TWI749835B - Battery diagnosis apparatus, method, and computer program product thereof - Google Patents
Battery diagnosis apparatus, method, and computer program product thereof Download PDFInfo
- Publication number
- TWI749835B TWI749835B TW109137643A TW109137643A TWI749835B TW I749835 B TWI749835 B TW I749835B TW 109137643 A TW109137643 A TW 109137643A TW 109137643 A TW109137643 A TW 109137643A TW I749835 B TWI749835 B TW I749835B
- Authority
- TW
- Taiwan
- Prior art keywords
- battery module
- state parameter
- protection
- battery
- zero
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
本發明係關於一種電池診斷裝置、方法及其電腦程式產品。具體而言,本發明係關於一種採用階層式診斷架構的電池診斷裝置、方法及其電腦程式產品。 The invention relates to a battery diagnostic device, method and computer program product. Specifically, the present invention relates to a battery diagnostic device, method and computer program product using a hierarchical diagnostic architecture.
隨著電子技術的迅速發展,各種電子產品對於電源供應裝置(例如:電池模組)的需求不斷增加。當使用者欲評估電池模組的各種狀態時,通常會先將電池模組送回經銷商以尋求協助。然而,大多數的經銷商僅能先透過一般電池診斷工具讀取電池模組的狀態參數,而若由這些狀態參數判斷出電池模組有異常狀態,仍難以針對電池模組的各種異常狀態進行處置。使用者仍需將電池模組退回原廠,仰賴原廠的專業人員進一步地了解實際的故障原因,進而排除異常狀態。 With the rapid development of electronic technology, the demand for power supply devices (such as battery modules) in various electronic products continues to increase. When users want to evaluate the various states of the battery module, they usually send the battery module back to the dealer for assistance. However, most dealers can only read the status parameters of the battery module through general battery diagnostic tools. If the battery module is judged to have an abnormal state from these status parameters, it is still difficult to check the various abnormal states of the battery module. Disposal. The user still needs to return the battery module to the original factory, relying on the original factory's professionals to further understand the actual cause of the failure, and then eliminate the abnormal state.
有鑑於此,提供一種電池診斷技術讓使用者能容易地診斷電池模組的狀態,並且立即分析電池模組的各種異常狀態,進而提供使用者電池模組的故障原因,乃業界亟需努力之目標。 In view of this, providing a battery diagnostic technology that allows users to easily diagnose the status of the battery module and immediately analyze various abnormal conditions of the battery module to provide the user with the cause of the battery module failure is an urgent need in the industry. Target.
本發明之一目的在於提供一種電池診斷裝置。該電池診斷裝置包含一儲存器及一處理器,其中該儲存器與該處理器電性連接。該儲存器儲存一故 障分析樹、一電池模組的複數個保護參數及該電池模組的複數個內部參數。該處理器根據該等保護參數的至少其中之一決定該電池模組的一保護狀態及一故障類型,根據該保護狀態及該故障類型查詢該故障分析樹以得到至少一候選故障原因,且判斷該等內部參數的一第一子集符合該至少一候選故障原因其中之一所對應的一判斷規則,藉此確認該至少一候選故障原因其中之一為該電池模組的一初步故障原因。 An object of the present invention is to provide a battery diagnostic device. The battery diagnostic device includes a storage and a processor, wherein the storage is electrically connected with the processor. This memory stores a story Fault analysis tree, a plurality of protection parameters of a battery module, and a plurality of internal parameters of the battery module. The processor determines a protection state and a fault type of the battery module according to at least one of the protection parameters, queries the fault analysis tree according to the protection state and the fault type to obtain at least one candidate fault cause, and judges A first subset of the internal parameters meets a judgment rule corresponding to one of the at least one candidate failure cause, thereby confirming that one of the at least one candidate failure cause is a preliminary failure cause of the battery module.
本發明所提供的某些電池診斷裝置,其處理器還可將該等內部參數的一第二子集輸入該初步故障原因所對應的一機器學習模型以確認該電池模組的一具體故障原因。 In some battery diagnostic devices provided by the present invention, the processor can also input a second subset of the internal parameters into a machine learning model corresponding to the preliminary failure cause to confirm a specific failure cause of the battery module .
本發明之又一目的在於提供一種電池診斷方法,其適用於一電子計算裝置。該電子計算裝置儲存一故障分析樹、一電池模組的複數個保護參數及該電池模組的複數個內部參數。該電池診斷方法包含下列步驟:(a)根據該等保護參數的至少其中之一決定該電池模組的一保護狀態,(b)根據該等保護參數的其中之一決定該電池模組的一故障類型,(c)根據該保護狀態及該故障類型查詢該故障分析樹以得到至少一候選故障原因,以及(d)判斷該等內部參數的一第一子集符合該至少一候選故障原因其中之一所對應的一判斷規則,藉此確認該至少一候選故障原因其中之一為該電池模組的一初步故障原因。 Another object of the present invention is to provide a battery diagnosis method, which is suitable for an electronic computing device. The electronic calculation device stores a fault analysis tree, a plurality of protection parameters of a battery module, and a plurality of internal parameters of the battery module. The battery diagnosis method includes the following steps: (a) determining a protection state of the battery module according to at least one of the protection parameters, (b) determining a protection state of the battery module according to one of the protection parameters Fault type, (c) query the fault analysis tree according to the protection status and the fault type to obtain at least one candidate fault cause, and (d) determine that a first subset of the internal parameters meets the at least one candidate fault cause A judgment rule corresponding to one of them is used to confirm that one of the at least one candidate failure cause is a preliminary failure cause of the battery module.
本發明所提供的某些電池診斷方法還可包含一步驟,將該等內部參數的一第二子集輸入該初步故障原因所對應的一機器學習模型以確認該電池模組的一具體故障原因。 Some battery diagnosis methods provided by the present invention may further include a step of inputting a second subset of the internal parameters to a machine learning model corresponding to the preliminary failure cause to confirm a specific failure cause of the battery module .
