TWI751605B - 採用x射線螢光的生物成像方法 - Google Patents

採用x射線螢光的生物成像方法 Download PDF

Info

Publication number
TWI751605B
TWI751605B TW109122904A TW109122904A TWI751605B TW I751605 B TWI751605 B TW I751605B TW 109122904 A TW109122904 A TW 109122904A TW 109122904 A TW109122904 A TW 109122904A TW I751605 B TWI751605 B TW I751605B
Authority
TW
Taiwan
Prior art keywords
characteristic
ray
biological
biological analyte
rays
Prior art date
Application number
TW109122904A
Other languages
English (en)
Other versions
TW202104886A (zh
Inventor
曹培炎
劉雨潤
Original Assignee
大陸商深圳幀觀德芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商深圳幀觀德芯科技有限公司 filed Critical 大陸商深圳幀觀德芯科技有限公司
Publication of TW202104886A publication Critical patent/TW202104886A/zh
Application granted granted Critical
Publication of TWI751605B publication Critical patent/TWI751605B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/485Diagnostic techniques involving fluorescence X-ray imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • G01N2223/0766X-ray fluorescence with indicator, tags
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/501Detectors array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/504Detectors pin-diode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/612Specific applications or type of materials biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/637Specific applications or type of materials liquid

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Medical Informatics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本文公開了一種方法,該方法包括:引起附著於第一生物分析物的第一元素的特徵X射線的發射;引起附著於第二生物分析物的第二元素的特徵X射線的發射;基於所述第一元素的所述特徵X射線檢測所述第一生物分析物的特徵,以及基於所述第二元素的所述特徵X射線檢測所述第二生物分析物的特徵;其中所述第一元素和所述第二元素不同;其中所述第一生物分析物和所述第二生物分析物在同一溶液中。

