TWI751697B - Method for manufacturing trench type semiconductor device - Google Patents

Method for manufacturing trench type semiconductor device Download PDF

Info

Publication number
TWI751697B
TWI751697B TW109131598A TW109131598A TWI751697B TW I751697 B TWI751697 B TW I751697B TW 109131598 A TW109131598 A TW 109131598A TW 109131598 A TW109131598 A TW 109131598A TW I751697 B TWI751697 B TW I751697B
Authority
TW
Taiwan
Prior art keywords
layer
oxide layer
trench
gate
angstroms
Prior art date
Application number
TW109131598A
Other languages
Chinese (zh)
Other versions
TW202213780A (en
Inventor
林昭言
Original Assignee
富鼎先進電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富鼎先進電子股份有限公司 filed Critical 富鼎先進電子股份有限公司
Priority to TW109131598A priority Critical patent/TWI751697B/en
Application granted granted Critical
Publication of TWI751697B publication Critical patent/TWI751697B/en
Publication of TW202213780A publication Critical patent/TW202213780A/en

Links

Images

Abstract

A method for manufacturing a trench type semiconductor device includes the following steps. First, an epitaxial layer is formed on a substrate, then a trench is formed in the epitaxial layer, and a gate structure is formed in the trench. The gate structure includes an upper gate and a lower gate, and an intermediate insulating portion, and the intermediate insulating portion is located in and above the upper gate.

Description

溝槽式半導體元件製造方法Manufacturing method of trench semiconductor device

本發明係有關於一種半導體元件製造方法。特別是有關於一種溝槽式半導體元件製造方法。The present invention relates to a method for manufacturing a semiconductor element. In particular, it relates to a method of manufacturing a trench semiconductor device.

功率金氧半場效電晶體(Power Metal Oxide Semiconductor Field Effect Transistor;Power MOSFET),簡稱為功率電晶體,目前以廣泛使用在類比電路與數位電路的場效電晶體。功率金氧半場效電晶體具有非常低的導通電阻,且具有切換速度非常快的優點,所以,目前已成為功率元件的主流。Power Metal Oxide Semiconductor Field Effect Transistor (Power MOSFET), referred to as power transistor for short, is currently widely used in analog circuits and digital circuits as field effect transistors. Power MOSFETs have very low on-resistance and have the advantages of very fast switching speed, so they have become the mainstream of power components at present.

功率金氧半場效電晶體的構造,可以根據電流流通路徑分類,電流在元件表面平行流通的稱為水平式,電流為垂直流通的稱為垂直式。垂直式功率金氧半場效電晶體的汲極端都是做在元件下端,因此,單位晶片面積的電阻可以減少。The structure of the power metal-oxide semi-field effect transistor can be classified according to the current flow path. The current flowing in parallel on the surface of the element is called horizontal type, and the current flowing vertically is called vertical type. The drain terminal of the vertical power MOSFET is made at the lower end of the element, so the resistance per unit chip area can be reduced.

此外,溝槽式閘極功率金氧半場效電晶體可以降低導通電阻,成為高頻低壓的功率元件主流。對電子電力而言,降低導通電阻以及閘極電容,有助於提升功率元件的反應速度以及提升產品的品質。In addition, trench gate power MOSFETs can reduce on-resistance and become the mainstream of high-frequency and low-voltage power components. For electronic power, reducing on-resistance and gate capacitance helps to improve the response speed of power components and improve product quality.

發明內容旨在提供本揭示內容的簡化摘要,以使閱讀者對本揭示內容具備基本的理解。此發明內容並非本揭示內容的完整概述,且其用意並非在指出本發明實施例的重要/關鍵元件或界定本發明的範圍。SUMMARY The purpose of this summary is to provide a simplified summary of the disclosure to give the reader a basic understanding of the disclosure. This summary is not an exhaustive overview of the disclosure, and it is not intended to identify key/critical elements of embodiments of the invention or to delineate the scope of the invention.

本發明內容之一目的是在提供一種溝槽式半導體元件製造方法,可以進一步降低半導體元件的輸入電容值以及反向傳輸電容,並提升輸出電容,有效改善半導體元件的開關速度。One objective of the present invention is to provide a method for manufacturing a trench semiconductor element, which can further reduce the input capacitance and reverse transfer capacitance of the semiconductor element, increase the output capacitance, and effectively improve the switching speed of the semiconductor element.

