TWI753756B - Transmission cable and method of manufacturing the same - Google Patents

Transmission cable and method of manufacturing the same Download PDF

Info

Publication number
TWI753756B
TWI753756B TW110102508A TW110102508A TWI753756B TW I753756 B TWI753756 B TW I753756B TW 110102508 A TW110102508 A TW 110102508A TW 110102508 A TW110102508 A TW 110102508A TW I753756 B TWI753756 B TW I753756B
Authority
TW
Taiwan
Prior art keywords
layer
wrapping
conductor
transmission cable
composite layer
Prior art date
Application number
TW110102508A
Other languages
Chinese (zh)
Other versions
TW202141541A (en
Inventor
政 李
Original Assignee
政 李
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 政 李 filed Critical 政 李
Publication of TW202141541A publication Critical patent/TW202141541A/en
Application granted granted Critical
Publication of TWI753756B publication Critical patent/TWI753756B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/1875Multi-layer sheaths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Abstract

A transmission cable includes a conductor and a composite layer. The composite layer is composed of an inner surface of an outer wrap layer adhered to an outer surface of an inner wrap layer by a glue material; wherein the composite layer wraps the conductor, and an inner surface of the inner wrap layer is in contact with an outer surface of the conductor; wherein the inner wrap layer is made of polytetrafluoroethylene with a foaming degree by 65~77% and the outer wrap layer is made of polyimide; and wherein during the wrapping process, the composite layer has a wire drawing rate of 0.1~0.5m/min and a overlap rate of 32%~37%.

Description

傳輸電纜及其製造方法 Transmission cable and method of making the same

本發明是關於一種電纜結構及方法,尤其是關於用於高速/高頻的傳輸電纜及其製造方法。 The present invention relates to a cable structure and method, and more particularly, to a high-speed/high-frequency transmission cable and a method of manufacturing the same.

在現今電纜的製作過程中,導體上會直接壓出一絕緣層來達到保護並絕緣的效果,如圖1所示,傳輸電纜1中的導體10上覆蓋了絕緣層11。然而,絕緣層的介電常數對於高頻/高速傳輸的效能有很大的影響,因此通常會使用發泡材料來降低介電常數,但發泡材料在製程中不易達到分布及良率的標準,且使用發泡材料所製作的外徑也相對較大,限制了機構上尺寸的選擇。 In the production process of current cables, an insulating layer is directly extruded on the conductor to achieve the effect of protection and insulation. As shown in FIG. 1 , the conductor 10 in the transmission cable 1 is covered with an insulating layer 11 . However, the dielectric constant of the insulating layer has a great influence on the performance of high-frequency/high-speed transmission, so foamed materials are usually used to reduce the dielectric constant, but the foamed materials are not easy to meet the standard of distribution and yield in the process , and the outer diameter of the foam material is relatively large, which limits the choice of the size of the mechanism.

因此,使用繞包製程改善上述問題,繞包製程所製作的電纜在高頻/高速下的傳輸耗損比發泡製程的電纜低,但是繞包電纜的抗彎曲、抗張強度及伸長率等機械性質不足,容易在理線及製程過程中被彎曲而導致線心斷裂,使得良率降低。 Therefore, using the wrapping process to improve the above problems, the transmission loss of the cable produced by the wrapping process at high frequency/high speed is lower than that of the foaming process cable, but the mechanical properties of the wrapping cable such as bending resistance, tensile strength and elongation rate are lower. Insufficient properties, it is easy to be bent during the wire management and manufacturing process, resulting in breakage of the wire core, which reduces the yield.

因此,需要提出一種能提升抗彎曲、抗張強度及伸長率的電纜結構。 Therefore, there is a need to propose a cable structure that can improve bending resistance, tensile strength and elongation.

