TWI751869B - 運算裝置及用於近眼顯示裝置之缺陷偵測方法 - Google Patents
運算裝置及用於近眼顯示裝置之缺陷偵測方法 Download PDFInfo
- Publication number
- TWI751869B TWI751869B TW109146757A TW109146757A TWI751869B TW I751869 B TWI751869 B TW I751869B TW 109146757 A TW109146757 A TW 109146757A TW 109146757 A TW109146757 A TW 109146757A TW I751869 B TWI751869 B TW I751869B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- interest
- test
- eye display
- display device
- Prior art date
Links
- 230000007547 defect Effects 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000012360 testing method Methods 0.000 claims abstract description 128
- 238000001514 detection method Methods 0.000 claims abstract description 56
- 238000010586 diagram Methods 0.000 claims description 17
- 230000002093 peripheral effect Effects 0.000 claims description 17
- 230000004927 fusion Effects 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 5
- 238000009966 trimming Methods 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 description 16
- 230000005540 biological transmission Effects 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000011109 contamination Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- APTZNLHMIGJTEW-UHFFFAOYSA-N pyraflufen-ethyl Chemical compound C1=C(Cl)C(OCC(=O)OCC)=CC(C=2C(=C(OC(F)F)N(C)N=2)Cl)=C1F APTZNLHMIGJTEW-UHFFFAOYSA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/77—Retouching; Inpainting; Scratch removal
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/10—Image enhancement or restoration using non-spatial domain filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
- G06T5/92—Dynamic range modification of images or parts thereof based on global image properties
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/40—Analysis of texture
- G06T7/41—Analysis of texture based on statistical description of texture
- G06T7/44—Analysis of texture based on statistical description of texture using image operators, e.g. filters, edge density metrics or local histograms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/73—Circuitry for compensating brightness variation in the scene by influencing the exposure time
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20021—Dividing image into blocks, subimages or windows
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20048—Transform domain processing
- G06T2207/20056—Discrete and fast Fourier transform, [DFT, FFT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20208—High dynamic range [HDR] image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20224—Image subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30121—CRT, LCD or plasma display
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Probability & Statistics with Applications (AREA)
- Image Analysis (AREA)
- Eye Examination Apparatus (AREA)
Abstract
一種用於近眼顯示裝置之缺陷偵測方法,該近眼顯示裝置包括顯示面板及菲涅耳透鏡。上述方法包括下列步驟:依據一相機對顯示面板分別播放測試圖案影像及測試背景影像時經過菲涅耳透鏡進行拍攝之第一影像及第二影像以得到參考影像及待測影像;對參考影像及待測影像分別執行快速傅立葉轉換以得到頻域參考影像及頻域待測影像;計算濾波後之頻域參考影像在各第一感興趣區域之直方圖在預定截止比例以上之像素值的平均值以做為相應閾值;將濾波後之待測影像之各像素與相應閾值進行比較以產生判斷結果;以及依據判斷結果建立近眼顯示裝置的缺陷狀態圖。
