TWI753544B - 機率亂數產生器與產生包括機率隨機位元的資料的位元流的方法 - Google Patents

機率亂數產生器與產生包括機率隨機位元的資料的位元流的方法 Download PDF

Info

Publication number
TWI753544B
TWI753544B TW109128947A TW109128947A TWI753544B TW I753544 B TWI753544 B TW I753544B TW 109128947 A TW109128947 A TW 109128947A TW 109128947 A TW109128947 A TW 109128947A TW I753544 B TWI753544 B TW I753544B
Authority
TW
Taiwan
Prior art keywords
mtj
data state
predetermined current
current pulse
pulse shape
Prior art date
Application number
TW109128947A
Other languages
English (en)
Other versions
TW202117533A (zh
Inventor
宋明遠
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/933,132 external-priority patent/US11521664B2/en
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202117533A publication Critical patent/TW202117533A/zh
Application granted granted Critical
Publication of TWI753544B publication Critical patent/TWI753544B/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/58Random or pseudo-random number generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/58Random or pseudo-random number generators
    • G06F7/588Random number generators, i.e. based on natural stochastic processes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1657Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1693Timing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1697Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2275Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N59/00Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)

Abstract

一些實施例是關於機率亂數產生器。機率亂數產生器包含包括磁性穿隧接面(MTJ)的記憶胞及耦合至記憶胞的MTJ的存取電晶體。可變電流源耦合至存取電晶體且經組態以分別將多個預定電流脈衝形狀提供至MTJ以產生分別包含來自MTJ的多個機率隨機位元的位元流。預定電流脈衝形狀具有對應於用於MTJ的不同切換機率的不同電流振幅及/或脈衝寬度。