本發明提供一種傳輸電纜,其包括一導體以及一複合層。該複合層由一外繞包層的一內表面通過一膠合材料貼合於一內繞包層的一外表面所形成;其中,該複合層繞包於該導體並且該內繞包層的一內表面接觸該導體的一外表面;其中,該內繞包層由發泡度65%~77%的聚四氟乙烯所組成,該外繞包 層由聚醯亞胺所組成;以及其中,該複合層在繞包過程中是使用0.1~0.5m/min的抽線速率以及32%到37%之間的包帶重疊率製作。 The present invention provides a transmission cable, which includes a conductor and a composite layer. The composite layer is formed by attaching an inner surface of an outer cladding layer to an outer surface of an inner cladding layer through a glue material; wherein the composite layer is wrapped around the conductor and an inner surface of the inner cladding layer is attached. The inner surface contacts an outer surface of the conductor; wherein, the inner wrapping layer is composed of polytetrafluoroethylene with a foaming degree of 65% to 77%, and the outer wrapping layer is The layer is composed of polyimide; and wherein, the composite layer is produced using a wire drawing speed of 0.1-0.5 m/min and a wrapping overlap rate of between 32% and 37% during the wrapping process.

本發明提供一種傳輸電纜的製造方法,包括下列步驟:一外繞包層的一內表面通過一膠合材料貼合於一內繞包層的一外表面以形成一複合層;以及該複合層繞包於一導體以形成一傳輸電纜,並且該內繞包層的一內表面接觸該導體的一外表面;其中,該內繞包層由發泡度65%~77%的聚四氟乙烯所組成,該外繞包層由聚醯亞胺所組成;以及其中,該複合層在繞包過程中是使用0.1~0.5m/min的抽線速率以及32%到37%之間的包帶重疊率製作。 The invention provides a manufacturing method of a transmission cable, comprising the following steps: an inner surface of an outer wrapping layer is attached to an outer surface of an inner wrapping layer by a glue material to form a composite layer; and the composite layer is wrapped around It is wrapped around a conductor to form a transmission cable, and an inner surface of the inner wrapping layer contacts an outer surface of the conductor; wherein, the inner wrapping layer is made of polytetrafluoroethylene with a foaming degree of 65% to 77%. composition, the outer wrapping layer is composed of polyimide; and wherein, the composite layer uses a wire drawing speed of 0.1~0.5m/min and a wrapping overlap between 32% and 37% during the wrapping process rate production.

所屬技術領域中具有通常知識者將理解,可以透過本發明所公開實現的效果不限於上文具體描述的內容,並且從以上結合附圖的詳細描述中將更清楚地理解本發明的優點。 Those skilled in the art will understand that the effects that can be achieved through the disclosure of the present invention are not limited to the above specific description, and the advantages of the present invention will be more clearly understood from the above detailed description in conjunction with the accompanying drawings.

1,2,2’:傳輸電纜 1,2,2': Transmission cable

10:導體 10: Conductor

11:絕緣層 11: Insulation layer

12:外繞包層 12: Outer cladding

121:第一繞包層 121: The first wrapping layer

122:第二繞包層 122: The second wrapping layer

123:第三繞包層 123: The third wrapping layer

13:內繞包層 13: Inner cladding

14:複合層 14: Composite layer

15:膠合材料 15: Glue

20:傳輸電纜模組 20: Transmission cable module

圖1是使用現有繞包技術所製作的傳輸電纜示例。 Figure 1 is an example of a transmission cable made using existing wrapping techniques.

圖2是根據本發明一實施例的傳輸電纜示例。 Figure 2 is an example of a transmission cable according to an embodiment of the present invention.

圖3A是根據本發明另一實施例的傳輸電纜示例。 3A is an example of a transmission cable according to another embodiment of the present invention.

圖3B是圖3A的傳輸電纜中的部分結構示例。 FIG. 3B is a partial structural example of the transmission cable of FIG. 3A .

圖4是以圖3A實施例為基礎的傳輸電纜示例。 Figure 4 is an example of a transmission cable based on the embodiment of Figure 3A.

圖5是根據本發明一實施例的時域反射測量曲線圖。 FIG. 5 is a time domain reflectometry graph according to an embodiment of the present invention.

圖6是根據本發明一實施例的饋入損失測量曲線圖。 FIG. 6 is a graph of a feed loss measurement according to an embodiment of the present invention.