Description
本發明係有關於影像,特別是有關於一種運算裝置及用於近眼顯示裝置(near-eye display,NED)之缺陷偵測方法。
隨著科技進步,近眼顯示裝置(例如虛擬實境裝置及擴增實境裝置)亦愈來愈普及。然而,現今的近眼顯示裝置往往會使用視野範圍大於90度的光學模組(例如菲涅耳透鏡),且會造成外圍區域之成像品質較差。對於近眼顯示裝置的製造廠商而言,需要在近眼顯示裝置組裝完成後才能進行缺陷(包含污點及亮點)偵測。基於上述光學特性,採用傳統的電腦視覺技術或人工目檢方式並無法準確地判斷出近眼顯示裝置之顯示面板及光學模組上之污點及亮點。
因此,需要一種運算裝置及用於近眼顯示裝置之缺陷偵測方法以解決上述問題。
本發明係提供一種用於近眼顯示裝置之缺陷偵測方法,該近眼顯示裝置包括一顯示面板及一菲涅耳透鏡,該方法包括:依據一相機對該顯示面板分別播放測試圖案影像及測試背景影像時經過該菲涅耳透鏡進行拍攝之第一影像及第二影像以得到參考影像及待測影像;對該參考影像及該待測影像分別執行快速傅立葉轉換以得到頻域參考影像及頻域待測影像;對該頻域參考影像及該頻域待測影像分別套用一帶通濾波器以得到第一濾波影像及第二濾波影像;將該第一濾波影像及該第二濾波影像分別分割為複數個第一感興趣區域及複數個第二感興趣區域,其中該等第一感興趣區域對應該等第二感興趣區域;統計各個第一感興趣區域中之像素值以得到相應於各個第一感興趣區域的直方圖,並且計算在各個第一感興趣區域的直方圖中在一預定截止比例以上之像素值的平均值以做為各個第一感興趣區域相應的閾值;依據在該第一濾波影像之各個第一感興趣區域相應的該閾值以建立一閾值圖,並將在該第二濾波影像之各個第二感興趣區域中之各像素與該閾值圖中相應的該閾值進行比較以產生在該第二濾波影像之各像素相應的判斷結果;以及依據在該第二濾波影像之各像素相應的該判斷結果以建立該近眼顯示裝置的缺陷狀態圖。
在一些實施例中,該缺陷偵測方法係執行污點偵測,且該第一影像及該第二影像分別為該參考影像及該待測影像。該測試背景影像為一全白影像,且該測試圖案影像為該測試背景影像覆蓋複數個測試點。
在一些實施例中,該第一影像及該第二影像係分別由複數張第一曝光影像及複數張第二曝光影像經由影像融合所得到的高動態範圍影像,且該等第一曝光影像及該等第二曝光影像係在該近眼顯示裝置分別播放該測試圖案影像及該測試背景影像時由該相機使用不同曝光值拍攝而得。
在另一些實施例中,該缺陷偵測方法係執行亮點偵測,且該測試背景影像包括一中心區域及一外圍區域,且該中心區域及該外圍區域分別具有第一灰階值及第二灰階值,且該第二灰階值大於該第一灰階值,且該測試圖案影像為該測試背景影像覆蓋複數個測試點。該中心區域為該測試背景影像之0至0.5之視野範圍的區域,且該外圍區域為該測試背景影像之0.5至1之視野範圍的區域。
在一些實施例中,該第一影像及該第二影像係分別由複數張第一曝光影像及複數張第二曝光影像經由影像融合所得到的高動態範圍影像,且該等第一曝光影像及該等第二曝光影像係在該近眼顯示裝置分別播放該測試圖案影像及該測試背景影像時由該相機使用不同曝光值拍攝而得。
在一些實施例中,依據該相機對該近眼顯示裝置分別播放測試圖案影像及測試背景影像時進行拍攝之第一影像及第二影像以得到參考影像及待測影像之步驟包括:對該第一影像及該第二影像進行影像模糊化處理以得到模糊化第一影像及模糊化第二影像;將該第一影像及該第二影像分別減去該模糊化第一影像及該模糊化第二影像以得到第一差值影像及第二差值影像;將該第一差值影像及該第二差值影像中之小於0的像素值進行像素修剪處理以分別得到第一修剪差值影像及第二修剪差值影像;以及將該第一修剪差值影像及該第二修剪差值影像設定為該參考影像及該待測影像。
在一些實施例中,各個第一感興趣區域相應的該閾值係隨著各個第一感興趣區域距離該第一濾波影像之中心點的距離而變小。
本發明更提供一種運算裝置,用於偵測一近眼顯示裝置之缺陷,該近眼顯示裝置包括一顯示面板及一菲涅耳透鏡,該運算裝置包括:一非揮發性記憶體,用以儲存一缺陷偵測程式;以及一處理器,用以執行該缺陷偵測程式以執行下列步驟:依據一相機對該顯示面板分別播放測試圖案影像及測試背景影像時經過該菲涅耳透鏡進行拍攝之第一影像及第二影像以得到參考影像及待測影像;對該參考影像及該待測影像分別執行快速傅立葉轉換以得到頻域參考影像及頻域待測影像;對該頻域參考影像及該頻域待測影像分別套用一帶通濾波器以得到第一濾波影像及第二濾波影像;將該第一濾波影像及該第二濾波影像分別分割為複數個第一感興趣區域及複數個第二感興趣區域,其中該等第一感興趣區域對應該等第二感興趣區域;統計各個第一感興趣區域中之像素值以得到相應於各個第一感興趣區域的直方圖,並且計算在各個第一感興趣區域的直方圖中在一預定截止比例以上之像素值的平均值以做為各個第一感興趣區域相應的閾值;依據在該第一濾波影像之各個第一感興趣區域相應的該閾值以建立一閾值圖,並將在該第二濾波影像之各個第二感興趣區域中之各像素與該閾值圖中相應的該閾值進行比較以產生在該第二濾波影像之各像素相應的判斷結果;以及依據在該第二濾波影像之各像素相應的該判斷結果以建立該近眼顯示裝置的缺陷狀態圖。
以下說明係為完成發明的較佳實現方式,其目的在於描述本發明的基本精神,但並不用以限定本發明。實際的發明內容必須參考之後的權利要求範圍。
必須了解的是,使用於本說明書中的"包含"、"包括"等詞,係用以表示存在特定的技術特徵、數值、方法步驟、作業處理、元件以及/或組件,但並不排除可加上更多的技術特徵、數值、方法步驟、作業處理、元件、組件,或以上的任意組合。
於權利要求中使用如"第一"、"第二"、"第三"等詞係用來修飾權利要求中的元件,並非用來表示之間具有優先權順序,先行關係,或者是一個元件先於另一個元件,或者是執行方法步驟時的時間先後順序,僅用來區別具有相同名字的元件。
第1A圖為依據本發明一實施例中之缺陷偵測系統的方塊圖。第1B圖為依據本發明第1A圖之實施例中之利用相機拍攝近眼顯示裝置之影像的示意圖。
如第1A圖所示,缺陷偵測系統10包括運算裝置100、近眼顯示裝置200及相機300。運算裝置100可為個人電腦、伺服器或其他具有運算能力之裝置,例如微處理器(MCU)、現場可程式化邏輯閘陣列(FPGA)、複雜可程式化邏輯裝置(CPLD)、應用導向積體電路(ASIC)等等,但本發明並不限於此。在一實施例中,運算裝置100可包含處理器110、系統記憶體130及非揮發性記憶體140。非揮發性記憶體140係儲存缺陷偵測程式141,且處理器110可將缺陷偵測程式141讀取至系統記憶體130並執行。缺陷偵測程式141係執行本發明之缺陷偵測方法,其細節將詳述於後。