Description

機率亂數產生器與產生包括機率隨機位元的資料的位元流的方法
本發明實施例是有關於一種機率亂數產生器與產生包括機率隨機位元的資料的位元流的方法。
本發明大體是關於用於獨立記憶體晶片中及用於整合至邏輯晶片上的記憶陣列的揮發性及非揮發性記憶體。更特定而言,本發明是關於用於積體電路的磁性記憶體裝置,所述積體電路根據磁性穿隧接面(magnetic tunnel junction;MTJ)裝置內的磁膜層中的磁矩的方向來儲存資訊。此類記憶體最常稱作磁阻式隨機存取記憶體或MRAM。
本申請的一些實施例提供一種機率亂數產生器,包括:記憶胞,包括磁性穿隧接面(MTJ);以及可變電流源,耦合至所述MTJ,所述可變電流源經組態以分別在多個時槽中分別將多個預定電流脈衝形狀提供至所述MTJ以產生分別包含多個機率隨機位元 的位元流,其中所述預定電流脈衝形狀具有對應於用於所述MTJ的不同切換機率的不同電流振幅及/或脈衝寬度。
此外,本申請的其他實施例提供一種產生包括機率隨機位元的資料的位元流的方法,包括:提供呈第一資料狀態的磁性穿隧接面(MTJ);以及自多個預定電流脈衝形狀中選擇第一預定電流脈衝形狀,且當所述MTJ呈所述第一資料狀態時,將所述第一預定電流脈衝形狀施加至所述MTJ;其中所述預定電流脈衝形狀具有對應於將所述MTJ自所述第一資料狀態切換至第二資料狀態的不同切換機率的不同電流振幅及/或脈衝寬度。
另外,本申請的其他實施例提供一種機率亂數產生器,包括:記憶胞,包括經組態以在對應於第一電阻的第一穩定資料狀態與對應於第二電阻的第二穩定資料狀態之間切換的可變電阻器,所述第二電阻不同於所述第一電阻;可變電流源,耦合至所述可變電阻器且經組態以提供多個預定電流脈衝形狀;以及控制器,經組態以在第一時槽期間藉由將所述多個預定電流脈衝形狀的第一預定電流脈衝形狀施加至所述可變電阻器來將所述第一穩定資料狀態寫入至所述記憶胞,在第二時槽期間藉由將所述多個預定電流脈衝形狀的第二預定電流脈衝形狀施加至所述記憶胞來將所述第二穩定資料狀態寫入至所述可變電阻器,且在第三時槽期間藉由將所述多個預定電流脈衝形狀的第三預定電流脈衝形狀施加至所述可變電阻器來將機率隨機資料狀態寫入至所述可變電阻器。
100、100a、100b、100c、100d、100e:磁性穿隧接面
102:第一鐵磁性膜/鐵磁性參考層
104:第二鐵磁性膜/自由層
106:薄非磁性障壁層
108:平行定向
109:合成反鐵磁性層
200:機率亂數產生器
202:MTJ記憶胞
206:存取電晶體
206a、206b、206c、206d、206e:電晶體
208:控制器
214:可變電流源
216:輸出端
300a、300b:鐵磁性記憶體堆疊
302:切換機率曲線
502a、502b、502c、502d、502e:電流路徑
510:控制線
512:輸入電流端子
514:輸出電流端子
516:第一子集
520:第二子集
600:MRAM積體電路
604:內連線結構
606:基底
608:淺溝渠隔離區
610、612:字元線電晶體
614、616:字元線閘極電極
618、620:字元線閘極介電質
622:字元線側壁間隔件
624:源極/汲極區
626、628、630:IMD層
632、634、636:金屬化層
638、640、642:金屬線
644:觸點
646:通孔
650、652:介電保護層
654:底部電極
656:頂部電極
800:方法
802、804、806、808、810:步驟
Eb:能量障壁
i:電流脈衝
i1、i2、i3、i4、i5、i6、i7:預定電流脈衝形狀
i1(t1):第一預定電流形狀
i2(t2):第二預定電流形狀
i3(t3):第三預定電流形狀
i4(t4):第四預定電流形狀
in(tn):預定電流脈衝形狀
mf:可變磁化方向
mr:固定磁化方向
prb1(t1):第一機率隨機位元
prb2(t2):第二機率隨機位元
prb3(t3):第三機率隨機位元
prb4(t4):第四機率隨機位元
prb5(t5):第五機率隨機位元
prb6(t6):第六機率隨機位元
prb7(t7):第七機率隨機位元
prbn(tn):機率隨機位元
t1:第一時槽
t2:第二時槽
t3:第三時槽
t4:第四時槽
t5:第五時槽
t6:第六時槽
t7:第七時槽
當結合附圖閱讀時,自以下詳細描述最佳地理解本發明 的態樣。應注意,根據業界中的標準慣例,各種特徵未按比例繪製。實際上,可出於論述清楚起見,任意地增加或減小各種特徵的尺寸。
圖1A說明磁性穿隧接面(MTJ)的一些實施例。
圖1B說明在用於磁性穿隧接面(MTJ)的平行狀態與反平行狀態之間的能量轉變的一些實施例。
圖2說明包含MTJ記憶胞的機率亂數產生器的一些實施例。
圖3說明展示根據一些實施例的電流與機率切換百分率的曲線圖。
圖4說明用於數個預定電流脈衝形狀及MTJ切換機率的圖表。
圖5說明包含MTJ記憶胞的機率亂數產生器的一些實施例。
圖6展示MRAM裝置的橫截面圖的一些實施例。
圖7展示與圖6一致的MRAM裝置的俯視圖的一些實施例。
圖8展示根據一些實施例的產生位元流的方法。
本發明提供用於實施本發明的不同特徵的許多不同實施例或實例。下文描述組件及配置的具體實例以簡化本發明。當然,這些組件及配置僅為實例且不意欲為限制性的。舉例而言,在以下描述中,第一特徵在第二特徵上方或上的形成可包含第一特徵及第二特徵直接接觸地形成的實施例,且亦可包含額外特徵可在第一特徵與第二特徵之間形成使得第一特徵與第二特徵可不直接接觸的實施例。另外,本發明可在各種實例中重複圖式元件符號及/ 或字母。此重複是出於簡化及清楚的目的,且自身並不指示所論述的各種實施例及/或組態之間的關係。
另外,為易於描述,本文中可使用諸如「在...之下」、「在...下方」、「下部」、「在...上方」、「上部」以及類似者的空間相對術語,以描述如諸圖中所說明的一個元件或特徵相對於另一(一些)元件或特徵的關係。除圖式中所描繪的定向以外,空間相對術語意欲涵蓋元件在使用或操作中的不同定向。設備可以其他方式定向(旋轉90度或處於其他定向)且本文中所使用的空間相對描述詞可同樣相應地進行解釋。
如圖1A中所展示,磁性穿隧接面(MTJ)100包含由薄非磁性障壁層106(通常是量子力學穿隧障壁層)分隔的第一鐵磁性膜102及第二鐵磁性膜104。第一鐵磁性膜102(下文中稱為「參考層」)具有固定磁化方向mr,而第二鐵磁性膜104(下文中稱為「自由層」)具有可變磁化方向mf。如圖1B中所展示,若參考層102的磁化方向mr與自由層104的磁化方向mf對準,使得磁化方向mr及磁化方向mf呈平行(parallel;P)定向(見108),則電子將相對地更易於穿隧通過障壁層106,意謂MTJ 100呈低電阻狀態。相反地,若參考層102的磁化方向mr與自由層104的磁化方向mf反平行,使得mr及mf呈反平行(antiparallel;AP)定向(見110),則電子將更難以穿隧通過障壁層106,意謂MTJ 100呈高電阻狀態。因此,MTJ 100可藉由切換自由層104的磁化方向mf來在電阻的此兩個穩定資料狀態之間切換。能量障壁Eb使此兩個穩定資料狀態彼此分隔。
MTJ 100中的狀態切換(AP至P或P至AP)藉由將各 種電流脈衝形狀提供至MTJ 100實現。舉例而言,當電子向上流經參考層102,隨後流經障壁層106,隨後流經自由層104時,自由層104的磁化方向可自指向下切換至指向上。然而,隨著電流脈衝形狀的幅值及/或脈衝寬度變得較小/較快,此切換在現實世界應用中存在機率成分。舉例而言,對於具有相對大電流振幅及相對長脈衝寬度的電流脈衝形狀,自由層104的狀態可經切換以用於基本上100%的寫入操作;而對於具有相對小電流振幅及相對小脈衝寬度的寫入電流脈衝,自由層的磁化方向可經切換以用於基本上0%的寫入操作。此表明具有中間電流振幅及中間脈衝寬度的寫入電流脈衝使自由層104的磁化方向mf較不確定(且因此寫入至單元的資料狀態對於此類中間振幅及中間脈衝寬度在某種程度上為不確定的)。
