TWI749928B - Composite substrate structure and method for manufacturing the same - Google Patents

Composite substrate structure and method for manufacturing the same Download PDF

Info

Publication number
TWI749928B
TWI749928B TW109142286A TW109142286A TWI749928B TW I749928 B TWI749928 B TW I749928B TW 109142286 A TW109142286 A TW 109142286A TW 109142286 A TW109142286 A TW 109142286A TW I749928 B TWI749928 B TW I749928B
Authority
TW
Taiwan
Prior art keywords
substrate
oxide layer
layer
composite substrate
composite
Prior art date
Application number
TW109142286A
Other languages
Chinese (zh)
Other versions
TW202223177A (en
Inventor
李文中
鄭樵陽
曾頎堯
蕭斐蔓
Original Assignee
合晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合晶科技股份有限公司 filed Critical 合晶科技股份有限公司
Priority to TW109142286A priority Critical patent/TWI749928B/en
Application granted granted Critical
Publication of TWI749928B publication Critical patent/TWI749928B/en
Publication of TW202223177A publication Critical patent/TW202223177A/en

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Laminated Bodies (AREA)

Abstract

A composite substrate structure is provided by the present disclosure. The composite substrate includes a first substrate, a first oxide layer, a second substrate, and a porous nanowire layer. The first oxide layer is directly disposed on the first substrate. The second substrate is directly disposed on the first oxide layer. The porous nanowire layer is directly disposed on the second substrate. A method for manufacturing a composite substrate structure is further provided by the present disclosure.

Description

複合基板結構及其製造方法Composite substrate structure and manufacturing method thereof

本揭露是關於一種複合基板結構及其製造方法,特別是關於一種可以釋放應力的複合基板結構及其製造方法。The present disclosure relates to a composite substrate structure and a manufacturing method thereof, and particularly relates to a composite substrate structure that can relieve stress and a manufacturing method thereof.

隨著半導體積體電路(Integrated Circuit, IC)產業的進步,製造者需要在製程上進行優化與改良,以生產尺寸更小且性能更好的產品。在半導體製程中,基板性能的優劣會影響後續的製造流程及IC產品的品質。舉例來說,由於三五族半導體的磊晶不易有可用的大尺寸同質基板,因此普遍選擇在便宜且大尺寸的矽基板上進行磊晶成長。但是,因為三五族半導體與矽基板的晶格並不匹配,因此在磊晶成長中容易產生延伸至整個表面的穿透差排(threading dislocation)現象。而且,也因為三五族半導體與基板的熱膨脹係數之間具有差異,所以,在磊晶成長之後的降溫過程中會造成磊晶層破裂(crack)的現象。上述兩者會限制磊晶層的成長厚度,且其造成的缺陷及問題也會影響後續的元件的性能表現。With the advancement of the semiconductor integrated circuit (IC) industry, manufacturers need to optimize and improve the manufacturing process to produce products with smaller sizes and better performance. In the semiconductor manufacturing process, the performance of the substrate will affect the subsequent manufacturing process and the quality of IC products. For example, since it is not easy to have large-size homogeneous substrates available for the epitaxy of Group III-V semiconductors, it is generally chosen to perform epitaxial growth on cheap and large-size silicon substrates. However, because the crystal lattices of the third and fifth group semiconductors and the silicon substrate do not match, threading dislocation that extends to the entire surface is prone to occur during epitaxial growth. Moreover, because of the difference between the thermal expansion coefficients of the third and fifth group semiconductors and the substrate, the epitaxial layer cracks during the cooling process after the epitaxial growth. The above two will limit the growth thickness of the epitaxial layer, and the defects and problems they cause will also affect the performance of subsequent devices.

若能夠提供一個給後續磊晶成核較小接觸的基板界面或者是在磊晶過程中插入相較於磊晶層較薄的插入層,且此薄插入層可以吸收應力(strain),則可以改善因為磊晶成長所造成的應力累積或者是表面破裂的效應。If it is possible to provide a substrate interface with smaller contact for subsequent epitaxial nucleation or insert a thinner insert layer than the epitaxial layer during the epitaxial process, and this thin insert layer can absorb strain, then Improve the effect of stress accumulation or surface cracking caused by epitaxial growth.

鑑於上述,目前亟需一種可以解決上述問題的複合基板結構及形成此複合基板結構的方法。In view of the above, there is an urgent need for a composite substrate structure that can solve the above-mentioned problems and a method for forming the composite substrate structure.

有鑑於此,本揭露之一目的在於提供一種可以釋放應力的複合基板結構及其製造方法。In view of this, one objective of the present disclosure is to provide a composite substrate structure that can relieve stress and a manufacturing method thereof.

本揭露之一態樣是提供一種複合基板結構,其包含第一基板、第一氧化層、第二基板以及多孔奈米線層。第一氧化層直接設置於第一基板上。第二基板直接設置於第一氧化層上。多孔奈米線層直接設置於第二基板上。One aspect of the present disclosure is to provide a composite substrate structure, which includes a first substrate, a first oxide layer, a second substrate, and a porous nanowire layer. The first oxide layer is directly disposed on the first substrate. The second substrate is directly arranged on the first oxide layer. The porous nanowire layer is directly disposed on the second substrate.

根據本揭露的一或多個實施方式,複合基板結構更包含第三基板及第二氧化層。第二氧化層直接設置於多孔奈米線層上,且第三基板直接設置於第二氧化層上。According to one or more embodiments of the present disclosure, the composite substrate structure further includes a third substrate and a second oxide layer. The second oxide layer is directly disposed on the porous nanowire layer, and the third substrate is directly disposed on the second oxide layer.

根據本揭露的一或多個實施方式,第一氧化層和第二氧化層各自包含氧化矽、氧化鎵、二氧化鈦或氧化鋁。According to one or more embodiments of the present disclosure, the first oxide layer and the second oxide layer each include silicon oxide, gallium oxide, titanium dioxide, or aluminum oxide.

根據本揭露的一或多個實施方式,複合基板結構更包含填充物充滿多孔奈米線層,此填充物包含空氣、二氧化矽、多晶矽或氮化矽。According to one or more embodiments of the present disclosure, the composite substrate structure further includes a filler filled with the porous nanowire layer, and the filler includes air, silicon dioxide, polysilicon or silicon nitride.

根據本揭露的一或多個實施方式,多孔奈米線層的直徑為50奈米至200奈米,且多孔奈米線層的密度為20至300奈米線/微米平方(nanowires/µm 2)。 According to one or more embodiments of the present disclosure, the diameter of the porous nanowire layer is 50 nanometers to 200 nanometers, and the density of the porous nanowire layer is 20 to 300 nanowires/micrometer square (nanowires/µm 2 ).

本揭露之另一態樣是提供一種複合基板結構,其包含第一基板、第一氧化層以及第二基板。第一氧化層直接設置於第一基板上。第二基板具有相對的第一表面及第二表面。第二表面直接接觸第一氧化層,且第二基板包含複數個凹槽由第一表面朝第二表面的方向凹陷。Another aspect of the present disclosure is to provide a composite substrate structure including a first substrate, a first oxide layer, and a second substrate. The first oxide layer is directly disposed on the first substrate. The second substrate has a first surface and a second surface opposite to each other. The second surface directly contacts the first oxide layer, and the second substrate includes a plurality of grooves recessed from the first surface toward the second surface.

根據本揭露的一或多個實施方式,各凹槽具有一深度為300nm至5000nm。According to one or more embodiments of the present disclosure, each groove has a depth of 300 nm to 5000 nm.

根據本揭露的一或多個實施方式,這些凹槽的密度為10個/微米平方至500個/微米平方。According to one or more embodiments of the present disclosure, the density of the grooves ranges from 10 grooves/micrometer square to 500 grooves/micrometer square.

根據本揭露的一或多個實施方式,複合基板結構更包含第三基板及第二氧化層。第二氧化層直接設置於第二基板的第一表面上,且第三基板直接設置於第二氧化層上。According to one or more embodiments of the present disclosure, the composite substrate structure further includes a third substrate and a second oxide layer. The second oxide layer is directly disposed on the first surface of the second substrate, and the third substrate is directly disposed on the second oxide layer.