為達上述目的,本發明內容之一技術態樣係關於一種溝槽式半導體元件製造方法包含有下列步驟,首先,先形成一磊晶層於一基材上,然後形成一溝槽於磊晶層中,以及形成一閘極結構於溝槽之中,其中閘極結構包含有一上方閘極、一下方閘極以及一中間絕緣部,且中間絕緣部位於上方閘極之中間以及上方。In order to achieve the above-mentioned purpose, one technical aspect of the present invention relates to a method for manufacturing a trench semiconductor device including the following steps. First, an epitaxial layer is formed on a substrate, and then a trench is formed in the epitaxial layer. layer, and a gate structure is formed in the trench, wherein the gate structure includes an upper gate, a lower gate and an intermediate insulating portion, and the intermediate insulating portion is located between and above the upper gate.

在一些實施例中,溝槽式半導體元件製造方法更包含有沉積一第一氧化層於溝槽之中,以及沉積一第一多晶矽層於第一氧化層之上以及溝槽之中。In some embodiments, the method for fabricating the trench semiconductor device further includes depositing a first oxide layer in the trench, and depositing a first polysilicon layer on the first oxide layer and in the trench.

在一些實施例中,第一氧化層的厚度約為2000埃(Ångström;Å)到3000埃之間,且第一多晶矽層約為3000埃到8000埃之間,並填滿溝槽。In some embodiments, the thickness of the first oxide layer is between about 2000 angstroms (Ångström; Å) and 3000 angstroms, and the thickness of the first polysilicon layer is between about 3000 angstroms and 8000 angstroms, and fills the trenches.

在一些實施例中,溝槽式半導體元件製造方法更包含有回蝕第一多晶矽層至第一氧化層的上表面的下方約0.7微米(micrometers)至1.2微米的位置。In some embodiments, the method for fabricating the trench semiconductor device further includes etching back the first polysilicon layer to a position about 0.7 micrometers to 1.2 micrometers below the upper surface of the first oxide layer.

在一些實施例中,溝槽式半導體元件製造方法更包含有回蝕第一氧化層至第一多晶矽層的上表面的下方約1000埃到1500埃的位置,以形成一第一介電層。In some embodiments, the method for fabricating the trench semiconductor device further includes etching back the first oxide layer to a position about 1000 angstroms to 1500 angstroms below the upper surface of the first polysilicon layer to form a first dielectric Floor.

在一些實施例中,溝槽式半導體元件製造方法更包含有氧化磊晶層與第一多晶矽層的表面,以形成一閘極氧化層,並利用閘極氧化層與第一介電層包覆下方閘極。In some embodiments, the method for fabricating the trench semiconductor device further includes oxidizing the surfaces of the epitaxial layer and the first polysilicon layer to form a gate oxide layer, and using the gate oxide layer and the first dielectric layer Cover the lower gate.

在一些實施例中,溝槽式半導體元件製造方法更包含有沉積一第二多晶矽層,以填滿溝槽,以及回蝕第二多晶矽層至閘極氧化層的上表面的下方約1000埃至1500埃的位置。In some embodiments, the method for fabricating the trench semiconductor device further includes depositing a second polysilicon layer to fill the trench, and etching back the second polysilicon layer to below the upper surface of the gate oxide layer About 1000 angstroms to 1500 angstroms.

在一些實施例中,溝槽式半導體元件製造方法更包含有沉積一第二氧化層,毯覆式(blanket)蝕刻第二氧化層,以在溝渠中的第二多晶矽層的上表面形成間隙壁,以及利用間隙壁為罩幕,自我對準蝕刻第二多晶矽層,以形成上方閘極。In some embodiments, the method for fabricating the trench semiconductor device further includes depositing a second oxide layer, and blanket etching the second oxide layer to form an upper surface of the second polysilicon layer in the trench. The spacer, and using the spacer as a mask, self-aligned etching of the second polysilicon layer to form an upper gate.

在一些實施例中,溝槽式半導體元件製造方法更包含有沉積一第三氧化層,回蝕第三氧化層與間隙壁,以形成一中間絕緣部,且中間絕緣部、閘極氧化層與第一介電層包覆上方閘極。In some embodiments, the method for fabricating the trench semiconductor device further includes depositing a third oxide layer, etching back the third oxide layer and the spacers to form an intermediate insulating portion, and the intermediate insulating portion, the gate oxide layer and the The first dielectric layer covers the upper gate electrode.

在一些實施例中,溝槽式半導體元件製造方法更包含有在磊晶層進行離子植入,並加熱進行離子趨入(drive in),以及使用一源極光罩,以定義一源極區。In some embodiments, the trench semiconductor device fabrication method further includes ion implantation in the epitaxial layer, heating for ion drive in, and using a source mask to define a source region.