Description

採用X射線螢光的生物成像方法
本發明示有關於一種生物成像方法,且特別是有關於一種採用X射線螢光的生物成像方法。
X射線螢光(X-ray fluorescence;XRF)是來自被激發材料的(例如,暴露於高能X射線或伽馬射線)特徵X射線的發射。如果原子暴露於具有大於電子電離勢的光子能量的X射線或伽馬射線,則該原子內軌道上的電子可以被射出,從而在所述內軌道上留下空穴。當所述原子外軌道上的電子弛豫以填充所述內軌道上的所述空穴時,X射線(螢光X射線光子或二次X射線光子)被發射。所述被發射的X射線光子的能量等於所述外軌道和所述內軌道電子之間的能量差。
對於給定的原子,可能的弛豫數目是有限的。如圖1A所示,當L軌道上的電子弛豫以填充K軌道(L→K)上的空穴時,所述螢光X射線被稱為Kα。來自M→K弛豫的螢光X射線被稱為Kβ。如圖1B所示,來自M→L弛豫的螢光X射線被稱為Lα,依此類推。
分析所述螢光X射線光譜可以識別樣品中的元素,因為每個元素都有特徵能量的軌道。可以通過對光子的能量進行排序(能量色散分析)或通過分離螢光X射線的波長(波長色散分析)來分析所述螢光X射線。每個特徵能量峰的強度與所述樣品中每種元素的所述含量直接相關。
比例計數器或各種類型的固態檢測器(PIN二極體、Si(Li)、Ge(Li)、矽漂移檢測器SDD)可用於能量色散分析。這些檢測器基於相同的原理:入射的X射線光子使大量的檢測器原子電離,所產生的載流子的數量與入射的X射線光子的能量成正比。所述載流子被收集並計數以確定所述入射的X射線光子的能量,並且該過程針對下一個入射的X射線光子會重複自身。在檢測到許多X射線光子之後,可以通過計算X射線光子的數量作為其能量的函數來編制光譜。
本文公開一種方法,其包括:引起附著於第一生物分析物的第一元素的特徵X射線的發射;引起附著於第二生物分析物的第二元素的特徵X射線的發射;基於所述第一元素的所述特徵X射線檢測所述第一生物分析物的特徵,以及基於所述第二元素的所述特徵X射線檢測所述第二生物分析物的特徵;其中所述第一元素和所述第二元素不同;其中所述第一生物分析物和所述第二生物分析物在同一溶液中。
根據實施例,所述第一生物分析物的特徵選自所述第一生物分析物的位置、所述第一生物分析物的存在、所述第一生物分析物的身份、所述第一生物分析物的量、所述第一生物分析物的二維分佈、所述第一生物分析物的三維分佈及其組合所組成的組。
根據實施例,所述第一生物分析物是蛋白質或核酸。
根據實施例,所述第一元素通過配體連接至所述第一生物分析物。
根據實施例,引起所述第一元素的所述特徵X射線的發射包括將所述第一元素暴露於輻射。
根據實施例,所述輻射是X射線或伽馬射線。
根據實施例,所述輻射粒子的能量高於40 keV。
根據實施例,所述第一生物分析物附著於基質。
根據實施例,所述第一元素的原子數大於20。
根據實施例,所述第一元素的原子數大於26。
根據實施例,引起所述第一元素的所述特徵X射線的發射和引起所述第二元素的所述特徵X射線的發射是同時的。
根據實施例,基於所述第一元素的所述特徵X射線檢測所述第一生物分析物的所述特徵包括用所述第一元素的所述特徵X射線捕獲圖像。
根據實施例,基於所述第一元素的所述特徵X射線檢測所述第一生物分析物的所述特徵以及基於所述第二元素的所述特徵X射線檢測所述第二生物分析物的所述特徵包括:接收所述第一元素的所述特徵X射線和所述第二元素的所述特徵X射線的組合。
根據實施例,基於所述第一元素的所述特徵X射線檢測所述第一生物分析物的所述特徵以及基於所述第二元素的所述特徵X射線檢測所述第二生物分析物的所述特徵進一步包括確定所述組合中的X射線光子的能量。
根據實施例,基於所述第一元素的所述特徵X射線檢測所述第一生物分析物的所述特徵以及基於所述第二元素的所述特徵X射線檢測所述第二生物分析物的所述特徵進一步包括對能量在第一範圍內的所述X射線光子的數量進行計數。
通過提供生物樣品中元素的特徵資訊,可以將X射線螢光用於研究該生物樣品。圖2示出了根據實施例的使用X射線螢光的方法的流程圖。在程式710中,如圖3所示,附著在第一生物分析物910上的第一元素911的特徵X射線的發射被引起,例如,通過將附著在所述第一生物分析物910上的所述第一元素911暴露於輻射。所述輻射可以是X射線或伽馬射線。在過程720中,通過將附著在第二生物分析物920上的第二元素921暴露於輻射來引起附著在所述第二生物分析物920上的所述第二元素921的特徵X射線的發射。所述輻射可以是X射線或伽馬射線。根據實施例,引起所述第一元素911的所述特徵X射線的發射和所述第二元素921的所述特徵X射線的發射是同時的。所述第一元素911和所述第二元素921可以不同。所述第一元素911可以具有大於20的原子數,或者可以具有大於26的原子數。在步驟730中,基於所述第一元素911的所述特徵X射線檢測所述第一生物分析物910的特徵,並基於所述第二元素921的所述特徵X射線檢測所述第二生物分析物920的特徵。根據實施例,所述第一生物分析物910的所述特徵可以選自所述第一生物分析物910的位置、所述第一生物分析物910的存在、所述第一生物分析物910的身份、所述第一生物分析物910的量、所述第一生物分析物910的二維分佈、所述第一生物分析物910的三維分佈及其組合所組成的組。