本發明利用此來提供MTJ記憶胞,所述MTJ記憶胞在其輸出端處遞送一或多個機率隨機位元。更特定而言,提供至MTJ單元的電流位準經選擇為多個預定電流脈衝形狀中的一者,其中每一預定電流脈衝形狀對應於用於MTJ的不同切換機率。當這些預定電流脈衝形狀用於隨時間推移進行對MTJ的各種寫入操作時,MTJ輸出不同資料狀態,其中每一資料狀態為遵循切換機率的隨機值,所述切換機率對應於用於執行寫入操作的預定電流脈衝形狀。
圖2說明包含MTJ記憶胞202的機率亂數產生器200的一些實施例。MTJ記憶胞202包含磁性穿隧接面(MTJ)100及存取電晶體206,諸如金屬氧化物半導體場效電晶體(metal-oxide semiconductor field effect transistor;MOSFET)。MTJ 100包含參 考層102及自由層104,其中諸如非鐵磁性穿隧障壁層的障壁層106使鐵磁性參考層102與自由層104分隔,諸如先前關於圖1所描述。可變電流源214耦合至存取電晶體206且經組態以經由存取電晶體206分別將多個預定電流脈衝形狀in(tn)及時提供至MTJ 100。當在多個相應時槽內施加至MTJ 100時,預定電流脈衝形狀在MTJ 100的輸出端216處產生位元流。此位元流分別包含多個機率隨機位元prbn(tn),其中每一機率隨機位元由用於給定時槽的預定電流脈衝形狀產生。預定電流脈衝形狀in(tn)具有對應於用於MTJ的不同切換機率的不同電流振幅及/或脈衝寬度。
舉例而言,圖3至圖4說明實例,其中可變電流源214經組態以產生七個(n=7)不同預定電流脈衝形狀(i1、i2、i3、i4、i5、i6、i7)。在圖3中,每一預定電流脈衝形狀具有由豎直線表示的電流振幅,且在此實例中各自在彼此相同的持續時間(脈衝寬度)中經施加。舉例而言,第一預定電流脈衝形狀i1具有21.3安(A)的固定電流振幅,且預定電流脈衝形狀中的每一者可具有在10微秒至10奈秒的範圍內的脈衝寬度。每一預定電流脈衝形狀提供用於MTJ的不同切換機率以自第一穩定資料狀態(例如,邏輯「0」)切換至第二穩定資料狀態(例如,邏輯「1」)。用於MTJ的切換機率經繪製為圖3中的切換機率曲線302。因此,此實例中的電流脈衝具有不同電流振幅,且當施加至MTJ時,電流脈衝具有不同切換機率以切換單元的資料狀態,如由切換機率曲線302所界定。舉例而言,當第一預定電流脈衝形狀i1(例如,21.3安)經施加至MTJ 100時,單元具有1.03%切換機會,但當第四預定電流脈衝形狀i4(例如,31.95安)經施加至MTJ時,單元具有71.10%切換 機會。
在一些實施例中,記憶胞的MTJ切換的機率由以下表述定義:
Figure 109128947-A0305-02-0009-1
其中Psw為MTJ自一個資料狀態切換至另一資料狀態的機率,t為施加電流脈衝的時間,t0為MTJ文件(file)的自由層自中間狀態弛豫至穩定資料狀態中的任一者的固定弛豫時間,Eb為穩定資料狀態之間的能量帶隙,Kb是波茲曼常數(例如,1.38064852×10-23m2kgs-2K-1),T為溫度,Ic是所施加的預定電流脈衝形狀的振幅,且Ic0為所謂的「臨界電流」,其為通常需要切換MTJ的資料狀態的固定電流值。
如圖4中所說明,第一電流脈衝形狀i1對應於MTJ自第一資料狀態(例如,AP狀態)切換至第二資料狀態(例如,P狀態)的1.03%機會,且因此亦對應於使MTJ保留在其呈現狀態中(例如,保持在AP狀態中)的98.97%機會。第二電流脈衝形狀i2對應於MTJ自第一資料狀態(例如,AP狀態)切換至第二資料狀態(例如,P狀態)的6.28%機會,且因此亦對應於使MTJ保留在其呈現狀態中(例如,保持在AP狀態中)的93.72%機會。第三電流脈衝形狀i3對應於MTJ自第一資料狀態(例如,AP狀態)切換至第二資料狀態(例如,P狀態)的28.33%機會,且因此亦對應於使MTJ保留在其呈現狀態中(例如,保持在AP狀態中)的71.67%機會。第四電流脈衝形狀i4對應於MTJ自第一資料狀態(例如,AP狀態)切換至第二資料狀態(例如,P狀態)的71.10%機會,且因此亦對應於使MTJ保留在其呈現狀態中(例如,保持 在AP狀態中)的28.90%機會。第五電流脈衝形狀i5對應於MTJ自第一資料狀態(例如,AP狀態)切換至第二資料狀態(例如,P狀態)的95.95%機會,且因此亦對應於使MTJ保留在其呈現狀態中(例如,保持在AP狀態中)的4.05%機會。第六電流脈衝形狀i6對應於MTJ自第一資料狀態(例如,AP狀態)切換至第二資料狀態(例如,P狀態)的99.84%機會,且因此亦對應於使MTJ保留在其呈現狀態中(例如,保持在AP狀態中)的0.16%機會。第七電流脈衝形狀i7對應於MTJ自第一資料狀態(例如,AP狀態)切換至第二資料狀態(例如,P狀態)的99.99%機會,且因此對應於使MTJ保留在其呈現狀態中(例如,保持在AP狀態中)的0.01%機會。圖3至圖4的這些電流脈衝形狀僅為非限制性實例且其他電流脈衝形狀可用於其他實施例中。舉例而言,在一些實例中,多個電流脈衝形狀可在10%與90%之間的機率下誘使MTJ自第一資料狀態切換至第二資料狀態,而在其他實例中,多個電流脈衝形狀可在5%與95%之間的機率下誘使MTJ自第一資料狀態切換至第二資料狀態。
因此,返回參看圖2,在第一時槽(t1)期間,可變電流源214可將第一預定電流形狀i1(t1)(例如,21.3安)施加至MTJ 100,進而誘使MTJ 100輸出第一機率隨機位元prb1(t1)(例如,1.03%位元切換至AP狀態,98.97%位元在P狀態中保持未切換)。第一機率隨機位元為「隨機的」,意謂若預定電流形狀多次經施加至MTJ且MTJ隨後經讀取,則每當第一預定電流形狀經施加時,自MTJ讀取的所得機率隨機位元將由於MTJ的狀態的不可預測改變而變化。因此,即使每次施加相同的第一預定電流形狀,但第 一機率資料狀態為「隨機的」,意謂自MTJ讀取的第一機率隨機位元有時將為「1」,且自MTJ讀取的第一機率隨機位元其他時間將為「0」。第一機率資料狀態亦為「機率的」,意謂其用於每一預定電流形狀的隨機性遵循所得狀態是否為「1」或「0」的加權分佈,且加權分佈基於第一預定電流形狀的振幅及/或脈衝寬度。
類似地,在第二時槽(t2)期間,可變電流源214可將第二預定電流形狀i2(t2)(例如,24.85安)施加至MTJ 100,進而誘使MTJ輸出第二機率隨機位元prb2(t2)。在圖2至圖3的實例中,第二預定電流形狀i2(t2)具有6.28%機會切換MTJ的資料狀態,及93.72%機會保留MTJ的資料狀態不變。
在第三時槽(t3)期間,可變電流源214可將第三預定電流形狀i3(t3)(例如,28.4安)施加至MTJ 100,進而誘使MTJ輸出第三機率隨機位元prb3(t3)。在圖2至圖3的實例中,第三機率隨機位元具有28.33%機會切換MTJ的資料狀態,及71.67%機會保留MTJ的資料狀態不變。
在第四時槽(t4)期間,可變電流源214可將第四預定電流形狀i4(t4)(例如,31.95安)施加至MTJ 100,進而誘使MTJ輸出第四機率隨機位元prb4(t4)。在圖2至圖3的實例中,第四預定電流形狀i4(t4)具有71.10%機會切換MTJ的資料狀態,及29.9%機會保留MTJ的資料狀態不變。第五時槽(t5)、第六時槽(t6)以及第七時槽(t7)利用對應預定電流脈衝形狀(分別i5、i6、i7),且誘發對應機率隨機位元(分別prb5(t5)、prb6(t6)、prb7(t7))。