本發明之再一目的在於提供一種電腦程式產品。經由一電子計算裝置載入該電腦程式產品後,該電子計算裝置執行該電腦程式產品所包含的複 數個程式指令,以執行一種電池診斷方法。該電子計算裝置儲存一故障分析樹、一電池模組的複數個保護參數及該電池模組的複數個內部參數。該電池診斷方法包含下列步驟:(a)根據該等保護參數的至少其中之一決定該電池模組的一保護狀態,(b)根據該等保護參數的其中之一決定該電池模組的一故障類型,(c)根據該保護狀態及該故障類型查詢該故障分析樹以得到至少一候選故障原因,以及(d)判斷該等內部參數的一第一子集符合該至少一候選故障原因其中之一所對應的一判斷規則,藉此確認該至少一候選故障原因其中之一為該電池模組的一初步故障原因。 Another object of the present invention is to provide a computer program product. After loading the computer program product through an electronic computing device, the electronic computing device executes the copy contained in the computer program product Several program instructions to perform a battery diagnostic method. The electronic calculation device stores a fault analysis tree, a plurality of protection parameters of a battery module, and a plurality of internal parameters of the battery module. The battery diagnosis method includes the following steps: (a) determining a protection state of the battery module according to at least one of the protection parameters, (b) determining a protection state of the battery module according to one of the protection parameters Fault type, (c) query the fault analysis tree according to the protection status and the fault type to obtain at least one candidate fault cause, and (d) determine that a first subset of the internal parameters meets the at least one candidate fault cause A judgment rule corresponding to one of them is used to confirm that one of the at least one candidate failure cause is a preliminary failure cause of the battery module.
本發明所提供的某些電腦程式產品,其所包含的該等程式指令還可使電子計算裝置執行一步驟,將該等內部參數的一第二子集輸入該初步故障原因所對應的一機器學習模型以確認該電池模組的一具體故障原因。 In some computer program products provided by the present invention, the program instructions contained in it can also enable the electronic computing device to execute a step to input a second subset of the internal parameters into a machine corresponding to the initial failure cause Learn the model to confirm a specific failure cause of the battery module.
本發明所提供之電池診斷技術(包含裝置、方法及其電腦程式產品)會根據一電池模組的複數個保護參數分析該電池模組是否異常,並判斷出該電池模組需要啟動何種的保護狀態(例如:不可恢復狀態、第一可恢復狀態或第二可恢復狀態),以及該電池模組是屬於何種的故障類型(例如:硬體的故障類型、軟體/韌體的故障類型)。本發明所提供之電池診斷技術會根據該保護狀態及該故障類型查詢一故障分析樹以得到至少一候選故障原因,例如:某一顆電池的電壓異常。本發明所提供之電池診斷技術再針對該至少一候選故障原因中的一或多個進行比對,判斷該電池模組的該等內部參數的一第一子集是否符合該候選故障原因所對應的一判斷規則,藉此確認該至少一候選故障原因的其中之一為該電池模組的一初步故障原因。本發明所提供之電池診斷技術還可將該等 內部參數的一第二子集輸入該初步故障原因所對應的一機器學習模型,藉此確認該電池模組的一具體故障原因。 The battery diagnostic technology (including devices, methods and computer program products) provided by the present invention analyzes whether the battery module is abnormal according to multiple protection parameters of the battery module, and determines which battery module needs to be activated Protection state (for example: unrecoverable state, first recoverable state or second recoverable state), and the fault type of the battery module (for example: hardware fault type, software/firmware fault type ). The battery diagnosis technology provided by the present invention queries a fault analysis tree according to the protection status and the fault type to obtain at least one candidate fault cause, for example, the voltage of a certain battery is abnormal. The battery diagnosis technology provided by the present invention then compares one or more of the at least one candidate failure cause to determine whether a first subset of the internal parameters of the battery module corresponds to the candidate failure cause A judgment rule for confirming that one of the at least one candidate failure cause is a preliminary failure cause of the battery module. The battery diagnostic technology provided by the present invention can also A second subset of internal parameters is input to a machine learning model corresponding to the preliminary failure cause, thereby confirming a specific failure cause of the battery module.
藉由前述運作/步驟,本發明所提供之電池診斷技術實現了對電池模組的階層式診斷--在不同階層分析出電池模組的保護狀態、故障類型及初步故障原因,甚至可分析出電池模組的具體故障原因。因此,使用者不需要將電池退回原廠即能透過本發明所提供之電池診斷技術得知電池模組的各種狀態、電池模組的各種異常狀態以及電池模組的故障原因,極為便利。 Through the foregoing operations/steps, the battery diagnosis technology provided by the present invention realizes the hierarchical diagnosis of the battery module-analyzes the protection status of the battery module, the type of failure, and the preliminary cause of the failure at different levels, and can even analyze The specific cause of the failure of the battery module. Therefore, the user can learn the various states of the battery module, various abnormal states of the battery module, and the cause of the failure of the battery module through the battery diagnostic technology provided by the present invention without returning the battery to the original factory, which is extremely convenient.
以下結合圖式闡述本發明的詳細技術及實施方式,俾使本發明所屬技術領域中具有通常知識者能理解所請求保護的發明的技術特徵。 The detailed technology and implementation manners of the present invention are described below in conjunction with the drawings, so that those with ordinary knowledge in the technical field to which the present invention belongs can understand the technical features of the claimed invention.
1:電池診斷裝置 1: Battery diagnostic device
11:儲存器 11: Storage
13:處理器 13: processor
20:故障分析樹 20: Fault analysis tree
30、40、50:故障類型對應表 30, 40, 50: Correspondence table of fault type
IP:內部參數 IP: internal parameters
PP:保護參數 PP: protection parameter
PFS:永久失效保護狀態參數 PFS: Permanent fail-safe state parameter
SS1:第一安全保護狀態參數 SS1: First safety protection status parameter
SS2:第二安全保護狀態參數 SS2: The second safety protection status parameter
S201~S209:步驟 S201~S209: steps
第1A圖係描繪第一實施方式之電池診斷裝置1之架構示意圖。
FIG. 1A is a schematic diagram depicting the structure of the battery
第1B圖係描繪本發明之故障分析樹之一具體範例之示意圖。 Figure 1B is a schematic diagram depicting a specific example of the fault analysis tree of the present invention.