在一些實施例中,溝槽式半導體元件製造方法更包含有形成一第二介電層於閘極氧化層之上,利用一接觸區光罩蝕刻第二介電層以及閘極氧化層,以形成複數個開口,以及沉積一金屬層於第二介電層之上以及開口之中。In some embodiments, the method for fabricating the trench semiconductor device further includes forming a second dielectric layer on the gate oxide layer, and etching the second dielectric layer and the gate oxide layer by using a contact region mask, so as to A plurality of openings are formed, and a metal layer is deposited on the second dielectric layer and in the openings.

因此,本發明所揭露之溝槽式半導體元件製造方法,可以製造功率金氧半電晶體,並藉由中間絕緣部有效地減少上方閘極的大小,且使用自我對準蝕刻製程,精確地形成上方閘極,使其位於第一介電層、中間絕緣部以及閘極氧化層之間,同時利用第一介電層以及閘極氧化層包覆下方閘極,有效地改善了閘極電容特性,並提升閘極的反應速度。Therefore, the method for manufacturing a trench semiconductor device disclosed in the present invention can manufacture a power MOSFET, effectively reduce the size of the upper gate through the intermediate insulating portion, and use a self-aligned etching process to accurately form The upper gate is located between the first dielectric layer, the intermediate insulating part and the gate oxide layer, and the lower gate is covered by the first dielectric layer and the gate oxide layer, which effectively improves the gate capacitance characteristics , and improve the gate response speed.

下文係舉實施例配合所附圖式進行詳細說明,但所提供之實施例並非用以限制本揭露所涵蓋的範圍,而結構運作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本揭露所涵蓋的範圍。另外,圖式僅以說明為目的,並未依照原尺寸作圖。為使便於理解,下述說明中相同元件或相似元件將以相同之符號標示來說明。The following examples are described in detail with the accompanying drawings, but the provided examples are not intended to limit the scope of the present disclosure, and the description of the structure and operation is not intended to limit the order of its execution. Any recombination of elements The structure and the resulting device with equal efficacy are all within the scope of the present disclosure. In addition, the drawings are for illustrative purposes only, and are not drawn on the original scale. For ease of understanding, the same or similar elements in the following description will be described with the same symbols.

另外,在全篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明外,通常具有每個用詞使用在此領域中、在此揭露之內容中與特殊內容中的平常意義。某些用以描述本揭露之用詞將於下或在此說明書的別處討論,以提供本領域技術人員在有關本揭露之描述上額外的引導。In addition, the terms (terms) used in the entire specification and the scope of the patent application, unless otherwise specified, usually have the ordinary meaning of each term used in this field, the content disclosed herein and the special content. . Certain terms used to describe the present disclosure are discussed below or elsewhere in this specification to provide those skilled in the art with additional guidance in describing the present disclosure.

於實施方式與申請專利範圍中,除非內文中對於冠詞有所特別限定,否則『一』與『該』可泛指單一個或複數個。而步驟中所使用之編號僅係用來標示步驟以便於說明,而非用來限制前後順序及實施方式。In the embodiments and the scope of the patent application, unless there is a special limitation on the article in the context, "a" and "the" may refer to a single or plural. The numbers used in the steps are only used to mark the steps for the convenience of description, and are not used to limit the sequence and implementation.

其次,在本文中所使用的用詞『包含』、『包括』、『具有』、『含有』等等,均為開放性的用語,即意指包含但不限於。Secondly, the terms "comprising", "including", "having", "containing" and the like used in this document are all open-ended terms, which means including but not limited to.

第1圖至第10圖係依照本發明一實施例所繪示的一種溝槽式半導體元件之製程步驟的局部剖面示意圖。參閱第1圖至第10圖,以說明溝槽式半導體元件製造方法。溝槽式半導體元件製造方法包含有下列步驟,首先,參閱第1圖,一磊晶層120形成於一基材110上,並在磊晶層120中,形成一溝槽122。在一些實施例中,基材110係為一N型半導體基材或P型半導體基材,以矽基材為例,N型導電性雜質為五價元素離子,例如磷離子或砷離子,而P型導電性雜質為三價元素離子,例如硼離子、鋁離子或鎵離子。FIG. 1 to FIG. 10 are partial cross-sectional schematic diagrams illustrating the process steps of a trench semiconductor device according to an embodiment of the present invention. Referring to FIG. 1 to FIG. 10, a method of fabricating a trench semiconductor device will be described. The fabrication method of the trench semiconductor device includes the following steps. First, referring to FIG. 1 , an epitaxial layer 120 is formed on a substrate 110 , and a trench 122 is formed in the epitaxial layer 120 . In some embodiments, the substrate 110 is an N-type semiconductor substrate or a P-type semiconductor substrate. Taking a silicon substrate as an example, the N-type conductive impurities are pentavalent element ions, such as phosphorus ions or arsenic ions, and The P-type conductivity impurities are trivalent element ions, such as boron ions, aluminum ions, or gallium ions.