近眼顯示裝置200例如可為虛擬實境(virtual reality,VR)裝置或擴增實境(augmented reality,AR)之頭戴式裝置(head-mounted display,HMD)。為了便於說明,近眼顯示裝置200係以虛擬實境顯示裝置為例。
近眼顯示裝置200例如可為一頭戴式顯示器,且近眼顯示裝置200包括一左眼顯示面板210及對應的透鏡211、一右眼顯示面板220及對應的透鏡221、一儲存單元230、一影像緩衝器240、顯示控制器250、及一或多個傳輸介面260、及一外殼270。左眼顯示面板210、透鏡211、右眼顯示面板220、透鏡221係以一預定光學排列方式安置於外殼270中,且外殼270可包括一束帶或其他輔助裝置(未繪示)以供使用者戴於頭上以透過近眼顯示裝置200觀賞虛擬實境畫面。
左眼顯示面板210及右眼顯示面板220例如可為液晶(liquid crystal)面板、發光二極體(light-emitting diode)面板、有機發光二極體(organic light-emitting diode)面板、可撓式顯示面板(flexible display panel)或是其它類型的顯示面板等等等,但本發明並不限於此。在一些實施例中,左眼顯示面板210及右眼顯示面板220可為不同且分離的顯示面板,或是由同一顯示面板所實現,且左眼顯示面板210及右眼顯示面板220為併排且平行的,兩者之間並無角度差。在另一些實施例中,左眼顯示面板210及右眼顯示面板220為併排且不平行的,且兩者之間係具有一角度差。
透鏡211及221例如可用一片菲涅耳透鏡(Fresnel lens)或是多片菲涅耳透鏡之組合所實現,也可以是由其他具有類似功能的光學透鏡組合而成,但本發明並不限於此。
傳輸介面260包括有線傳輸介面及/或無線傳輸介面,其中有線傳輸介面可包括:高解析度多媒體介面(High Definition Multimedia Interface,HDMI)、顯示埠(DisplayPort,DP)介面、嵌入式顯示埠(embedded DisplayPort,eDP)、介面通用序列匯流排(Universal Serial Bus,USB)介面、USB Type-C介面、雷靂(Thunderbolt)介面、數位視訊介面(DVI)或其組合,且無線傳輸介面可包括:第五代行動通訊技術(5th generation wireless system)、藍芽(Bluetooth)、Wi-Fi、近場通訊(NFC)介面等等,但本發明並不限於此。主機100可將影像信號(可包含左眼影像及右眼影像、或是平面影像)透過傳輸介面260傳送至顯示控制器250,且顯示控制器250可將影像信號在左眼顯示面板210及右眼顯示面板220上播放。
顯示控制器250例如可為一應用導向積體電路(application-specific integrated circuit)、一晶片系統(System-on-chip)、一處理器、或一微控制器,但本發明並不限於此。儲存單元230例如可為一非揮發性記憶體,例如唯讀記憶體(ROM)、可抹除可編程唯讀記憶體(EPROM)、電子抹除式可編程唯讀記憶體(EEPROM)、快閃記憶體(flash memory)等等,但本發明並不限於此。儲存單元230係用以儲存近眼顯示裝置200相關的韌體及測試畫面。儲存單元230例如可在顯示控制器250之外部、或是可整合至顯示控制器250中。影像緩衝器240例如可為一動態隨機存取記憶體(DRAM),用以暫存欲播放的影像信號。
相機300係電性連接至運算裝置100,且可在近眼顯示裝置200之觀看區(或成像區)拍攝近眼顯示裝置200在左眼或右眼單側之顯示畫面,其中上述觀看區例如是使用者在使用近眼顯示裝置200觀看影像時,使用者之雙眼之觀賞位置(或成像位置)。舉例來説,左眼顯示面板210可顯示測試畫面及參考畫面,且上述畫面經過透鏡211後可被相機300所拍攝,如第1B圖所示。此外,右眼顯示面板220亦顯示測試畫面及參考畫面,且上述畫面經過透鏡221後可被相機300所拍攝。需注意的是,近眼顯示裝置200在出廠前,左眼顯示面板210及右眼顯示面板220均需經過污點及亮點偵測以濾除有問題的近眼顯示裝置200以確保近眼顯示裝置200之畫面品質,其中污點(blemish)及亮點(bright dot)可統稱為缺陷(defect)。
第2A圖為依據本發明一實施例中之測試圖案影像的示意圖。請同時參考第1A-1B圖及第2A圖。
在一實施例中,近眼顯示裝置200可稱為待測裝置(device under test,DUT)。近眼顯示裝置200可先顯示一測試圖案影像11,如第2圖所示,其中測試圖案影像11例如為覆蓋有複數個測試點12的全白影像。需注意的是,第2圖所示的測試圖案影像11為示意之用,在測試圖案影像11中之測試點12可為任意分布,並不侷限於規則排列。此外,測試點12可具有任意大小及形狀,並不侷限於方形測試點。測試點12亦可具有任意亮度及顏色,並不侷限於黑色(灰階值=0)之測試點。相機300可拍攝近眼顯示裝置200之左眼顯示面板210經過透鏡211後所呈現之測試圖案影像11以得到第一影像。
接著,近眼顯示裝置200再顯示一測試背景影像,其中上述測試背景影像例如可為完全無測試點的全白影像(例如紅色/綠色/藍色之亮度值均為255)。相機300可拍攝近眼顯示裝置200之左眼顯示面板210經過透鏡211後所呈現之測試背景影像以得到一第二影像。在此實施例中,第一影像及第二影像可分別視為參考影像(reference image)及待測影像(DUT image)。
選擇性地,運算裝置100可利用高動態範圍影像之技術以得到參考影像及待測影像。舉例來説,當近眼顯示裝置200顯示測試圖案影像時,相機300可使用不同的曝光設定(例如可調整曝光時間、影像感測器之靈敏度等等)以擷取多張曝光影像,並對上述曝光影像進行影像融合(image fusion)以得到第一影像。類似地,當近眼顯示裝置200顯示全白影像時,相機300可使用不同的曝光值(例如可調整曝光時間、影像感測器之靈敏度等等)以擷取多張曝光影像,並對上述曝光影像進行影像融合(image fusion)以得到第二影像。第一影像及第二影像可分別視為參考影像(reference image)及待測影像(DUT image)。
運算裝置100可從相機300取得所拍攝的參考影像及待測影像,並分別對參考影像及待測影像進行快速傅立葉轉換(fast Fourier transform,FFT)以得到頻域參考影像及頻域待測影像。接著,運算裝置100並對頻域參考影像及頻域待測影像套用一帶通濾波器(band-pass filter)以得到第一濾波影像及第二濾波影像,其中在第一濾波影像及第二濾波影像中之各像素的數值例如可為正規化(normalized)後的數值(介於0到1),且可反應出在原本的參考影像及待測影像中所對應的各像素之數值的變化程度。在一些實施例中,運算裝置100可對頻域參考影像及頻域待測影像套用一帶通濾波器及一去莫列波紋濾波器(demoire filter)以得到第一濾波影像及第二濾波影像。本發明領域中具有通常知識者可使用習知的帶通濾波器及去莫列波紋濾波器以套用於頻域參考影像及頻域待測影像,故其細節於此不再詳述。
