JP2020169887A - Deterioration diagnosis device and deterioration diagnosis method for storage battery - Google Patents
Deterioration diagnosis device and deterioration diagnosis method for storage battery Download PDFInfo
- Publication number
- JP2020169887A JP2020169887A JP2019071270A JP2019071270A JP2020169887A JP 2020169887 A JP2020169887 A JP 2020169887A JP 2019071270 A JP2019071270 A JP 2019071270A JP 2019071270 A JP2019071270 A JP 2019071270A JP 2020169887 A JP2020169887 A JP 2020169887A
- Authority
- JP
- Japan
- Prior art keywords
- storage battery
- battery
- charging
- discharging
- internal resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、例えば、鉄道車両や無停電電源などに搭載される蓄電池の劣化診断装置及び劣化診断方法に関する。 The present invention relates to, for example, a deterioration diagnosis device and a deterioration diagnosis method for a storage battery mounted on a railway vehicle, an uninterruptible power supply, or the like.
近年、自動車や鉄道車両に従来の鉛電池の代わりにリチウムイオン電池などの蓄電池が採用され始めている。この蓄電池は、鉛電池に比べて格段に長寿命であることが期待されているが、例えば実際に鉄道車両に使用した場合の寿命については、これまでの実績がないため不明であった。 In recent years, storage batteries such as lithium-ion batteries have begun to be adopted in automobiles and railway vehicles instead of conventional lead batteries. This storage battery is expected to have a much longer life than a lead battery, but the life when actually used in a railway vehicle, for example, has not been known so far.
このような蓄電池は、充放電を繰り返すことで、容量の低下や内部抵抗の増加によって使用時間の短縮や出力の低下などをもたらすことが知られており、長期間の使用によって劣化した蓄電池は交換する必要がある。したがって、車両搭載後の定期的な劣化診断を行って、適切なタイミングでの電池交換を計画する必要があった。 It is known that such a storage battery shortens the usage time and the output due to a decrease in capacity and an increase in internal resistance by repeating charging and discharging, and the storage battery deteriorated by long-term use is replaced. There is a need to. Therefore, it was necessary to carry out regular deterioration diagnosis after mounting on the vehicle and plan battery replacement at an appropriate timing.
これまでの蓄電池の劣化診断方法は、例えば特許文献1に記載されているように、二次電池の充電または放電中の電池温度、電流、および電圧を測定する測定ステップと、前記測定された電池温度、電流、および電圧データと、予め保持している正極活物質および負極活物質の開回路電圧と充電量との関係を示すデータとを用いて、前記電池の内部抵抗値を推算する推算ステップと、前記推算された内部抵抗から反応抵抗成分、オーミック抵抗成分、および拡散抵抗成分を算出する算出ステップと、前記内部抵抗値を、前記反応抵抗成分、オーミック抵抗成分、および拡散抵抗成分をそれぞれ温度補正して合算した値に補正する補正ステップと、を有する電池性能推定方法が知られている。
Conventional methods for diagnosing deterioration of a storage battery include, as described in
上述した従来の蓄電池の評価方法は、電気自動車やハイブリッド自動車、ハイブリッド二輪車などでの使用を想定してなされており、使用時の電池温度の影響を考慮して正確な劣化診断を可能とするのであった。しかし、近年、鉄道車両に蓄電池を搭載した車両の実用化が進められており、従来の電気自動車などに用いられる蓄電池の劣化診断方法は鉄道車両に搭載した蓄電池の劣化診断方法としては不適な場合があった。 The conventional evaluation method for storage batteries described above is intended for use in electric vehicles, hybrid vehicles, hybrid motorcycles, etc., and enables accurate deterioration diagnosis in consideration of the influence of battery temperature during use. there were. However, in recent years, vehicles equipped with storage batteries in railway vehicles have been put into practical use, and the deterioration diagnosis method for storage batteries used in conventional electric vehicles is not suitable as a deterioration diagnosis method for storage batteries installed in railway vehicles. was there.