此外,磊晶層120 (epitaxial layer)則具有和基材110相同的導電型,但磊晶層120的摻雜濃度一般低於基材110的摻雜濃度。當基材110具有高濃度的N型摻雜,而磊晶層120則可具有低濃度的N型摻雜,然本發明並不限定於此。In addition, the epitaxial layer 120 has the same conductivity type as the substrate 110 , but the doping concentration of the epitaxial layer 120 is generally lower than that of the substrate 110 . When the substrate 110 has a high concentration of N-type doping, the epitaxial layer 120 may have a low concentration of N-type doping, but the invention is not limited to this.

在一些實施例中,溝槽122的寬度約為0.5微米(micrometers)至1微米之間,而溝槽122的深度則約為1.5微米至2.0微米之間。In some embodiments, the width of the trenches 122 is between about 0.5 micrometers and 1 micrometer, and the depth of the trenches 122 is between about 1.5 micrometers and 2.0 micrometers.

接著,參閱第2圖,沉積一第一氧化層130於溝槽122之中,然後沉積一第一多晶矽層140於第一氧化層130之上與溝槽122之中。在一些實施例中,第一氧化層130的厚度約為2000埃(Ångström;Å)到3000埃之間,而第一多晶矽層140約為3000埃到8000埃之間,並用以填滿溝槽122。Next, referring to FIG. 2 , a first oxide layer 130 is deposited in the trench 122 , and then a first polysilicon layer 140 is deposited on the first oxide layer 130 and in the trench 122 . In some embodiments, the thickness of the first oxide layer 130 is about 2000 angstroms (Ångström; Å) to 3000 angstroms, and the thickness of the first polysilicon layer 140 is about 3000 angstroms to 8000 angstroms, and is used for filling Groove 122 .

參閱第3圖,回蝕第一多晶矽層140,使其上表面低於第一氧化層130的上表面約0.7微米至1.2微米之間。然後,回蝕第一氧化層130至第一多晶矽層140的上表面的下方約1000埃到1500埃的位置,以形成一第一介電層132。在一些實施例中,回蝕第一氧化層130係使用濕式蝕刻,且將溝槽122側邊上的第一氧化層130清除,使其低於第一多晶矽層140的上表面約1000埃到1500埃的位置,並露出第一多晶矽層140與磊晶層120的表面。Referring to FIG. 3 , the first polysilicon layer 140 is etched back so that the upper surface of the first polysilicon layer 140 is lower than the upper surface of the first oxide layer 130 by about 0.7 μm to 1.2 μm. Then, the first oxide layer 130 is etched back to a position about 1000 angstroms to 1500 angstroms below the upper surface of the first polysilicon layer 140 to form a first dielectric layer 132 . In some embodiments, wet etching is used to etch back the first oxide layer 130 , and the first oxide layer 130 on the side of the trench 122 is removed so that it is lower than the upper surface of the first polysilicon layer 140 by about 1000 angstroms to 1500 angstroms, and the surfaces of the first polysilicon layer 140 and the epitaxial layer 120 are exposed.

參閱第4圖,接著將第一多晶矽層140與磊晶層120露出的表面氧化,以形成一閘極氧化層150。接著,沉積一第二多晶矽層160,以填滿溝槽122的空間。在一些實施例中,閘極氧化層150的厚度約為500埃至1000埃。而第二多晶矽層160的厚度約為3000埃至8000埃,並填滿溝槽122的空間。在一些實施例中,閘極氧化層150包含一第一部分152以及一第二部分154,第一部分152係由第一多晶矽層140露出的表面氧化所形成,而第二部分154係由磊晶層120露出的表面氧化所形成。閘極氧化層150之第一部分152與第一介電層132包覆下方閘極142,使下方閘極142密封於第一介電層132與閘極氧化層150之中。Referring to FIG. 4 , the exposed surfaces of the first polysilicon layer 140 and the epitaxial layer 120 are then oxidized to form a gate oxide layer 150 . Next, a second polysilicon layer 160 is deposited to fill the space of the trench 122 . In some embodiments, the thickness of the gate oxide layer 150 is about 500 angstroms to 1000 angstroms. The thickness of the second polysilicon layer 160 is about 3000 angstroms to 8000 angstroms and fills the space of the trench 122 . In some embodiments, the gate oxide layer 150 includes a first portion 152 and a second portion 154, the first portion 152 is formed by oxidizing the exposed surface of the first polysilicon layer 140, and the second portion 154 is formed by epitaxy The exposed surface of the crystal layer 120 is formed by oxidation. The first portion 152 of the gate oxide layer 150 and the first dielectric layer 132 cover the lower gate electrode 142 , so that the lower gate electrode 142 is sealed in the first dielectric layer 132 and the gate oxide layer 150 .