請參照圖2、圖3A與3B,圖2是根據本發明一實施例的傳輸電纜示例。該傳輸電纜2由內而外依序包括:一導體10、一內繞包層13、及一外繞包層12。圖3A是根據本發明另一實施例的傳輸電纜2’的示例,圖3B是圖3A的傳輸電纜中的部分結構示例。如圖3B所示,本實施例不同於圖2之實施例在於,該外繞包層12的一內表面通過一膠合材料15貼合於該內繞包層13的一外表面以形成 一複合層14,這樣一來可只通過一次該複合層14的繞包程序即可將該外繞包層12與該內繞包層13繞包於該導體10並且該內繞包層13的一內表面接觸該導體10的一外表面,達到雙層保護效果。需要注意的是,在此實施例中,該外繞包層12與該內繞包層13個別皆由至少兩層高分子聚合物通過該膠合材料15所組成。 Please refer to FIGS. 2 , 3A and 3B. FIG. 2 is an example of a transmission cable according to an embodiment of the present invention. The transmission cable 2 includes a conductor 10 , an inner cladding 13 , and an outer cladding 12 in sequence from the inside out. Fig. 3A is an example of a transmission cable 2' according to another embodiment of the present invention, and Fig. 3B is a partial structural example of the transmission cable of Fig. 3A. As shown in FIG. 3B , the present embodiment is different from the embodiment of FIG. 2 in that an inner surface of the outer cladding layer 12 is attached to an outer surface of the inner cladding layer 13 through an adhesive material 15 to form A composite layer 14, so that the outer wrapping layer 12 and the inner wrapping layer 13 can be wrapped around the conductor 10 and the inner wrapping layer 13 can be wrapped by only one wrapping procedure of the composite layer 14. An inner surface contacts an outer surface of the conductor 10 to achieve a double-layer protection effect. It should be noted that, in this embodiment, the outer cladding layer 12 and the inner cladding layer 13 are respectively composed of at least two layers of high molecular polymers through the adhesive material 15 .

請參照圖4,圖4是以圖3A實施例為基礎的傳輸電纜示例。如圖4所示,將兩個圖3A結構的傳輸電纜2’與一導體10使用一第一繞包層121、一第二繞包層122與一第三繞包層123進行包覆形成一傳輸電纜模組20。第一繞包層121主要是由上述外繞包層12的材料組成並通過膠合材料15覆蓋於該複合層14的外表面。相似地,第二繞包層122是由上述外繞包層12的材料組成並通過膠合材料15覆蓋於兩個傳輸電纜2’的該外繞包層121的外表面的一部分與第一導體10的外表面的一部分,且第三繞包層123是由上述外繞包層12的材料組成並通過膠合材料15覆蓋於該第二繞包層122的外表面。需要注意的是,較佳地,該第一繞包層121如該外繞包層12與該內繞包層13,也是由至少兩層高分子聚合物通過該膠合材料15所組成。另外,在本發明較佳實施例中,該複合層14中包含的該外繞包層12具有厚度為0.012~0.024mm,由聚醯亞胺(即PI或Kapton)材質製成;該複合層14中也包含厚度0.01~0.02mm的膠合材料15;而該內繞包層13厚度為0.15mm,由發泡度65%~77%的聚四氟乙烯製成(發泡前介電常數為2.1,發泡後為1.25~1.39);該複合層14在繞包過程中是使用0.1~0.5m/min的抽線速率以及32%到37%之間的包帶重疊率製作。上述材質、厚度、抽線速率與包帶重疊率只是較佳的舉例,並非用於限制本發明。 Please refer to FIG. 4, which is an example of a transmission cable based on the embodiment of FIG. 3A. As shown in FIG. 4 , two transmission cables 2 ′ of the structure of FIG. 3A and a conductor 10 are coated with a first cladding layer 121 , a second cladding layer 122 and a third cladding layer 123 to form a Transmission cable module 20 . The first cladding layer 121 is mainly composed of the above-mentioned material of the outer cladding layer 12 and is covered on the outer surface of the composite layer 14 by the adhesive material 15 . Similarly, the second wrapping layer 122 is composed of the material of the above-mentioned outer wrapping layer 12 and covers a part of the outer surface of the outer wrapping layer 121 and the first conductor 10 of the two transmission cables 2 ′ through the glue material 15 . and the third wrapping layer 123 is composed of the material of the above-mentioned outer wrapping layer 12 and covers the outer surface of the second wrapping layer 122 through the adhesive material 15 . It should be noted that, preferably, the first wrapping layer 121 , such as the outer wrapping layer 12 and the inner wrapping layer 13 , is also composed of at least two layers of high molecular polymers through the adhesive material 15 . In addition, in a preferred embodiment of the present invention, the outer cladding layer 12 included in the composite layer 14 has a thickness of 0.012-0.024 mm, and is made of polyimide (ie, PI or Kapton) material; the composite layer 14 also includes a glue material 15 with a thickness of 0.01~0.02mm; and the inner wrapping layer 13 has a thickness of 0.15mm and is made of polytetrafluoroethylene with a foaming degree of 65%~77% (the dielectric constant before foaming is 2.1, 1.25~1.39 after foaming); the composite layer 14 is produced using a wire drawing speed of 0.1~0.5m/min and a wrapping overlap rate between 32% and 37% during the wrapping process. The above-mentioned material, thickness, wire drawing rate and wrapping rate are only preferred examples and are not intended to limit the present invention.