これは鉄道車両の制御回路における蓄電池の使用環境に起因している。具体的には、鉄道車両の制御回路における蓄電池の使用環境は、以下の通りとなっている。(1)車両のデータ記録システムが起動する前から電池が放電を開始するため、放電開始前のデータが記録されない、(2)車両起動後は架線から給電されて常時充放電されるため、無通電状態を含まない、(3)通常は10%程度の浅い放電のみが行われ、架線停電時などの異常時を除いて数10%オーダーの深い放電は行われない、(4)制御回路負荷への放電波形や車両整流器からの充電波形は、波形が単調であり変動が乏しい、(5)電池電流センサの直流誤差が無視できない。ここで、従来の蓄電池の劣化診断方法では、無通電状態を含み、充放電サイクルも使用状況に応じて複雑であって単純に従来の診断方法を鉄道車両に採用することができないという問題もあった。さらに、従来の蓄電池の劣化診断方法は、充放電曲線を求めるために蓄電池を深く放電する必要があり、(3)に示したように通常は浅い放電のみが行われて深く放電された状態となることが少ない鉄道車両の制御回路の場合は従来の劣化診断方法では診断をすることができないという問題があった。 This is due to the usage environment of the storage battery in the control circuit of the railway vehicle. Specifically, the usage environment of the storage battery in the control circuit of the railway vehicle is as follows. (1) Since the battery starts discharging before the vehicle data recording system starts, the data before the start of discharging is not recorded. (2) After the vehicle starts, power is supplied from the overhead wire and the battery is constantly charged and discharged. It does not include the energized state, (3) Normally, only a shallow discharge of about 10% is performed, and a deep discharge of several tens of percent order is not performed except in an abnormal situation such as an overhead wire power failure. (4) Control circuit load The discharge waveform to and the charge waveform from the vehicle rectifier are monotonous and have little fluctuation. (5) The DC error of the battery current sensor cannot be ignored. Here, the conventional storage battery deterioration diagnosis method has a problem that the charge / discharge cycle is complicated depending on the usage situation, including the non-energized state, and the conventional diagnosis method cannot be simply adopted for the railway vehicle. It was. Further, in the conventional method for diagnosing deterioration of a storage battery, it is necessary to deeply discharge the storage battery in order to obtain a charge / discharge curve, and as shown in (3), usually only a shallow discharge is performed and the deep discharge is performed. In the case of a control circuit of a railroad vehicle, which rarely becomes a discharge, there is a problem that the diagnosis cannot be made by the conventional deterioration diagnosis method.
そこで、本発明の目的は、上述した課題を解決するためになされたものであり、上述したような使用環境においても蓄電池の内部状態を推定して劣化診断を可能とする蓄電池の劣化診断装置及び劣化診断方法を提供することにある。 Therefore, an object of the present invention has been made to solve the above-mentioned problems, and a storage battery deterioration diagnosis device capable of estimating the internal state of the storage battery and diagnosing deterioration even in the above-mentioned usage environment. The purpose is to provide a deterioration diagnosis method.
本発明に係る蓄電池の劣化診断方法は、装置起動後所定の時間の電池電圧及び電池電流を記録する記録工程と、蓄電池が放電から充電に切り替わる前後の前記電池電圧及び前記電池電流の波形から直流誤差と微分容量を演算する容量演算工程と、前記電池電流に前記直流誤差を減算して電池電流の補正値を求める補正工程と、前記蓄電池が放電から充電に切り替わる前後の前記電池電圧及び前記補正値の波形から直流内部抵抗を演算する内部抵抗演算工程と、を備え、前記微分容量及び前記直流内部抵抗を用いて劣化診断を行う診断工程を備えることを特徴とする。 The method for diagnosing deterioration of a storage battery according to the present invention includes a recording step of recording the battery voltage and the battery current for a predetermined time after the device is started, and DC from the waveforms of the battery voltage and the battery current before and after the storage battery is switched from discharging to charging. A capacity calculation step for calculating the error and the differential capacity, a correction step for obtaining a correction value for the battery current by subtracting the DC error from the battery current, and the battery voltage and the correction before and after the storage battery switches from discharging to charging. It is characterized by including an internal resistance calculation step of calculating a DC internal resistance from a value waveform, and a diagnostic step of performing deterioration diagnosis using the differential capacitance and the DC internal resistance.
また、本発明に係る蓄電池の劣化診断方法において、前記容量演算工程は、放電から充電に切り替わる切替時間から起算して充電期間における所定の時間間隔の充電側間隔と、放電から充電に切り替わる切替時間から起算して放電時間における所定の時間間隔の放電側間隔を用いて前記直流誤差及び前記微分容量を演算すると好適である。 Further, in the storage battery deterioration diagnosis method according to the present invention, in the capacity calculation step, the charging side interval of a predetermined time interval in the charging period and the switching time of switching from discharging to charging are calculated from the switching time of switching from discharging to charging. It is preferable to calculate the DC error and the differential capacitance using the discharge side interval of a predetermined time interval in the discharge time calculated from.
また、本発明に係る蓄電池の劣化診断方法において、前記内部抵抗演算工程は、前記補正値を積算した電荷量が放電から充電に切り替わる前後において略等しくなるように充電側時間及び放電側時間を定め、該充電側時間及び前記放電側時間におけるそれぞれの電圧値及び電流の補正値を用いて前記直流内部抵抗を演算すると好適である。 Further, in the method for diagnosing deterioration of a storage battery according to the present invention, in the internal resistance calculation step, the charging side time and the discharging side time are determined so that the amount of charge obtained by integrating the correction values becomes substantially equal before and after switching from discharging to charging. It is preferable to calculate the DC internal resistance using the corrected values of the respective voltage values and currents in the charging side time and the discharging side time.
また、本発明に係る蓄電池の劣化診断方法において、前記容量演算工程及び前記内部抵抗演算工程は、前記記録工程において記録されたデータの過渡応答が収束している時刻のデータのみを使用すると好適である。 Further, in the storage battery deterioration diagnosis method according to the present invention, it is preferable that the capacity calculation step and the internal resistance calculation step use only the data at the time when the transient response of the data recorded in the recording step has converged. is there.