本揭露之又一態樣是提供一種複合基板結構的製造方法,其包含以下操作。提供第一基板,此第一基板具有相對的第一表面及第二表面。形成多孔奈米線層於第一表面上,或形成複數個凹槽於第一表面上。提供第二基板。形成氧化層於第二基板上。接合第一基板與第二基板,使得氧化層直接接觸第二表面。Another aspect of the present disclosure is to provide a method for manufacturing a composite substrate structure, which includes the following operations. A first substrate is provided, and the first substrate has a first surface and a second surface opposite to each other. A porous nanowire layer is formed on the first surface, or a plurality of grooves are formed on the first surface. Provide a second substrate. An oxide layer is formed on the second substrate. The first substrate and the second substrate are joined so that the oxide layer directly contacts the second surface.

為了使本揭示內容的敘述更加詳盡與完備,下文針對了本揭露的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本揭露具體實施例的唯一形式。以下所揭露的各實施例,在有益的情形下可相互組合或取代,也可在一實施例中附加其他的實施例,而無須進一步的記載或說明。In order to make the description of the present disclosure more detailed and complete, the following provides an illustrative description for the implementation aspects and specific embodiments of the present disclosure; this is not the only way to implement or use the specific embodiments of the present disclosure. The embodiments disclosed below can be combined or substituted with each other under beneficial circumstances, and other embodiments can also be added to an embodiment without further description or description.

以下的揭露內容提供許多不同的實施例或範例以實施本揭露多個實施例的不同特徵。以下的內容敘述各個構件及其排列方式的特定範例,以簡化說明。當然,這些特定的範例並非用以限定。將關於特定具體實施例並參照某些圖式來描述本揭露多個實施例,但本揭露多個實施例不限於特定具體實施例以及圖式,而只受限於申請專利範圍。所描述的圖式僅為示例性,且非限制性。在圖式中,為了示例的目的,一些元件的大小可被放大,且不按比例繪示。尺寸以及相對尺寸不一定相應於用以實施的實際縮圖。The following disclosure provides many different embodiments or examples to implement different features of the various embodiments of the disclosure. The following content describes specific examples of each component and its arrangement in order to simplify the description. Of course, these specific examples are not meant to be limiting. The various embodiments of the present disclosure will be described with respect to specific specific embodiments and with reference to certain drawings, but the various embodiments of the present disclosure are not limited to the specific specific embodiments and drawings, but are only limited to the scope of the patent application. The drawings described are only exemplary and non-limiting. In the drawings, for illustrative purposes, the size of some elements may be enlarged and not drawn to scale. The size and relative size do not necessarily correspond to the actual thumbnails used for implementation.

此外,在描述以及申請專利範圍中的用語頂部、底部、之上、之下以及諸如此類是用於描述的目的,且不一定用於描述相對的位置。要了解的是,如此使用的用語在適當的情況下是可交換的,且本文中所描述的具體實施例能夠以本文中所描述或示例以外的其他定位來操作。In addition, the terms top, bottom, over, under, and the like in the description and the scope of the patent application are used for the purpose of description, and are not necessarily used to describe relative positions. It should be understood that the terms so used are interchangeable under appropriate circumstances, and the specific embodiments described herein can be operated in other positions than those described or illustrated herein.

要注意的是,申請專利範圍中所使用的用語「包含」不應被理解為受限於其後所列出的手段;它不排除其他元件或操作。因此它被理解為具體說明如同所提及的所陳述特徵、整體、操作或構件的存在,但不排除一或更多個其他特徵、整體、操作或構件或其群組的存在或加入。因此,「包含裝置A以及B的裝置」的描述範圍不應限於只由構件A以及B所構成的裝置。It should be noted that the term "comprising" used in the scope of the patent application should not be construed as being limited to the means listed thereafter; it does not exclude other elements or operations. Therefore it is understood to specify the existence or addition of the stated features, wholes, operations or components as mentioned, but does not exclude the existence or addition of one or more other features, wholes, operations or components or groups thereof. Therefore, the description scope of "devices including devices A and B" should not be limited to devices consisting of components A and B only.

本揭露之一態樣是提供一種製造複合基板結構的方法10。第1圖繪示本揭露一實施方式之製造複合基板結構的方法10的流程圖。需理解的是,可在方法10之前、之中與之後,執行額外之操作,而對於方法10之額外實施例而言,操作的一些可被取代、排除或移動。方法10僅為一示範之實施例,且不打算用來限制本揭露各個實施例,除了申請專利範圍中所明確記載之外。製造複合基板結構的方法10至少包含操作110、操作120、操作130、操作140及操作150。One aspect of the present disclosure is to provide a method 10 for manufacturing a composite substrate structure. FIG. 1 shows a flowchart of a method 10 for manufacturing a composite substrate structure according to an embodiment of the present disclosure. It should be understood that additional operations may be performed before, during, and after the method 10, and for additional embodiments of the method 10, some of the operations may be replaced, eliminated, or moved. The method 10 is only an exemplary embodiment, and is not intended to limit the various embodiments of the present disclosure, except as clearly stated in the scope of the patent application. The method 10 for manufacturing a composite substrate structure includes at least operation 110, operation 120, operation 130, operation 140, and operation 150.

在操作110中,提供第一基板210。在本揭露之某些實施方式中,可以參照第2圖進一步理解操作110,其中第2圖繪示本揭露之一實施方式之製造複合基板結構的方法10中之一製程階段的剖面示意圖。可以理解的是,第一基板210具有相對的第一表面211及第二表面213。在多個實施例中,第一基板210可以為單晶矽基板、多晶矽基板、單晶氮化鋁基板、多晶氮化鋁基板、鑽石基板、單晶碳化矽基板、多晶碳化矽基板、單晶氧化鎵基板、多晶氧化鎵基板、單晶氮化硼基板或多晶氮化硼基板。In operation 110, a first substrate 210 is provided. In some embodiments of the present disclosure, operation 110 can be further understood with reference to FIG. 2, wherein FIG. 2 is a schematic cross-sectional view of a process stage in the method 10 for manufacturing a composite substrate structure according to an embodiment of the present disclosure. It can be understood that the first substrate 210 has a first surface 211 and a second surface 213 opposite to each other. In various embodiments, the first substrate 210 may be a single crystal silicon substrate, a polycrystalline silicon substrate, a single crystal aluminum nitride substrate, a polycrystalline aluminum nitride substrate, a diamond substrate, a single crystal silicon carbide substrate, a polycrystalline silicon carbide substrate, Single crystal gallium oxide substrate, polycrystalline gallium oxide substrate, single crystal boron nitride substrate or polycrystalline boron nitride substrate.

在多個實施例中,可在操作110之後,可先對第一基板210進行薄化之後再進行表面清潔。舉例來說,可以藉由研磨(grinding)及化學機械研磨(Chemical-Mechanical Planarization,CMP)等方式將第一基板210進行薄化。再舉例來說,可以利用去離子水以及丙酮交替沖洗第一基板210的表面,以去除髒污。接著,再進一步將第一基板210浸泡在80℃的濃硫酸與濃過氧化氫的混合溶液中一個小時,以得到一個無環境髒污附著的第一基板210。更詳細的說,混合溶液中濃硫酸與濃過氧化氫之間的體積比可為3:1,以使混合溶液具備較佳的清潔能力。In various embodiments, after operation 110, the first substrate 210 may be thinned before the surface cleaning is performed. For example, the first substrate 210 can be thinned by grinding and chemical-mechanical polishing (Chemical-Mechanical Planarization, CMP). For another example, the surface of the first substrate 210 can be washed alternately with deionized water and acetone to remove dirt. Then, the first substrate 210 is further immersed in a mixed solution of concentrated sulfuric acid and concentrated hydrogen peroxide at 80° C. for one hour to obtain a first substrate 210 with no environmental contamination attached. In more detail, the volume ratio between concentrated sulfuric acid and concentrated hydrogen peroxide in the mixed solution can be 3:1, so that the mixed solution has better cleaning ability.

製造複合基板結構的方法10繼續進行至操作120。在本揭露之某些實施方式中,可以參照第3圖進一步理解操作120,其中第3圖繪示本揭露之一實施方式之製造複合基板結構的方法10中之一製程階段的剖面示意圖。在操作120中,形成多孔奈米線層220於第一基板210的第一表面211上。在多個實施例中,形成多孔奈米線層220的方式具體如下所述。The method 10 of manufacturing a composite substrate structure proceeds to operation 120. In some embodiments of the present disclosure, operation 120 can be further understood with reference to FIG. 3, wherein FIG. 3 is a schematic cross-sectional view of a process stage in the method 10 for manufacturing a composite substrate structure according to an embodiment of the present disclosure. In operation 120, a porous nanowire layer 220 is formed on the first surface 211 of the first substrate 210. In many embodiments, the method of forming the porous nanowire layer 220 is specifically as follows.