若參考影像及待測影像中之特定像素為白色像素,且其周圍像素均是白色像素,表示在特定像素之像素值在頻域的變化極小,故經過快速傅立葉轉換後,在頻域參考影像及頻域待測影像中之特定像素之位置的像素值會趨近於0。若參考影像及待測影像中之特定像素為黑色像素,且其周圍像素均是白色像素,表示在特定像素之像素值在頻域的變化極大,故經過快速傅立葉轉換後,在頻域參考影像及頻域待測影像中之特定像素之位置的像素值會有較大的數值。
需特別注意的是,透鏡211及221的視野(field of view,FOV)通常會大於90度,且透鏡211及221視野愈大會造成影像外圍的成像品質愈差(例如高頻成分較少,即影像較不銳利),進而導致在濾波後影像的中心與外圍的強度差異越大。
此外,就算近眼顯示裝置200顯示完全無測試點的全白影像(即測試背景影像),但相機300拍攝到的待測影像及參考影像中之各像素的數值可能會因為環境雜訊或是相機300之影像感測器(未繪示)之雜訊的影響而略為變動,故經過快速傅立葉轉換後所得到的頻域待測影像及頻域參考影像中之許多非0的像素值即有可能是上述雜訊所造成,且有可能造成影像之中心區域的高頻雜訊之像素值相對於影像之外圍區域的真實訊號高,不利於檢測相機300之整體視野範圍中的污點(blemish)。再者,因為相機300是在近眼顯示裝置200組裝完成後才進行上述拍攝操作,若近眼顯示裝置200中之左眼顯示面板210及透鏡211、或是右眼顯示面板220及透鏡221中有灰塵或污損,則亦可能會影響到相機300拍攝到的待測影像。
第2B圖為依據本發明第2A圖實施例中之第一濾波影像的示意圖。
在此實施例中,當運算裝置100得到第一濾波影像後,即可得知在參考影像中之各個測試點在第一濾波影像中之對應的像素值。例如,參考影像中之測試點在第一濾波影像之中心區域的像素值為0.2且雜訊之像素值為0.03,但是在第一濾波影像之外圍區域的像素值為0.02且雜訊之像素值為0.01。因此,運算裝置100係針對位於中心區域及外圍區域中之不同的感興趣區域設定不同的閾值以偵測出中心區域及外圍區域中之污點。
詳細而言,運算裝置100可依據預定區域尺寸將第一濾波影像20及第二濾波影像分割為複數個感興趣區域(region of interest,ROI)21,其中各個感興趣區域可具有任意形狀及任意面積,並不侷限於方形。此外,各個感興趣區域可在第一濾波影像及第二濾波影像任意分布,意即各位置的感興趣區域之面積及形狀無固定格式。為了便於說明,在此實施例中,各個感興趣區域21為固定尺寸(100x100像素)及固定形狀(例如正方形),如第2B圖所示。若第一濾波影像20之解析度為4000x3000像素,則經過上述影像分割處理,可得到40*30個感興趣區域。
接著,運算裝置100係統計在第一濾波影像中之各個感興趣區域之各像素的像素值以產生各個感興趣區域對應的直方圖(histogram)。舉例來説,運算裝置100可將在各個感興趣區域中之各像素的像素值由低至高進行排列,並且設定一預定截止比例。舉例來説,若截止比例為99%,則表示運算裝置100會計算各個感興趣區域之直方圖中在99%至100%的像素值之平均值,並設定該平均值為該感興趣區域之閾值。在另一些實施例中,截止比例可反向設定為1%,且運算裝置100會計算各個感興趣區域之直方圖中在前1%的像素值之平均值,並設定該平均值為該感興趣區域之閾值。
第2C圖為第一濾波影像20之中心感興趣區域21C之像素值的直方圖,且運算裝置100可計算出中心感興趣區域21C之直方圖在前1%像素值之平均值為0.08,並設定平均值為中心感興趣區域21C相應的閾值。
當運算裝置100依據上述方式計算出各個感興趣區域相應的閾值後,即可建立一閾值圖(threshold map),其中閾值圖為二維陣列,且其尺寸對應於第一濾波影像20中之感興趣區域的數量。舉例來説,若第一濾波影像20被分割為40*30個感興趣區域,則閾值圖即包含40x30個閾值,各閾值分別對應於各感興趣區域。
當運算裝置100已建立閾值圖後,運算裝置100即可將第二濾波影像與閾值圖進行比對以產生各像素的判斷結果。舉例來説,若第二濾波影像同樣被分割為40*30個感興趣區域,則各個感興趣區域中的各像素會分別與閾值圖中對應位置的閾值進行比較。若在第二濾波影像之特定像素的像素值大於或等於對應感興趣區域的閾值,則運算裝置100會判斷該特定像素為污點。因此,運算裝置100可依據各像素之判斷結果以建立近眼顯示裝置200的缺陷狀態圖(例如為二維陣列),其中缺陷狀態圖之各數值係對應於待測影像之各像素的污點判斷結果。舉例來説,各像素之判斷結果為二值化的數值,例如為0或1,其中1可表示對應的像素為污點,0則表示對應的像素為正常像素。
需特別注意的是,對於測試點來説,在第一濾波影像中,中心區域的測試點之像素值會比外圍區域的測試點之像素值大,且經過直方圖及閾值計算後,閾值圖中的各數值的大小亦與距離影像中心點之距離有關。意即愈接近影像中心點的感興趣區域,其相應的閾值會愈大,愈遠離影像中心點的感興趣區域,其相應的閾值會愈小。因此,本發明之缺陷偵測方法可更準確地判斷出在近眼顯示裝置200中之缺陷(例如污點)。
本發明之缺陷偵測系統更可用於偵測近眼顯示裝置200之亮點。舉例來説,亮點是顯示面板上的常見缺陷,例如當顯示面板應關閉特定像素時,該特定像素卻恆亮,此時可將該特定像素稱為亮點。隨著缺陷程度不同,亮點的亮度也會不同。一般來説,顯示面板的供應商可針對顯示面板的亮點提供檢測標準,例如在0到0.5之視野範圍內的亮點亮度不能超過灰階值55,且0.5到1.0之視野範圍內的亮點亮度不能超過灰階值120。上述視野範圍之數值是指顯示面板之中心點至左/右邊緣及上/下邊緣的距離比例。假定左眼顯示面板210及右眼顯示面板220之水平解析度及垂直解析度分別為W及H,若視野範圍之數值為0到0.5,表示該視野範圍是從顯示面板之中心點左右延伸
,且上下延伸
,依此類推。
傳統的亮點檢測可分為人工目檢及電腦視覺檢測。然而,人工目標需要訓練檢測員,而且是人為主觀檢測,耗時且不精準。電腦視覺檢測則是在顯示面板顯示一固定灰階的測試影像,例如檢測目標為灰階值為55的亮點,則可將測試影像之灰階值設定為30,接著可透過工業相機拍攝顯示面板播放測試影像之畫面並利用電腦進行亮點偵測。然而,利用傳統電腦視覺技術進行亮點檢測仍然會遇到污點檢測的問題,且在近眼顯示裝置中,相機拍攝到的影像之外圍區域會較模糊,並無法利用固定閾值的方式來判定亮點。
第3圖為依據本發明一實施例中用於亮點偵測之測試圖案影像的示意圖。
在一實施例中,本發明中缺陷偵測系統亦可用於亮點偵測。因為相機300是在近眼顯示裝置200組裝完成後才進行上述拍攝操作,所以若近眼顯示裝置200中之左眼顯示面板210及透鏡211、或是右眼顯示面板220及透鏡221中有灰塵或污損(即污點),都會影響到亮點偵測的結果。