圖3示意示出系統200。根據實施例,所述系統200包括所述第一生物分析物910、所述第二生物分析物920、一個或多個X射線檢測器100。所述第一生物分析物910可以是蛋白質或核酸。所述第一生物分析物910可以附著於基質102。所述第一生物分析物910和所述第二生物分析物920在同一溶液103中。如圖3 的所述示例所示,所述第一元素911可以通過配體104附著到所述第一生物分析物910。所述X射線檢測器100可以相對於所述第一生物分析物910和所述第二生物分析物920被定位或相對於所述第一生物分析物910和所述第二生物分析物920移動到多個位置。所述X射線檢測器100可以被佈置在與所述第一生物分析物910和所述第二生物分析物920相同或不同的距離處。所述X射線檢測器100的其他合適的佈置是可能的。所述X射線檢測器100的所述位置不一定是固定的。例如,所述X射線檢測器100中的一些可以是朝向和遠離所述第一生物分析物910和所述第二生物分析物920可移動的,或者可以相對於所述第一生物分析物910和所述第二生物分析物920旋轉。但是,所述X射線檢測器100中的至少一些並不包括閃爍體。
如圖3的示例所示,所述系統200可以包括輻射源101。根據實施例,所述輻射源101向所述溶液中的所述第一生物分析物910和所述第二生物分析物920發射輻射,所述輻射能夠引起所述第一元素911和所述第二元素921發射它們各自的特徵X射線。來自所述輻射源101的所述輻射可以是X射線或伽馬射線。來自所述輻射源101的所述輻射粒子的所述能量可以高於40keV。引起所述第一元素911的所述特徵X射線的所述發射的所述輻射和引起所述第二元素921的所述特徵X射線的所述發射的所述輻射可以相同或不同。
圖4A示意示出根據實施例的所述X射線檢測器100的截面圖。所述X射線檢測器100可以包括X射線吸收層110和電子器件層120(例如,ASIC),所述電子器件層120用於處理或分析入射在所述X射線吸收層110中的X射線產生的電信號。所述X射線吸收層110 可包括半導體材料,比如矽、鍺、砷化鎵、碲化鎘、碲鋅鎘或其組合。所述半導體對於其感興趣的所述X射線能量可具有較高的品質衰減係數。
如圖4B中的所述X射線檢測器100的詳細截面圖所示,根據實施例,所述X射線吸收層110可包括由第一摻雜區111、第二摻雜區113的一個或多個離散區114組成的一個或多個二極體(例如,p-i-n或p-n)。所述第二摻雜區113可通過可選的本徵區112而與所述第一摻雜區111分離。所述離散區114通過所述第一摻雜區111或所述本徵區112而彼此分離。所述第一摻雜區111和所述第二摻雜區113具有相反類型的摻雜(例如,第一摻雜區111是p型並且第二摻雜區113是n型,或者第一摻雜區111是n型並且第二摻雜區113是p型)。在圖4B中的示例中,所述第二摻雜區113的每個離散區114與所述第一摻雜區111和所述可選的本徵區112一起組成一個二極體。即,在圖4B的示例中,所述X射線吸收層110包括多個二極體,這些二極體具有所述第一摻雜區111作為共用電極。所述第一摻雜區111還可具有離散部分。
當一個X射線光子撞擊包括二極體的所述吸收層110時,所述X射線光子可被吸收並通過若干機制產生一個或多個載流子。一個X射線光子可產生10到100000個載流子。所述載流子可在電場下向其中一個二極體的電觸點漂移。所述電場可以是外部電場。所述電觸點119B可包括離散部分,其中的每個離散部分與所述離散區114電接觸。在實施例中,所述載流子可向不同方向漂移,使得由單個X射線光子產生的所述載流子大體上未被兩個不同的離散區114共用(“大體上未被共用”在這裡意指這些載流子中的不到2%、不到0.5%、不到0.1%或不到0.01%流向與餘下載流子不同的一個所述離散區114)。由入射在所述離散區114之一的足跡周圍的X射線光子所產生的載流子大體上未被另一所述離散區114共用。與一個離散區114相關聯的一個像素150可以是所述離散區114的周圍區,由入射在其中的X射線光子所產生的載流子大體上全部(超過98%、超過99.5%、超過99.9%或超過99.99%)流向所述離散區114。即,所述載流子中的不到2%、不到1%、不到0.1%或不到0.01%流到所述像素之外。
如圖4C中的所述X射線檢測器100的替代詳細截面圖所示,根據實施例,所述X射線吸收層110可包括具有半導體材料(比如,矽、鍺、砷化鎵、碲化鎘、碲鋅鎘或其組合)的電阻器,但不包括二極體。所述半導體對於其感興趣的所述X射線能量可具有較高的品質衰減係數。
當一個X射線光子撞擊包括電阻器但不包括二極體的所述X射線吸收層110時,所述X射線光子可被吸收並通過若干機制產生一個或多個載流子。一個X射線光子可產生10到100000個載流子。所述載流子可在電場下向所述電觸點119A和所述電觸點119B漂移。所述電場可以是外部電場。所述電觸點119B可包括離散部分。在實施例中,所述載流子可向不同方向漂移,使得由單個X射線光子產生的所述載流子大體上未被所述電觸點119B的兩個不同的離散部分共用(“大體上未被共用”在這裡意指這些載流子中的不到2%、不到0.5%、不到0.1%或不到0.01%流向與餘下的所述載流子不同的所述離散部分)。由入射在所述電觸點119B的這些離散部分之一的足跡周圍的X射線光子所產生的載流子大體上未被所述電觸點119B的這些離散部分中的另一個共用。與所述電觸點119B的一個離散部分相關聯的一個像素150可以是所述離散部分的周圍區,由入射在其中的X射線光子所產生的載流子大體上全部(超過98%、超過99.5%、超過99.9%或超過99.99%)流向所述電觸點119B的所述離散部分。即,所述載流子中的不到2%、不到1%、不到0.1%或不到0.01%流到與所述電觸點119B的一個離散部分相關聯的所述像素之外。