首先,先形成金屬原子層覆蓋第一基板210的第一表面211。在某些實例中,金屬原子層的覆蓋率為20~300原子/微米平方,例如可為40原子/微米平方、60原子/微米平方、70原子/微米平方、100原子/微米平方、120原子/微米平方、140原子/微米平方、160原子/微米平方、170原子/微米平方、200原子/微米平方、220原子/微米平方、240原子/微米平方、260原子/微米平方或270原子/微米平方。在某些實施例中,金屬原子層可以藉由蒸鍍(evaporation)及濺鍍(sputter)等合適的物理氣相沉積形成在第一基板210的第一表面211上。在多個實例中,金屬原子層包含銀(Ag)、金(Au)或銅(Cu)。在多個實例中,金屬原子層的厚度為約10奈米至50奈米,例如為15奈米、20奈米、25奈米、30奈米、35奈米、40奈米或45奈米。值得一提的是,本揭露是藉由蒸鍍或濺鍍的方式在第一基板210的第一表面211上鍍上一層極薄的金屬原子層,使得金屬原子自然地在第一基板210的第一表面211上形成多孔網狀結構。換句話說,金屬原子層在實際上操作上是部分地覆蓋第一基板210的第一表面211。因此,金屬原子層的厚度需被控制。如果金屬原子層的厚度小於某一特定數值,例如10奈米,則會使後續將被蝕刻的第一基板210形成多孔隙結構而非所欲的多孔奈米線層;如果金屬原子層的厚度大於某一特定數值,例如50奈米,則會使後續用於蝕刻第一基板210的蝕刻溶液不易滲入金屬原子層,而較難使第一基板210形成均勻的多孔奈米線層。First, a metal atomic layer is formed to cover the first surface 211 of the first substrate 210 first. In some instances, the coverage of the metal atomic layer is 20 to 300 atoms/micrometer square, for example, 40 atoms/micrometer square, 60 atoms/micrometer square, 70 atoms/micrometer square, 100 atoms/micrometer square, 120 atoms /Micrometer square, 140 atoms/micrometer square, 160 atoms/micrometer square, 170 atoms/micrometer square, 200 atoms/micrometer square, 220 atoms/micrometer square, 240 atoms/micrometer square, 260 atoms/micrometer square or 270 atoms/micrometer square. In some embodiments, the metal atomic layer may be formed on the first surface 211 of the first substrate 210 by suitable physical vapor deposition such as evaporation and sputtering. In many examples, the metal atomic layer includes silver (Ag), gold (Au), or copper (Cu). In many examples, the thickness of the metal atomic layer is about 10 nanometers to 50 nanometers, such as 15 nanometers, 20 nanometers, 25 nanometers, 30 nanometers, 35 nanometers, 40 nanometers, or 45 nanometers. . It is worth mentioning that, in the present disclosure, a very thin layer of metal atoms is plated on the first surface 211 of the first substrate 210 by evaporation or sputtering, so that the metal atoms are naturally deposited on the first substrate 210. A porous network structure is formed on the first surface 211. In other words, the metal atomic layer actually partially covers the first surface 211 of the first substrate 210 in operation. Therefore, the thickness of the metal atomic layer needs to be controlled. If the thickness of the metal atomic layer is less than a certain value, such as 10 nanometers, the first substrate 210 to be etched later will form a porous structure instead of the desired porous nanowire layer; if the thickness of the metal atomic layer is More than a certain value, such as 50 nanometers, will make it difficult for the subsequent etching solution used to etch the first substrate 210 to penetrate the metal atomic layer, and it will be more difficult for the first substrate 210 to form a uniform porous nanowire layer.

接著,蝕刻第一基板210,以形成多孔奈米線層220於第一基板210的第一表面211上。須說明的是,金屬原子層中的金屬原子可以誘發蝕刻液蝕刻其下方的第一基板210,且所述金屬原子仍附著在被蝕刻之表面上。更進一步的說,第一基板210的第一表面211具有上具有被金屬原子覆蓋的局部區域,是以此金屬原子作為催化劑進而向下蝕刻,而未被金屬原子覆蓋的區域則不會被往下蝕刻。Then, the first substrate 210 is etched to form a porous nanowire layer 220 on the first surface 211 of the first substrate 210. It should be noted that the metal atoms in the metal atom layer can induce the etching solution to etch the first substrate 210 thereunder, and the metal atoms are still attached to the etched surface. Furthermore, the first surface 211 of the first substrate 210 has a partial area covered by metal atoms, and the metal atoms are used as a catalyst to be etched downward, while the area not covered by metal atoms will not be etched downward. Down etching.

在多個實施例中,多孔奈米線層220包含矽、矽鍺或三五族半導體材料。舉例來說,上述三五族半導體材料包含磷化銦、砷化銦、砷化鎵或磷化鎵。在多個實施例中,多孔奈米線層220的直徑D為約50奈米至200奈米,例如,可為60奈米、70奈米、70奈米、80奈米、100奈米、110奈米、120奈米、130奈米、140奈米、150奈米、160奈米、170奈米、170奈米或180奈米。在多個實施例中,多孔奈米線層220的密度為20~300奈米線/微米平方(nanowires/µm 2),例如為40奈米線/微米平方、60奈米線/微米平方、70奈米線/微米平方、100奈米線/微米平方、120奈米線/微米平方、140奈米線/微米平方、160奈米線/微米平方、170奈米線/微米平方、200奈米線/微米平方、220奈米線/微米平方、240奈米線/微米平方、260奈米線/微米平方或270奈米線/微米平方。 In various embodiments, the porous nanowire layer 220 includes silicon, silicon germanium, or group III-V semiconductor materials. For example, the above-mentioned Group III and V semiconductor materials include indium phosphide, indium arsenide, gallium arsenide, or gallium phosphide. In many embodiments, the diameter D of the porous nanowire layer 220 is about 50 nanometers to 200 nanometers, for example, it can be 60 nanometers, 70 nanometers, 70 nanometers, 80 nanometers, 100 nanometers, 110nm, 120nm, 130nm, 140nm, 150nm, 160nm, 170nm, 170nm or 180nm. In many embodiments, the density of the porous nanowire layer 220 is 20 to 300 nanowires/micrometer square (nanowires/µm 2 ), for example, 40 nanowires/micrometer square, 60 nanowires/micrometer square, 70 nanometer wire/micrometer square, 100 nanometer wire/micrometer square, 120 nanometer wire/micrometer square, 140 nanometer wire/micrometer square, 160 nanometer wire/micrometer square, 170 nanometer wire/micrometer square, 200 nanometer Meter wire/micrometer square, 220 nanometer wire/micrometer square, 240 nanometer wire/micrometer square, 260 nanometer wire/micrometer square or 270 nanometer wire/micrometer square.

舉例來說,本揭露是使用濺鍍機在通以氬氣的環境中,在第一基板210乾淨的第一表面211上成長一厚度為約20~30奈米的銀薄膜。接著,再將具有銀薄膜的第一基板210浸泡在蝕刻液中進行等向性濕式蝕刻,以形成多孔奈米線層220。舉例來說,蝕刻液可以為氫氟酸(濃度為約0.44M)及過氧化氫(濃度為約4.6M)的混合溶液。須說明的是,多孔奈米線層220中的奈米線的長度及直徑可以由浸泡在蝕刻液中的時間來決定。舉例來說,當浸泡在蝕刻液中的時間為約35秒時,奈米線的長度為約450奈米且其直徑為約50~200奈米。For example, the present disclosure uses a sputtering machine to grow a silver film with a thickness of about 20-30 nanometers on the clean first surface 211 of the first substrate 210 in an argon atmosphere. Then, the first substrate 210 with the silver thin film is immersed in an etching solution to perform isotropic wet etching to form a porous nanowire layer 220. For example, the etching solution may be a mixed solution of hydrofluoric acid (concentration of about 0.44M) and hydrogen peroxide (concentration of about 4.6M). It should be noted that the length and diameter of the nanowire in the porous nanowire layer 220 can be determined by the time immersed in the etching solution. For example, when the immersion time in the etching solution is about 35 seconds, the length of the nanowire is about 450 nanometers and its diameter is about 50 to 200 nanometers.