また、本発明に係る蓄電池の劣化診断装置は、蓄電池が電力変換装置を介さずに接続された制御回路と、前記制御回路および前記蓄電池に電力を供給する主回路の充電装置部と、前記充電装置部に電力を供給する主回路の主電源部を備えた鉄道車両の蓄電池の劣化診断装置において、前記蓄電池の電圧及び電流を取得する電池状態取得部と、前記充電装置部の起動状態又は前記主電源部の起動状態を取得する車両状態取得部と、前記電池状態取得部と前記車両状態取得部で得られた波形を記録する波形記録部と、前記波形記録部で記録した波形のうち、前記蓄電池が放電から充電に切り替わる前後であって、前記蓄電池の電圧の過渡応答が収束している期間を抽出する波形抽出部と、前記波形抽出部による抽出波形から直流誤差と微分容量を演算する微分容量演算部と、前記蓄電池の電流から前記直流誤差を減算して前記蓄電池の電流の補正値を求める補正部と、前記抽出波形のうち、前記蓄電池の電流を前記補正値に変換した補正波形から直流内部抵抗を演算する内部抵抗演算部と、を備え、前記微分容量及び前記直流内部抵抗を用いて劣化診断を行う診断部を備えることを特徴とする。 Further, the storage battery deterioration diagnosis device according to the present invention includes a control circuit in which the storage battery is connected without a power conversion device, a charging device unit of the control circuit and a main circuit for supplying power to the storage battery, and the charging. In a deterioration diagnosis device for a storage battery of a railway vehicle provided with a main power supply unit of a main circuit that supplies power to the device unit, a battery state acquisition unit that acquires the voltage and current of the storage battery and an activated state of the charging device unit or the above Of the vehicle state acquisition unit that acquires the activation state of the main power supply unit, the waveform recording unit that records the waveforms obtained by the battery state acquisition unit and the vehicle state acquisition unit, and the waveform recorded by the waveform recording unit. Before and after the storage battery switches from discharging to charging, the DC error and the differential capacity are calculated from the waveform extraction unit that extracts the period during which the transient response of the voltage of the storage battery is converging and the waveform extracted by the waveform extraction unit. The differential capacity calculation unit, the correction unit that subtracts the DC error from the current of the storage battery to obtain the correction value of the current of the storage battery, and the correction waveform obtained by converting the current of the storage battery into the correction value among the extracted waveforms. It is characterized by including an internal resistance calculation unit that calculates the DC internal resistance from the above, and a diagnostic unit that performs deterioration diagnosis using the differential capacitance and the DC internal resistance.
本発明の特徴によれば、鉄道車両の制御回路や無停電電源などの装置に用いられる蓄電池の劣化診断を、データ記録システムや演算システムによって行うことができるので、劣化診断のための特別な試験や装置が不要となり、また劣化診断のために直流誤差の少ない高価な電流センサを搭載することなくコストを抑えることができる。 According to the features of the present invention, deterioration diagnosis of a storage battery used in a device such as a control circuit of a railroad vehicle or an uninterruptible power supply can be performed by a data recording system or an arithmetic system, and thus a special test for deterioration diagnosis can be performed. And equipment is not required, and the cost can be suppressed without installing an expensive current sensor with a small DC error for deterioration diagnosis.
以下、本発明を実施するための好適な実施形態について、図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. It should be noted that the following embodiments do not limit the invention according to each claim, and not all combinations of features described in the embodiments are essential for the means for solving the invention. ..
図1は、本発明の実施形態に係る蓄電池を搭載した鉄道車両の回路構成の概要図であり、図2は、本発明の実施形態に係る蓄電池の劣化診断方法を示すフローチャートであり、図3は、容量演算工程で用いる電流電圧波形のグラフであり、図4は、本発明の実施形態に係る蓄電池の等価回路を示す図であり、図5は、過渡応答収束判断用の電池等価回路の一例を示す図であり、図6は、内部抵抗演算工程で用いる電流電圧波形のグラフであり、図7は、本実施形態に係る劣化診断装置の構成例を示す図である。 FIG. 1 is a schematic diagram of a circuit configuration of a railroad vehicle equipped with a storage battery according to an embodiment of the present invention, and FIG. 2 is a flowchart showing a deterioration diagnosis method for the storage battery according to the embodiment of the present invention. Is a graph of a current-voltage waveform used in the capacitance calculation process, FIG. 4 is a diagram showing an equivalent circuit of a storage battery according to an embodiment of the present invention, and FIG. 5 is a diagram of a battery equivalent circuit for determining transient response convergence. FIG. 6 is a diagram showing an example, FIG. 6 is a graph of a current-voltage waveform used in the internal resistance calculation step, and FIG. 7 is a diagram showing a configuration example of a deterioration diagnosis device according to the present embodiment.
図1に示すように、本実施形態に係る蓄電池を搭載した鉄道車両の擬略回路構成は、架線又は発電機を含む主回路と、補助電源装置の充電装置部から分岐した制御回路及びサービス機器補助回路から構成される。蓄電池は、制御回路に対してバックアップ用として接続されており、通常DC100V又はDC24Vで構成される。 As shown in FIG. 1, the simulated circuit configuration of the railway vehicle equipped with the storage battery according to the present embodiment includes a main circuit including an overhead wire or a generator, and a control circuit and a service device branched from the charging device portion of the auxiliary power supply device. It consists of an auxiliary circuit. The storage battery is connected to the control circuit for backup, and is usually composed of DC100V or DC24V.