第1C圖係描繪電池診斷裝置1如何決定電池模組的保護狀態之示意圖。
FIG. 1C is a schematic diagram depicting how the battery
第1D圖係描繪電池診斷裝置1如何決定電池模組的一故障類型之一具體範例之示意圖。
FIG. 1D is a schematic diagram depicting a specific example of how the battery
第1E圖係描繪電池診斷裝置1進行階層式診斷之一具體範例之示意圖。
FIG. 1E is a schematic diagram depicting a specific example of hierarchical diagnosis performed by the
第1F圖係描繪電池診斷裝置1進行階層式診斷之另一具體範例之示意圖。
FIG. 1F is a schematic diagram depicting another specific example of hierarchical diagnosis performed by the
第2A圖係描繪本發明之第二實施方式之主要流程圖。 Figure 2A depicts the main flow chart of the second embodiment of the present invention.
第2B圖係描繪本發明之某些實施方式之流程圖。 Figure 2B is a flowchart depicting certain embodiments of the present invention.
以下將透過實施方式來解釋本發明所提供的電池診斷裝置、方法及其電腦程式產品。然而,該等實施方式並非用以限制本發明需在如該等實施方式所述的任何環境、應用或方式方能實施。因此,關於以下實施方式的說明僅在於闡釋本發明的目的,而非用以限制本發明的範圍。應理解,在以下實施方式及圖式中,與本發明非直接相關的元件已省略而未繪示。此外,圖式中各元件的尺寸以及元件間的尺寸比例僅為便於繪示及說明,而非用以限制本發明的範圍。 The following will explain the battery diagnostic device, method and computer program product provided by the present invention through implementations. However, these embodiments are not intended to limit the implementation of the present invention in any environment, application or method as described in these embodiments. Therefore, the description of the following embodiments is only for explaining the purpose of the present invention, not for limiting the scope of the present invention. It should be understood that, in the following embodiments and drawings, elements not directly related to the present invention have been omitted and not shown. In addition, the size of each element and the size ratio between the elements in the drawings are only for ease of illustration and description, and are not used to limit the scope of the present invention.
本發明之第一實施方式為電池診斷裝置1,其示意圖係描繪於第1A圖。電池診斷裝置1包含一儲存器11及一處理器13,其中儲存器11與處理器13電性連接。儲存器11可為一記憶體、一通用串列匯流排(Universal Serial Bus;USB)碟、一硬碟、一光碟(Compact Disk;CD)、一數位多工光碟(Digital Versatile Disc;DVD)、一隨身碟或本發明所屬技術領域中具有通常知識者所知之任何其他能儲存數位資料之非暫態儲存媒體或儲存電路。處理器13可為各種處理器、中央處理單元(Central Processing Unit;CPU)、微處理器(Microprocessor Unit;MPU)、數位訊號處理器(Digital Signal Processor;DSP)或本發明所屬技術領域中具有通常知識者所知悉之其他計算裝置。
The first embodiment of the present invention is the battery
於本實施方式中,電池診斷裝置1之儲存器11儲存一故障分析樹20。具體而言,為了提供近似於電池領域專家(例如:電池廠商的維修工程師)的電池診斷,需要先收集電池領域專家的專家經驗,並將之彙整成故障分析樹20,使故障分析樹20包含與各種故障電池模組的診斷結果相對應的多個階層。為便於理解,請參第1B圖所示的故障分析樹20的一具體範例,其將用於後續的說明,但並非用以限制本發明的範圍。於該具體範例中,故障分析樹20具有一第一
層、一第二層、一第三層及一第四層,其中第一層彙整了故障的電池模組的各種保護狀態,第二層彙整了故障的電池模組的各種故障類型,第三層彙整了故障的電池模組的各種初步故障原因,且第四層彙整了故障的電池模組的各種具體故障原因。
In this embodiment, the
於本實施方式中,配合故障分析樹20的階層架構,電池診斷裝置1所執行的診斷可分為三個診斷階段,或甚至分為四個診斷階段。第一診斷階段係用以診斷一電池模組的一保護狀態,第二診斷階段係用以診斷該電池模組的一故障類型,第三診斷階段係用以診斷該電池模組的一初步故障原因,且第四診斷階段係用以診斷該電池模組的一具體故障原因。
In this embodiment, in accordance with the hierarchical structure of the
於本實施方式中,電池診斷裝置1之儲存器11儲存需要進行診斷的一已故障的電池模組(未繪示)的複數個保護參數PP及複數個內部參數IP。保護參數PP係指電池模組中的各種保護記錄數值,例如:一永久失效保護狀態參數(Permanent Failure Status)、一第一安全保護狀態參數(Safety Status)及一第二安全保護狀態參數。內部參數IP則指電池模組中的其他各種記錄數值,例如:電池模組的韌體版本、發生故障的時間、電池模組的各電池芯的電流值、電池模組的各電池芯的電壓值、電池模組的各電池芯的溫度等等。需說明者,保護參數PP及內部參數IP可以透過電池模組的廠商所提供的一電池診斷工具(Diagnostic Tool)從欲診斷的該電池模組中取得。舉例而言,使用者可以將電池診斷工具與該電池模組電性連接,並配合一診斷軟體存取該電池模組的保護參數PP及內部參數IP,再以Excel檔案格式匯出,以利後續的電池診斷及管理。