控制器208可及時調變由可變電流源214提供的電流以在輸出端216上產生機率隨機位元的位元流,其中個別位元及/或 位元流的位元作為整體遵循「0」狀態與「1」狀態之間的預定加權。此類位元流可用於模型化、加密及/或其他應用。
另外,多個預定電流脈衝形狀可連續地施加至MTJ以連續地提供位元,所述位元的為「1」或「0」的最終機率基於施加至MTJ的每一預定電流脈衝形狀的機率。舉例而言,設想第一種情況,其中MTJ已知初始地呈「0」狀態。在第三預定電流脈衝形狀i3經施加至MTJ狀態後,MTJ具有28.33%機會翻轉至「1」狀態。然而,若MTJ並未經讀取,而實際上另一第三預定電流脈衝形狀i3經施加至MTJ狀態,則MTJ現具有28.33%+28.33%*28.33%機會(亦即,36.36%機會)切換至「1」狀態。此是因為施加第三預定電流脈衝形狀i3的第一時間提供28.33%機會翻轉單元,且施加第三預定電流脈衝形狀i3的第二時間增添MTJ將翻轉的一些較小額外機率(亦即,28.33%*28.33%機會=8.026%機會)。因此,藉由及時將連續預定電流脈衝形狀施加至MTJ,可產生除圖4中所說明的那些機率以外的額外機率。因為此方法允許在預定電流振幅的較小集合下產生更大機率,此在其中較簡單硬體(例如,具有較少電晶體的較小覆蓋面積硬體)為所要的情形中為有利的。作為另一實例,設想第二種情況,其中MTJ已知初始地呈「0」狀態。雖然圖4並不說明遞送50%的MTJ切換機率的預定電流脈衝形狀,但應注意,若兩個連續預定電流脈衝形狀i3及i4經施加至MTJ而讀取在其間不發生,則MTJ翻轉的所得機率為接近50%。更特定而言,i3翻轉單元的機率為28.33%,且隨後當i4經施加時,單元翻轉的總機率增大額外28.33%*71.10%(亦即,增大20.11%),使得MTJ翻轉的總機率為48.44%(亦即,28.33%+20.11%)。再 次,此可允許預定電流脈衝形狀的小的子集遞送位元流,所述位元流呈現機率隨機值的寬陣列。
雖然上文已關於其中n=7個預定電流脈衝形狀的實例描述了圖2至圖4,但將瞭解,大體而言n可為任何正整數值。另外,將瞭解,雖然說明的n=7個預定電流脈衝形狀用於產生機率隨機位元,但額外電流脈衝形狀可由傳統讀取及寫入操作產生。相比較於用於產生機率隨機位元的電流脈衝形狀,傳統寫入操作利用在至少99.99%機率下將MTJ自第一資料狀態切換至第二資料狀態的第一寫入電流脈衝形狀;且利用在至少99.99%機率下將MTJ自第二資料狀態切換至第一資料狀態的第二寫入電流脈衝形狀。因此,可變電流源可產生第一寫入電流脈衝形狀以確定地將MTJ自第一資料狀態切換至第二資料狀態,產生第二寫入電流脈衝形狀以確定地將MTJ自第二資料狀態切換至第一資料狀態,且產生在MTJ的輸出端處及時提供機率隨機位元的多個電流脈衝形狀。
另外,雖然本發明主要關於MTJ進行描述,但在其他實施例中,涵蓋如屬於本發明的範疇內的包含可變電阻器的其他類型的電阻式記憶胞(諸如鐵電記憶體、電阻式隨機存取記憶體(resistive random access memory;RRAM)及/或相變記憶體等等)。
圖5說明包含MTJ記憶胞202的機率亂數產生器200的更詳細實例。在此實例中,可變電流源214包括彼此平行安置的多個電流路徑502a至電流路徑502e。分別多個MTJ 100a至MTJ 100e以及分別多個電晶體206a至電晶體206e分別經配置於多個電流路徑502a至電流路徑502e上。每一電流路徑包含在電流路 徑上串聯配置的相應電晶體及相應MTJ。
控制器508經組態以將一或多個控制線510上的多位元數位程式碼寫入至多個MTJ 100a至MTJ 100e,其中多位元數位程式碼的值自待施加至MTJ 202的多個預定電流脈衝形狀中選擇預定電流脈衝形狀以誘使產生機率隨機位元。舉例而言,在圖5的實施例中,存在五個電流路徑及五個對應MTJ。可變電流源214的輸入電流端子512耦合至多個電流路徑中的每一者,使得多個電流路徑502a至電流路徑502e分接輸入電流端子512。輸出電流端子514耦合至多個電流路徑的第一子集516;且接地端子518耦合至多個電流路徑的第二子集520。MTJ單元202的存取電晶體206包含第一源極/汲極區、第二源極/汲極區以及安置於第一源極/汲極區與第二源極/汲極區之間的閘極。存取電晶體的第一源極/汲極區耦合至MTJ 100且存取電晶體的第二源極/汲極區耦合至輸出電流端子514。
在操作期間,每一MTJ 100a至MTJ 100e可呈兩個電阻狀態中的一者:高電阻狀態(例如,反平行狀態),其可藉由將第一資料狀態(例如,邏輯「1」)寫入至彼MTJ來誘發;或低電阻狀態(例如,平行狀態),其可藉由將第二資料狀態(例如,邏輯「0」)寫入至彼MTJ來誘發。因此,寫入至這些MTJ 100a至MTJ 100e的「0」及/或「1」屬於足夠大的電流(例如,大於200安)以在基本上100%機率下翻轉MTJ的狀態,且提供至多個MTJ 100a至MTJ 100e的多位元數位程式碼設置提供至MTJ記憶胞202的預定電流脈衝形狀。因為MTJ的各種電阻,當電流脈衝i經施加至輸入端子512時,電流脈衝的第一部分經導引通過電流路徑的 第一子集516,且電流脈衝的第二部分經由多個電流路徑的第二子集520經分流至接地。電流脈衝的第一部分比電流脈衝的第二部分大(或反之亦然)的範圍基於電流路徑的第一子集516及電流路徑的第二子集520中的MTJ 100a至MTJ 100e的相關電阻。
因此,例如,在第一時槽中將第一多位元數位程式碼「11001」寫入在一或多個控制線510上將使第一MTJ 100a呈高電阻資料狀態,使第二MTJ 100b呈高電阻資料狀態,使第三MTJ 100c呈低電阻資料狀態,使第四MTJ 100d呈低電阻資料狀態,且使第五MTJ 100e呈高電阻資料狀態。因為MTJ的電阻,當電流脈衝i經施加至輸入端子512時,此第一多位元數位程式碼將第一預定電流脈衝i1提供至MTJ單元202,所述第一預定電流脈衝i1具有切換MTJ單元的第一機率。因此,對於第一時槽,MTJ單元202儲存第一機率隨機位元。
在第二時槽中寫入第二多位元數位程式碼「00011」將使第一MTJ 100a呈低電阻資料狀態,使第二MTJ 100b呈低電阻資料狀態,使第三MTJ 100c呈低電阻資料狀態,使第四MTJ 100d呈高電阻資料狀態,且使第五MTJ 100e呈高電阻資料狀態。因為MTJ的電阻,此第二多位元數位程式碼將第二預定電流脈衝i2提供至MTJ單元202,所述第二預定電流脈衝i2具有切換MTJ單元的第二機率。在此實例中,第二機率可大於第一機率,使得對於第二時槽,MTJ單元202儲存比第一多位元數位程式碼更可能切換MTJ單元的第二機率隨機位元。
在第三時槽中寫入第三多位元數位程式碼「11100」將使第一MTJ 100a呈高電阻資料狀態,使第二MTJ 100b呈高電阻資 料狀態,使第三MTJ 100c呈高電阻資料狀態,使第四MTJ 100d呈低電阻資料狀態,且使第五MTJ 100e呈低電阻資料狀態。因為MTJ的電阻,此第三多位元數位程式碼將第三預定電流脈衝提供至MTJ單元202,所述第三預定電流脈衝具有切換MTJ單元的第三機率。在此實例中,第三機率可小於第一機率,使得對於第三時槽,MTJ單元202儲存比第一多位元數位程式碼較不可能切換MTJ單元的第三機率隨機位元。藉由在每一寫入操作之後讀取MTJ單元202,形成由數個機率隨機位元構成的位元流。