次に、本実施形態に係る蓄電池を搭載した鉄道車両の蓄電池の劣化診断方法について説明を行う。図2に示すように、本実施形態に係る蓄電池を搭載した鉄道車両の蓄電池の劣化診断方法は、鉄道車両の起動後所定の時間(例えば30分程度)の電池電流及び電池電圧の波形を測定する記録工程(S101)と、蓄電池が放電から充電に切り替わる前後の電池電圧及び電池電流の波形から直流誤差と微分容量を演算する容量演算工程(S102)と、電池電流に容量演算工程(S102)で算出した直流電流誤差を減算して電池電流の補正値を求める補正工程(S103)と、蓄電池が放電から充電に切り替わる前後の電池電圧及び補正工程(S103)で求めた補正値の波形から直流内部抵抗を演算する内部抵抗演算工程(S104)と、容量演算工程(S102)で求めた微分容量及び内部抵抗演算工程(S104)で求めた直流内部抵抗を用いて蓄電池の劣化診断を行う診断工程(S105)とを備えている。 Next, a method of diagnosing deterioration of the storage battery of the railway vehicle equipped with the storage battery according to the present embodiment will be described. As shown in FIG. 2, the deterioration diagnosis method of the storage battery of the railway vehicle equipped with the storage battery according to the present embodiment measures the waveforms of the battery current and the battery voltage for a predetermined time (for example, about 30 minutes) after the start of the railway vehicle. Recording step (S101), capacity calculation step (S102) for calculating DC error and differential capacity from waveforms of battery voltage and battery current before and after the storage battery switches from discharging to charging, and capacity calculation step for battery current (S102). The correction step (S103) for obtaining the correction value of the battery current by subtracting the DC current error calculated in step 2, and the DC voltage from the waveform of the correction value obtained in the correction step (S103) and the battery voltage before and after the storage battery is switched from discharging to charging. A diagnostic step of diagnosing deterioration of the storage battery using the internal resistance calculation step (S104) for calculating the internal resistance, the differential capacitance obtained in the capacitance calculation step (S102), and the DC internal resistance obtained in the internal resistance calculation step (S104). (S105) and.
記録工程(S101)では、鉄道車両の起動後所定の時間(例えば30分程度)の電流及び電圧の波形を記録する。記録工程(S101)では、従来周知の種々の記録手段を採用することができ、例えば、コンピュータのハードディスクやSSDなどが好適に用いられる。また、蓄電池の電流値及び電圧値は、種々の電流計及び電圧計を用いて経時的に測定される。また、記録工程(S101)における記録時間は、30分程度に限られず、軌道直後のデータ記録のない期間以外の期間を十分に記録することができ、かつ後述する過渡応答が適切に排除できる時間であれば適宜設定を変更することができる。 In the recording step (S101), the waveforms of the current and voltage for a predetermined time (for example, about 30 minutes) after the start of the railway vehicle are recorded. In the recording step (S101), various conventionally known recording means can be adopted, and for example, a hard disk of a computer, an SSD, or the like is preferably used. Further, the current value and the voltage value of the storage battery are measured over time using various ammeters and voltmeters. Further, the recording time in the recording step (S101) is not limited to about 30 minutes, and a period other than the period without data recording immediately after the orbit can be sufficiently recorded, and the transient response described later can be appropriately excluded. If so, the setting can be changed as appropriate.
容量演算工程(S102)では、図3に示すように、電池電流値から放電から充電に切り替わる切替時間tcを特定する。次に、該切替時間tcから起算して充電期間における所定の時間間隔の充電側間隔tb1,tb2と、該切替時間tcから起算して放電期間における所定の時間間隔の放電側間隔ta1,ta2を定める。ここで、充電側間隔tb1,tb2と放電側間隔ta1,ta2は、過渡応答が収束している時刻のデータを用い、それ以外は棄却する。その後、充電側間隔tb1,tb2及び放電側間隔ta1,ta2に対応した充電側電圧差ΔVb,充電側時間差Δtb,放電側電圧差ΔVa及び放電側時間差Δtaを図3における電流電圧波形のグラフから読み取る。さらに、充電側間隔tb1,tb2と放電側間隔ta1,ta2におけるそれぞれの電荷を積算して充電側電荷差Δqb及び放電側電荷差Δqaを求める。 In the capacity calculation step (S102), as shown in FIG. 3, the switching time ct for switching from discharging to charging is specified from the battery current value. Next, the charging side intervals tb1 and tb2 at predetermined time intervals in the charging period calculated from the switching time ct, and the discharging side intervals ta1 and ta2 at predetermined time intervals in the discharging period calculated from the switching time ct. Determine. Here, the charging side intervals tb1 and tb2 and the discharging side intervals ta1 and ta2 use the data at the time when the transient response has converged, and the other intervals are rejected. Thereafter, the charging-side spacing tb1, tb2 and discharge side interval ta1, the charging-side voltage difference corresponding to ta2 [Delta] V b, the charging-side time difference Delta] t b, the discharge-side voltage difference [Delta] V a and current voltage waveforms in FIG. 3 the discharge side time difference Delta] t a Read from the graph of. Further, the charges at the charging side intervals tb1 and tb2 and the discharging side intervals ta1 and ta2 are integrated to obtain the charging side charge difference Δq b and the discharging side charge difference Δq a .