所述電子器件層120可以包括電子系統121,其適合於處理或解釋由入射在所述X射線吸收層110上的X射線光子產生的信號。電子系統121可以包括類比電路(比如,濾波網路、放大器、積分器和比較器)或者數位電路(比如,微處理器和記憶體)。所述電子系統121可以包括由所述像素共用的元件或專用於單個像素的元件。例如,所述電子系統121可以包括專用於每個像素的放大器和在所有所述像素之間共用的微處理器。所述電子系統121可以通過通孔131電連接到所述像素。所述通孔之間的空間可以用填充材料130填充,這可以提高所述電子器件層120到所述X射線吸收層110的連接的機械穩定性。其他的鍵合技術可以在不使用通孔的情況下將所述電子系統121連接到所述像素。
圖5A根據實施例示意示出具有像素陣列150的所述X射線檢測器100的一部分的俯視圖。所述陣列可以是矩形陣列、蜂窩陣列、六邊形陣列或任何其他合適的陣列。每個像素150可以被配置為檢測入射在其上的X射線光子並確定所述X射線光子的能量。例如,每個像素150被配置為在一段時間內檢測並計數入射在其上的從所述第一元素911和所述第二元素921發射的特徵X射線光子的數量,但是不對具有不同於所述特徵X射線光子能量的光子進行計數。所有所述像素150可以被配置為在相同的時間段內在多個能量倉內檢測並計數入射在其上的特徵X射線光子的數量。在一個實施例中,基於所述第一元素911的所述特徵X射線檢測所述第一生物分析物910的特徵以及基於所述第二元素921的所述特徵X射線檢測所述第二生物分析物920的特徵包括接收所述第一元素911的所述特徵X射線和所述第二元素921的所述特徵X射線的組合,並確定該組合中的X射線光子的所述能量。每個所述像素150可以具有其自己的模數轉換器(analog-to-digital converter;ADC),該模數轉換器被配置為將代表入射X射線光子的能量的類比信號數位化為數位信號。對於XRF應用,具有10位解析度或更高的模數轉換器是有用的。每個像素150可被配置為測量它的暗電流,例如在每個X射線光子入射在其上之前或與之同時。每個像素150可被配置為從其上入射的X射線光子的能量減去暗電流的貢獻。所述像素150可被配置為平行作業。例如,當一個像素150測量一個入射的X射線光子時,另一個像素150可能正在等待一個X射線光子到達。所述像素150可以不必是單獨可定址的。
所述X射線檢測器100可以具有至少100、2500、10000或更多個像素150。所述X射線檢測器100可以被配置為向所有所述像素150所計數的具有相同能量範圍的倉添加X射線光子數目。例如,所述X射線檢測器100可添加所述像素150存儲在能量從70KeV到71KeV的倉中的數目、添加所述像素150存儲在能量從71KeV到72KeV的倉中的數目,以此類推。在一個實施例中,來自所述第一元素911和所述第二元素921的其能量在第一範圍內所述特徵X射線光子被計數並被添加到相關的倉中。所述X射線檢測器100可以將所述倉的相加數編譯為入射在所述X射線檢測器100上的所述特徵X射線光子的強度的光譜。所述X射線檢測器100可以捕獲具有所述第一元素911的所述特徵X射線的圖像(例如,通過所述特徵X射線光子的強度的光譜)來檢測所述第一生物分析物910的特徵。
圖5B示意示出根據實施例的用於所述X射線檢測器100的框圖。每個像素150可測量入射其上的所述X射線光子的所述能量151。所述X射線光子的所述能量151在步驟152中被數位化為多個倉153A、153B、153C……中的一個。所述倉153A、153B、153C……各自分別具有對應的計數器154A、154B和154C。當所述能量151被分配到一個倉內時,存儲在所述對應計數器中的數目增加一。所述X射線檢測器100可添加存儲在對應於所述像素150中具有相同能量範圍的倉的所有計數器中的數目。例如,存儲在所有像素150中的所有所述計數器154C中的所述數目均可被添加並被存儲在具有相同能量範圍的全域計數器100C中。存儲在所有全域計數器中的數目可被編譯為入射在所述X射線檢測器100上的所述X射線的能量譜。
圖6A和圖6B各自示出根據實施例的所述電子系統121的元件圖。所述電子系統121可以包括第一電壓比較器301、第二電壓比較器302、多個計數器320(包括計數器320A、320B、320C、320D……)、開關305、可選的電壓表306、積分器309和控制器310。
根據實施例,所述第一電壓比較器301被配置為將至少一個所述電觸點119B的電壓與第一閾值進行比較。所述第一電壓比較器301可被配置為直接監測電壓,或者通過對在一段時間內流過所述電觸點119B的電流進行積分來計算電壓。所述第一電壓比較器301可由所述控制器310可控地啟動或停用。所述第一電壓比較器301可以是連續比較器。即,所述第一電壓比較器301可被配置為被連續啟動,並連續地監測電壓。所述第一電壓比較器301可以是鐘控比較器。所述第一閾值可以是一個入射X射線光子能夠在所述電觸點119B上產生的最大電壓的1-5%、5-10%、10%-20%、20-30%、30-40%或40-50%。所述最大電壓可取決於入射X射線光子的能量、所述X射線吸收層110的材料和其他因素。例如,所述第一閾值可以是50mV、100mV、150mV或200mV。