圖7說明MRAM積體電路600的一些實施例的截面視圖,所述MRAM積體電路600包含安置於積體電路600的內連線結構604中的鐵磁性記憶體堆疊300a、鐵磁性記憶體堆疊300b。積體電路600包含基底606。基底606可為例如塊狀基底(例如,塊狀矽基底)或絕緣層上矽(silicon-on-insulator;SOI)基底。所說明的實施例描繪一或多個淺溝渠隔離(shallow trench isolation;STI)區608,其可包含基底606內的填充有介電質的溝渠。
兩個字元線(word line;WL)電晶體610、字元線電晶體612安置於STI區608之間。字元線電晶體610、字元線電晶體612包含分別字元線閘極電極614、字元線閘極電極616;分別字元線閘極介電質618、字元線閘極介電質620;字元線側壁間隔件622;以及源極/汲極區624。源極/汲極區624安置於字元線閘極電極614、字元線閘極電極616與STI區608之間的基底606內,且經摻雜以分別具有與閘極介電質618、閘極介電質620下的通道區的第二導電類型相對的第一導電類型。字元線閘極電極614、字元線閘極電極616可為例如摻雜多晶矽或金屬,諸如鋁、銅或其組 合。字元線閘極介電質618、字元線閘極介電質620可為例如氧化物,諸如二氧化矽或高k介電材料。舉例而言,字元線側壁間隔件622可由氮化矽(例如,Si3N4)製成。
內連線結構604配置在基底606上方且使裝置(例如,電晶體610、電晶體612)彼此耦合。內連線結構604包含以交替方式覆蓋在彼此上方的多個IMD層626、IMD層628、IMD層630以及多個金屬化層632、金屬化層634、金屬化層636。IMD層626、IMD層628、IMD層630可例如由低κ介電質(諸如不摻雜矽酸鹽玻璃)或氧化物(諸如二氧化矽)或極低k介電層構成。金屬化層632、金屬化層634、金屬化層636包含金屬線638、金屬線640、金屬線642,其形成於溝渠內且可由諸如銅或鋁的金屬製成。觸點644自底部金屬化層632延伸至源極/汲極區624及/或閘極電極614、閘極電極616;且通孔646在金屬化層632、金屬化層634、金屬化層636之間延伸。觸點644及通孔646延伸穿過介電保護層650、介電保護層652(其可由介電材料製成且可在製造期間充當蝕刻停止層)。舉例而言,介電保護層650、介電保護層652可由諸如SiC的極低k介電材料製成。舉例而言,觸點644及通孔646可由諸如銅或鎢的金屬製成。
MRAM鐵磁性記憶體堆疊300a、MRAM鐵磁性記憶體堆疊300b經組態以儲存相應資料狀態,且經配置於相鄰金屬層之間的內連線結構604內。MRAM鐵磁性記憶體堆疊300a包含由導電材料製成的底部電極654及頂部電極656。在一些實施例中,底部電極654可包括例如鉭(Ta)、氮化鉭(TaN)或釕(Ru);且頂部電極656可包括例如鉭(Ta)、氮化鉭(TaN)或釕(Ru)。底部電 極654及頂部電極656可視實施方案而定為相同材料或不同材料。
MRAM鐵磁性記憶體堆疊300a、MRAM鐵磁性記憶體堆疊300b各自進一步包括安置於底部電極654上方的參考層102,及安置於參考層102上方且藉由障壁層106與參考層102分隔的自由層104。參考層102為具有「固定」的磁化方向的鐵磁性層。作為一實例,參考層102的磁化方向可「向上」,亦即,垂直於指向頂部電極656的參考層102的平面,但在其他實施例中亦可「在平面內」,亦即,在參考層102的平面內。在一些情況下,可體現為薄介電層或非磁性金屬層的障壁層106使參考層102與自由層104分隔。障壁層106可以是穿隧屏障,其足夠薄以允許在參考層102與自由層104之間的電流的量子力學穿隧。在一些實施例中,障壁層106可包括非晶形障壁,諸如氧化鋁(AlOx)或氧化鈦(TiOx),或晶體障壁,諸如氧化鎂(MgO)或尖晶石(例如,MgAl2O4)。自由層104及參考層102可包括鐵、鈷、鎳、鐵鈷、鎳鈷、硼化鈷鐵、硼化鐵、鐵鉑、鐵鈀或類似者。作為一實例,自由層104及參考層102可分別包括鈷鐵硼(CoFeB)層。自由層104能夠在兩個磁化狀態中的一者之間改變其磁化方向,所述兩個磁化狀態對應於儲存於MTJ中的二進位資料狀態。舉例而言,在第一狀態中,自由層104可具有「向上」磁化方向,其中自由層104的磁化方向與參考層102的磁化方向平行對準,進而提供具有相對低電阻的MTJ堆疊。在第二狀態中,自由層104可具有「向下」磁化方向,其與參考層102的磁化方向對準及反平行,進而提供具有相對高電阻的MTJ堆疊。
在一些實施例中,自由層104可包括磁性金屬,諸如鐵、 鎳、鈷、硼以及其合金,諸如CoFeB鐵磁性自由層。
另外在一些實施例中,合成反鐵磁性(synthetic anti-ferromagnetic;SyAF)層109安置於參考層102之下或在參考層102的與自由層104相對的一側處。SyAF層109由具有經約束或「固定」磁化方向的鐵磁性材料製成。此「固定」磁化方向可在一些情況下藉由在製造整個晶片之後初始化暴露於高磁場來實現。
圖7描繪如用圖6至圖7中展示的剖示線指示的圖6的積體電路600的俯視圖的一些實施例。如可看出,當在一些實施例中自上方查看時,鐵磁性記憶體堆疊300a、鐵磁性記憶體堆疊300b可具有正方形形狀。然而,在其他實施例中,例如由於多蝕刻製程的實務性,所說明的正方形形狀的轉角可變圓,從而使MRAM鐵磁性記憶體堆疊300a、MRAM鐵磁性記憶體堆疊300b具有帶圓角的正方形形狀或具有圓形形狀。MRAM鐵磁性記憶體堆疊300a、MRAM鐵磁性記憶體堆疊300b分別經配置於金屬線640上方,且分別具有與金屬線642直接電連接的頂部電極656,而在一些實施例中其間沒有通孔或觸點。在其他實施例中,通孔或觸點將頂部電極656耦合至金屬線642。
圖8說明根據一些實施例的產生位元流的方法800。雖然圖8經描述為一系列動作,但應瞭解,這些動作並非限制性的,因為在其他實施例中,可更改動作的次序,且所揭露的方法不受本文中揭露的結構限制。在其他實施例中,可全部或部分地省略所說明及/或描述的一些動作。
在802中,提供呈第一資料狀態的MTJ。
在804中,自多個預定電流脈衝形狀中選擇第一預定電 流脈衝形狀,且當MTJ呈第一資料狀態時,將第一預定電流脈衝形狀施加至MTJ。預定電流脈衝形狀具有對應於將MTJ自第一資料狀態切換至第二資料狀態的不同切換機率的不同電流振幅及/或脈衝寬度。在一些實施例中,第一預定電流脈衝經組態以在5%與95%之間的第一切換機率下將MTJ自第一資料狀態切換至第二資料狀態。因此,第一預定電流脈衝形狀可提供來自MTJ的第一機率隨機位元,其中第一機率隨機位元具有在某種程度上不確定直至讀取的第一資料狀態。
在806中,將來自多個預定電流脈衝形狀的第二預定電流脈衝施加至MTJ以將第二資料狀態寫入至MTJ。第二預定電流脈衝具有第二電流振幅及第二脈衝寬度,且經組態以在至少99.99%機率下將MTJ自第一資料狀態切換至第二資料狀態。因此,第二預定電流脈衝形狀可提供來自MTJ的基本上確定的第二資料狀態,諸如邏輯「1」狀態。
在808中,將來自多個預定電流脈衝形狀的第三預定電流脈衝施加至MTJ。第三預定電流脈衝具有第三電流振幅及第三脈衝寬度,且經組態以在至少99.99%機率下將MTJ自第二資料狀態切換至第一資料狀態。因此,第三預定電流脈衝形狀可提供來自MTJ的基本上確定的第三資料狀態,諸如邏輯「0」狀態。