容量演算工程(S102)では、図4に示すような電池等価回路を用いて直流誤差及び微分容量を演算すると好適である。具体的には、直流誤差Iofsは、以下の数式1を用いて演算を行い、微分容量Cは以下の数式2を用いて演算を行う。
ここで過渡応答が収束したことを判定することの判断手法としては、種々の判断手法を適用することができるが、例えば図5に示す電池等価回路を用いると好適である。具体的には、図5では、説明のために2段直列(i=2)としているが、CiとRi(i=1,2,3,・・・)の直列段数は電池種別に適するように変更してよい。この回路でCiを開放(静電容量ゼロ)とすれば図4の構成と一致する。すなわち,R=R0+R1+R2である。なお、RiとCiはパラメータ同定の対象ではなく,予め算定しておいた数値(演算中は固定値)で構わない。これにより,RiとCi全てを同定する手法より簡略化が可能となる。 Here, various determination methods can be applied as a determination method for determining that the transient response has converged, but it is preferable to use, for example, the battery equivalent circuit shown in FIG. Specifically, in FIG. 5, although a two-stage series (i = 2) for the purpose of explanation, C i and R i (i = 1,2,3, ··· ) series number of stages of the battery type It may be changed to suit. Opening the C i in this circuit (capacitance zero) Tosureba match the configuration of FIG. That is, R = R 0 + R 1 + R 2 . Incidentally, R i and C i is not a parameter identification of interest may in numerical value in advance calculated (fixed value during operation). This allows more simplified approach to identify all R i and C i.
次に、電流値Iが十分長く継続した場合の過渡応答推定電圧の定常値は、(R0+R1+R2)×Iであるので、これと現在値との比率γを用いて過渡応答の収束判定を行う。各並列回路の電圧Vriの関係式は以下の数式3で表される。
この数式3をサンプル時間T(s)にて離散化し、次に数式4を得る。なお、この数式4は、簡単なオイラー法を適用して得たが、従来周知の種々の手法を適用しても構わない。
ここで、数式4でnは時刻t=nTにおける値を表しており、t=0におけるVriの初期値は0として計算を開始し、現在時刻t=nTにおける値Vri(n)を得る。ここから、比率γは、以下の数式5となる。
この比率γが以下の数式6の条件を満たす際に過渡応答が収束したと判定することができる。
ここで、Δγが小さいほど精密な収束判定を行うことが可能となるが、収束までに時間を要することとなるため、新規蓄電池に対して最初に演算する際にΔγを調整しておくと好適である。 Here, the smaller Δγ is, the more precise the convergence test can be performed. However, since it takes time to converge, it is preferable to adjust Δγ when first calculating the new storage battery. Is.
補正工程(S103)では、電池電流の観測値Iは、補正値I´と直流誤差Iofsの和であるから、観測値Iに直流誤差Iofsを減算して電流の補正値I´を求める。 In the correction step (S103), the observed value I of the battery current is the sum of the correction value I'and the DC error I ofs , so the DC error I ofs is subtracted from the observed value I to obtain the current correction value I'. ..
内部抵抗演算工程(S104)では、図6に示すように、この補正値I´と電池電圧を用いて蓄電池が放電から充電に切り替わる前後の電池電圧及び補正値の波形から直流内部抵抗を演算すると好適である。 In the internal resistance calculation step (S104), as shown in FIG. 6, when the DC internal resistance is calculated from the waveforms of the battery voltage and the correction value before and after the storage battery switches from discharging to charging using the correction value I'and the battery voltage. Suitable.
具体的には、上述した容量演算工程(S102)と同様の手法によって過渡応答が収束している期間を求め、該過渡応答が収束している期間から、電流補正値を積算した電荷量が切替時間tcの前後で略等しくなる充電側時間tb及び放電側時間taを求める。その後、充電側時間tb及び放電側時間taに対応した充電側電圧値Vb,充電側電流値I´b,放電側電圧値Va及び放電側電流値I´aを図6における電流電圧波形のグラフから読み取る。 Specifically, the period in which the transient response is converged is obtained by the same method as in the capacitance calculation step (S102) described above, and the charge amount obtained by integrating the current correction value is switched from the period in which the transient response is converged. The charge side time tb and the discharge side time ta that are substantially equal before and after the time tc are obtained. After that, the charging side voltage value V b , the charging side current value I ′ b , the discharging side voltage value V a, and the discharging side current value I ′ a corresponding to the charging side time tb and the discharging side time ta are set as the current voltage waveform in FIG. Read from the graph of.