另舉例來說,亦可以使用金屬濺鍍機成長金薄膜或銅薄膜在第一基板210乾淨的第一表面211上。接著,同樣將具有金薄膜或銅薄膜的第一基板210浸泡在蝕刻液中進行等向性濕式蝕刻,以形成多孔奈米線層220。For another example, a metal sputtering machine can also be used to grow a gold film or a copper film on the clean first surface 211 of the first substrate 210. Then, the first substrate 210 with the gold film or the copper film is also immersed in an etching solution to perform isotropic wet etching to form a porous nanowire layer 220.

最後,清洗第一基板210及多孔奈米線層220。在一實例中,可先使用去離子水沖洗第一基板210及多孔奈米線層220,再輪流使用第一清潔溶液以及第二清潔溶液沖洗第一基板210及多孔奈米線層220,以去除金屬原子(例如,銀原子、金原子或銅原子)殘留物。舉例來說,第一清潔溶液可為氨水、過氧化氫溶液與水以體積比為2:1:5的比例製備的混合溶液;又第二清潔溶液可為鹽酸、過氧化氫溶液與水以體積比為2:1:8的比例製備的混合溶液。最後,使用去離子水再次清潔第一基板210及多孔奈米線層220,以去除上述的清潔溶液,並利用氮氣通風風乾,而可得到表面為多孔奈米線層220的第一基板210。Finally, the first substrate 210 and the porous nanowire layer 220 are cleaned. In one example, deionized water may be used to rinse the first substrate 210 and the porous nanowire layer 220, and then the first cleaning solution and the second cleaning solution may be used in turn to rinse the first substrate 210 and the porous nanowire layer 220 to Removal of metal atom (for example, silver atom, gold atom, or copper atom) residues. For example, the first cleaning solution may be a mixed solution prepared with a volume ratio of 2:1:5 in the volume ratio of ammonia, hydrogen peroxide solution and water; and the second cleaning solution may be hydrochloric acid, hydrogen peroxide solution and water. The volume ratio is a mixed solution prepared at a ratio of 2:1:8. Finally, the first substrate 210 and the porous nanowire layer 220 are cleaned again with deionized water to remove the above-mentioned cleaning solution, and air-dried with nitrogen gas to obtain the first substrate 210 with the porous nanowire layer 220 on the surface.

第4A圖為本揭露之一實施方式之多孔奈米線層220的上視影像圖。第4B圖為本揭露之一實施方式之多孔奈米線層220的剖面影像圖。在操作120之後,所得到的多孔奈米線層220具體可參照第4A圖及第4B圖所示。由第4A圖及第4B圖可以明顯看出,多孔奈米線層220具有多個孔洞。舉例來說,這些孔洞具有規則或不規則的形狀。Figure 4A is a top view image of the porous nanowire layer 220 according to one embodiment of the disclosure. FIG. 4B is a cross-sectional image diagram of the porous nanowire layer 220 according to an embodiment of the disclosure. After operation 120, the obtained porous nanowire layer 220 can be specifically shown in FIG. 4A and FIG. 4B. It can be clearly seen from Fig. 4A and Fig. 4B that the porous nanowire layer 220 has a plurality of pores. For example, these holes have regular or irregular shapes.

在多個實施例中,可以更包含將一填充物250填充於多孔奈米線層220的多個孔洞中。在多個實例中,填充物250包含空氣、二氧化矽、多晶矽或氮化矽(Si 1-xN x)。舉例來說,可使用化學氣相沉積法(chemical vapor deposition,CVD)、熔膠凝膠法、高溫爐管等方式成長這些填充物250。 In many embodiments, it may further include filling a filler 250 into the holes of the porous nanowire layer 220. In many examples, the filler 250 includes air, silicon dioxide, polysilicon, or silicon nitride (Si 1-x N x ). For example, the fillers 250 can be grown using chemical vapor deposition (CVD), melt-gel method, high-temperature furnace tube, and the like.

製造複合基板結構的方法10繼續進行至操作130。在操作130中,提供第二基板230。在本揭露之某些實施方式中,可以參照第6圖進一步理解操作130,其中第6圖繪示本揭露之一實施方式之製造複合基板結構的方法10中之一製程階段的剖面示意圖。在多個實施例中,第二基板230可以為矽基板。The method 10 of manufacturing a composite substrate structure proceeds to operation 130. In operation 130, a second substrate 230 is provided. In some embodiments of the present disclosure, operation 130 can be further understood with reference to FIG. 6, wherein FIG. 6 is a schematic cross-sectional view of a process stage in the method 10 for manufacturing a composite substrate structure according to an embodiment of the present disclosure. In various embodiments, the second substrate 230 may be a silicon substrate.

製造複合基板結構的方法10繼續進行至操作140。在操作140中,形成氧化層240於第二基板230上。在本揭露之某些實施方式中,可以參照第6圖進一步理解操作140,其中第6圖繪示本揭露之一實施方式之製造複合基板結構的方法10中之一製程階段的剖面示意圖。在多個實施例中,氧化層240完全覆蓋第二基板230。可以藉由高溫氧化製程,在第二基板230的表面形成具有高緻密性的氧化層240。在多個實例中,氧化層240包含氧化矽、氧化鎵、二氧化鈦或氧化鋁。舉例來說,氧化層240的厚度可為數十奈米至數微米,例如為0.5微米。The method 10 of manufacturing a composite substrate structure proceeds to operation 140. In operation 140, an oxide layer 240 is formed on the second substrate 230. In some embodiments of the present disclosure, operation 140 can be further understood with reference to FIG. 6, wherein FIG. 6 is a schematic cross-sectional view of a process stage in the method 10 for manufacturing a composite substrate structure according to an embodiment of the present disclosure. In various embodiments, the oxide layer 240 completely covers the second substrate 230. An oxide layer 240 with high density can be formed on the surface of the second substrate 230 by a high-temperature oxidation process. In many examples, the oxide layer 240 includes silicon oxide, gallium oxide, titanium dioxide, or aluminum oxide. For example, the thickness of the oxide layer 240 may be tens of nanometers to several micrometers, such as 0.5 micrometers.

製造複合基板結構的方法10繼續進行至操作150。在操作150中,接合第一基板210與第二基板230,使得氧化層240直接接觸第一基板210的第二表面213。在本揭露之某些實施方式中,可以參照第7圖進一步理解操作150,其中第7圖繪示本揭露之一實施方式之複合基板結構70的剖面示意圖。如第7圖所示,將如第5圖的結構與如第6圖的結構進行對接,使得氧化層240直接接觸第一基板210的第二表面213,以形成複合基板結構70。在一實施例中,本揭露是在常壓真空環境下將如第5圖的結構與如第6圖的結構對準貼合後,於高溫下維持1至30分鐘,以增加接合表面之間的凡德瓦爾力(例如,OH鍵結),進而得到具有緊密物理性接合的複合基板結構70。接著,可將上述具有緊密物理性接合的複合基板結構70在600℃至1150℃的溫度下進行約1小時的高溫熱處理,以使接合表面之間產生接合力更強的化學鍵結(例如,SiO 2-SiO 2或SiO 2-Si),進而大幅提升兩結構之間的結合力。 The method 10 of manufacturing a composite substrate structure proceeds to operation 150. In operation 150, the first substrate 210 and the second substrate 230 are joined so that the oxide layer 240 directly contacts the second surface 213 of the first substrate 210. In some embodiments of the present disclosure, operation 150 can be further understood with reference to FIG. 7, wherein FIG. 7 is a schematic cross-sectional view of a composite substrate structure 70 according to an embodiment of the present disclosure. As shown in FIG. 7, the structure shown in FIG. 5 is connected to the structure shown in FIG. 6 so that the oxide layer 240 directly contacts the second surface 213 of the first substrate 210 to form a composite substrate structure 70. In one embodiment, the present disclosure is to align the structure as shown in Figure 5 with the structure as shown in Figure 6 under a normal pressure vacuum environment, and then maintain it at a high temperature for 1 to 30 minutes to increase the gap between the bonding surfaces. The van der Waals force (for example, OH bonding), and the composite substrate structure 70 with close physical bonding is obtained. Next, the above-mentioned composite substrate structure 70 with tight physical bonding can be subjected to a high temperature heat treatment at a temperature of 600°C to 1150°C for about 1 hour, so that a chemical bond with stronger bonding force (e.g., SiO 2 -SiO 2 or SiO 2 -Si), thereby greatly improving the bonding force between the two structures.