所述第二電壓比較器302被配置為將所述電壓與第二閾值進行比較。所述第二電壓比較器302可被配置為直接監測所述電壓,或通過對一段時間內流過所述二極體或電觸點的電流進行積分來計算電壓。所述第二電壓比較器302可以是連續比較器。所述第二電壓比較器302可由所述控制器310可控地啟動或停用。在所述第二電壓比較器302被停用時,所述第二電壓比較器302的功耗可以是啟動所述第二電壓比較器302時的功耗的不到1%、不到5%、不到10%或不到20%。所述第二閾值的絕對值大於所述第一閾值的絕對值。如本文所使用的,術語實數x 的“絕對值”或“模數”|x|是x的非負值而不考慮它的符號。即,
Figure 02_image001
。所述第二閾值可以是所述第一閾值的200%-300%。例如,所述第二閾值可以是100mV、150mV、200mV、250mV或300mV。所述第二電壓比較器302和所述第一電壓比較器301可以是相同元件。即,所述電子系統121可以具有同一個電壓比較器,其可在不同時間將電壓與兩個不同的閾值進行比較。
所述第一電壓比較器301或所述第二電壓比較器302可包括一個或多個運算放大器或任何其他適合的電路。所述第一電壓比較器301或所述第二電壓比較器302可具有高速度以允許所述電子系統121在高通量的入射X射線光子下操作。然而,具有高速度通常以功耗為代價。
所述計數器320被配置為記錄入射在包括所述電觸點119B的像素150上的至少若干個X射線光子。所述計數器320可以是軟體元件(例如,電腦記憶體中存儲的數位)或硬體元件(例如,4017IC和7490IC)。在實施例中,每個像素的所述計數器320與用於一個能量範圍的多個倉關聯。例如,計數器320A可以與能量為70-71KeV的粒子的倉相關聯,計數器320B可以與能量為71-72KeV的倉相關聯,計數器320C可以與能量為72-73KeV的倉關聯,計數器 320D可以與能量為73-74KeV的倉相關聯。當X射線入射光子的所述能量由所述計數器320對應的所述倉決定時,所述計數器320所對應的所述倉內記錄的數目增加一。
所述控制器310可以是諸如微控制器和微處理器等的硬體元件。根據實施例,所述控制器310被配置為從所述第一電壓比較器301確定所述電壓的絕對值等於或超過所述第一閾值的絕對值(例如,所述電壓的絕對值從低於所述第一閾值的絕對值增加到等於或超過所述第一閾值的絕對值的值)時啟動時間延遲。在這裡可以使用絕對值是因為電壓可以是負的或正的,這取決於是使用二極體的陰極電壓還是陽極電壓或使用哪個電觸點。所述控制器310可被配置為在所述第一電壓比較器301確定所述電壓的絕對值等於或超過所述第一閾值的絕對值之前,保持停用所述第二電壓比較器302、所述計數器320、以及所述第一電壓比較器301的操作中不需要的任何其他電路。在所述電壓變得穩定(即,所述電壓的變化率大體上為零)之前或之後,所述時間延遲可期滿。短語“變化率大體上為零”意指時間變化小於0.1%/ns。短語“變化率大體上為非零”意指所述電壓的時間變化至少為0.1%/ns。
所述控制310可被配置為在所述時間延遲期間(其包括開始和期滿)啟動所述第二電壓比較器。在實施例中,所述控制器310被配置為在所述時間延遲開始時啟動所述第二電壓比較器。術語“啟動”意指使元件進入操作狀態(例如,通過發送諸如電壓脈衝或邏輯電平等信號,通過提供電力等)。術語“停用”意指使元件進入非操作狀態(例如,通過發送諸如電壓脈衝或邏輯電平等信號,通過切斷電力等)。操作狀態可具有比非操作狀態更高的功耗(例如,高10倍、高100倍、高1000倍)。所述控制器310本身可被停用,直到所述第一電壓比較器301的輸出電壓的絕對值等於或超過所述第一閾值的絕對值時才啟動所述控制器310。
如果在所述時間延遲期間,所述第二電壓比較器302確定所述電壓的絕對值等於或超過所述第二閾值的絕對值,則所述控制器310可被配置為使所述計數器320記錄的數目中至少有一個數目增加一。
所述控制器310可被配置為使所述可選的電壓表306在所述時間延遲期滿時測量所述電壓。所述控制器310可被配置為使所述電觸點119B連接到電接地,以使電壓重定並且使所述電觸點119B上累積的任何載流子放電。在實施例中,所述電觸點119B在所述時間延遲期滿後連接到電接地。在實施例中,所述電觸點119B連接到電接地並持續有限的復位時段。所述控制器310可通過控制所述開關305而使所述電觸點119B連接到電接地。所述開關可以是電晶體,比如場效應電晶體(field-effect transistor;FET)。
在實施例中,所述電子系統121沒有類比濾波器網路(例如,RC網路)。在實施例中,所述電子系統121沒有類比電路。
所述電壓表 306可將其測量的電壓作為類比或數位信號饋送給所述控制器310。