次に、これらの値を用いて数式7によって直流内部抵抗Rを演算する。
その後、時刻tbでの開回路電圧を数式8から得れば、それ以降は電流I´の積算に基づき開回路電圧を連続的に推定可能となり、ここから電池容量の推定も可能となる。
次に、診断工程(S105)では、求められた微分容量C及び直流内部抵抗Rが所定の閾値を越えていないか否かを判断する。この閾値については、使用される蓄電池の状況に応じて適宜決定することが可能である。例えば、微分容量Cや直流内部抵抗Rは、蓄電池の充電率や温度の影響を受けるため、劣化診断においては充電率や温度毎に異なる判定閾値を予め決定して保持しておき、これを用いることで実用的な劣化判定が可能となる。 Next, in the diagnostic step (S105), it is determined whether or not the obtained differential capacitance C and the DC internal resistance R do not exceed a predetermined threshold value. This threshold value can be appropriately determined according to the situation of the storage battery used. For example, since the differential capacitance C and the DC internal resistance R are affected by the charge rate and temperature of the storage battery, a judgment threshold value different for each charge rate and temperature is determined and held in advance in the deterioration diagnosis, and this is used. This makes it possible to make a practical deterioration judgment.
このように、蓄電池の劣化診断を行うことで、蓄電池の使用環境が、(1)車両のデータ記録システムが起動する前から電池が放電を開始するため、放電開始前のデータが記録されない、(2)車両起動後は架線から給電されて常時充放電されるため、無通電状態を含まない、(3)通常は10%程度の浅い放電のみが行われ、架線停電時などの異常時を除いて数10%オーダーの深い放電は行われない、(4)制御回路負荷への放電波形や車両整流器からの充電波形は、波形が単調であり変動が乏しい、(5)電池電流センサの直流誤差が無視できないといった場合であっても適切に蓄電池の劣化診断を行うことが可能となる。また、これらの劣化診断を鉄道車両が備えているデータ記録システムや演算システムによって行うことができる場合には、劣化診断のための特別な試験や装置が不要となり、また劣化診断のために直流誤差の少ない高価な電流センサを搭載することなくコストを抑えることができる。 By performing the deterioration diagnosis of the storage battery in this way, the usage environment of the storage battery is (1) the battery starts discharging before the data recording system of the vehicle starts, so that the data before the start of discharging is not recorded. 2) After the vehicle is started, power is supplied from the overhead wire and it is constantly charged and discharged, so it does not include a non-energized state. (3) Normally, only a shallow discharge of about 10% is performed, except when there is an abnormality such as an overhead wire power failure. Deep discharge on the order of several tens of percent is not performed, (4) the discharge waveform to the control circuit load and the charge waveform from the vehicle rectifier are monotonous and have little fluctuation, (5) DC error of the battery current sensor. Even if it cannot be ignored, it is possible to appropriately diagnose the deterioration of the storage battery. In addition, if these deterioration diagnoses can be performed by the data recording system or arithmetic system provided in the railway vehicle, no special test or device for deterioration diagnosis is required, and DC error is required for deterioration diagnosis. The cost can be suppressed without installing an expensive current sensor with a small amount of data.
また、本実施形態に係る蓄電池の劣化診断方法は、図7に示すように、蓄電池の劣化診断装置を用いて実現することができる。具体的には、蓄電池が電力変換装置を介さずに接続された制御回路と、前記制御回路および前記蓄電池に電力を供給する主回路の充電装置部と、前記充電装置部に電力を供給する主回路の主電源部を備えた鉄道車両の蓄電池の劣化診断装置を用いると好適である。 Further, the storage battery deterioration diagnosis method according to the present embodiment can be realized by using the storage battery deterioration diagnosis device as shown in FIG. 7. Specifically, a control circuit in which the storage battery is connected without a power conversion device, a charging device unit of the control circuit and a main circuit that supplies power to the storage battery, and a main unit that supplies power to the charging device unit. It is preferable to use a deterioration diagnosis device for a storage battery of a railway vehicle provided with a main power supply unit of the circuit.
ここで、電池状態取得部は、蓄電池の電圧及び電流を取得し、車両状態取得部は、充電装置部の起動状態又は主電源部の起動状態を取得し、波形記録部は、電池状態取得部と車両状態取得部で得られた波形を記録し、波形抽出部は、波形記録部で記録した波形のうち、蓄電池が放電から充電に切り替わる前後であって、蓄電池の電圧の過渡応答が収束している期間を抽出し、微分容量演算部は、波形抽出部による抽出波形から直流誤差と微分容量を演算し、補正部は、蓄電池の電流から直流誤差を減算して蓄電池の電流の補正値を求め、内部抵抗演算部は、抽出波形のうち、蓄電池の電流を補正値に変換した補正波形から直流内部抵抗を演算し、診断部は、この演算された微分容量及び直流内部抵抗を用いて劣化診断を行う。 Here, the battery state acquisition unit acquires the voltage and current of the storage battery, the vehicle state acquisition unit acquires the activation state of the charging device unit or the activation state of the main power supply unit, and the waveform recording unit acquires the battery state acquisition unit. The waveform obtained by the vehicle state acquisition unit is recorded, and the waveform extraction unit collects the transient response of the voltage of the storage battery before and after the storage battery switches from discharging to charging among the waveforms recorded by the waveform recording unit. The differential capacity calculation unit calculates the DC error and differential capacity from the waveform extracted by the waveform extraction unit, and the correction unit subtracts the DC error from the current of the storage battery to obtain the correction value of the current of the storage battery. The internal resistance calculation unit calculates the DC internal resistance from the corrected waveform obtained by converting the current of the storage battery into the correction value from the extracted waveform, and the diagnostic unit uses the calculated differential capacitance and DC internal resistance to deteriorate. Make a diagnosis.