In this embodiment, the
以下將結合第1C圖及第1D圖,舉例說明電池診斷裝置1如何執行上述的第一診斷階段及第二診斷階段。需說明者,第1C圖及第1D圖所示的內容僅為舉例,而非用以限制本發明的保護範圍。
Hereinafter, in conjunction with FIG. 1C and FIG. 1D, an example will be given to illustrate how the battery
如第1C圖所示,於本實施方式中,保護參數PP包含一永久失效保護狀態參數PFS、一第一安全保護狀態參數SS1及一第二安全保護狀態參數SS2,且電池診斷裝置1之處理器13根據保護參數PP的至少其中之一決定該電池模組的一保護狀態。需說明者,在電池模組一開始運作時,永久失效保護狀態參數PFS、第一安全保護狀態參數SS1及第二安全保護狀態參數SS2皆為0。若電池模組運作時發生故障,則永久失效保護狀態參數PFS、第一安全保護狀態參數SS1或/及第二安全保護狀態參數會變為一正整數(容後說明)。
As shown in Figure 1C, in this embodiment, the protection parameter PP includes a permanent fail protection state parameter PFS, a first safety protection state parameter SS1, and a second safety protection state parameter SS2, and the processing of the battery
請參第1C圖。處理器13先根據永久失效保護狀態參數PFS進行判斷。若處理器13判斷永久失效保護狀態參數PFS大於0,處理器13會基於此判斷結果而決定該電池模組的該保護狀態為一不可恢復狀態(亦即,電池模組已經永久損傷)。若處理器13判斷永久失效保護狀態參數PFS不大於0(亦即,永久失效保護狀態參數PFS等於0),處理器13進一步地根據第一安全保護狀態參數SS1進行判斷。若處理器13判斷永久失效保護狀態參數PFS等於0且第一安全保護狀態參數SS1大於0,處理器13會基於此判斷結果而決定該電池模組的該保護狀態為一第一可恢復狀態,其中該第一可恢復狀態與一軟體/韌體故障類型相關,且該電池模組經過維修可再次使用。若處理器13判斷永久失效保護狀態參數PFS等於0但第一安全保護狀態參數SS1不大於0(亦即,第一安全保護狀態參數SS1等於0),處理器13進一步地根據第二安全保護狀態參數SS2進行判斷。若處理器13判斷永久失效保護狀態參數PFS等於0、第一安全保護狀態參數SS1等於0且第二安
全保護參數大於0,處理器13會基於此判斷結果而決定該電池模組的該保護狀態為一第二可恢復狀態,其中該第二可恢復狀態與一硬體故障類型相關,且該電池模組經過維修可再次使用。
Please refer to Figure 1C. The
於本實施方式中,若處理器13判斷該電池模組的該保護狀態為不可恢復狀態,處理器13還會根據永久失效保護狀態參數PFS查詢對應的一故障類型對應表30(請參第1D圖),藉此決定該電池模組的一故障類型。具體而言,永久失效保護狀態參數PFS包含複數個位元(例如:高位元組的8個位元以及低位元組的8個位元),且其中的某些位元對應至特定的故障類型如第1D圖所示。永久失效保護狀態參數PFS的該等位元以無符號整數(Unsigned Integer)的方式解讀便是永久失效保護狀態參數PFS的數值。舉例而言,若永久失效保護狀態參數PFS所包含的16個位元的內容為0000 0001 0000 0000,則永久失效保護狀態參數PFS的16進制數值為100。處理器13可根據永久失效保護狀態參數PFS所包含的16個位元的內容查詢故障類型對應表30(具體而言,查詢位元值為1的那個位元所對應的故障類型),決定該故障類型為超過該電池模組的使用期限或最大充電量。再舉例而言,若永久失效保護狀態參數PFS所包含的16個位元的內容為0000 0000 0000 0001,則永久失效保護狀態參數PFS的16進制數值為1。處理器13可根據永久失效保護狀態參數PFS所包含的16個位元的內容查詢故障類型對應表30,決定該故障類型為該電池模組的電池芯電壓不平衡。
In this embodiment, if the
類似地,若處理器13判斷該電池模組的該保護狀態為該第一可恢復狀態,處理器13會根據第一安全保護狀態參數SS1查詢對應的另一故障類型對應表40,藉此決定該電池模組的該故障類型。類似的,第一安全保護狀態參數SS1包含複數個位元,且其中的某些位元對應至特定的故障類型。因此,處理器13可
根據第一安全保護狀態參數SS1所包含的位元的內容查詢對應的故障類型對應表(具體而言,查詢位元值為1的那個位元所對應的故障類型),決定該故障類型。
Similarly, if the
同理,若處理器13判斷該電池模組為該第二可恢復狀態,處理器13會根據第二安全保護狀態參數SS2查詢對應的另一故障類型對應表50,藉此決定該電池模組的該故障類型。
Similarly, if the
現說明電池診斷裝置1的第三診斷階段,處理器13根據該保護狀態及該故障類型查詢故障分析樹20以得到至少一候選故障原因。需說明者,由於故障分析樹20的第一層彙整了故障的電池模組的各種保護狀態,第二層彙整了故障的電池模組的各種故障類型,第三層彙整了故障的電池模組的各種初步故障原因,且第四層彙整了故障的電池模組的各種具體故障原因,因此處理器13可根據該電池模組的該保護狀態及該故障類型,查詢故障分析樹20而得到至少一候選故障原因。舉例而言,若電池模組的保護狀態為不可恢復狀態且電池模組的故障類型為電壓過低,則處理器13查詢故障分析樹20後會得到電壓異常、充電異常等候選故障原因(請參第1B圖)。再舉例而言,若電池模組的保護狀態為第一可恢復狀態且電池模組的故障類型為溫度異常,則處理器13查詢故障分析樹20後會得到第一溫度感測器異常、第二溫度感測器異常等候選故障原因(請參第1B圖)。
The third diagnosis stage of the
接著,處理器13判斷該至少一候選故障原因中是否有哪一個可作為該電池模組的初步故障原因。具體而言,每一個候選故障原因對應至一判斷規則,因此處理器13判斷電池模組的內部參數IP的一子集是否符合某一候選故障原因所對應的判斷規則。若處理器13判斷電池模組的內部參數IP的子集符合某一候
選故障原因所對應的判斷規則,則處理器13便判斷該候選故障原因為該電池模組的初步故障原因。
Next, the