參閱第5圖,如圖中所示,回蝕第二多晶矽層160至閘極氧化層150的上表面的下方約1000埃至1500埃的位置,以形成一下凹多晶矽層162。接著,沉積一第二氧化層170,例如是厚度約為2000埃至3000埃之氧化矽層,以填滿溝槽122中之下凹多晶矽層162的凹陷部分。Referring to FIG. 5 , as shown in the figure, the second polysilicon layer 160 is etched back to a position about 1000 angstroms to 1500 angstroms below the upper surface of the gate oxide layer 150 to form a recessed polysilicon layer 162 . Next, a second oxide layer 170 , such as a silicon oxide layer with a thickness of about 2000 angstroms to 3000 angstroms, is deposited to fill the recessed portion of the recessed polysilicon layer 162 in the trench 122 .

參閱第6圖,如圖中所示,毯覆式(blanket)蝕刻第二氧化層170,以在溝槽122中的第二多晶矽層160所形成之下凹多晶矽層162的上表面形成間隙壁172。在一些實施例中,間隙壁172的長度約為1500埃到2200埃之間。Referring to FIG. 6, as shown in the figure, the second oxide layer 170 is blanket etched to form the upper surface of the concave polysilicon layer 162 formed by the second polysilicon layer 160 in the trench 122. Spacer 172 . In some embodiments, the length of the spacers 172 is between about 1500 angstroms and 2200 angstroms.

然後,參閱第7圖,如圖中所示,以間隙壁172為罩幕,自我對準蝕刻第二多晶矽層160所形成之下凹多晶矽層162,以形成所需的上方閘極164。Then, referring to FIG. 7, as shown in the figure, using the spacer 172 as a mask, the lower concave polysilicon layer 162 formed by self-aligned etching of the second polysilicon layer 160 is used to form the desired upper gate 164 .

然後,參閱第8圖,沉積一第三氧化層180於上方閘極164中間的開口處,以填滿溝槽122。在一些實施例中,第三氧化層180,例如是厚度約為3000埃至5000埃之氧化矽層,以填滿溝槽122。Then, referring to FIG. 8 , a third oxide layer 180 is deposited on the opening in the middle of the upper gate electrode 164 to fill the trench 122 . In some embodiments, the third oxide layer 180 is, for example, a silicon oxide layer with a thickness of about 3000 angstroms to 5000 angstroms to fill the trenches 122 .

參閱第9圖,回蝕前述之第三氧化層180以及間隙壁172,以形成一中間絕緣部230,其中,中間絕緣部230包含有回蝕第三氧化層180所形成之中間氧化層182,亦包含間隙壁172或回蝕後之殘留間隙壁174,其視回蝕的深度來決定,其均不脫離本發明之精神與保護範圍。Referring to FIG. 9, the aforementioned third oxide layer 180 and the spacer 172 are etched back to form an intermediate insulating portion 230, wherein the intermediate insulating portion 230 includes the intermediate oxide layer 182 formed by etching back the third oxide layer 180, It also includes the spacer 172 or the residual spacer 174 after the etch back, which is determined by the depth of the etch back, and does not deviate from the spirit and protection scope of the present invention.

在一些實施例中,中間絕緣部230、閘極氧化層150以及第一介電層132包覆上方閘極164。In some embodiments, the intermediate insulating portion 230 , the gate oxide layer 150 and the first dielectric layer 132 cover the upper gate 164 .

然後,進行離子植入,以在閘極結構220旁邊的磊晶層120進行離子植入,並進一步加熱進行離子趨入(drive in)。在一些實施例中,其係用硼(boron)等三價元素,進行P型離子植入,然後加熱以對硼等三價元素進行趨入。接著,使用一源極光罩,以定義一源極區190。在一些實施例中,使用源極光罩,以對源極區190進行離子植入,並進一步加熱進行離子趨入,例如是將砷(arsenic)、磷(phosphorous)、銻(antimony)等五價元素利用源極光罩遮蔽部分,以進行N型離子的植入,並加熱進行離子趨入。Then, ion implantation is performed to perform ion implantation on the epitaxial layer 120 next to the gate structure 220, and further heating is performed to perform ion drive in. In some embodiments, a P-type ion implantation is performed with a trivalent element such as boron, and then heated to induce the trivalent element such as boron. Next, a source mask is used to define a source region 190 . In some embodiments, a source mask is used for ion implantation of the source region 190 and further heating for ion implantation, such as pentavalent arsenic, phosphorous, antimony, etc. The element is partially shielded with a source mask for N-type ion implantation, and heated for ion implantation.