在多個實施例中,可以先對如第6圖所示的結構進行平坦化製程以及修飾部分氧化層240後再進行對接,或者可以在形成複合基板結構70後再進行平坦化製程以及修飾部分氧化層240。平坦化製程以及修飾過程詳述如下。在一實例中,可以先使用鑽石砂輪將第二基板230減薄至所需的厚度(例如,介於1微米至700微米之間),再以濕式平坦化前處理、乾式平坦化前處理及其組合進行0.2至30分鐘的修飾,以得到具有高均勻性的粗糙表面。在一實例中,濕式平坦化前處理可以使用酸溶液與鹼溶液依不同比例製備的混合溶液修飾第二基板230的表面,進而得到均勻的粗糙表面。舉例來說,酸溶液包含鹽酸(HCl)、硝酸(HNO 3)、磷酸(H 3PO 4)、硫酸(H 2SO 4)等;鹼溶液包含氫氧化鉀(KOH)、氫氧化鈉(NaOH)等。在本實例中,濕式平坦化前處理是使用氫氧化鉀與過氧化氫的混合溶液來修飾第二基板230的表面。 In many embodiments, the structure as shown in FIG. 6 may be first subjected to a planarization process and part of the oxide layer 240 is modified before butting is performed, or the composite substrate structure 70 may be formed before the planarization process and part of the modification are performed Oxide layer 240. The planarization process and modification process are detailed as follows. In one example, a diamond grinding wheel may be used to thin the second substrate 230 to a desired thickness (for example, between 1 μm and 700 μm), and then the wet planarization pre-treatment or the dry planarization pre-treatment The modification is carried out for 0.2 to 30 minutes to obtain a rough surface with high uniformity. In one example, the wet planarization pretreatment may use a mixed solution prepared in different ratios of an acid solution and an alkali solution to modify the surface of the second substrate 230 to obtain a uniform rough surface. For example, the acid solution includes hydrochloric acid (HCl), nitric acid (HNO 3 ), phosphoric acid (H 3 PO 4 ), sulfuric acid (H 2 SO 4 ), etc.; the alkaline solution includes potassium hydroxide (KOH), sodium hydroxide (NaOH), etc. )Wait. In this example, the pre-treatment for wet planarization is to modify the surface of the second substrate 230 using a mixed solution of potassium hydroxide and hydrogen peroxide.

在另一實例中,乾式平坦化前處理是使用電漿(plasma),具體地,包含氟、氯、氫等具有離子蝕刻能力的氣體或是大分子之氣體進行物理轟擊,進而得到具有高均勻性的粗糙表面。在又一實例中,可以先使用上述的乾式平坦化前處理後再使用前述的濕式平坦化前處理,亦可得到具有高均勻性的粗糙表面。然後,將經平坦化前處理後的半導體基板進行拋光製程。詳細的說,調配適當濃度的化學拋光溶液(PH值為約8-12),以連續示注入方式進行拋光加工。在多個實例中,化學拋光溶液可包含奈米粒子,例如金屬、金屬氧化物、陶瓷材料等。在本實施例中,化學拋光溶液是含有二氧化矽奈米粒子。可以理解的是,根據不同的化學拋光溶液需搭配不同的製程參數,並在施力平衡下進行表面拋光加工。上述的製程參數包含加工時雙面的施力(loading force)、化學拋光溶液的流速、加工溫度與時間…等。In another example, the pre-treatment of dry planarization is to use plasma, specifically, a gas containing fluorine, chlorine, hydrogen and other gases with ion etching capability or gas with macromolecules is physically bombarded to obtain a high uniformity Sexual rough surface. In another example, the aforementioned dry-type pre-planarization treatment can be used first, and then the aforementioned wet-type pre-planarization treatment can be used to obtain a rough surface with high uniformity. Then, the semiconductor substrate after the pre-planarization treatment is subjected to a polishing process. In detail, a chemical polishing solution of appropriate concentration (PH value of about 8-12) is prepared, and the polishing process is performed in a continuous injection mode. In many examples, the chemical polishing solution may contain nano particles, such as metals, metal oxides, ceramic materials, and the like. In this embodiment, the chemical polishing solution contains silicon dioxide nanoparticles. It is understandable that different chemical polishing solutions need to be matched with different process parameters, and the surface polishing is performed under a balanced force. The above-mentioned process parameters include the loading force of both sides during processing, the flow rate of the chemical polishing solution, the processing temperature and time... etc.

可以理解的是,本揭露的複合基板結構70中的多孔奈米線層220可以降低後續成長三五族半導體成核層(例如,氮化鋁、氮化鎵、氮化銦、或者是前述三者的三元化合物或四元化合物)的接觸密度。減少接觸密度就可以減少在異質界面的差排(dislocation)密度。由於本揭露的複合基板結構70包含了較薄的多孔奈米線層220,而具有吸收磊晶層應力的技術效果。在此同時,因為基板的二氧化矽會在磊晶的高溫成長過程中具備有潛變(creeping property)的效應,這種效應可以降低後續成長的三五族半導體成核層從3D島狀合併成2D薄膜的時候在邊界因為各島的平面內(in-plane)旋轉所造成的邊界差排。而多孔奈米線層同時因尺寸的微縮效應而在其表面產生介面陷阱態及解離能上升之特性。因此,複合基板結構70不但可以減少異質磊晶(heteroepitaxy)應力之外,還可以提高基板阻值。It is understandable that the porous nanowire layer 220 in the composite substrate structure 70 of the present disclosure can reduce the subsequent growth of the third and fifth group semiconductor nucleation layer (for example, aluminum nitride, gallium nitride, indium nitride, or the aforementioned three types). The contact density of the ternary compound or quaternary compound). Reducing the contact density can reduce the dislocation density at the heterogeneous interface. Since the composite substrate structure 70 of the present disclosure includes a relatively thin porous nanowire layer 220, it has the technical effect of absorbing the stress of the epitaxial layer. At the same time, because the silicon dioxide of the substrate has a creeping property effect during the high temperature growth process of the epitaxy, this effect can reduce the subsequent growth of the group III and V semiconductor nucleation layer from the 3D island shape. When forming a 2D film, the boundary is arranged differently due to the in-plane rotation of the islands. The porous nanowire layer also has the characteristics of interface trap state and increased dissociation energy on its surface due to the shrinking effect of the size. Therefore, the composite substrate structure 70 can not only reduce the heteroepitaxy stress, but also increase the resistance of the substrate.

第8圖繪示本揭露之另一實施方式之複合基板結構80的剖面示意圖。在多個實施例中,可以在如第7圖的複合基板結構70上形成氧化層820及第三基板810,進而形成如第8圖所示的複合基板結構80。更詳細的說,氧化層820直接設置於多孔奈米線層220上,且第三基板810直接設置於氧化層820上。在多個實施例中,第三基板810可以為矽基板。在多個實施例中,第三基板810的厚度可以介於1um至700um,例如可為10 um、50 um、100 um、150 um、200 um、250 um、300 um、350 um、400 um、450 um、500 um、550 um、600 um或650 um。若第三基板810的厚度大於某一數值,例如700um,則可能會使後續三五族半導體在磊晶成長所產生的應力無法傳遞至第三基板810下方的多孔奈米線層220,進而導致多孔奈米線層220無法有效地吸收應力。在多個實施例中,氧化層820包含氧化矽、氧化鎵、二氧化鈦或氧化鋁。氧化層820可以提高第三基板810與多孔奈米線層220之間的結合力。在多個實施例中,氧化層820的厚度可以介於0.01um至5um,例如可為0.05um、0.1um、0.2um、0.3um、0.4um、0.5um、0.6um、0.7um、0.8um、0.9um、1.0um、2.0um、3.0um或4.0um。在多個實施例中,氧化層820及第三基板810的製造方式可以與氧化層240及第三基板230的製造方式相同或相似。FIG. 8 is a schematic cross-sectional view of a composite substrate structure 80 according to another embodiment of the present disclosure. In many embodiments, the oxide layer 820 and the third substrate 810 may be formed on the composite substrate structure 70 as shown in FIG. 7 to form the composite substrate structure 80 as shown in FIG. 8. In more detail, the oxide layer 820 is directly disposed on the porous nanowire layer 220, and the third substrate 810 is directly disposed on the oxide layer 820. In various embodiments, the third substrate 810 may be a silicon substrate. In various embodiments, the thickness of the third substrate 810 may be between 1 um and 700 um, for example, 10 um, 50 um, 100 um, 150 um, 200 um, 250 um, 300 um, 350 um, 400 um, 450 um, 500 um, 550 um, 600 um or 650 um. If the thickness of the third substrate 810 is greater than a certain value, such as 700um, the stress generated by the subsequent epitaxial growth of the third and fifth group semiconductors may not be transmitted to the porous nanowire layer 220 under the third substrate 810, resulting in The porous nanowire layer 220 cannot effectively absorb stress. In various embodiments, the oxide layer 820 includes silicon oxide, gallium oxide, titanium dioxide, or aluminum oxide. The oxide layer 820 can improve the bonding force between the third substrate 810 and the porous nanowire layer 220. In many embodiments, the thickness of the oxide layer 820 can be between 0.01um and 5um, for example, it can be 0.05um, 0.1um, 0.2um, 0.3um, 0.4um, 0.5um, 0.6um, 0.7um, 0.8um, 0.9um, 1.0um, 2.0um, 3.0um or 4.0um. In various embodiments, the manufacturing method of the oxide layer 820 and the third substrate 810 may be the same or similar to the manufacturing method of the oxide layer 240 and the third substrate 230.