舉例來説,在此實施例中,用於偵測亮點的測試圖案影像30可包括中心區域31及外圍區域32。中心區域31例如是0至0.5之視野範圍的區域,且其灰階值可固定為55(非限定)。外圍區域32例如是0.5至1之視野範圍的區域,且其灰階值可固定為120(非限定)。此外,測試圖案影像30同樣具有複數個測試點33覆蓋其上。需注意的是,在測試圖案影像30中的測試點可具有任意的亮度值(或灰階值),且可具有任意顏色、尺寸及分布。相機300可拍攝近眼顯示裝置200之左眼顯示面板210經過透鏡211後所呈現之測試圖案影像30以得到第一影像。
此外,近眼顯示裝置200再顯示完全無測試點的測試背景影像,且相機300可拍攝近眼顯示裝置200之左眼顯示面板210經過透鏡211後所呈現之上述測試背景影像以得到第二影像。
接著,運算裝置100可對第一影像及第二影像分別進行影像預處理以得到用於亮點偵測的參考影像及待測影像。舉例來説,運算裝置100可對第一影像進行影像模糊化處理(image blurring process)以得到模糊化第一影像(blurred first image),並且將第一影像減去模糊化第一影像以得到第一差值影像。
詳細而言,在進行亮點偵測之前,運算裝置100需要先排除近眼顯示裝置200中之污點。若近眼顯示裝置200中之左眼顯示面板210及透鏡211、或是右眼顯示面板220及透鏡221中有灰塵或污損(即污點),則污點在第一影像中對應的一或多個像素之像素值會接近0,故污點之像素值相對於周圍像素之灰階值(例如55或120)的變化極大。此外,上述影像模糊化處理例如可對第一影像中之各像素及其周圍像素套用低通濾波器,例如可採用一或多階的有限響應濾波器(finite impulse response filter)、高斯濾波器等等,但本發明並不限於此。因此,在第一影像中之污點像素及其周圍像素的像素值可被平滑化(smoothed),但是在平滑化後的污點像素之灰階值會略小於污點之對應位置的背景像素之灰階值。當運算裝置100將第一影像減去模糊化第一影像後,在污點像素的位置的差值會小於0,故運算裝置100可從第一差值影像中找出污點像素的位置,並且將第一差值影像中小於0的像素進行像素修剪處理(pixel clipping process)以得到第一修剪差值影像,例如可將第一差值影像中小於0的像素由在第一影像中之平滑區(即灰階值無劇烈變化的區域)的差值像素取代、或是將第一差值影像中小於0的像素直接設定為0以得到第一修剪差值影像。
類似地,運算裝置100可對第二影像進行影像模糊化處理(image blurring process)以得到模糊化第二影像(blurred first image),並且將第二影像減去模糊化第二影像以得到第二差值影像。運算裝置100可從第二差值影像中找出污點像素的位置,並且將第二差值影像中小於0的像素進行修剪處理(clipping process)以得到第二修剪差值影像,例如可將第二差值影像中小於0的像素由在第二影像中之平滑區(即灰階值無劇烈變化的區域)的差值像素取代、或是將第二差值影像中小於0的像素直接設定為0以得到第二修剪差值影像。在此實施例中,第一修剪差值影像及第二修剪差值影像即可視為在第2A-2C圖實施例之缺陷偵測流程中的參考影像及待測影像。
因此,當運算裝置100經由上述流程以得到參考影像及待測影像後,運算裝置100即可參考影像及待測影像執行在第2A-2C圖實施例之缺陷偵測流程,且最後產生的缺陷狀態圖之各數值係對應於待測影像之各像素的亮點判斷結果,且已排除污點。舉例來説,各像素之判斷結果為二值化的數值,例如為0或1,其中1可表示對應的像素為亮點,0則表示對應的像素為正常像素。
第4A圖為依據本發明一實施例中之用於近眼顯示裝置之缺陷偵測方法的流程圖。
在步驟S410,依據相機300對顯示面板分別播放測試圖案影像及測試背景影像時經過菲涅耳透鏡進行拍攝之第一影像及第二影像以得到參考影像及待測影像。舉例來説,近眼顯示裝置200之顯示面板(可為左眼顯示面板210或右眼顯示面板220)可播放測試圖案影像及測試背景影像,且相機300可拍攝該顯示面板經過菲涅耳透鏡(例如為對應的透鏡211或221)所呈現的測試圖案影像及測試背景影像以得到第一影像及第二影像。在一些實施例中,第一影像及第二影像係由使用不同曝光值的多張曝光影像進行影像融合所得到的高動態範圍(HDR)影像。在污點偵測流程中,運算裝置100可將第一影像及第二影像直接設定為參考影像及待測影像。在亮點偵測流程中,步驟S410可分為步驟S401至S404,其細節可參考第4B圖之流程。
在步驟S420,對參考影像及待測影像分別執行快速傅立葉轉換以得到頻域參考影像及頻域待測影像。
在步驟S430,對頻域參考影像及頻域待測影像套用一帶通濾波器以得到第一濾波影像及第二濾波影像。在第一濾波影像及第二濾波影像中之各像素的數值例如可為正規化(normalized)後的數值(介於0到1),且可反應出在原本的參考影像及待測影像中所對應的各像素之數值的變化程度。在一些實施例中,運算裝置100可對頻域參考影像及頻域待測影像套用一帶通濾波器及一去莫列波紋濾波器(demoire filter)以得到第一濾波影像及第二濾波影像。
在步驟S440,將第一濾波影像及第二濾波影像分別分割為複數個第一感興趣區域及複數個第二感興趣區域,其中該等第一感興趣區域對應該等第二感興趣區域。
在步驟S450,統計各個第一感興趣區域中之像素值以得到相應於各個第一感興趣區域的直方圖,並且計算在各個第一感興趣區域的直方圖中在一預定截止比例以上之像素值的平均值以做為各個第一感興趣區域相應的閾值。
在步驟S460,依據在第一濾波影像之各個第一感興趣區域相應的閾值以建立一閾值圖,並將在第二濾波影像之各個第二感興趣區域中之各像素與閾值圖中之相應閾值進行比較以產生在第二濾波影像之各像素相應的判斷結果。舉例來説,各個感興趣區域中的各像素會分別與閾值圖中對應位置的閾值進行比較。若在第二濾波影像之特定像素的像素值大於或等於對應感興趣區域的閾值,則運算裝置100會判斷該特定像素為污點。
在步驟S470,依據在第二濾波影像之各像素相應的判斷結果以建立近眼顯示裝置200的缺陷狀態圖。舉例來説,缺陷狀態圖之各數值係對應於待測影像之各像素的污點判斷結果。舉例來説,各像素之判斷結果為二值化的數值,例如為0或1,其中1可表示對應的像素為污點,0則表示對應的像素為正常像素。
第4B圖為本發明第4A圖實施例中之步驟S410的流程圖。請同時參考第3圖及第4A-4B圖。
在亮點偵測流程中,步驟S410可分為步驟S401至S404。意即,運算裝置100可對第一影像及第二影像分別進行影像預處理以得到用於亮點偵測的參考影像及待測影像。