參閱第10圖,如圖中所示,接著在閘極氧化層150之上以及閘極結構220之上形成一第二介電層200,並利用一接觸區光罩(contact mask),以蝕刻第二介電層200以及閘極氧化層150,進而形成所需的開口156,然後沉積一金屬層210於第二介電層200之上以及開口156之中,然後利用光罩以及蝕刻製程,以形成所需的金屬線路。在一些實施例中,第二介電層200包含硼磷矽玻璃(Boro-phospho-silicate glass;BPSG),以作為一介電層,其厚度約為6000埃至10000埃。而金屬層210則可以是一鋁金屬層,其厚度約為3.0微米至5.0微米,然而,本發明並不限定於此。Referring to FIG. 10, as shown in the figure, a second dielectric layer 200 is then formed on the gate oxide layer 150 and on the gate structure 220, and a contact mask is used for etching The second dielectric layer 200 and the gate oxide layer 150 are formed to form the required openings 156, and then a metal layer 210 is deposited on the second dielectric layer 200 and in the openings 156, and then a photomask and an etching process are used. to form the desired metal lines. In some embodiments, the second dielectric layer 200 includes boro-phospho-silicate glass (BPSG) as a dielectric layer with a thickness of about 6000 angstroms to 10000 angstroms. The metal layer 210 can be an aluminum metal layer with a thickness of about 3.0 μm to 5.0 μm, however, the invention is not limited thereto.

在一些實施例中,前述之閘極結構220的上方閘極164形成於中間絕緣部230、閘極氧化層150以及第一介電層132之間,且中間絕緣部230可位於上方閘極164中間以及上方,而下方閘極142則包覆於第一介電層132以及閘極氧化層150之中。In some embodiments, the upper gate 164 of the aforementioned gate structure 220 is formed between the intermediate insulating portion 230 , the gate oxide layer 150 and the first dielectric layer 132 , and the intermediate insulating portion 230 may be located on the upper gate 164 The middle and upper, and lower gate electrodes 142 are encapsulated in the first dielectric layer 132 and the gate oxide layer 150 .

綜上所述,本發明所揭露之溝槽式半導體元件製造方法,可以生產功率金氧半電晶體,藉由中間絕緣部有效地減少上方閘極的體積大小,且利用間隙壁精確地形成上方閘極,並使上方閘極形成於第一介電層、中間絕緣部以及閘極氧化層之間,同時利用第一介電層以及閘極氧化層包覆下方閘極,因此,有效地提升汲極-源極擊穿電壓(drain-source breakdown voltage;BVDSS)並降低輸入電容 (input capacitance;Ciss)以及反向傳輸電容(reverse transfer capacitance;Crss),增加了輸出電容(output capacitance;Coss),改善了閘極電容特性,提升閘極的反應速度。To sum up, the method for manufacturing a trench semiconductor device disclosed in the present invention can produce power MOSFETs, effectively reduce the size of the upper gate by the intermediate insulating portion, and precisely form the upper gate by using the spacer The gate electrode is formed, and the upper gate electrode is formed between the first dielectric layer, the intermediate insulating portion and the gate oxide layer, and the lower gate electrode is covered by the first dielectric layer and the gate oxide layer, thus effectively improving the Drain-source breakdown voltage (BVDSS) and reduce input capacitance (Ciss) and reverse transfer capacitance (Crss), increase output capacitance (Coss) , improve the gate capacitance characteristics, improve the response speed of the gate.

雖然本揭露已以實施方式揭露如上,然其並非用以限定本揭露,任何本領域具通常知識者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。Although the present disclosure has been disclosed as above in embodiments, it is not intended to limit the present disclosure. Anyone with ordinary knowledge in the art can make various changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the present disclosure The scope of protection shall be determined by the scope of the appended patent application.

110:基材 120:磊晶層 122:溝槽 130:第一氧化層 132:第一介電層 140:第一多晶矽層 142:下方閘極 150:閘極氧化層 152:第一部分 154:第二部分 156:開口 160:第二多晶矽層 162:下凹多晶矽層 164:上方閘極 170:第二氧化層 172:間隙壁 174:殘留間隙壁 180:第三氧化層 182:中間氧化層 190:源極區 200:第二介電層 210:金屬層 220:閘極結構 230:中間絕緣部 110: Substrate 120: epitaxial layer 122: Groove 130: first oxide layer 132: first dielectric layer 140: first polysilicon layer 142: Lower gate 150: gate oxide layer 152: Part 1 154: Part Two 156: Opening 160: Second polysilicon layer 162: Recessed polysilicon layer 164: Upper gate 170: Second oxide layer 172: Spacer 174: Residual spacers 180: The third oxide layer 182: Intermediate oxide layer 190: source region 200: Second Dielectric Layer 210: Metal Layer 220: Gate structure 230: Intermediate insulation

為讓本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1圖至第10圖是依照本發明一實施例所繪示的一種溝槽式半導體元件之製程步驟的局部剖面示意圖。 In order to make the above and other objects, features, advantages and embodiments of the present disclosure more clearly understood, the accompanying drawings are described as follows: FIG. 1 to FIG. 10 are partial cross-sectional schematic diagrams illustrating the process steps of a trench semiconductor device according to an embodiment of the present invention.