このように、本実施形態に係る蓄電池の劣化診断装置は、特に鉄道状態取得部を有しているので、蓄電池が放電から充電に切り替わるタイミングをより正確に判別可能となる。即ち、主電源部及び/又は充電装置部が動作開始したタイミングをもって、蓄電池が放電から充電に切り替わることを判別することができる。これにより、誤ったタイミングのデータを使用して微分容量Cや直流内部抵抗Rを誤って推定する可能性を軽減することができる。 As described above, since the storage battery deterioration diagnosis device according to the present embodiment particularly has a railway state acquisition unit, it is possible to more accurately determine the timing at which the storage battery switches from discharging to charging. That is, it can be determined that the storage battery switches from discharging to charging at the timing when the main power supply unit and / or the charging device unit starts operating. This makes it possible to reduce the possibility of erroneously estimating the differential capacitance C and the DC internal resistance R using the data at the wrong timing.
なお、上述した実施形態において、蓄電池は、鉄道車両に用いられる場合について説明を行ったが、本発明は鉄道車両に用いられる場合に限られず、例えば、無停電電源のような用途にも適用することが可能である。また、蓄電池は、電池を充放電した際のクーロン効率が高く、充放電において開回路電圧カーブが放電時と充電時で異なるというヒステリシス性は無視できることが前提となるため、リチウムイオン電池が好適である。ただし、この前提が成り立つ電池であればリチウムイオン電池に限らず種々の電池に適用可能である。 In the above-described embodiment, the case where the storage battery is used in a railway vehicle has been described, but the present invention is not limited to the case where it is used in a railway vehicle, and is also applied to applications such as an uninterruptible power supply. It is possible. Further, the storage battery is preferably a lithium ion battery because it has a high coulombic efficiency when the battery is charged and discharged, and the hysteresis property that the open circuit voltage curve differs between the discharge and the charge can be ignored in the charge and discharge. is there. However, any battery that satisfies this premise can be applied not only to a lithium ion battery but also to various batteries.
tc 切替時間
tb1,tb2 充電側間隔
ta1,ta2 放電側間隔
ΔVb 充電側電圧差
Δtb 充電側時間差
ΔVa 放電側電圧差
Δta 放電側時間差
Δqb 充電側電荷差
Δqa 放電側電荷差
Iofs 直流誤差
C 微分容量
I 観測値
I´ 補正値
tb 充電側時間
ta 放電側時間
Vb 充電側電圧値
I´b 充電側電流値
Va 放電側電圧値
I´a 放電側電流値
S101 記録工程
S102 容量演算工程
S103 補正工程
S104 内部抵抗演算工程
S105 診断工程
tk switching time tb1, tb2 Charging side interval ta1, ta2 Discharging side interval ΔV b Charging side voltage difference Δt b Charging side time difference ΔV a Discharging side voltage difference Δt a Discharging side time difference Δq b Charging side charge difference Δq a Discharging side charge difference I ofs DC error C differential capacity I observed value I'correction value tb charge side time ta discharge side time V b charge side voltage value I'b charge side current value V a discharge-side voltage value I'a discharge-side current value S101 recording step S102 Capacity calculation process S103 Correction process S104 Internal resistance calculation process S105 Diagnosis process
Claims (5)
蓄電池が放電から充電に切り替わる前後の前記電池電圧及び前記電池電流の波形から直流誤差と微分容量を演算する容量演算工程と、
前記電池電流に前記直流誤差を減算して電池電流の補正値を求める補正工程と、
前記蓄電池が放電から充電に切り替わる前後の前記電池電圧及び前記補正値の波形から直流内部抵抗を演算する内部抵抗演算工程と、を備え、
前記微分容量及び前記直流内部抵抗を用いて劣化診断を行う診断工程を備えることを特徴とする蓄電池の劣化診断方法。 A recording process that records the battery voltage and battery current for a predetermined time after the device is started,
A capacity calculation process for calculating the DC error and the differential capacity from the waveforms of the battery voltage and the battery current before and after the storage battery switches from discharging to charging,
A correction step of subtracting the DC error from the battery current to obtain a correction value for the battery current,
It includes an internal resistance calculation step of calculating the DC internal resistance from the waveforms of the battery voltage and the correction value before and after the storage battery switches from discharging to charging.
A method for diagnosing deterioration of a storage battery, which comprises a diagnostic step of performing deterioration diagnosis using the differential capacity and the DC internal resistance.
前記容量演算工程は、放電から充電に切り替わる切替時間から起算して充電期間における所定の時間間隔の充電側間隔と、放電から充電に切り替わる切替時間から起算して放電時間における所定の時間間隔の放電側間隔を用いて前記直流誤差及び前記微分容量を演算することを特徴とする蓄電池の劣化診断方法。 In the method for diagnosing deterioration of a storage battery according to claim 1,
In the capacity calculation step, discharging is performed at a predetermined time interval in the discharging time, counting from the charging side interval of a predetermined time interval in the charging period and the switching time of switching from discharging to charging, counting from the switching time of switching from discharging to charging. A method for diagnosing deterioration of a storage battery, which comprises calculating the DC error and the differential capacity using a side spacing.