在步驟S401,對第一影像及第二影像進行影像模糊化處理以得到模糊化第一影像及模糊化第二影像。舉例來説,在進行亮點偵測之前,運算裝置100需要先排除近眼顯示裝置200中之污點。若近眼顯示裝置200中之左眼顯示面板210及透鏡211、或是右眼顯示面板220及透鏡221中有灰塵或污損(即污點),則污點在第一影像中對應的一或多個像素之像素值會接近0,故污點之像素值相對於周圍像素之灰階值(例如55或120)的變化極大。經過影像模糊化處理後,在第一影像及第二影像中之污點像素及其周圍像素的像素值可被平滑化(smoothed),但是在平滑化後的像素之灰階值會略小於污點之對應位置的像素之灰階值。
在步驟S402,將第一影像及第二影像分別減去模糊化第一影像及模糊化第二影像以得到第一差值影像及第二差值影像。舉例來説,平滑化後的污點像素之灰階值會略小於污點之對應位置的背景像素之灰階值。因此,運算裝置100可判斷在第一差值影像及第二差值影像中小於0之像素即為污點像素的位置。
在步驟S403,將第一差值影像及第二差值影像中之小於0的像素值進行像素修剪處理以分別得到第一修剪差值影像及第二修剪差值影像。為了要排除污點對於亮點偵測的影像,運算裝置100可將將第一差值影像及第二差值影像中之小於0的像素值在第一影像中之平滑區(即灰階值無劇烈變化的區域)的差值像素取代、或是將第一差值影像中小於0的像素直接設定為0。
在步驟S404,將第一修剪差值影像及第二修剪差值影像設定為參考影像及待測影像。
綜上所述,本發明係提供一種運算裝置及用於近眼顯示裝置之缺陷偵測方法,其可解決近眼顯示裝置所顯示的影像在外圍區域會有影像模糊而造成污點偵測之誤判的情況,並且可搭配不同的測試圖案影像以調整不同的亮點偵測標準。因此,本發明所提供的運算裝置及用於近眼顯示裝置之缺陷偵測方法可更精確地判斷出近眼顯示裝置之缺陷(包含污點及亮點),以確保近眼顯示裝置之出廠品質。
本發明之方法,或特定型態或其部份,可以以程式碼的型態包含於實體媒體,如軟碟、光碟片、硬碟、或是任何其他機器可讀取(如電腦可讀取)儲存媒體,其中,當程式碼被機器,如電腦載入且執行時,此機器變成用以參與本發明之裝置或系統。本發明之方法、系統與裝置也可以以程式碼型態透過一些傳送媒體,如電線或電纜、光纖、或是任何傳輸型態進行傳送,其中,當程式碼被機器,如電腦接收、載入且執行時,此機器變成用以參與本發明之裝置或系統。當在一般用途處理器實作時,程式碼結合處理器提供一操作類似於應用特定邏輯電路之獨特裝置。
本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
10:缺陷偵測系統
11:測試圖案影像
12:測試點
20:第一濾波影像
21:感興趣區域
21C:中心感興趣區域
30: 測試圖案影像
31:中心區域
32:外圍區域
33:測試點
100:運算裝置
110:處理器
130:系統記憶體
140:非揮發性記憶體
141:缺陷偵測程式
200:近眼顯示裝置
210:左眼顯示面板
211、221:透鏡
220:右眼顯示面板
230:儲存單元
240:影像緩衝器
250:顯示控制器
260:傳輸介面
270:外殼
300:相機
S401-S404、S410-S470:步驟
第1A圖為依據本發明一實施例中之缺陷偵測系統的方塊圖。
第1B圖為依據本發明第1A圖之實施例中之利用相機拍攝近眼顯示裝置之影像的示意圖。
第2A圖為依據本發明一實施例中之測試圖案影像的示意圖。
第2B圖為依據本發明第2A圖實施例中之第一濾波影像的示意圖。
第2C圖為依據本發明第2A圖實施例中第一濾波影像之中心感興趣區域之像素值的直方圖。
第3圖為依據本發明一實施例中用於亮點偵測之測試圖案影像的示意圖。
第4A圖為依據本發明一實施例中之用於近眼顯示裝置之缺陷偵測方法的流程圖。
第4B圖為本發明第4A圖實施例中之步驟S410的流程圖。
S410-S470:步驟
Claims (10)
- 一種用於近眼顯示裝置之缺陷偵測方法,該近眼顯示裝置包括一顯示面板及一菲涅耳透鏡,該方法包括: 依據一相機對該顯示面板分別播放測試圖案影像及測試背景影像時經過該菲涅耳透鏡進行拍攝之第一影像及第二影像以得到參考影像及待測影像; 對該參考影像及該待測影像分別執行快速傅立葉轉換以得到頻域參考影像及頻域待測影像; 對該頻域參考影像及該頻域待測影像分別套用一帶通濾波器以得到第一濾波影像及第二濾波影像; 將該第一濾波影像及該第二濾波影像分別分割為複數個第一感興趣區域及複數個第二感興趣區域,其中該等第一感興趣區域對應該等第二感興趣區域; 統計各個第一感興趣區域中之像素值以得到相應於各個第一感興趣區域的直方圖,並且計算在各個第一感興趣區域的直方圖中在一預定截止比例以上之像素值的平均值以做為各個第一感興趣區域相應的閾值; 依據在該第一濾波影像之各個第一感興趣區域相應的該閾值以建立一閾值圖,並將在該第二濾波影像之各個第二感興趣區域中之各像素與該閾值圖中相應的該閾值進行比較以產生在該第二濾波影像之各像素相應的判斷結果;以及 依據在該第二濾波影像之各像素相應的該判斷結果以建立該近眼顯示裝置的缺陷狀態圖。
- 如請求項1之用於近眼顯示裝置之缺陷偵測方法,其中該缺陷偵測方法係執行污點偵測,且該第一影像及該第二影像分別為該參考影像及該待測影像。
- 如請求項2之用於近眼顯示裝置之缺陷偵測方法,其中該測試背景影像為一全白影像,且該測試圖案影像為該測試背景影像覆蓋複數個測試點。
- 如請求項2之用於近眼顯示裝置之缺陷偵測方法,其中該第一影像及該第二影像係分別由複數張第一曝光影像及複數張第二曝光影像經由影像融合所得到的高動態範圍影像,且該等第一曝光影像及該等第二曝光影像係在該近眼顯示裝置分別播放該測試圖案影像及該測試背景影像時由該相機使用不同曝光值拍攝而得。
- 如請求項1之用於近眼顯示裝置之缺陷偵測方法,其中該缺陷偵測方法係執行亮點偵測,且該測試背景影像包括一中心區域及一外圍區域,且該中心區域及該外圍區域分別具有第一灰階值及第二灰階值,且該第二灰階值大於該第一灰階值,且該測試圖案影像為該測試背景影像覆蓋複數個測試點。
- 如請求項5之用於近眼顯示裝置之缺陷偵測方法,其中該中心區域為該測試背景影像之0至0.5之視野範圍的區域,且該外圍區域為該測試背景影像之0.5至1之視野範圍的區域。
- 如請求項5之用於近眼顯示裝置之缺陷偵測方法,其中該第一影像及該第二影像係分別由複數張第一曝光影像及複數張第二曝光影像經由影像融合所得到的高動態範圍影像,且該等第一曝光影像及該等第二曝光影像係在該近眼顯示裝置分別播放該測試圖案影像及該測試背景影像時由該相機使用不同曝光值拍攝而得。
- 如請求項5之用於近眼顯示裝置之缺陷偵測方法,其中依據該相機對該近眼顯示裝置分別播放測試圖案影像及測試背景影像時進行拍攝之第一影像及第二影像以得到參考影像及待測影像之步驟包括: 對該第一影像及該第二影像進行影像模糊化處理以得到模糊化第一影像及模糊化第二影像; 將該第一影像及該第二影像分別減去該模糊化第一影像及該模糊化第二影像以得到第一差值影像及第二差值影像; 將該第一差值影像及該第二差值影像中之小於0的像素值進行像素修剪處理以分別得到第一修剪差值影像及第二修剪差值影像;以及 將該第一修剪差值影像及該第二修剪差值影像設定為該參考影像及該待測影像。