本揭露另提供一種製造複合基板結構1100的方法10。請回到第1圖,複合基板結構1100的製造方法實質上與複合基板結構70的製造方法極為相似。製造複合基板結構1100的方法10至少包含操作110、操作120、操作130、操作140及操作150。為了便於比較與上述各實施方式之相異處並簡化說明,在下文之各實施例中使用相同的符號標注相同的元件,且主要針對各實施方式之相異處進行說明,而不再對重覆部分進行贅述。The present disclosure further provides a method 10 for manufacturing the composite substrate structure 1100. Please return to FIG. 1, the manufacturing method of the composite substrate structure 1100 is substantially similar to the manufacturing method of the composite substrate structure 70. The method 10 of manufacturing the composite substrate structure 1100 includes at least operation 110, operation 120, operation 130, operation 140, and operation 150. In order to facilitate the comparison of the differences with the above-mentioned embodiments and simplify the description, the same symbols are used to denote the same elements in the following embodiments, and the descriptions are mainly directed to the differences of the embodiments, and no repetition is repeated. Repeat part of the cover.

第9圖、第10圖及第11圖繪示本揭露之另一實施方式之製造複合基板結構1100方法10中之一製程階段的剖面示意圖。複合基板結構1100的製造方法與複合基板結構70的製造方法的不同之處主要在於操作120。詳細的說,如第9圖所示,在製造複合基板結構1100的過程中,操作120為形成複數個凹槽1110於第一基板210的第一表面211上。在多個實施例中,可以藉由微影蝕刻的方式,在第一基板210上形成複數個凹槽1110。FIG. 9, FIG. 10, and FIG. 11 are schematic cross-sectional views of a process stage in a method 10 of manufacturing a composite substrate structure 1100 according to another embodiment of the present disclosure. The manufacturing method of the composite substrate structure 1100 is different from the manufacturing method of the composite substrate structure 70 mainly in operation 120. In detail, as shown in FIG. 9, during the process of manufacturing the composite substrate structure 1100, operation 120 is to form a plurality of grooves 1110 on the first surface 211 of the first substrate 210. In various embodiments, a plurality of grooves 1110 may be formed on the first substrate 210 by means of photolithography.

在多個實施例中,這些凹槽1110的直徑為約10nm至500nm,例如可為20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、150nm、200nm、250nm、300nm、350nm、400nm或500nm。在多個實施例中,這些凹槽1110的密度為約10個/微米平方至500個/微米平方,例如可為20個/微米平方、30個/微米平方、40個/微米平方、50個/微米平方、60個/微米平方、70個/微米平方、80個/微米平方、90個/微米平方、100個/微米平方、150個/微米平方、200個/微米平方、250個/微米平方、300個/微米平方、350個/微米平方、400個/微米平方或500個/微米平方。在多個實施例中,各凹槽1110的深度為約300nm至5000nm,例如可為400nm、500nm、600nm、700nm、800nm、900nm、1000nm、1500nm、2000nm、2500nm、3000nm、3500nm、4000nm或4500nm。In many embodiments, the diameter of these grooves 1110 is about 10nm to 500nm, for example, 20nm, 30nm, 40nm, 50nm, 60nm, 70nm, 80nm, 90nm, 100nm, 150nm, 200nm, 250nm, 300nm, 350nm, 400nm or 500nm. In many embodiments, the density of the grooves 1110 is about 10/micrometer square to 500/micrometer square, for example, 20 grooves/micrometer square, 30 grooves/micrometer square, 40 grooves/micrometer square, 50 grooves. / Micron square, 60 / micron square, 70 / micron square, 80 / micron square, 90 / micron square, 100 / micron square, 150 / micron square, 200 / micron square, 250 / micron Square, 300/micrometer square, 350/micrometer square, 400/micrometer square, or 500/micrometer square. In various embodiments, the depth of each groove 1110 is about 300 nm to 5000 nm, and may be 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1000 nm, 1500 nm, 2000 nm, 2500 nm, 3000 nm, 3500 nm, 4000 nm, or 4500 nm, for example.

在多個實施例中,可以將填充物250填充於這些凹槽1110中,如第10圖所示。在多個實例中,填充物250包含空氣、二氧化矽、多晶矽或氮化矽。舉例來說,可使用化學氣相沉積法(chemical vapor deposition, CVD)、熔膠凝膠法、高溫爐管等方式成長這些填充物250。In many embodiments, the filler 250 may be filled in the grooves 1110, as shown in FIG. 10. In many examples, the filler 250 includes air, silicon dioxide, polysilicon, or silicon nitride. For example, these fillers 250 can be grown using chemical vapor deposition (CVD), melt-gel method, high-temperature furnace tube, and the like.

接著,將如第10圖的結構與如第6圖的結構進行對接,使得氧化層240直接接觸第一基板210的第二表面213,如第11圖所示。在多個實施例中,兩結構對接的方法以及後續平坦化和修飾部分氧化層240的方法已詳細記載於前文,在此不再贅述。如第11圖所示,複合基板結構1100包含基板230、氧化層240以及基板210。具體的說,氧化層240直接設置於基板230上。基板210具有相對的第一表面211及第二表面213,第二表面213直接接觸氧化層240,且基板210包含複數個凹槽1110由第一表面211朝第二表面213的方向凹陷。須說明的是,這些凹槽1110並不會貫穿基板210。應注意,複合基板結構1100與複合基板結構70之間的差異在於,複合基板結構1100是將複合基板結構70中的多孔奈米線層220置換成複數個凹槽1110而成,且這些凹槽1110所提供的技術效果與多孔奈米線層220所提供的技術效果大致相同。Next, the structure shown in FIG. 10 is connected to the structure shown in FIG. 6 so that the oxide layer 240 directly contacts the second surface 213 of the first substrate 210, as shown in FIG. 11. In many embodiments, the method of connecting the two structures and the subsequent method of planarizing and modifying the partial oxide layer 240 have been described in detail above, and will not be repeated here. As shown in FIG. 11, the composite substrate structure 1100 includes a substrate 230, an oxide layer 240 and a substrate 210. Specifically, the oxide layer 240 is directly disposed on the substrate 230. The substrate 210 has a first surface 211 and a second surface 213 opposite to each other. The second surface 213 directly contacts the oxide layer 240, and the substrate 210 includes a plurality of grooves 1110 recessed from the first surface 211 toward the second surface 213. It should be noted that these grooves 1110 do not penetrate the substrate 210. It should be noted that the difference between the composite substrate structure 1100 and the composite substrate structure 70 is that the composite substrate structure 1100 is formed by replacing the porous nanowire layer 220 in the composite substrate structure 70 with a plurality of grooves 1110, and these grooves The technical effect provided by 1110 is roughly the same as that provided by the porous nanowire layer 220.