所述電子系統121可包括電連接到所述電觸點119B的積分器309,其中所述積分器被配置為收集來自所述電觸點119B的電流子。所述積分器309可在運算放大器的回饋路徑中包括電容器。如此配置的所述運算放大器稱為電容跨阻放大器(capacitive transimpedance amplifier;CTIA)。CTIA通過防止所述運算放大器飽和而具有高的動態範圍,並通過限制信號路徑中的頻寬來提高信噪比。來自所述電觸點119B的載流子在一段時間(“積分期”)內累積在電容器上。在所述積分期期滿後,由所述ADC 306對電容器電壓進行採樣,然後通過重定開關進行重定。所述積分器309可包括直接連接到所述電觸點119B的電容器。
圖7示意示出流過所述電觸點119B的,由入射在包括所述電觸點119B的像素150上的X射線光子產生的載流子所引起的電流的時間變化(上曲線)和所述電觸點119B電壓的對應時間變化(下曲線)。所述電壓可以是電流相對於時間的積分。在時間t0 ,所述X射線光子撞擊所述像素150,載流子開始在所述像素150中產生,電流開始流過所述電觸點119B,並且所述電觸點119B的電壓的絕對值開始增加。在時間t1 ,所述第一電壓比較器301確定所述電壓的絕對值等於或超過所述第一閾值V1的絕對值,所述控制器310啟動時間延遲TD1並且所述控制器310可在所述TD1開始時停用所述第一電壓比較器301。如果所述控制器310在時間t1 之前被停用,在時間t1 啟動所述控制器310。在所述TD1期間,所述控制器310啟動所述第二電壓比較器302。如這裡使用的術語在時間延遲“期間”意指開始和期滿(即,結束)以及中間的任何時間。例如,所述控制器310可在所述TD1期滿時啟動所述第二電壓比較器302。如果在所述TD1期間,所述第二電壓比較器302確定在時間t2 電壓的絕對值等於或超過所述第二閾值V2的絕對值,則所述控制器310等待電壓穩定。所述電壓在時間te 穩定,這時X射線光子產生的所有載流子漂移出所述X射線吸收層110。在時間ts ,所述時間延遲TD1期滿。在時間te 之時或之後,所述控制器310使所述電壓表306數位化所述電壓並且確定X射線光子的能量落在哪個倉中。然後所述控制器310使對應於所述倉的所述計數器320記錄的數目增加一。在圖7的示例中,所述時間ts 在所述時間te 之後;即TD1在X射線光子產生的所有載流子漂移出X射線吸收層110之後期滿。如果無法輕易測得時間te ,TD1可根據經驗選擇以允許有足夠的時間來收集由X射線光子產生的大體上上全部的載流子,但TD1不能太長,否則會有另一個入射X射線光子產生的載流子被收集的風險。即,TD1可根據經驗選擇使得時間ts 在時間te 之後。時間ts 不一定在時間te 之後,因為一旦達到V2,控制器310可忽視TD1並等待時間te 。因此,電壓和暗電流對電壓的貢獻值之間的差異的變化率在時間te 大體上為零。所述控制器310可被配置為在TD1期滿時或在時間t2 或中間的任何時間停用第二電壓比較器302。
在時間te 的電壓與由X射線光子產生的載流子的數目成正比,所述數目與X射線光子的能量有關。所述控制器310可被配置為使用所述電壓表306來確定X射線光子的能量。
在TD1期滿或被所述電壓表 306數位化後(以較遲者為准),所述控制器使所述電觸點119B連接到電接地310並持續一個復位時段RST,以允許所述電觸點119B上累積的載流子流到地面並重定電壓。在RST之後,所述電子系統121已準備好檢測另一個入射X射線光子。若所述第一電壓比較器301被停用,所述控制器310可在RST期滿之前的任何時間啟動它。若所述控制器310被停用,可在RST期滿之前啟動它。
儘管本文已經公開了各個方面和實施例,但是其他方面和實施例對於本領域技術人員而言將是顯而易見的。本文公開的各個方面和實施例是為了說明的目的而不是限制性的,其真正的範圍和精神應該以本文中的發明申請專利範圍為准。
100:X射線檢測器 100A、100B、100C:全域計數器 101:輻射源 102:基質 103:溶液 104:配體 110:射線吸收層 111:第一摻雜區 112:本徵區 113:第二摻雜區 114:離散區 119A、119B:電觸點 120:電子器件層 121:電子系統 130:填充材料 131:通孔 150:像素 151:能量 152:步驟 153A、153B、153C:倉 154A、154B、154C、320、320A、320B、320C、320D:計數器 200:系統 301:第一電壓比較器 302:第二電壓比較器 305:開關 306:電壓表 309:積分器 310:控制器 710:程式 720:過程 730:步驟 910:第一生物分析物 911:第一元素 920:第二生物分析物 921:第二元素 t0 、t1 、t2 、ts 、tm 、tr 、te :時間 RST:復位時段 TD1:時間延遲 V1:第一閾值 V2:第二閾值
圖1A和圖1B示意示出X射線螢光的機制。 圖2示意示出根據實施例的用於X射線螢光成像方法的流程圖。 圖3示意示出根據實施例的一種系統。 圖4A-圖4C各自示意示出根據實施例的X射線檢測器的截面圖。 圖5A示意示出根據實施例的所述X射線檢測器的一部分的俯視圖。 圖5B示意示出根據實施例的用於所述X射線檢測器的框圖。 圖6A-圖6B各自示意示出根據實施例的所述X射線檢測器的電子系統的元件圖。 圖7示出根據實施例的由X射線的入射光子產生的載流子引起的電流的時間變化以及電壓的相應時間變化。
100:X射線檢測器
101:輻射源
102:基質
103:溶液
104:配體
200:系統
910:第一生物分析物
911:第一元素
920:第二生物分析物
921:第二元素