在810中,將來自多個預定電流脈衝形狀的第四預定電流脈衝形狀施加至MTJ。第四預定電流脈衝形狀具有不同於第一預定電流振幅及/或第一脈衝寬度的第四電流振幅及/或第四脈衝寬度。在一些實施例中,第四預定電流脈衝經組態以在5%與95%之間的第一切換機率下將MTJ自第一資料狀態切換至第二資料狀 態。因此,第四預定電流脈衝形狀可提供來自MTJ的第二機率隨機位元,其中第二機率隨機位元具有在某種程度上不確定直至讀取的第四資料狀態。
一些實施例是關於機率亂數產生器。機率亂數產生器包含記憶胞,所述記憶胞包含磁性穿隧接面(MTJ)。可變電流源耦合至MTJ。可變電流源經組態以分別在多個時槽中分別將多個預定電流脈衝形狀提供至MTJ,以產生分別包含多個機率隨機位元的位元流。預定電流脈衝形狀具有對應於用於MTJ的不同切換機率的不同電流振幅及/或脈衝寬度。
根據本發明的一些實施例,其中所述多個預定電流脈衝形狀包含對應於用於所述MTJ的至少三個不同相應切換機率的至少三個不同預定電流脈衝形狀。
根據本發明的一些實施例,所述的機率亂數產生器,更包括:控制器,經組態以自所述多個預定電流脈衝形狀中選擇預定電流脈衝形狀以根據機率隨機值來誘使所述MTJ自第一資料狀態切換至第二資料狀態,所述機率隨機值對於將所述MTJ自所述第一資料狀態切換至所述第二資料狀態在10%與90%之間。
根據本發明的一些實施例,其中第一預定電流脈衝形狀具有對應於自所述第一資料狀態切換至所述第二資料狀態的所述MTJ的第一切換機率的第一振幅及/或第一脈衝寬度,且其中第二預定電流脈衝形狀具有對應於自所述第一資料狀態切換至所述第二資料狀態的所述MTJ的第二切換機率的第二振幅及/或第二脈衝寬度,所述第二切換機率不同於所述第一切換機率。
根據本發明的一些實施例,其中所述第一振幅及/或所述第一脈衝寬度小於所述第二振幅及/或所述第二脈衝寬度且所述第一切換機率小於所述第二切換機率。
根據本發明的一些實施例,其中所述第一切換機率在10%與90%之間,且其中所述第二切換機率亦在10%與90%之間但不同於所述第一切換機率。
根據本發明的一些實施例,其中來自所述多個預定電流脈衝形狀的第三預定電流脈衝具有第三電流振幅及第三脈衝寬度,經組態以在至少99.99%機率下將所述MTJ自所述第一資料狀態切換至所述第二資料狀態;以及其中來自所述多個預定電流脈衝形狀的第四預定電流脈衝具有第四電流振幅及第四脈衝寬度,經組態以在至少99.99%機率下使所述MTJ自所述第二資料狀態切換至所述第一資料狀態。
根據本發明的一些實施例,其中所述可變電流源包括:多個電流路徑,平行於彼此安置;多個MTJ,分別位於所述多個電流路徑上;以及多個電晶體,分別配置於所述多個電流路徑上,其中每一電流路徑包含在所述電流路徑上串聯配置的相應電晶體及相應MTJ。
根據本發明的一些實施例,所述的機率亂數產生器,更包括:控制器,經組態以將多位元數位程式碼寫入至所述多個MTJ,其中所述多位元數位程式碼的值自待施加至所述MTJ的所述多個預定電流脈衝形狀中選擇預定電流脈衝形狀以誘使產生機率隨機位元。
根據本發明的一些實施例,其中所述可變電流源更包括: 輸入電流端子,耦合至所述多個電流路徑,其中所述多個電流路徑分接所述輸入電流端子;輸出電流端子,耦合至所述多個電流路徑的第一子集;以及接地端子,耦合至所述多個電流路徑的第二子集。
根據本發明的一些實施例,所述的機率亂數產生器,更包括:存取電晶體,耦合在所述MTJ與所述輸出電流端子之間,所述存取電晶體包括第一源極/汲極區、第二源極/汲極區以及安置於所述第一源極/汲極區與所述第二源極/汲極區之間的閘極,所述存取電晶體的所述第一源極/汲極區耦合至所述MTJ且所述存取電晶體的所述第二源極/汲極區耦合至所述輸出電流端子。
根據本發明的一些實施例,其中所述MTJ包括:鐵磁性自由層;非磁性障壁層,上覆於所述鐵磁性自由層;以及鐵磁性參考層,上覆於所述非磁性障壁層。
一些其他實施例是關於產生包括機率隨機位元的資料的位元流的方法。在方法中,提供呈第一資料狀態的磁性穿隧接面(MTJ)。自多個預定電流脈衝形狀中選擇第一預定電流脈衝形狀,且當MTJ呈第一資料狀態時,將第一預定電流脈衝形狀施加至MTJ。預定電流脈衝形狀具有對應於將MTJ自第一資料狀態切換至第二資料狀態的不同切換機率的不同電流振幅及/或脈衝寬度。
根據本發明的一些實施例,其中所述第一預定電流脈衝形狀經組態以在5%與95%之間的第一切換機率下將所述MTJ自所述第一資料狀態切換至所述第二資料狀態。
根據本發明的一些實施例,所述的產生包括機率隨機位 元的資料的位元流的方法,更包括:將來自所述多個預定電流脈衝形狀的第二預定電流脈衝施加至所述MTJ,所述第二預定電流脈衝具有第二電流振幅及第二脈衝寬度,經組態以在至少99.99%機率下將所述MTJ自所述第一資料狀態切換至所述第二資料狀態。
根據本發明的一些實施例,所述的產生包括機率隨機位元的資料的位元流的方法,更包括:將來自所述多個預定電流脈衝形狀的第三預定電流脈衝施加至所述MTJ,所述第三預定電流脈衝具有第三電流振幅及第三脈衝寬度,經組態以在至少99.99%機率下將所述MTJ自所述第二資料狀態切換至所述第一資料狀態。
根據本發明的一些實施例,所述的產生包括機率隨機位元的資料的位元流的方法,更包括:將來自所述多個預定電流脈衝形狀的第四預定電流脈衝形狀施加至所述MTJ,其中所述第四預定電流脈衝形狀具有不同於所述第一預定電流脈衝形狀的第一預定電流振幅及/或第一脈衝寬度的第四電流振幅及/或第四脈衝寬度。
根據本發明的一些實施例,其中所述第四預定電流脈衝形狀經組態以在5%與95%之間的第二切換機率下將所述MTJ自所述第一資料狀態切換至所述第二資料狀態,所述第二切換機率不同於所述第一切換機率。
又其他實施例是關於機率亂數產生器。機率亂數產生器包含記憶胞,所述記憶胞包含經組態以在對應於第一電阻的第一穩定資料狀態與對應於第二電阻的第二穩定資料狀態之間切換的可變電阻器。第二電阻不同於第一電阻。可變電流源耦合至可變電阻器且經組態以提供多個預定電流脈衝形狀。控制器經組態以在 第一時槽期間藉由將多個預定電流脈衝形狀的第一電流脈衝形狀施加至可變電阻器來將第一穩定資料狀態寫入至記憶胞,在第二時槽期間藉由將多個預定電流脈衝形狀的第二電流脈衝形狀施加至記憶胞來將第二穩定資料狀態寫入至可變電阻器,且在第三時槽期間藉由將多個預定電流脈衝形狀的第三電流脈衝形狀施加至可變電阻器來將機率隨機資料狀態寫入至可變電阻器。
根據本發明的一些實施例,其中所述第一預定電流脈衝形狀經組態以在至少99.99%機率下將所述可變電阻器自所述第二穩定資料狀態切換至所述第一穩定資料狀態;所述第二預定電流脈衝形狀經組態以在至少99.99%機率下將所述可變電阻器自所述第一穩定資料狀態切換至所述第二穩定資料狀態;且所述第三預定電流脈衝形狀經組態以在5%與95%之間的機率下將所述可變電阻器自所述第一穩定資料狀態切換至所述第二穩定資料狀態。
前文概述若干實施例的特徵,以使得本領域的技術人員可較好地理解本發明的態樣。本領域的技術人員應理解,其可易於使用本發明作為設計或修改用於實現本文中所引入的實施例的相同目的及/或達成相同優點的其他製程及結構的基礎。本領域的技術人員亦應認識到,這些等效構造並不脫離本發明的精神及範疇,且本領域的技術人員可在不脫離本發明的精神及範疇的情況下在本文中作出各種改變、替代以及更改。
100:磁性穿隧接面
102:第一鐵磁性膜/鐵磁性參考層
104:第二鐵磁性膜/自由層
106:薄非磁性障壁層
200:機率亂數產生器
202:MTJ記憶胞
206:存取電晶體
208:控制器
214:可變電流源
216:輸出端
in(tn):預定電流脈衝形狀
prbn(tn):機率隨機位元