第12圖繪示本揭露之又一實施方式之複合基板結構1200的剖面示意圖。在多個實施例中,可以在如第12圖的複合基板結構1100上形成氧化層1220及第四基板1210,進而形成如第12圖所示的複合基板結構1200。更詳細的說,氧化層1220直接設置於具有複數個凹槽1110的第一基板210上,且第四基板1210直接設置於氧化層1220上。在多個實施例中,第四基板1210可以為矽基板。在多個實施例中,第四基板1210的厚度可以介於1um至700um,例如可為10 um、50 um、100 um、150 um、200 um、250 um、300 um、350 um、400 um、450 um、500 um、550 um、600 um或650 um。若第四基板1210的厚度大於某一數值,例如700um,則可能會使後續三五族半導體在磊晶成長所產生的應力無法傳遞至第四基板1210下方的凹槽1100,進而導致這些凹槽1100無法有效地吸收應力。在多個實施例中,氧化層1220包含氧化矽、氧化鎵、二氧化鈦或氧化鋁。氧化層1220可以提高第四基板1210與第一基板210之間的結合力。在多個實施例中,氧化層1220的厚度可以介於0.01um至5um,例如可為0.05um、0.1um、0.2um、0.3um、0.4um、0.5um、0.6um、0.7um、0.8um、0.9um、1.0um、2.0um、3.0um或4.0um。在多個實施例中,氧化層1220及第四基板1210的製造方式可以與前述氧化層240及第三基板230的製造方式相同或相似。FIG. 12 is a schematic cross-sectional view of a composite substrate structure 1200 according to another embodiment of the present disclosure. In many embodiments, the oxide layer 1220 and the fourth substrate 1210 may be formed on the composite substrate structure 1100 as shown in FIG. 12, thereby forming the composite substrate structure 1200 as shown in FIG. 12. In more detail, the oxide layer 1220 is directly disposed on the first substrate 210 having a plurality of grooves 1110, and the fourth substrate 1210 is directly disposed on the oxide layer 1220. In various embodiments, the fourth substrate 1210 may be a silicon substrate. In various embodiments, the thickness of the fourth substrate 1210 may be between 1 um and 700 um, for example, 10 um, 50 um, 100 um, 150 um, 200 um, 250 um, 300 um, 350 um, 400 um, 450 um, 500 um, 550 um, 600 um or 650 um. If the thickness of the fourth substrate 1210 is greater than a certain value, such as 700um, the stress generated by the subsequent epitaxial growth of the third and fifth group semiconductors may not be transmitted to the grooves 1100 under the fourth substrate 1210, thereby causing these grooves 1100 cannot effectively absorb stress. In various embodiments, the oxide layer 1220 includes silicon oxide, gallium oxide, titanium dioxide, or aluminum oxide. The oxide layer 1220 can improve the bonding force between the fourth substrate 1210 and the first substrate 210. In many embodiments, the thickness of the oxide layer 1220 can be between 0.01um and 5um, for example, it can be 0.05um, 0.1um, 0.2um, 0.3um, 0.4um, 0.5um, 0.6um, 0.7um, 0.8um, 0.9um, 1.0um, 2.0um, 3.0um or 4.0um. In many embodiments, the manufacturing method of the oxide layer 1220 and the fourth substrate 1210 may be the same or similar to the manufacturing method of the oxide layer 240 and the third substrate 230 described above.

在其他實施例中,可以更設置一電晶體結構(圖未示)於本揭露的複合基板結構70、80、1100及1200上。舉例來說,電晶體結構可以為金屬氧化物半導體場效電晶體、高電子移動率晶體電晶體、或者是需要耐高電壓的各種電晶體。In other embodiments, a transistor structure (not shown) may be further provided on the composite substrate structures 70, 80, 1100, and 1200 of the present disclosure. For example, the transistor structure can be a metal oxide semiconductor field effect transistor, a high electron mobility crystal transistor, or various transistors that need to withstand high voltage.

綜上,本揭露的複合基板結構包含有設置在基板上的多孔奈米線層或者複數個凹槽,上述兩者可以吸收後續成長三五族半導體成核層所產生的應力,進而減少在異質界面的差排密度。此外,由於基板會在磊晶的高溫成長過程中具備有潛變的效應,這種效應可以降低後續成長的三五族半導體成核層從3D島狀合併成2D薄膜的時候在邊界因為各島的平面內(in-plane)旋轉所造成的邊界差排。因此,本揭露提供多個可以成長高品質三五族半導體磊晶的複合基板結構及其製造方法的實施例。In summary, the composite substrate structure disclosed in the present disclosure includes a porous nanowire layer or a plurality of grooves provided on the substrate. Poor density of the interface. In addition, since the substrate will have a creep effect during the high temperature growth process of the epitaxy, this effect can reduce the subsequent growth of the group III and V semiconductor nucleation layer from the 3D island shape to the 2D film when the boundary is due to the islands. The boundary difference caused by in-plane rotation. Therefore, the present disclosure provides multiple composite substrate structures capable of growing high-quality Group III and V semiconductor epitaxy and manufacturing methods thereof.

雖然本揭露已以實施方式揭露如上,然其並不用以限定本揭露,任何熟習此技藝者,在不脫離本揭露的精神和範圍內,當可作各種的更動與潤飾,因此本揭露的保護範圍當視後附的申請專利範圍所界定者為準。Although this disclosure has been disclosed in the above implementation manner, it is not intended to limit this disclosure. Anyone who is familiar with this technique can make various changes and modifications without departing from the spirit and scope of this disclosure. Therefore, this disclosure is protected The scope shall be subject to the scope of the attached patent application.

10:方法 110:操作 120:操作 130:操作 140:操作 150:操作 210:第一基板 211:第一表面 213:第二表面 220:多孔奈米線層 230:第二基板 240:氧化層 250:填充物 70:複合基板結構 80:複合基板結構 810:氧化層 820:第三基板 1100:複合基板結構 1110:凹槽 1200:複合基板結構 1210:第四基板 1220:氧化層 D:直徑 10: Method 110: Operation 120: Operation 130: Operation 140: Operation 150: Operation 210: first substrate 211: First Surface 213: second surface 220: Porous nanowire layer 230: second substrate 240: oxide layer 250: filler 70: Composite substrate structure 80: Composite substrate structure 810: oxide layer 820: third substrate 1100: Composite substrate structure 1110: groove 1200: Composite substrate structure 1210: Fourth substrate 1220: oxide layer D: diameter

為讓本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1圖繪示本揭露一實施方式之製造複合基板結構的方法的流程圖。 第2圖及第3圖繪示本揭露之一實施方式之製造複合基板結構的方法中之一製程階段的剖面示意圖。 第4A圖為本揭露之一實施方式之多孔奈米線層的上視影像圖。 第4B圖為本揭露之一實施方式之多孔奈米線層的剖面影像圖。 第5圖及第6圖繪示本揭露之一實施方式之製造複合基板結構的方法中之一製程階段的剖面示意圖。 第7圖繪示本揭露之一實施方式之複合基板結構的剖面示意圖。 第8圖繪示本揭露之另一實施方式之複合基板結構的剖面示意圖。 第9圖、第10圖及第11圖繪示本揭露之另一實施方式之製造複合基板結構的方法中之一製程階段的剖面示意圖。 第12圖繪示本揭露之又一實施方式之複合基板結構的剖面示意圖。 In order to make the above and other objectives, features, advantages, and embodiments of this disclosure more comprehensible, the description of the accompanying drawings is as follows: FIG. 1 shows a flowchart of a method of manufacturing a composite substrate structure according to an embodiment of the present disclosure. 2 and 3 are schematic cross-sectional views of a process stage in the method for manufacturing a composite substrate structure according to an embodiment of the present disclosure. Figure 4A is a top view image of the porous nanowire layer in one embodiment of the disclosure. FIG. 4B is a cross-sectional image diagram of the porous nanowire layer according to an embodiment of the disclosure. 5 and 6 are schematic cross-sectional views of a process stage in the method for manufacturing a composite substrate structure according to an embodiment of the present disclosure. FIG. 7 is a schematic cross-sectional view of a composite substrate structure according to an embodiment of the present disclosure. FIG. 8 is a schematic cross-sectional view of a composite substrate structure according to another embodiment of the present disclosure. FIG. 9, FIG. 10, and FIG. 11 are schematic cross-sectional views of a process stage in a method for manufacturing a composite substrate structure according to another embodiment of the present disclosure. FIG. 12 is a schematic cross-sectional view of a composite substrate structure according to another embodiment of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in the order of deposit institution, date and number) none Foreign hosting information (please note in the order of hosting country, institution, date, and number) none

70:複合基板結構 70: Composite substrate structure

210:第一基板 210: first substrate

220:多孔奈米線層 220: Porous nanowire layer

230:氧化層 230: oxide layer

240:第二基板 240: second substrate

250:填充物 250: filler

Claims (9)