如此一來,通過本發明的複合層,像是前述的PTFE材質的複合層,相較於使用雙PTFE層的先前技術,能達到較高的真圓度、較高的阻抗與較低的饋入損失。在此相比較的先前技術是使用雙PTFE層,由發泡度65%的聚四氟乙烯製成,但是在繞包過程中是使用0.3m/min的抽線速率以及50%的包帶重疊率製作。較佳地,本發明實施例可達到高於93%的真圓度,而先前技術只能達到80~85%的真圓度,同時達到105歐姆的差模阻抗,高於先前技術的99歐姆,以及具有低於先前技術的饋入損失(Insertion loss,I/L),較佳地,本發明實施例能達到的饋入損失值是-2.97dB,先前技術是-3.4dB。 In this way, through the composite layer of the present invention, such as the aforementioned composite layer of PTFE material, compared with the prior art using double PTFE layers, higher roundness, higher impedance and lower feed rate can be achieved. input loss. The prior art compared here uses a double PTFE layer, made of 65% expanded polytetrafluoroethylene, but uses a wire draw rate of 0.3 m/min and a 50% wrapping overlap during the wrapping process rate production. Preferably, the embodiment of the present invention can achieve a roundness higher than 93%, while the prior art can only achieve a roundness of 80-85%, and at the same time achieve a differential mode impedance of 105 ohms, which is higher than the 99 ohms of the prior art. , and the insertion loss (I/L) is lower than that of the prior art. Preferably, the input loss value that can be achieved by the embodiment of the present invention is -2.97dB, and the prior art is -3.4dB.

請參照圖5,圖5是根據本發明一實施例的時域反射測量曲線圖。如圖5所示,通過使用上述較佳數值製作的傳輸電纜2’,進行時域反射(Time domain reflectometry,TDR)所得到的數值曲線,其中包含m1(0.8045,104.7784)與m2(1.5914,105.9300)兩點,能落在100~110ohm的差異阻抗區間內,而先前技術只能在100ohm以下。 Please refer to FIG. 5 , which is a time-domain reflectometry curve diagram according to an embodiment of the present invention. As shown in Figure 5, the numerical curve obtained by time domain reflectometry (TDR) of the transmission cable 2' made with the above-mentioned preferred values includes m1 (0.8045, 104.7784) and m2 (1.5914, 105.9300 ) two points, can fall within the differential impedance range of 100~110ohm, while the previous technology can only be below 100ohm.

請參照圖6,圖6是根據本發明一實施例的饋入損失(Insertion loss,IL)測量曲線圖。如圖6所示,通過使用上述較佳數值製作的傳輸電纜2’,其數值為虛線曲線,相較於實線的饋入損失臨界值曲線,本發明實施例的部分曲線數值能達到臨界值以下,而先前技術則都超過臨界值。 Please refer to FIG. 6 . FIG. 6 is a graph illustrating an insertion loss (IL) measurement curve according to an embodiment of the present invention. As shown in FIG. 6 , the values of the transmission cable 2 ′ produced by using the above-mentioned preferred values are the dotted curve. Compared with the solid-line feed-in loss critical value curve, some of the curve values in the embodiment of the present invention can reach the critical value. below, and the prior art all exceed the critical value.