Claims (10)

  1. 一種機率亂數產生器,包括:記憶胞,包括磁性穿隧接面(MTJ);以及可變電流源,耦合至所述MTJ,所述可變電流源經組態以分別在多個時槽中分別將多個預定電流脈衝形狀提供至所述MTJ以產生分別包含多個機率隨機位元的位元流,其中所述多個預定電流脈衝形狀具有對應於用於所述MTJ的不同切換機率的不同電流振幅及/或脈衝寬度。
  2. 如請求項1所述的機率亂數產生器,其中所述多個預定電流脈衝形狀包含對應於用於所述MTJ的至少三個不同相應切換機率的至少三個不同預定電流脈衝形狀。
  3. 如請求項1所述的機率亂數產生器,更包括:控制器,經組態以自所述多個預定電流脈衝形狀中選擇預定電流脈衝形狀以根據機率隨機值來誘使所述MTJ自第一資料狀態切換至第二資料狀態,所述機率隨機值對於將所述MTJ自所述第一資料狀態切換至所述第二資料狀態在10%與90%之間。
  4. 如請求項1所述的機率亂數產生器,其中所述可變電流源包括:多個電流路徑,平行於彼此安置;多個MTJ,分別位於所述多個電流路徑上;以及多個電晶體,分別配置於所述多個電流路徑上,其中每一電流路徑包含在所述電流路徑上串聯配置的相應電晶體及相應MTJ。
  5. 如請求項1所述的機率亂數產生器,其中所述MTJ 包括:鐵磁性自由層;非磁性障壁層,上覆於所述鐵磁性自由層;以及鐵磁性參考層,上覆於所述非磁性障壁層。
  6. 一種產生包括機率隨機位元的資料的位元流的方法,包括:提供呈第一資料狀態的磁性穿隧接面(MTJ);以及自多個預定電流脈衝形狀中選擇第一預定電流脈衝形狀,且當所述MTJ呈所述第一資料狀態時,將所述第一預定電流脈衝形狀施加至所述MTJ;其中所述多個預定電流脈衝形狀具有對應於將所述MTJ自所述第一資料狀態切換至第二資料狀態的不同切換機率的不同電流振幅及/或脈衝寬度。
  7. 如請求項6所述的產生包括機率隨機位元的資料的位元流的方法,其中所述第一預定電流脈衝形狀經組態以在5%與95%之間的第一切換機率下將所述MTJ自所述第一資料狀態切換至所述第二資料狀態。
  8. 如請求項6所述的產生包括機率隨機位元的資料的位元流的方法,更包括:將來自所述多個預定電流脈衝形狀的第二預定電流脈衝施加至所述MTJ,所述第二預定電流脈衝具有第二電流振幅及第二脈衝寬度,經組態以在至少99.99%機率下將所述MTJ自所述第一資料狀態切換至所述第二資料狀態。
  9. 一種機率亂數產生器,包括: 記憶胞,包括經組態以在對應於第一電阻的第一穩定資料狀態與對應於第二電阻的第二穩定資料狀態之間切換的可變電阻器,所述第二電阻不同於所述第一電阻;可變電流源,耦合至所述可變電阻器且經組態以提供多個預定電流脈衝形狀;以及控制器,經組態以在第一時槽期間藉由將所述多個預定電流脈衝形狀的第一預定電流脈衝形狀施加至所述可變電阻器來將所述第一穩定資料狀態寫入至所述記憶胞,在第二時槽期間藉由將所述多個預定電流脈衝形狀的第二預定電流脈衝形狀施加至所述記憶胞來將所述第二穩定資料狀態寫入至所述可變電阻器,且在第三時槽期間藉由將所述多個預定電流脈衝形狀的第三預定電流脈衝形狀施加至所述可變電阻器來將機率隨機資料狀態寫入至所述可變電阻器。
  10. 如請求項9所述的機率亂數產生器,其中所述第一預定電流脈衝形狀經組態以在至少99.99%機率下將所述可變電阻器自所述第二穩定資料狀態切換至所述第一穩定資料狀態;所述第二預定電流脈衝形狀經組態以在至少99.99%機率下將所述可變電阻器自所述第一穩定資料狀態切換至所述第二穩定資料狀態;且所述第三預定電流脈衝形狀經組態以在5%與95%之間的機率下將所述可變電阻器自所述第一穩定資料狀態切換至所述第二穩定資料狀態。
TW109128947A 2019-08-30 2020-08-25 機率亂數產生器與產生包括機率隨機位元的資料的位元流的方法 TWI753544B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962894396P 2019-08-30 2019-08-30
US62/894,396 2019-08-30
US16/933,132 US11521664B2 (en) 2019-08-30 2020-07-20 Memory device with tunable probabilistic state
US16/933,132 2020-07-20