於某些實施方式中,若處理器13得到複數個候選故障原因(亦即,根據電池模組的該保護狀態及該故障類型,在故障分析樹20的第三層找到複數個候選的初步故障原因),則處理器13可依據該等候選故障原因之間的一判斷順序,依序判斷各候選故障原因是否可作為電池模組的初步故障原因。前述的該判斷順序可由廠商根據發生故障的機率而設定的,也可基於電池領域專家的專業經驗而設定的。具體而言,處理器13依據該判斷順序逐一地判斷各候選故障原因是否可作為電池模組的初步故障原因,一旦處理器13判斷電池模組的內部參數IP的一子集符合某一候選故障原因所對應的一判斷規則,便確認該候選故障原因為該電池模組的一初步故障原因,且不再對其他尚未判斷的候選故障原因進行判斷。
In some embodiments, if the
於某些實施方式中,在處理器13確認該電池模組的該初步故障原因後,處理器13還可進行第四診斷階段以確認該電池模組的一具體故障原因。請參第1B圖,故障分析樹20第三層的各個初步故障原因應到一或多個具體故障原因(例如:初步故障原因「電壓異常」對應至具體故障原因「電池分類不當」、「電池組裝不良」等等)。於該等實施方式中,處理器13或其他裝置的處理器可針對第1B圖中的各初步故障原因個別地訓練出一機器學習模型。需說明者,本發明所屬技術領域中具有通常知識者應熟知如何訓練一機器學習模型,故不贅言。由於第1B圖中的各初步故障原因對應至一機器學習模型,因此處理器13可將該電池模組的內部參數IP的另一子集輸入該電池模組的該初步故障原因所對應的機器學習模型以確認該電池模組的一具體故障原因。若一初步故障原因應
到多個具體故障原因,則機器學習模型將輸出各具體故障原因的機率,處理器13便可選取機率值最高的具體故障原因作為該電池模組的具體故障原因。
In some embodiments, after the
為便於理解電池診斷裝置1如何診斷出該初步故障原因以及該具體故障原因,請參閱第1E圖所示之具體範例。於該具體範例中,處理器13已診斷出該電池模組的該保護狀態為該不可恢復狀態,而電池模組的該故障類型為該電池模組的電壓過低。據此,處理器13查詢故障分析樹20得到五個候選故障原因,包含電壓異常(亦即,圖中所示的「透過狀態列表查看電芯(cell)電壓值是否有少數電壓值過低...」)、半年未充電(亦即,圖中所示的「是否半年未充電...」)等等,且這些候選故障原因之間具有一判斷順序。處理器13依據該判斷順序先讀取該電池模組發生故障當下的電壓,且判斷是否符合電壓異常所對應的該判斷規則(例如:電池模組中的某一電池芯的電壓遠低於其它電池芯的電壓)。茲假設該電池模組有10個電池芯,該電池模組發生故障當下的這些電池芯的電壓值為該電池模組的內部參數IP的一子集。處理器13判斷該電池模組發生故障當下的這些電池芯的電壓值符合電壓異常所對應的該判斷規則(亦即,第10號電池芯的電壓值遠低於其它電池芯的電壓值),故確認該電池模組的該初步故障原因為該第10號電池芯的電壓異常。處理器13依據此一初步故障原因查詢故障分析樹20,便得知該電池模組的可能的具體故障原因可能為電池分類不當或電池組裝不良。處理器13可進一步地將該電池模組發生故障前被持續記錄的那些內部參數IP的一子集(例如:該電池模組發生故障前的這些電池芯的被持續記錄的電壓值與內阻)輸入初步故障原因「電壓異常」所對應的機器學習模型,便能得知電池分類不當的機率與電池組裝不良的機率,再選取機率高者作為該電池模組的具體故障原因。
To facilitate the understanding of how the battery
另請參閱第1F圖所示之具體範例。於該具體範例中,處理器13已診斷出該電池模組的該保護狀態為該第一可恢復狀態,而該電池模組的該故障類型為該電池模組的溫度異常。據此,處理器13查詢故障分析樹20得到一個候選故障原因,亦即溫度異常(亦即,圖中所示的「Temp1與Temp2差異大......」)。於此具體範例中,該電池模組有兩串溫度感測器,該電池模組發生故障當下的這兩串溫度感測器所分別對應的溫度為該電池模組的內部參數IP的一子集。處理器13判斷該電池模組發生故障當下的這些溫度感測器的溫度符合溫度異常所對應的該判斷規則(亦即,某一或某些溫度低於一預設門檻值,茲假設為第二溫度感測器的溫度低於該預設門檻值),故確認該初步故障原因為該第二溫度感測器異常。接著,處理器13依據此一初步故障原因查詢故障分析樹20,便得知該電池模組的可能的具體故障原因可能為演算法異常或線路異常。處理器13可進一步地將該電池模組發生故障前被持續記錄的那些內部參數IP的一子集(例如:該電池模組發生故障前的第二溫度感測器的溫度)輸入初步故障原因「溫度異常」所對應的機器學習模型,便能得到演算法異常的機率與線路異常的機率,再選取機率高者作為該電池模組的具體故障原因。
Please also refer to the specific example shown in Figure 1F. In this specific example, the
綜上所述,電池診斷裝置1會根據一電池模組的複數個保護參數分析該電池模組是否異常,判斷出該電池模組需要啟動何種的保護狀態(亦即,不可恢復狀態、第一可恢復狀態或第二可恢復狀態),且判斷出該電池模組是屬於何種故障類型(亦即,硬體的故障類型、軟體/韌體的故障類型)。電池診斷裝置1還會根據該保護狀態及該故障類型查詢故障分析樹20以得到至少一候選故障原因,且判斷該電池模組的內部參數的一第一子集是否符合該至少一候選故障原因的其中之一所對應的一判斷規則,藉此確認該至少一候選故障原因的
其中之一為該電池模組的一初步故障原因。電池診斷裝置1還可將該電池模組的內部參數的一第二子集輸入該初步故障原因所對應的一機器學習模型以確認該電池模組的一具體故障原因。藉由前述運作,電池診斷裝置1對電池模組進行了階層式的診斷--在不同階層分析出電池模組的保護狀態、故障類型及初步故障原因,甚至可分析出電池模組的具體故障原因。因此,使用者不需要將電池模組退回原廠,即可知道電池模組的各種異常狀態以及各種故障原因,極為便利。
In summary, the battery
本發明的第二實施方式為一種電池診斷方法,其主要流程圖係描繪於第2A圖。該電池診斷方法適用於一電子計算裝置,例如:第一實施方式中的電池診斷裝置1。
The second embodiment of the present invention is a battery diagnosis method, the main flow chart of which is depicted in Fig. 2A. The battery diagnosis method is suitable for an electronic computing device, such as the
於本實施方式中,該電子計算裝置儲存一故障分析樹、一電池模組的複數個保護參數及該電池模組的複數個內部參數。該電池診斷方法至少包含步驟S201至步驟S207。 In this embodiment, the electronic computing device stores a fault analysis tree, a plurality of protection parameters of a battery module, and a plurality of internal parameters of the battery module. The battery diagnosis method includes at least step S201 to step S207.