110:基材 110: Substrate

120:磊晶層 120: epitaxial layer

132:第一介電層 132: first dielectric layer

142:下方閘極 142: Lower gate

150:閘極氧化層 150: gate oxide layer

156:開口 156: Opening

164:上方閘極 164: Upper gate

174:殘留間隙壁 174: Residual spacers

182:中間氧化層 182: Intermediate oxide layer

200:第二介電層 200: Second Dielectric Layer

210:金屬層 210: Metal Layer

230:中間絕緣部 230: Intermediate insulation

Claims (7)

一種溝槽式半導體元件製造方法,包含:形成一磊晶層於一基材上;形成一溝槽,於該磊晶層中;形成一閘極結構於該溝槽之中,其中該閘極結構包含,一上方閘極、一下方閘極以及一中間絕緣部,且該中間絕緣部位於該上方閘極之中間與上方;沉積一第一氧化層於該溝槽之中;沉積一第一多晶矽層於該第一氧化層之上以及該溝槽之中;回蝕該第一氧化層至該第一多晶矽層的上表面的下方,以形成一第一介電層;氧化該磊晶層與該第一多晶矽層的表面,以形成一閘極氧化層,並利用該閘極氧化層與該第一介電層包覆該下方閘極;沉積一第二多晶矽層,以填滿該溝槽;回蝕該第二多晶矽層至該閘極氧化層的上表面的下方;沉積一第二氧化層;毯覆式(blanket)蝕刻該第二氧化層,以在該溝槽中的該第二多晶矽層的上表面形成間隙壁;以及利用該間隙壁為罩幕,自我對準蝕刻該第二多晶矽層,以形成該上方閘極。 A method for manufacturing a trench type semiconductor device, comprising: forming an epitaxial layer on a substrate; forming a trench in the epitaxial layer; forming a gate structure in the trench, wherein the gate electrode The structure includes an upper gate electrode, a lower gate electrode and a middle insulating part, and the middle insulating part is located between and above the upper gate electrode; a first oxide layer is deposited in the trench; a first oxide layer is deposited A polysilicon layer is on the first oxide layer and in the trench; the first oxide layer is etched back to below the upper surface of the first polysilicon layer to form a first dielectric layer; oxidation Surfaces of the epitaxial layer and the first polysilicon layer to form a gate oxide layer, and the lower gate electrode is covered by the gate oxide layer and the first dielectric layer; a second polysilicon is deposited silicon layer to fill the trench; etch back the second polysilicon layer to below the upper surface of the gate oxide layer; deposit a second oxide layer; blanket etching the second oxide layer , forming a spacer on the upper surface of the second polysilicon layer in the trench; and using the spacer as a mask, self-aligning and etching the second polysilicon layer to form the upper gate. 如請求項1所述之溝槽式半導體元件製造方法,其中該第一氧化層的厚度約為2000埃到3000埃之間,且該第一多晶矽層約為3000埃到8000埃之間,並填滿該溝槽。 The method for fabricating a trench semiconductor device as claimed in claim 1, wherein the thickness of the first oxide layer is about 2000 angstroms to 3000 angstroms, and the thickness of the first polysilicon layer is about 3000 angstroms to 8000 angstroms , and fill the trench. 如請求項2所述之溝槽式半導體元件製造方法,更包含:回蝕該第一多晶矽層至該第一氧化層的上表面的下方約0.7微米(micrometers)至1.2微米的位置。 The method for fabricating a trench semiconductor device according to claim 2, further comprising: etching back the first polysilicon layer to a position about 0.7 micrometers to 1.2 micrometers below the upper surface of the first oxide layer. 如請求項3所述之溝槽式半導體元件製造方法,更包含:回蝕該第一氧化層至該第一多晶矽層的上表面的下方約1000埃到1500埃的位置,以形成該第一介電層。 The method for fabricating a trench semiconductor device according to claim 3, further comprising: etching back the first oxide layer to a position about 1000 angstroms to 1500 angstroms below the upper surface of the first polysilicon layer to form the first dielectric layer. 如請求項4所述之溝槽式半導體元件製造方法,更包含:回蝕該第二多晶矽層至該閘極氧化層的該上表面的下方約1000埃至1500埃的位置。 The method for fabricating a trench semiconductor device according to claim 4, further comprising: etching back the second polysilicon layer to a position about 1000 angstroms to 1500 angstroms below the upper surface of the gate oxide layer. 如請求項5所述之溝槽式半導體元件製造方法,更包含:沉積一第三氧化層;回蝕該第三氧化層與該間隙壁,以形成一中間絕緣部, 且該中間絕緣部、該閘極氧化層與該第一介電層包覆該上方閘極。 The method for manufacturing a trench semiconductor device according to claim 5, further comprising: depositing a third oxide layer; etching back the third oxide layer and the spacer to form an intermediate insulating portion, And the middle insulating part, the gate oxide layer and the first dielectric layer cover the upper gate. 如請求項6所述之溝槽式半導體元件製造方法,更包含:在該磊晶層進行離子植入,並加熱進行離子趨入(drive in);使用一源極光罩,以定義一源極區;形成一第二介電層於該閘極氧化層之上;利用一接觸區光罩,以蝕刻該第二介電層以及該閘極氧化層,以形成複數個開口;以及沉積一金屬層於該第二介電層之上以及該些開口之中。 The method for manufacturing a trench semiconductor device as claimed in claim 6, further comprising: performing ion implantation in the epitaxial layer and heating to perform ion drive in; using a source mask to define a source forming a second dielectric layer over the gate oxide layer; using a contact area mask to etch the second dielectric layer and the gate oxide layer to form openings; and depositing a metal layer on the second dielectric layer and in the openings.
TW109131598A 2020-09-15 2020-09-15 Method for manufacturing trench type semiconductor device TWI751697B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109131598A TWI751697B (en) 2020-09-15 2020-09-15 Method for manufacturing trench type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109131598A TWI751697B (en) 2020-09-15 2020-09-15 Method for manufacturing trench type semiconductor device