對於所屬技術領域中具有通常知識者顯而易見的是,在不脫離本發明的精神的情況下,本發明可以以其他特定形式實施。因此,以上描述不應在所有方面都被解釋為限制意義,而應被解釋為說明性的。 It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit of the invention. Therefore, the above description should not be construed in a limiting sense, but rather in an illustrative sense in all respects.

本發明的範圍應當透過對所附申請專利範圍的合理解釋來確定,並且在本發明的等同物的範圍內的所有改變都包含在本發明的範圍內。 The scope of the invention should be determined by reasonable interpretation of the appended claims and all changes that come within the scope of the equivalents of the invention are included in the scope of the invention.

2’:傳輸電纜 2': Transmission cable

10:導體 10: Conductor

14:複合層 14: Composite layer

Claims (2)

一種傳輸電纜,其包括:一導體;以及一複合層,由一外繞包層的一內表面通過一膠合材料貼合於一內繞包層的一外表面所形成;其中,該複合層繞包於該導體並且該內繞包層的一內表面接觸該導體的一外表面;其中,該內繞包層由發泡度65%~77%的聚四氟乙烯所組成,該外繞包層由聚醯亞胺所組成;以及其中,該複合層在繞包過程中是使用0.1~0.5m/min的抽線速率以及32%到37%之間的包帶重疊率製作。 A transmission cable, comprising: a conductor; and a composite layer formed by attaching an inner surface of an outer cladding layer to an outer surface of an inner cladding layer through a glue material; wherein, the composite layer is wound around Wrapped on the conductor and an inner surface of the inner wrapping layer contacts an outer surface of the conductor; wherein, the inner wrapping layer is composed of polytetrafluoroethylene with a foaming degree of 65% to 77%, and the outer wrapping layer The layer is composed of polyimide; and wherein, the composite layer is produced using a wire drawing speed of 0.1-0.5 m/min and a wrapping overlap rate of between 32% and 37% during the wrapping process. 一種傳輸電纜的製造方法,包括下列步驟:一外繞包層的一內表面通過一膠合材料貼合於一內繞包層的一外表面以形成一複合層;以及該複合層繞包於一導體以形成一傳輸電纜,並且該內繞包層的一內表面接觸該導體的一外表面;其中,該內繞包層由發泡度65%~77%的聚四氟乙烯所組成,該外繞包層由聚醯亞胺所組成;以及其中,該複合層在繞包過程中是使用0.1~0.5m/min的抽線速率以及32%到37%之間的包帶重疊率製作。 A manufacturing method of a transmission cable, comprising the following steps: an inner surface of an outer wrapping layer is attached to an outer surface of an inner wrapping layer by a glue material to form a composite layer; and the composite layer is wrapped around a A conductor is formed to form a transmission cable, and an inner surface of the inner wrapping layer contacts an outer surface of the conductor; wherein, the inner wrapping layer is composed of polytetrafluoroethylene with a foaming degree of 65% to 77%. The outer wrapping layer is composed of polyimide; and wherein, the composite layer is produced using a wire drawing speed of 0.1-0.5 m/min and a wrapping tape overlap rate between 32% and 37% during the wrapping process.
TW110102508A 2020-04-20 2021-01-22 Transmission cable and method of manufacturing the same TWI753756B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063012429P 2020-04-20 2020-04-20
US63/012,429 2020-04-20

Publications (2)

Publication Number Publication Date
TW202141541A TW202141541A (en) 2021-11-01
TWI753756B true TWI753756B (en) 2022-01-21

Family

ID=78124247

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110102508A TWI753756B (en) 2020-04-20 2021-01-22 Transmission cable and method of manufacturing the same

Country Status (2)