於步驟S201,由該電子計算裝置根據該等保護參數的至少其中之一決定該電池模組的一保護狀態(例如:電池診斷裝置1所執行之第一診斷階段)。具體而言,該等保護參數包含一永久失效保護參數、一第一安全保護狀態參數及一第二安全保護狀態參數。於步驟S201中,該電子計算裝置判斷該永久失效保護狀態參數是否大於零,且若該永久失效保護狀態參數大於零,該電子計算裝置決定該電池模組的該保護狀態為一不可恢復狀態。 In step S201, the electronic computing device determines a protection state of the battery module according to at least one of the protection parameters (for example, the first diagnosis stage executed by the battery diagnosis device 1). Specifically, the protection parameters include a permanent failure protection parameter, a first safety protection state parameter, and a second safety protection state parameter. In step S201, the electronic computing device determines whether the permanent failsafe state parameter is greater than zero, and if the permanent failsafe state parameter is greater than zero, the electronic computing device determines that the protection state of the battery module is an unrecoverable state.
於步驟S201中,若該電子計算裝置判斷該永久失效保護狀態參數不大於零(亦即,等於零),該電子計算裝置進一步地判斷該第一安全保護狀態參數是否大於零。若該電子計算裝置判斷該永久失效保護狀態參數等於零且該第一安全保護狀態參數大於零,該電子計算裝置決定該電池模組的該保護狀態 為一第一可恢復狀態。需說明者,該第一可恢復狀態與一軟體/韌體故障類型相關。 In step S201, if the electronic computing device determines that the permanent failsafe state parameter is not greater than zero (ie, equal to zero), the electronic computing device further determines whether the first safety protection state parameter is greater than zero. If the electronic computing device determines that the permanent failure protection state parameter is equal to zero and the first safety protection state parameter is greater than zero, the electronic computing device determines the protection state of the battery module It is a first recoverable state. It should be noted that the first recoverable state is related to a type of software/firmware failure.
於步驟S201中,若該電子計算裝置判斷該永久失效保護狀態參數等於零且該第一安全保護狀態參數不大於零(亦即,等於零),該電子計算裝置進一步地判斷該第二安全保護狀態參數是否大於零。若該電子計算裝置判斷該永久失效保護狀態參數等於零、該第一安全保護狀態參數等於零且該第二安全保護狀態參數大於零,該電子計算裝置便決定該電池模組的該保護狀態為一第二可恢復狀態。需說明者,該第二可恢復狀態與一硬體故障類型相關。接著,步驟S203係由該電子計算裝置根據該第二安全保護狀態參數查詢一故障類型對應表以決定該電池模組的該故障類型。 In step S201, if the electronic computing device determines that the permanent failsafe state parameter is equal to zero and the first safety protection state parameter is not greater than zero (ie, equal to zero), the electronic computing device further determines the second safety protection state parameter Is it greater than zero. If the electronic computing device determines that the permanent failsafe state parameter is equal to zero, the first safety protection state parameter is equal to zero, and the second safety protection state parameter is greater than zero, the electronic computing device determines that the protection state of the battery module is a first 2. Recoverable state. It should be noted that the second recoverable state is related to a type of hardware failure. Next, in step S203, the electronic computing device queries a fault type correspondence table according to the second safety protection state parameter to determine the fault type of the battery module.
於步驟S203,由該電子計算裝置根據該等電池保護參數的其中之一決定該電池模組的一故障類型(例如:電池診斷裝置1所執行之第二診斷階段)。若步驟S201判斷該電池模組的該保護狀態為不可恢復狀態,則步驟S203係由該電子計算裝置根據該永久失效保護狀態參數查詢一故障類型對應表以決定該電池模組的該故障類型。若步驟S201判斷該電池模組的該保護狀態為第一可恢復狀態,則步驟S203係由該電子計算裝置根據該第一安全保護狀態參數查詢一故障類型對應表以決定該電池模組的該故障類型。若步驟S201判斷該電池模組的該保護狀態為第二可恢復狀態,則步驟S203係由該電子計算裝置根據該第二安全保護狀態參數查詢一故障類型對應表以決定該電池模組的該故障類型。 In step S203, the electronic computing device determines a fault type of the battery module according to one of the battery protection parameters (for example, the second diagnosis stage executed by the battery diagnosis device 1). If step S201 determines that the protection state of the battery module is an unrecoverable state, then step S203 is that the electronic computing device queries a fault type correspondence table according to the permanent failure protection state parameter to determine the fault type of the battery module. If step S201 determines that the protection state of the battery module is the first recoverable state, then step S203 is that the electronic computing device queries a fault type correspondence table according to the first safety protection state parameter to determine the battery module's protection status. Fault type. If step S201 determines that the protection state of the battery module is the second recoverable state, then step S203 is that the electronic computing device queries a fault type correspondence table according to the second safety protection state parameter to determine the battery module's protection status. Fault type.
於步驟S205,由該電子計算裝置根據該保護狀態及該故障類型查詢該故障分析樹以得到至少一候選故障原因。接著,於步驟S207,由該電子計算裝置判斷該等內部參數的一第一子集符合該至少一候選故障原因其中之一所對 應的一判斷規則,藉此確認該至少一候選故障原因其中之一為該電池模組的一初步故障原因(例如:電池診斷裝置1所執行之第三診斷階段)。 In step S205, the electronic computing device queries the fault analysis tree according to the protection status and the fault type to obtain at least one candidate fault cause. Then, in step S207, the electronic computing device determines that a first subset of the internal parameters is consistent with one of the at least one candidate failure cause. According to a judgment rule, it is confirmed that one of the at least one candidate failure cause is a preliminary failure cause of the battery module (for example, the third diagnosis stage executed by the battery diagnosis device 1).
於某些實施方式中,該電池診斷方法可執行如第2B圖所示之流程圖。於該等實施方式中,該電池診斷方法於執行步驟S207之後,還會執行步驟S209。具體而言,於步驟S209,由該電子計算裝置將該等內部參數的一第二子集輸入該初步故障原因所對應的一機器學習模型以確認該電池模組的一具體故障原因。 In some embodiments, the battery diagnosis method can execute the flowchart shown in Figure 2B. In these embodiments, the battery diagnosis method further executes step S209 after executing step S207. Specifically, in step S209, the electronic computing device inputs a second subset of the internal parameters into a machine learning model corresponding to the preliminary failure cause to confirm a specific failure cause of the battery module.
