:使用如請求項1至4中任一項之分散機,且於構成上述轉子的上述間隔板的上述外周端與上述圓筒體的間隔中,以根據在上述間隔板的上述外周端的周速及上述間隔而計算的剪切率為1000~8000(1/s)的條件,對含有微細粒子的漿體進行處理。
- 一種漿體中粒子分散方法,係使用如請求項6至9中任一項之分散機,且在由上述轉子的外周速度(v)、及上述圓筒體與上述轉子之上述間隔即上述剪切流產生間隙的徑向的寬度(t)以數學式s=v/t表示之剪切率s為8000~70000(1/s)的範圍內,對將平均粒徑為1μm以下的粒子分散而形成的漿體進行處理。
- 一種乳化製造方法,其特徵在於:使用如請求項6至12中任一項之分散機,以剪切率為15000(1/s)以上的條件,對相互不溶解的2種類以上的液體進行處理。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106126090A TWI755413B (zh) | 2017-08-02 | 2017-08-02 | 分散機與漿體中粒子的分散方法以及乳化製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106126090A TWI755413B (zh) | 2017-08-02 | 2017-08-02 | 分散機與漿體中粒子的分散方法以及乳化製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201910002A TW201910002A (zh) | 2019-03-16 |
TWI755413B true TWI755413B (zh) | 2022-02-21 |
Family
ID=66590354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106126090A TWI755413B (zh) | 2017-08-02 | 2017-08-02 | 分散機與漿體中粒子的分散方法以及乳化製造方法 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI755413B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116966774B (zh) * | 2023-08-22 | 2024-07-30 | 深圳市尚水智能股份有限公司 | 分散机构及制浆设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1571691A (zh) * | 2001-10-17 | 2005-01-26 | 纳幕尔杜邦公司 | 产生微粒用的转子-定子设备和方法 |
TWM296079U (en) * | 2006-03-01 | 2006-08-21 | Taiyih Mixer Co Ltd | Desk type emulsifying machine |
CN101230983A (zh) * | 2007-01-26 | 2008-07-30 | 价值供给及发展株式会社 | 乳胶制造装置 |
TWI355290B (en) * | 2005-03-03 | 2012-01-01 | Nipppn Coke & Engineering Co Ltd | Media-agitating wet pulverizer |
TWI561295B (zh) * | 2010-09-29 | 2016-12-11 | Sintokogio Ltd | |
CN206315694U (zh) * | 2016-12-16 | 2017-07-11 | 丹阳颐和食品有限公司 | 一种耐磨乳化均质头 |
-
2017
- 2017-08-02 TW TW106126090A patent/TWI755413B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1571691A (zh) * | 2001-10-17 | 2005-01-26 | 纳幕尔杜邦公司 | 产生微粒用的转子-定子设备和方法 |
TWI355290B (en) * | 2005-03-03 | 2012-01-01 | Nipppn Coke & Engineering Co Ltd | Media-agitating wet pulverizer |
TWM296079U (en) * | 2006-03-01 | 2006-08-21 | Taiyih Mixer Co Ltd | Desk type emulsifying machine |
CN101230983A (zh) * | 2007-01-26 | 2008-07-30 | 价值供给及发展株式会社 | 乳胶制造装置 |
TWI561295B (zh) * | 2010-09-29 | 2016-12-11 | Sintokogio Ltd | |
CN206315694U (zh) * | 2016-12-16 | 2017-07-11 | 丹阳颐和食品有限公司 | 一种耐磨乳化均质头 |
Also Published As
Publication number | Publication date |
---|---|
TW201910002A (zh) | 2019-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017131807A (ja) | 分散機、分散処理方法、及びエマルジョン製造方法 | |
JP6423988B2 (ja) | 攪拌ミル及びスラリー中粒子の分散方法 | |
JP5451006B2 (ja) | 媒体攪拌型粉体処理装置 | |
KR101310130B1 (ko) | 원료의 미립자 가공을 위한 분쇄 및 분산장치 | |
KR102455946B1 (ko) | 분산기와, 슬러리 중 입자의 분산 방법 및 에멀젼 제조 방법 | |
EP2873453A1 (en) | Stirrer | |
JP3222139U (ja) | ビーズミル | |
TWI755413B (zh) | 分散機與漿體中粒子的分散方法以及乳化製造方法 | |
JP4886993B2 (ja) | メディア攪拌型湿式分散機 | |
JP2013039508A (ja) | メディア撹拌型粉砕機 | |
JP2008055288A (ja) | メディア攪拌型湿式分散機及び微粒子の分散方法 | |
JP3086248B2 (ja) | 分散装置 | |
JP3203625U (ja) | 攪拌ミル | |
JP4073815B2 (ja) | 分散装置及び分散方法 | |
KR20060096276A (ko) | 미디어 교반형 습식 분산기 | |
JP7429039B2 (ja) | 湿式ビーズミル | |
CN217663673U (zh) | 一种分散装置 | |
JP3203579U (ja) | 分散機 | |
JP3209743U (ja) | 攪拌ミル | |
CN114950650A (zh) | 一种分散装置 | |
WO2017217093A1 (ja) | メディア循環型粉砕機 | |
KR20190135191A (ko) | 분쇄 분산기 | |
JP4373179B2 (ja) | 粉砕機 | |
JP2005169340A (ja) | 横型湿式媒体撹拌分散粉砕装置 | |
JPH11319607A (ja) | 粒体の微細化処理装置 |