Country Link
CN (1) CN113539562B (en)
TW (1) TWI753756B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200501175A (en) * 2003-05-08 2005-01-01 Commscope Inc Cable with foamed plastic insulation comprising an ultra-high die swell ratio polymeric material
CN1610012A (en) * 2003-10-24 2005-04-27 蒂科电子公司 Cable having a filler
CN202142315U (en) * 2011-07-30 2012-02-08 唐山市海丰线缆有限公司 Low-capacitance shielding control electric cable
US20130161065A1 (en) * 2011-12-22 2013-06-27 Hitachi Cable, Ltd. Insulated wire and coil
CN203931546U (en) * 2013-04-15 2014-11-05 日立金属株式会社 Differential signal transmission cable and multipair differential signal transmission cable
CN209374152U (en) * 2019-04-08 2019-09-10 浙江元通线缆制造有限公司 The anti-twist coaxial cable of soft type
TW202004785A (en) * 2018-05-25 2020-01-16 美商山姆科技公司 Electrical cable with dielectric foam

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964945A (en) * 1972-04-07 1976-06-22 E. I. Du Pont De Nemours And Company Method of making an electrical cable
US4322574A (en) * 1979-09-17 1982-03-30 The Dow Chemical Co. Cable shielding tape and cable
GB2492087B (en) * 2011-06-20 2018-09-19 Tyco Electronics Ltd Uk High temperature insulating tape and wire or cable sheathed therewith

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200501175A (en) * 2003-05-08 2005-01-01 Commscope Inc Cable with foamed plastic insulation comprising an ultra-high die swell ratio polymeric material
CN1610012A (en) * 2003-10-24 2005-04-27 蒂科电子公司 Cable having a filler
CN202142315U (en) * 2011-07-30 2012-02-08 唐山市海丰线缆有限公司 Low-capacitance shielding control electric cable
US20130161065A1 (en) * 2011-12-22 2013-06-27 Hitachi Cable, Ltd. Insulated wire and coil
CN203931546U (en) * 2013-04-15 2014-11-05 日立金属株式会社 Differential signal transmission cable and multipair differential signal transmission cable
TW202004785A (en) * 2018-05-25 2020-01-16 美商山姆科技公司 Electrical cable with dielectric foam
CN209374152U (en) * 2019-04-08 2019-09-10 浙江元通线缆制造有限公司 The anti-twist coaxial cable of soft type

Also Published As

Publication number Publication date
TW202141541A (en) 2021-11-01
CN113539562A (en) 2021-10-22
CN113539562B (en) 2023-03-14

Similar Documents

Publication Publication Date Title
KR100626245B1 (en) High accuracy foamed coaxial cable and method for manufacturing the same
US20110209892A1 (en) Coaxial cable
US20060254792A1 (en) Foam coaxial cable and method of manufacturing the same
JP2003036740A (en) Double laterally wound two-core parallel extra-fine coaxial cable
WO2018223620A1 (en) Deep-sea feeder cable
JP3900864B2 (en) 2-core parallel micro coaxial cable
JP2015072774A (en) Multicore cable and production method thereof
TWI753756B (en) Transmission cable and method of manufacturing the same
TW200837778A (en) A coaxial cable
US11437165B2 (en) Transmission cable and manufacturing method for the same
CN110675978A (en) Microwave low-loss phase-stable cable
JP7340384B2 (en) Small diameter coaxial cable with excellent flexibility
JP2018110075A (en) cable
JP2011198644A (en) Coaxial cable and multi-core cable using the same
JPH03219505A (en) Coaxial cable
JP2004087189A (en) Transmission cable and manufacturing method of the same
TWI727762B (en) Transmission cable
JP3749875B2 (en) Manufacturing method of high precision foamed coaxial cable
CN220627428U (en) Cable with improved heat dissipation
JP2020021713A (en) Multicore communication cable
US20230154652A1 (en) Coaxial cable
JP2003031046A (en) Two-core parallel extra-file coaxial cable with longitudinally added deposited tape
JP5874595B2 (en) Differential signal transmission cable
JP7353039B2 (en) Coaxial cable with excellent bending phase stability
JP2022170784A (en) Two-core parallel coaxial cable