需說明者,於某些實施方式中,該故障分析樹具有一第一層、一第二層、一第三層及一第四層。步驟S201所決定的該保護狀態對應至該第一層,步驟S203所決定的該故障類型對應至該第二層,步驟S205至步驟S207所決定的該初步故障原因對應至該第三層,且步驟S209所決定的該具體故障原因對應至該第四層。 It should be noted that, in some embodiments, the fault analysis tree has a first layer, a second layer, a third layer, and a fourth layer. The protection state determined in step S201 corresponds to the first layer, the fault type determined in step S203 corresponds to the second layer, the preliminary failure cause determined in steps S205 to S207 corresponds to the third layer, and The specific failure cause determined in step S209 corresponds to the fourth layer.
除了上述步驟,第二實施方式亦能執行第一實施方式所描述之所有運作及步驟,具有同樣之功能,且達到同樣之技術效果。本發明所屬技術領域中具有通常知識者可直接瞭解第二實施方式如何基於上述第一實施方式以執行此等運作及步驟,具有同樣之功能,並達到同樣之技術效果,故不贅述。 In addition to the above steps, the second embodiment can also perform all the operations and steps described in the first embodiment, have the same functions, and achieve the same technical effects. Those with ordinary knowledge in the technical field to which the present invention pertains can directly understand how the second embodiment performs these operations and steps based on the above-mentioned first embodiment, has the same functions, and achieves the same technical effects, so it will not be repeated.
第二實施方式中所闡述之該電池診斷方法可由包含複數個程式指令之一電腦程式產品實現。該電腦程式產品可為能被於網路上傳輸之檔案,亦可被儲存於一非暫態電腦可讀取儲存媒體中。該非暫態電腦可讀取儲存媒體可為一電子產品,例如:一唯讀記憶體(Read Only Memory;ROM)、一快閃記憶體、一軟碟、一硬碟、一光碟(Compact Disk;CD)、一數位多功能光碟(Digital Versatile Disc;DVD)、一隨身碟或本發明所屬技術領域中具有通常知識者所知 且具有相同功能之任何其他儲存媒體。該電腦程式產品所包含之該等程式指令被載入一電子計算裝置(例如:電池診斷裝置1)後,該電腦程式執行如在第二實施方式中所述之該電池診斷方法。 The battery diagnosis method described in the second embodiment can be implemented by a computer program product containing a plurality of program instructions. The computer program product can be a file that can be transmitted over the network, or it can be stored in a non-transitory computer-readable storage medium. The non-transitory computer-readable storage medium may be an electronic product, such as: a read only memory (ROM), a flash memory, a floppy disk, a hard disk, and a compact disk (Compact Disk; CD), a digital versatile disc (Digital Versatile Disc; DVD), a flash drive or known to those with ordinary knowledge in the technical field of the present invention And any other storage media with the same function. After the program instructions included in the computer program product are loaded into an electronic computing device (for example, the battery diagnostic device 1), the computer program executes the battery diagnostic method as described in the second embodiment.
需說明者,於本發明專利說明書中及申請專利範圍中,某些用語(包含:子集、安全保護狀態參數、可恢復狀態、診斷階段及溫度感測器)前被冠以「第一」、「第二」及「第三」,該等「第一」、「第二」及「第三」僅用來區分不同用語。 It should be clarified that certain terms (including: subset, safety protection state parameters, recoverable state, diagnosis stage, and temperature sensor) in the specification of the present invention patent and the scope of the patent application are preceded by "first" , "Second" and "Third", these "First", "Second" and "Third" are only used to distinguish different terms.
綜上所述,本發明所提供之電池診斷技術(包含裝置、方法及其電腦程式產品)會利用根據電池領域專家的專家經驗所彙整出來的一故障分析樹進行階層式的診斷。本發明所提供之電池診斷技術會根據一電池模組的複數個保護參數分析該電池模組是否異常,判斷出該電池模組需要啟動何種的保護狀態(亦即,不可恢復狀態、第一可恢復狀態或第二可恢復狀態),且判斷該電池模組是屬於何種的故障類型(亦即,硬體的故障類型、軟體/韌體的故障類型)。本發明所提供之電池診斷技術還會根據該保護狀態及該故障類型查詢該故障分析樹以得到至少一候選故障原因,且判斷該等內部參數的一第一子集是否符合該候選故障原因所對應的一判斷規則,藉此確認該至少一候選故障原因的其中之一為該電池模組的一初步故障原因。另外,本發明所提供之電池診斷技術可將該等內部參數的一第二子集輸入該初步故障原因所對應的一機器學習模型以確認該電池模組的一具體故障原因。藉由前述運作,本發明所提供之電池診斷技術針對電池模組進行了階層式的診斷--在不同階層分析出電池模組的保護狀態、故障類型及初步故障原因,甚至可分析出電池模組的具體故障原因。因此,使用者不需要將電池退回原廠,即能得知電池模組的各種異常狀態以及電池模 組的故障原因,極為便利。 In summary, the battery diagnosis technology (including the device, method and computer program products) provided by the present invention uses a fault analysis tree compiled based on the expert experience of experts in the battery field to perform hierarchical diagnosis. The battery diagnosis technology provided by the present invention analyzes whether the battery module is abnormal according to a plurality of protection parameters of the battery module, and determines which protection state the battery module needs to activate (that is, the unrecoverable state, the first The recoverable state or the second recoverable state), and determine what type of failure the battery module belongs to (that is, the type of hardware failure, the type of software/firmware failure). The battery diagnosis technology provided by the present invention also queries the fault analysis tree according to the protection status and the fault type to obtain at least one candidate fault cause, and determines whether a first subset of the internal parameters meets the candidate fault cause. A corresponding judgment rule is used to confirm that one of the at least one candidate failure cause is a preliminary failure cause of the battery module. In addition, the battery diagnosis technology provided by the present invention can input a second subset of the internal parameters into a machine learning model corresponding to the preliminary failure cause to confirm a specific failure cause of the battery module. Through the foregoing operations, the battery diagnostic technology provided by the present invention performs a hierarchical diagnosis of the battery module-analyzes the protection status, failure type and preliminary failure cause of the battery module at different levels, and even analyzes the battery model The specific failure reason for the group. Therefore, the user does not need to return the battery to the original factory, that is, the user can know the various abnormal status of the battery module and the battery model. The reason for the failure of the group is extremely convenient.