Claims (15)

  1. 一種生物成像方法,包括:引起附著於第一生物分析物的第一元素的特徵X射線的發射;引起附著於第二生物分析物的第二元素的特徵X射線的發射;基於所述第一元素的所述特徵X射線檢測所述第一生物分析物的特徵;以及基於所述第二元素的所述特徵X射線檢測所述第二生物分析物的特徵,其中所述第一元素和所述第二元素不同,其中所述第一生物分析物和所述第二生物分析物在同一溶液中。
  2. 如請求項1所述的生物成像方法,其中所述第一生物分析物的特徵選自所述第一生物分析物的位置、所述第一生物分析物的存在、所述第一生物分析物的身份、所述第一生物分析物的量、所述第一生物分析物的二維分佈、所述第一生物分析物的三維分佈及其組合所組成的組。
  3. 如請求項1所述的生物成像方法,其中所述第一生物分析物是蛋白質或核酸。
  4. 如請求項1所述的生物成像方法,其中所述第一元素通過配體連接至所述第一生物分析物。
  5. 如請求項1所述的生物成像方法,其中引起所述第一元素的所述特徵X射線的發射包括將所述第一元素暴露於輻射。
  6. 如請求項5所述的生物成像方法,其中所述輻射是X射線或伽馬射線。
  7. 如請求項5所述的生物成像方法,其中所述輻射的粒子的能量高於40keV。
  8. 如請求項1所述的生物成像方法,其中所述第一生物分析物附著於基質。
  9. 如請求項1所述的生物成像方法,其中所述第一元素的原子數大於20。
  10. 如請求項1所述的生物成像方法,其中所述第一元素的原子數大於26。
  11. 如請求項1所述的生物成像方法,其中引起所述第一元素的所述特徵X射線的發射和引起所述第二元素的所述特徵X射線的發射是同時的。
  12. 如請求項1所述的生物成像方法,其中基於所述第一元素的所述特徵X射線檢測所述第一生物分析物的所述特徵包括用所述第一元素的所述特徵X射線捕獲圖像。
  13. 如請求項1所述的生物成像方法,其中基於所述第一元素的所述特徵X射線檢測所述第一生物分析物的所述特徵以及基於所述第二元素的所述特徵X射線檢測所述第二生物分析物的所述特徵包括:接收所述第一元素的所述特徵X射線和所述第 二元素的所述特徵X射線的組合。
  14. 如請求項13所述的生物成像方法,其中基於所述第一元素的所述特徵X射線檢測所述第一生物分析物的所述特徵以及基於所述第二元素的所述特徵X射線檢測所述第二生物分析物的所述特徵進一步包括確定所述組合中的X射線光子的能量。
  15. 如請求項14所述的生物成像方法,其中基於所述第一元素的所述特徵X射線檢測所述第一生物分析物的所述特徵以及基於所述第二元素的所述特徵X射線檢測所述第二生物分析物的所述特徵進一步包括對能量在第一範圍內的所述X射線光子的數量進行計數。
TW109122904A 2019-07-29 2020-07-07 採用x射線螢光的生物成像方法 TWI751605B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/098159 WO2021016795A1 (en) 2019-07-29 2019-07-29 Biological imaging method using x-ray fluorescence
WOPCT/CN2019/098159 2019-07-29