- 如請求項1之用於近眼顯示裝置之缺陷偵測方法,其中各個第一感興趣區域相應的該閾值係隨著各個第一感興趣區域距離該第一濾波影像之中心點的距離而變小。
- 一種運算裝置,用於偵測一近眼顯示裝置之缺陷,該近眼顯示裝置包括一顯示面板及一菲涅耳透鏡,該運算裝置包括: 一非揮發性記憶體,用以儲存一缺陷偵測程式;以及 一處理器,用以執行該缺陷偵測程式以執行下列步驟: 依據一相機對該顯示面板分別播放測試圖案影像及測試背景影像時經過該菲涅耳透鏡進行拍攝之第一影像及第二影像以得到參考影像及待測影像; 對該參考影像及該待測影像分別執行快速傅立葉轉換以得到頻域參考影像及頻域待測影像; 對該頻域參考影像及該頻域待測影像分別套用一帶通濾波器以得到第一濾波影像及第二濾波影像; 將該第一濾波影像及該第二濾波影像分別分割為複數個第一感興趣區域及複數個第二感興趣區域,其中該等第一感興趣區域對應該等第二感興趣區域; 統計各個第一感興趣區域中之像素值以得到相應於各個第一感興趣區域的直方圖,並且計算在各個第一感興趣區域的直方圖中在一預定截止比例以上之像素值的平均值以做為各個第一感興趣區域相應的閾值; 依據在該第一濾波影像之各個第一感興趣區域相應的該閾值以建立一閾值圖,並將在該第二濾波影像之各個第二感興趣區域中之各像素與該閾值圖中相應的該閾值進行比較以產生在該第二濾波影像之各像素相應的判斷結果;以及 依據在該第二濾波影像之各像素相應的該判斷結果以建立該近眼顯示裝置的缺陷狀態圖。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109146757A TWI751869B (zh) | 2020-12-30 | 2020-12-30 | 運算裝置及用於近眼顯示裝置之缺陷偵測方法 |
CN202110074515.6A CN114764779B (zh) | 2020-12-30 | 2021-01-20 | 运算装置及用于近眼显示装置的缺陷检测方法 |
US17/215,835 US11748856B2 (en) | 2020-12-30 | 2021-03-29 | Computer apparatus and method for detecting defects in near-eye display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109146757A TWI751869B (zh) | 2020-12-30 | 2020-12-30 | 運算裝置及用於近眼顯示裝置之缺陷偵測方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI751869B true TWI751869B (zh) | 2022-01-01 |
TW202226828A TW202226828A (zh) | 2022-07-01 |
Family
ID=80809213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109146757A TWI751869B (zh) | 2020-12-30 | 2020-12-30 | 運算裝置及用於近眼顯示裝置之缺陷偵測方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11748856B2 (zh) |
CN (1) | CN114764779B (zh) |
TW (1) | TWI751869B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230030126A (ko) * | 2021-08-24 | 2023-03-06 | 삼성디스플레이 주식회사 | 표시 장치 및 이의 구동 방법 |
US20240070056A1 (en) * | 2022-08-30 | 2024-02-29 | Baidu Usa Llc | Manufacture test system for computation hardware used in driverless vehicle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5513275A (en) * | 1993-01-12 | 1996-04-30 | Board Of Trustees Of The Leland Stanford Junior University | Automated direct patterned wafer inspection |
CN101532926A (zh) * | 2008-12-12 | 2009-09-16 | 齐齐哈尔华工机床制造有限公司 | 冲击试样自动加工装置在线检测视觉系统及其图像处理方法 |
US7769243B2 (en) * | 2004-04-27 | 2010-08-03 | Japan Science And Technology Agency | Method and apparatus for image inspection |
CN104091341A (zh) * | 2014-07-18 | 2014-10-08 | 厦门美图之家科技有限公司 | 一种基于显著性检测的图像模糊检测方法 |
US20180081092A1 (en) * | 2016-09-16 | 2018-03-22 | Valve Corporation | Optical system for head-mounted display system |
TW202034282A (zh) * | 2019-03-07 | 2020-09-16 | 日商斯庫林集團股份有限公司 | 代表色決定方法、檢查裝置、檢查方法以及程式產品 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002319621A1 (en) * | 2001-07-17 | 2003-03-03 | Amnis Corporation | Computational methods for the segmentation of images of objects from background in a flow imaging instrument |
KR101633893B1 (ko) * | 2010-01-15 | 2016-06-28 | 삼성전자주식회사 | 다중노출 영상을 합성하는 영상합성장치 및 방법 |
KR102163034B1 (ko) * | 2013-12-03 | 2020-10-07 | 삼성전자주식회사 | 디스플레이의 불량 화소를 보상하기 위한 방법, 전자 장치 및 저장 매체 |