一種複合基板結構,包括:一第一基板;一第一氧化層,直接設置於該第一基板上;一第二基板,直接設置於該第一氧化層上;以及一多孔奈米線層,直接設置於該第二基板上。 A composite substrate structure includes: a first substrate; a first oxide layer directly arranged on the first substrate; a second substrate directly arranged on the first oxide layer; and a porous nanowire layer , Directly arranged on the second substrate. 如請求項1所述之複合基板結構,更包含直接設置於該多孔奈米線層上之一第二氧化層,以及直接設置於該第二氧化層上之一第三基板。 The composite substrate structure according to claim 1, further comprising a second oxide layer directly disposed on the porous nanowire layer, and a third substrate directly disposed on the second oxide layer. 如請求項2所述之複合基板結構,其中該第一氧化層和該第二氧化層各自包含氧化矽、氧化鎵、二氧化鈦或氧化鋁。 The composite substrate structure according to claim 2, wherein the first oxide layer and the second oxide layer each comprise silicon oxide, gallium oxide, titanium dioxide or aluminum oxide. 如請求項1所述之複合基板結構,更包含充滿該多孔奈米線層之一填充物,其包含空氣、二氧化矽、多晶矽或氮化矽。 The composite substrate structure according to claim 1, further comprising a filler filled with the porous nanowire layer, which comprises air, silicon dioxide, polysilicon or silicon nitride. 如請求項1所述之複合基板結構,其中該多孔奈米線層的一直徑為50奈米至200奈米,且該多孔奈米線層的一密度為20至300奈米線/微米平方(nanowires/μm2)。 The composite substrate structure of claim 1, wherein a diameter of the porous nanowire layer is 50 nanometers to 200 nanometers, and a density of the porous nanowire layer is 20 to 300 nanometers/micrometer square (nanowires/μm 2 ). 一種複合基板結構,包括:一第一基板;一第一氧化層,直接設置於該第一基板上;以及一第二基板,具有相對的一第一表面及一第二表面,其中該第二表面直接接觸該第一氧化層,且該第二基板包含複數個具有300nm至500nm之深度的凹槽由該第一表面朝該第二表面的方向凹陷。 A composite substrate structure includes: a first substrate; a first oxide layer directly disposed on the first substrate; and a second substrate having a first surface and a second surface opposite to each other, wherein the second substrate The surface directly contacts the first oxide layer, and the second substrate includes a plurality of grooves with a depth of 300 nm to 500 nm that are recessed from the first surface toward the second surface. 一種複合基板結構,包括:一第一基板;一第一氧化層,直接設置於該第一基板上;以及一第二基板,具有相對的一第一表面及一第二表面,其中該第二表面直接接觸該第一氧化層,且該第二基板包含複數個具有10個/微米平方至500個/微米平方之密度的凹槽由該第一表面朝該第二表面的方向凹陷。 A composite substrate structure includes: a first substrate; a first oxide layer directly disposed on the first substrate; and a second substrate having a first surface and a second surface opposite to each other, wherein the second substrate The surface directly contacts the first oxide layer, and the second substrate includes a plurality of grooves having a density of 10/micrometer square to 500 grooves/micrometer square that are recessed from the first surface toward the second surface. 一種複合基板結構,包括:一第一基板;一第一氧化層,直接設置於該第一基板上;一第二基板,具有相對的一第一表面及一第二表面,其中該第二表面直接接觸該第一氧化層,且該第二基板包含複數個凹槽由該第一表面朝該第二表面的方向凹陷;一第二氧化層,直接設置於該第二基板的該第一表面上;以及 一第三基板,直接設置於該第二氧化層上。 A composite substrate structure includes: a first substrate; a first oxide layer directly disposed on the first substrate; a second substrate having a first surface and a second surface opposite to each other, wherein the second surface Directly contact the first oxide layer, and the second substrate includes a plurality of grooves recessed from the first surface toward the second surface; a second oxide layer is directly disposed on the first surface of the second substrate On; and A third substrate is directly arranged on the second oxide layer. 一種複合基板結構的製造方法,包括:提供一第一基板;形成一氧化層於該第一基板上;提供具有相對的一第一表面及一第二表面之一第二基板;形成一多孔奈米線層於該第一表面上;以及接合該第一基板與該第二基板,使得該氧化層直接接觸該第二表面。 A method for manufacturing a composite substrate structure includes: providing a first substrate; forming an oxide layer on the first substrate; providing a second substrate having a first surface and a second surface opposite to each other; forming a porous A nanowire layer is on the first surface; and the first substrate and the second substrate are joined so that the oxide layer directly contacts the second surface.
TW109142286A 2020-12-01 2020-12-01 Composite substrate structure and method for manufacturing the same TWI749928B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109142286A TWI749928B (en) 2020-12-01 2020-12-01 Composite substrate structure and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109142286A TWI749928B (en) 2020-12-01 2020-12-01 Composite substrate structure and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI749928B true TWI749928B (en) 2021-12-11
TW202223177A TW202223177A (en) 2022-06-16

Family

ID=80681289

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109142286A TWI749928B (en) 2020-12-01 2020-12-01 Composite substrate structure and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI749928B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792857B (en) * 2022-01-12 2023-02-11 合晶科技股份有限公司 Composite substrate and manufacture method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200421422A (en) * 2002-12-19 2004-10-16 Koninkl Philips Electronics Nv Stress-free composite substrate and method of manufacturing such a composite substrate
TW201106383A (en) * 2009-05-14 2011-02-16 Dupont Teijin Films Us Ltd Transparent conductive composite films
TW201520357A (en) * 2013-07-22 2015-06-01 Ngk Insulators Ltd Composite substrate, method for fabricating same, function element, and seed crystal substrate
TW201824968A (en) * 2016-12-16 2018-07-01 立誠光電股份有限公司 Manufacturing method for combining metal with ceramic substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200421422A (en) * 2002-12-19 2004-10-16 Koninkl Philips Electronics Nv Stress-free composite substrate and method of manufacturing such a composite substrate
TW201106383A (en) * 2009-05-14 2011-02-16 Dupont Teijin Films Us Ltd Transparent conductive composite films
TW201520357A (en) * 2013-07-22 2015-06-01 Ngk Insulators Ltd Composite substrate, method for fabricating same, function element, and seed crystal substrate
TW201824968A (en) * 2016-12-16 2018-07-01 立誠光電股份有限公司 Manufacturing method for combining metal with ceramic substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792857B (en) * 2022-01-12 2023-02-11 合晶科技股份有限公司 Composite substrate and manufacture method thereof

Also Published As

Publication number Publication date
TW202223177A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
CN100587919C (en) Method for preparing nano-scale pattern substrate for nitride epitaxial growth
TWI694547B (en) Insulation layer structure for semiconductor products and preparation method thereof
CN101295636A (en) Production method of pattern underlay for epitaxial growth of high-crystal quality nitride
JP2018049868A (en) Semiconductor stacked structure and semiconductor device
CN102420176A (en) Method for improving warping of semiconductor wafer
TWI668738B (en) A manufacturing method for wafers
TWI749928B (en) Composite substrate structure and method for manufacturing the same
TWI397618B (en) Nitride semiconductor template and method of manufacturing the same
TWI734359B (en) Method for manufacturing optoelectronic semiconductor chip and bonded wafer used therefor
TWI511323B (en) Textured single crystal
CN104393104B (en) A kind for the treatment of technology for HIT solar cell texture
CN112018025A (en) Preparation method of III-V group compound semiconductor heterojunction structure
JP5484578B2 (en) Composite substrate and manufacturing method
CN107902650A (en) The method that single-layer graphene is prepared on super Nano diamond surface
KR20120098639A (en) Method for producing a multilayer film including at least one ultrathin layer of crystalline silicon, and devices obtained by means of said method
CN102381718B (en) Passivant and method for adopting passivant to realize surface pretreatment for germanium-base devices
CN107611231B (en) There is the method for the light emitting diode of the vertical structure of surface plasma based on nano impression preparation
TWI743932B (en) Semiconductor substrate and method for manufacturing the same
TWI483350B (en) SOI wafer manufacturing method and glass cleaning method
CN106531683A (en) Semiconductor-on-insulator material substrate structure and preparation method thereof
CN111226314B (en) Multilayer composite substrate structure and preparation method thereof
TW506008B (en) Semiconductor wafer manufacturing process
JP2006228963A (en) Method of manufacturing semiconductor wafer
JP2012234911A (en) Method of manufacturing composite substrate
JP2013135175A (en) Composite substrate and method for manufacturing the same