上述各實施方式係用以例示性地說明本發明的部分實施態樣,以及闡釋本發明的技術特徵,而非用來限制本發明的保護範疇及範圍。任何本發明所屬技術領域中具有通常知識者可輕易完成的改變或均等性的安排均屬於本發明所主張的範圍,本發明的權利保護範圍以申請專利範圍為準。 The foregoing embodiments are used to exemplify some implementation aspects of the present invention and explain the technical features of the present invention, and are not used to limit the protection scope and scope of the present invention. Any change or equal arrangement that can be easily completed by a person with ordinary knowledge in the technical field of the present invention belongs to the scope of the present invention, and the protection scope of the present invention is subject to the scope of the patent application.
S201~S209:步驟 S201~S209: steps
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109137643A TWI749835B (en) | 2020-10-29 | 2020-10-29 | Battery diagnosis apparatus, method, and computer program product thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109137643A TWI749835B (en) | 2020-10-29 | 2020-10-29 | Battery diagnosis apparatus, method, and computer program product thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI749835B true TWI749835B (en) | 2021-12-11 |
TW202217352A TW202217352A (en) | 2022-05-01 |
Family
ID=80681241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109137643A TWI749835B (en) | 2020-10-29 | 2020-10-29 | Battery diagnosis apparatus, method, and computer program product thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI749835B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200529532A (en) * | 2003-10-14 | 2005-09-01 | Black & Decker Inc | Protection methods, protection circuits and protective devices for secondary batteries, a power tool, charger and battery pack adapted to provide protection against fault conditions in the battery pack |
TWI451113B (en) * | 2007-07-23 | 2014-09-01 | 黃永松 | Battery performance monitoring |
TWI580153B (en) * | 2012-11-13 | 2017-04-21 | Battery monitoring system | |
JP2020057565A (en) * | 2018-10-04 | 2020-04-09 | 日立化成株式会社 | Diagnosis method and diagnosis system for deteriorated condition of storage battery |
CN111426955A (en) * | 2020-04-23 | 2020-07-17 | 华南理工大学 | Lithium ion battery fault diagnosis method |
CN111521944A (en) * | 2020-05-27 | 2020-08-11 | 深圳职业技术学院 | Battery state diagnostic instrument and state diagnostic method |
JP2020169887A (en) * | 2019-04-03 | 2020-10-15 | 公益財団法人鉄道総合技術研究所 | Deterioration diagnosis device and deterioration diagnosis method for storage battery |
-
2020
- 2020-10-29 TW TW109137643A patent/TWI749835B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200529532A (en) * | 2003-10-14 | 2005-09-01 | Black & Decker Inc | Protection methods, protection circuits and protective devices for secondary batteries, a power tool, charger and battery pack adapted to provide protection against fault conditions in the battery pack |
TWI451113B (en) * | 2007-07-23 | 2014-09-01 | 黃永松 | Battery performance monitoring |
TWI580153B (en) * | 2012-11-13 | 2017-04-21 | Battery monitoring system | |
JP2020057565A (en) * | 2018-10-04 | 2020-04-09 | 日立化成株式会社 | Diagnosis method and diagnosis system for deteriorated condition of storage battery |
JP2020169887A (en) * | 2019-04-03 | 2020-10-15 | 公益財団法人鉄道総合技術研究所 | Deterioration diagnosis device and deterioration diagnosis method for storage battery |
CN111426955A (en) * | 2020-04-23 | 2020-07-17 | 华南理工大学 | Lithium ion battery fault diagnosis method |
CN111521944A (en) * | 2020-05-27 | 2020-08-11 | 深圳职业技术学院 | Battery state diagnostic instrument and state diagnostic method |
Also Published As
Publication number | Publication date |
---|---|
TW202217352A (en) | 2022-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dey et al. | Model-based real-time thermal fault diagnosis of Lithium-ion batteries | |
US20160232450A1 (en) | Storage device lifetime monitoring system and storage device lifetime monitoring method thereof | |
JP4925171B2 (en) | Semiconductor integrated circuit and diagnostic method thereof | |
JP5983784B2 (en) | Power storage device and deterioration determination method | |
JP2014522966A (en) | Insulation resistance measuring device having self-fault diagnosis function and self-fault diagnostic method using the same | |
WO2023024851A1 (en) | Battery equalization method and system | |
JPWO2019069390A1 (en) | Battery pack inspection method and inspection equipment | |
EP3840106B1 (en) | Battery pack diagnostic method and battery pack diagnostic device | |
JP2020506650A (en) | Monitoring system for series-connected battery cells | |
KR20220133695A (en) | Method for detecting anomaly in charger/discharger based on charger/discharger data for manufacturing or evaluating lithium-ion battery | |
CN117214726B (en) | State detection method and device, electronic equipment and computer readable storage medium | |
CN109884533A (en) | The diagnostic method and device of battery failures, equipment and storage medium | |
TWI749835B (en) | Battery diagnosis apparatus, method, and computer program product thereof | |
US20240192280A1 (en) | Systems and Methods for Diagnosing Batteries | |
CN113533985A (en) | Identification method of battery pack internal resistance abnormal module and storage medium thereof | |
CN112701362A (en) | Systems and methods relating to battery cell measurement | |
TWI724742B (en) | Diagnostic system | |
CN114035026B (en) | Micro control unit chip for battery management system and chip abnormality detection method | |
CN111480085A (en) | Apparatus and method for diagnosing insulation condition between battery pack and ground, and battery pack including the same | |
KR102541328B1 (en) | Battery information managing method and apparatus | |
CN113900026A (en) | Method for estimating state of charge of battery pack of environment-friendly mower | |
CN105785115A (en) | Testing system and method | |
CN113391228A (en) | Battery internal resistance and health state monitoring method and electronic device | |
JP2021044966A (en) | Storage control device and storage system | |
TW202038091A (en) | Microcontroller, memory module, and method for updating firmware of the microcontroller |