Publications (2)

Publication Number Publication Date
TWI751697B true TWI751697B (en) 2022-01-01
TW202213780A TW202213780A (en) 2022-04-01

Family

ID=80809212

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109131598A TWI751697B (en) 2020-09-15 2020-09-15 Method for manufacturing trench type semiconductor device

Country Status (1)

Country Link
TW (1) TWI751697B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200915437A (en) * 2007-08-21 2009-04-01 Fairchild Semiconductor Method and structure for shielded gate trench FET
TW201347187A (en) * 2012-03-09 2013-11-16 Fairchild Semiconductor Shielded gate MOSFET device with a funnel-shaped trench

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200915437A (en) * 2007-08-21 2009-04-01 Fairchild Semiconductor Method and structure for shielded gate trench FET
TW201347187A (en) * 2012-03-09 2013-11-16 Fairchild Semiconductor Shielded gate MOSFET device with a funnel-shaped trench

Also Published As

Publication number Publication date
TW202213780A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
TWI754367B (en) Method for manufacturing trench type semiconductor device
US9450091B2 (en) Semiconductor device with enhanced mobility and method
TWI518908B (en) Semiconductor device and methods for forming the same
TWI515893B (en) Vertical power mosfet and method for manufacturing the same
JP5442921B2 (en) Semiconductor trench device with improved gate oxide integrity
US11094790B2 (en) Silicon carbide semiconductor device
JP4490094B2 (en) Method of manufacturing trench metal oxide semiconductor field effect transistor device
US6160288A (en) Vertical type misfet having improved pressure resistance
TW202105729A (en) Shield gate mosfet and method for fabricating the same
US20090166731A1 (en) Vertical-type field-effect transistor and manufacturing method thereof
CN111063737A (en) LDMOS device and technological method
KR101912030B1 (en) Combined gate and source trench formation and related structure
JP3965027B2 (en) Method for manufacturing trench gate type MIS device having thick polysilicon insulating layer at bottom of trench
JPS6237965A (en) Longitudinal semiconductor device and manufacture thereof
US11444167B2 (en) Method of manufacturing trench type semiconductor device
TWI751697B (en) Method for manufacturing trench type semiconductor device
CN114188220A (en) Method for manufacturing groove type semiconductor component
CN114121628A (en) Method for manufacturing groove type semiconductor component
CN117038710B (en) Semiconductor device and method for manufacturing the same
CN117038738B (en) Semiconductor device and method for manufacturing the same
US20220416093A1 (en) Semiconductor device with embedded schottky diode and manufacturing method thereof
CN111509028B (en) Composite groove type metal oxide semiconductor field effect transistor and manufacturing method thereof
TWI220791B (en) Trench power MOSFET and method thereof
JPH0513758A (en) Mosfet and manufacture thereof
KR20230114167A (en) The semiconductor devices having a side channel and horizontal channel of a trench, and fabricating methods of the same