Publications (2)

Publication Number Publication Date
TW202117533A TW202117533A (zh) 2021-05-01
TWI753544B true TWI753544B (zh) 2022-01-21

Family

ID=74565253

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109128947A TWI753544B (zh) 2019-08-30 2020-08-25 機率亂數產生器與產生包括機率隨機位元的資料的位元流的方法

Country Status (3)

Country Link
US (1) US20230086638A1 (zh)
DE (1) DE102020119273A1 (zh)
TW (1) TWI753544B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102884580A (zh) * 2010-05-06 2013-01-16 高通股份有限公司 在双稳态元件的群集状态中对多电平存储器进行概率性编程的方法和设备
CN103000805A (zh) * 2011-09-09 2013-03-27 克罗科斯科技公司 具有改进的隧穿势垒的磁隧道结
CN103890712A (zh) * 2011-09-20 2014-06-25 高通股份有限公司 用于随机数产生器的具有磁阻元件的熵源
CN104170017A (zh) * 2012-03-15 2014-11-26 高通股份有限公司 自旋转移矩磁性隧道结智能感测
CN104969175A (zh) * 2013-02-05 2015-10-07 高通股份有限公司 用于使用物理熵源来生成随机数的方法和装置
US9734880B1 (en) * 2016-04-01 2017-08-15 Intel Corporation Apparatuses, methods, and systems for stochastic memory circuits using magnetic tunnel junctions
TW201801077A (zh) * 2016-03-11 2018-01-01 東芝記憶體股份有限公司 半導體記憶體裝置
JP6328391B2 (ja) * 2012-08-26 2018-05-23 三星電子株式会社Samsung Electronics Co.,Ltd. スイッチングに基づいたスピン軌道相互作用を使用する磁気トンネルリング接合と、磁気トンネルリング接合を利用するメモリを提供するための方法及びシステム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8495118B2 (en) * 2008-10-30 2013-07-23 Seagate Technology Llc Tunable random bit generator with magnetic tunnel junction

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102884580A (zh) * 2010-05-06 2013-01-16 高通股份有限公司 在双稳态元件的群集状态中对多电平存储器进行概率性编程的方法和设备
CN103000805A (zh) * 2011-09-09 2013-03-27 克罗科斯科技公司 具有改进的隧穿势垒的磁隧道结
CN103890712A (zh) * 2011-09-20 2014-06-25 高通股份有限公司 用于随机数产生器的具有磁阻元件的熵源
CN104170017A (zh) * 2012-03-15 2014-11-26 高通股份有限公司 自旋转移矩磁性隧道结智能感测
JP6328391B2 (ja) * 2012-08-26 2018-05-23 三星電子株式会社Samsung Electronics Co.,Ltd. スイッチングに基づいたスピン軌道相互作用を使用する磁気トンネルリング接合と、磁気トンネルリング接合を利用するメモリを提供するための方法及びシステム
CN104969175A (zh) * 2013-02-05 2015-10-07 高通股份有限公司 用于使用物理熵源来生成随机数的方法和装置
TW201801077A (zh) * 2016-03-11 2018-01-01 東芝記憶體股份有限公司 半導體記憶體裝置
US9734880B1 (en) * 2016-04-01 2017-08-15 Intel Corporation Apparatuses, methods, and systems for stochastic memory circuits using magnetic tunnel junctions
US9953690B2 (en) * 2016-04-01 2018-04-24 Intel Corporation Apparatuses, methods, and systems for stochastic memory circuits using magnetic tunnel junctions

Also Published As

Publication number Publication date
US20230086638A1 (en) 2023-03-23
DE102020119273A1 (de) 2021-03-04
TW202117533A (zh) 2021-05-01

Similar Documents

Publication Publication Date Title
GB2539102B (en) Voltage-controlled magnetic anisotropy switching device using an external ferromagnetic biasing film
US10937948B2 (en) Magnetic memory using spin-orbit torque
KR20170046595A (ko) 스택 내 선택기를 갖는 상단 피닝된 sot-mram 아키텍처
US11862218B2 (en) Read circuit for magnetic tunnel junction (MTJ) memory
KR102290721B1 (ko) 자기저항 랜덤 액세스 메모리(mram)에서의 지연 감지를 사용하는 비동기식 판독 회로
US11081153B2 (en) Magnetic memory device with balancing synthetic anti-ferromagnetic layer
KR20130137531A (ko) 자기 터널링 접합 시드, 캡핑 및 스페이서 막 물질들
TW201721645A (zh) 自旋霍耳效應磁性隨機存取記憶體位元胞
US20180254077A1 (en) Self-aligned memory array
CN112445457B (zh) 概率随机数发生器和生成含概率随机位的数据位流的方法
TWI753544B (zh) 機率亂數產生器與產生包括機率隨機位元的資料的位元流的方法
CN111596891A (zh) 真随机数发生装置及发生方法
TWI832182B (zh) 物理不可複製功能裝置、半導體裝置以及操作方法
US10079337B2 (en) Double magnetic tunnel junction with dynamic reference layer
US11004489B2 (en) Perpendicular spin transfer torque MRAM memory cell with in-stack thermal barriers
CN110660906A (zh) 磁性存储装置