JPWO2016194177A1 (ja) * | 2015-06-03 | 2018-06-14 | オリンパス株式会社 | 画像処理装置、内視鏡装置及び画像処理方法 |
US9979956B1 (en) * | 2016-06-09 | 2018-05-22 | Oculus Vr, Llc | Sharpness and blemish quality test subsystem for eyecup assemblies of head mounted displays |
CN109919933B (zh) * | 2019-03-08 | 2023-08-29 | 歌尔光学科技有限公司 | Vr设备及其画面检测方法、装置、计算机可读存储介质 |
US11676293B2 (en) * | 2020-11-25 | 2023-06-13 | Meta Platforms Technologies, Llc | Methods for depth sensing using candidate images selected based on an epipolar line |
-
2020
- 2020-12-30 TW TW109146757A patent/TWI751869B/zh active
-
2021
- 2021-01-20 CN CN202110074515.6A patent/CN114764779B/zh active Active
- 2021-03-29 US US17/215,835 patent/US11748856B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5513275A (en) * | 1993-01-12 | 1996-04-30 | Board Of Trustees Of The Leland Stanford Junior University | Automated direct patterned wafer inspection |
US7769243B2 (en) * | 2004-04-27 | 2010-08-03 | Japan Science And Technology Agency | Method and apparatus for image inspection |
CN101532926A (zh) * | 2008-12-12 | 2009-09-16 | 齐齐哈尔华工机床制造有限公司 | 冲击试样自动加工装置在线检测视觉系统及其图像处理方法 |
CN104091341A (zh) * | 2014-07-18 | 2014-10-08 | 厦门美图之家科技有限公司 | 一种基于显著性检测的图像模糊检测方法 |
US20180081092A1 (en) * | 2016-09-16 | 2018-03-22 | Valve Corporation | Optical system for head-mounted display system |
TW202034282A (zh) * | 2019-03-07 | 2020-09-16 | 日商斯庫林集團股份有限公司 | 代表色決定方法、檢查裝置、檢查方法以及程式產品 |
Also Published As
Publication number | Publication date |
---|---|
US20220207664A1 (en) | 2022-06-30 |
CN114764779B (zh) | 2024-10-11 |
US11748856B2 (en) | 2023-09-05 |
TW202226828A (zh) | 2022-07-01 |
CN114764779A (zh) | 2022-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108171673B (zh) | 图像处理方法、装置、车载抬头显示系统及车辆 | |
US20170186139A1 (en) | Image processing method for detail enhancement and noise reduction | |
CN101210890B (zh) | 缺陷检测装置及方法、图像传感器器件和模块 | |
JP5010001B2 (ja) | 立体映像ディスプレイパネルの評価方法およびシステム | |
TWI751869B (zh) | 運算裝置及用於近眼顯示裝置之缺陷偵測方法 | |
TWI759669B (zh) | 顯示畫面檢測方法與顯示畫面檢測系統 | |
JP5176014B2 (ja) | ディスプレーの多角度計測システム及び方法 | |
CN108573664B (zh) | 量化拖尾测试方法、装置、存储介质及系统 | |
GB2454096A (en) | Detecting Light Source Direction from Single Image | |
JP2005331929A5 (zh) | ||
US10375383B2 (en) | Method and apparatus for adjusting installation flatness of lens in real time | |
JP2012098045A (ja) | クラック検出装置及びクラック検出プログラム | |
WO2014013792A1 (ja) | ノイズ評価方法、画像処理装置、撮像装置およびプログラム | |
JP2022533848A (ja) | カメラ部品が損傷しているかどうかを判定するためのシステムおよび方法 | |
CN111031311A (zh) | 成像质量检测方法、装置、电子设备及可读存储介质 | |
CN114219758A (zh) | 缺陷检测方法、系统、电子设备和计算机可读存储介质 | |
CN115345774A (zh) | 一种红外图像与可见光图像的融合方法和系统 | |
US8797443B2 (en) | Method for checking camera | |
TW201742462A (zh) | 不均勻性評估方法及不均勻性評估裝置 | |
CN105427315B (zh) | 数字仪表图像位置测试方法及装置 | |
KR20140073259A (ko) | 표시장치의 얼룩 검출 장치 및 방법 | |
CN116958058A (zh) | 镜头脏污检测方法、装置及图像检测设备 | |
CN108426702B (zh) | 增强现实设备的色散测量装置及方法 | |
JP2006226837A (ja) | しみ検査方法及びしみ検査装置 | |
TWI677231B (zh) | 顯示器檢測方法與系統 |