Publications (2)

Publication Number Publication Date
TW202104886A TW202104886A (zh) 2021-02-01
TWI751605B true TWI751605B (zh) 2022-01-01

Family

ID=74228248

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109122904A TWI751605B (zh) 2019-07-29 2020-07-07 採用x射線螢光的生物成像方法

Country Status (5)

Country Link
US (1) US11946884B2 (zh)
EP (1) EP4004540A4 (zh)
CN (1) CN114072674A (zh)
TW (1) TWI751605B (zh)
WO (1) WO2021016795A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030027129A1 (en) * 2001-05-16 2003-02-06 Warner Benjamin P. Method for detecting binding events using micro-X-ray fluorescence spectrometry
US20040017884A1 (en) * 2002-07-25 2004-01-29 Havrilla George J. Flow method and apparatus for screening chemicals using micro x-ray fluorescence
CN102066936A (zh) * 2008-04-16 2011-05-18 阿米克股份公司 测定方法和设备
US20190011382A1 (en) * 2010-10-14 2019-01-10 Icagen, Inc. Method for analysis using x-ray fluorescence

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4436826A (en) * 1981-10-21 1984-03-13 Wang Associates Tagged immunoassay
DE10035190C5 (de) * 2000-07-20 2009-07-16 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren und Vorrichtung zur Fluoreszenzmessung
US6858148B2 (en) * 2003-07-16 2005-02-22 The Regents Of The University Of California Method and apparatus for detecting chemical binding
US9157875B2 (en) * 2001-05-16 2015-10-13 Benjamin P. Warner Drug development and manufacturing
US20070254376A1 (en) * 2004-10-01 2007-11-01 Koninklijke Philips Electronics, N.V. Method and apparatus for the detection of labeling elements in a sample
US7649975B2 (en) * 2007-09-28 2010-01-19 Searete Llc X-ray fluorescence visualizing, imaging, or information providing of chemicals, compounds, or biological materials
CN107615095B (zh) * 2015-06-10 2020-04-14 深圳帧观德芯科技有限公司 用于x射线萤光的检测器
GB201513167D0 (en) * 2015-07-27 2015-09-09 Thermo Fisher Scient Bremen Elemental analysis of organic samples

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030027129A1 (en) * 2001-05-16 2003-02-06 Warner Benjamin P. Method for detecting binding events using micro-X-ray fluorescence spectrometry
US20040017884A1 (en) * 2002-07-25 2004-01-29 Havrilla George J. Flow method and apparatus for screening chemicals using micro x-ray fluorescence
CN102066936A (zh) * 2008-04-16 2011-05-18 阿米克股份公司 测定方法和设备
US20190011382A1 (en) * 2010-10-14 2019-01-10 Icagen, Inc. Method for analysis using x-ray fluorescence

Also Published As

Publication number Publication date
EP4004540A4 (en) 2023-03-29
EP4004540A1 (en) 2022-06-01
WO2021016795A1 (en) 2021-02-04
US11946884B2 (en) 2024-04-02
CN114072674A (zh) 2022-02-18
US20220128496A1 (en) 2022-04-28
TW202104886A (zh) 2021-02-01

Similar Documents

Publication Publication Date Title
US10823860B2 (en) Detector for X-ray fluorescence
TWI758304B (zh) 專用乳房電腦斷層攝影系統
TWI751605B (zh) 採用x射線螢光的生物成像方法
CN110914714B (zh) 制造和使用x射线检测器的方法
TWI794743B (zh) 文件認證的方法
TWI817240B (zh) 使用x射線螢光進行生物分析物研究的裝置和方法
CN112912768B (zh) 使用x射线荧光成像的方法
TWI817088B (zh) 血糖水平檢測的裝置及其方法
TWI807092B (zh) 電鍍控制系統和方法
TWI826502B (zh) 輻射檢測裝置以及輻射檢測方法
CN114072703A (zh) 用于暗噪声补偿的放大器