前記内部抵抗演算工程は、前記補正値を積算した電荷量が放電から充電に切り替わる前後において略等しくなるように充電側時間及び放電側時間を定め、該充電側時間及び前記放電側時間におけるそれぞれの電圧値及び電流の補正値を用いて前記直流内部抵抗を演算することを特徴とする蓄電池の劣化診断方法。 In the method for diagnosing deterioration of a storage battery according to claim 1 or 2.
In the internal resistance calculation step, the charging side time and the discharging side time are determined so that the amount of charge obtained by integrating the correction values becomes substantially equal before and after switching from discharging to charging, and the charging side time and the discharging side time are set respectively. A method for diagnosing deterioration of a storage battery, which comprises calculating the DC internal resistance using a voltage value and a current correction value.
前記容量演算工程及び前記内部抵抗演算工程は、前記記録工程において記録されたデータの過渡応答が収束している時刻のデータのみを使用することを特徴とする蓄電池の劣化診断方法。 In the method for diagnosing deterioration of a storage battery according to any one of claims 1 to 3.
A method for diagnosing deterioration of a storage battery, wherein the capacity calculation step and the internal resistance calculation step use only data at a time when the transient response of the data recorded in the recording step has converged.
前記制御回路および前記蓄電池に電力を供給する主回路の充電装置部と、
前記充電装置部に電力を供給する主回路の主電源部を備えた鉄道車両の蓄電池の劣化診断装置において、
前記蓄電池の電圧及び電流を取得する電池状態取得部と、
前記充電装置部の起動状態又は前記主電源部の起動状態を取得する車両状態取得部と、
前記電池状態取得部と前記車両状態取得部で得られた波形を記録する波形記録部と、
前記波形記録部で記録した波形のうち、前記蓄電池が放電から充電に切り替わる前後であって、前記蓄電池の電圧の過渡応答が収束している期間を抽出する波形抽出部と、
前記波形抽出部による抽出波形から直流誤差と微分容量を演算する微分容量演算部と、
前記蓄電池の電流から前記直流誤差を減算して前記蓄電池の電流の補正値を求める補正部と、
前記抽出波形のうち、前記蓄電池の電流を前記補正値に変換した補正波形から直流内部抵抗を演算する内部抵抗演算部と、を備え、
前記微分容量及び前記直流内部抵抗を用いて劣化診断を行う診断部を備えることを特徴とする蓄電池の劣化診断装置。 A control circuit in which the storage battery is connected without going through a power converter,
A charging device unit of a main circuit that supplies electric power to the control circuit and the storage battery,
In a deterioration diagnosis device for a storage battery of a railway vehicle provided with a main power supply section of a main circuit that supplies electric power to the charging device section.
A battery state acquisition unit that acquires the voltage and current of the storage battery, and
A vehicle state acquisition unit that acquires the activation state of the charging device unit or the activation state of the main power supply unit, and
A waveform recording unit that records the waveforms obtained by the battery state acquisition unit and the vehicle state acquisition unit, and
Of the waveforms recorded by the waveform recording unit, a waveform extraction unit that extracts a period before and after the storage battery switches from discharging to charging and during which the transient response of the voltage of the storage battery converges,
A differential capacity calculation unit that calculates DC error and differential capacity from the waveform extracted by the waveform extraction unit,
A correction unit that subtracts the DC error from the current of the storage battery to obtain a correction value of the current of the storage battery.
Among the extracted waveforms, an internal resistance calculation unit that calculates the DC internal resistance from the correction waveform obtained by converting the current of the storage battery into the correction value is provided.
A deterioration diagnosis device for a storage battery, comprising a diagnostic unit that performs deterioration diagnosis using the differential capacity and the DC internal resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019071270A JP7271268B2 (en) | 2019-04-03 | 2019-04-03 | Storage battery deterioration diagnosis device and deterioration diagnosis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019071270A JP7271268B2 (en) | 2019-04-03 | 2019-04-03 | Storage battery deterioration diagnosis device and deterioration diagnosis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020169887A true JP2020169887A (en) | 2020-10-15 |
JP7271268B2 JP7271268B2 (en) | 2023-05-11 |
Family
ID=72746343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019071270A Active JP7271268B2 (en) | 2019-04-03 | 2019-04-03 | Storage battery deterioration diagnosis device and deterioration diagnosis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7271268B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113296000A (en) * | 2021-03-23 | 2021-08-24 | 上海工程技术大学 | Disassembly-free lithium battery rapid detection, diagnosis and analysis system and method |
TWI749835B (en) * | 2020-10-29 | 2021-12-11 | 國立中央大學 | Battery diagnosis apparatus, method, and computer program product thereof |
CN116581402A (en) * | 2023-07-13 | 2023-08-11 | 北京索云科技股份有限公司 | Intelligent operation maintenance method and system for universal storage battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010071703A (en) * | 2008-09-17 | 2010-04-02 | Calsonic Kansei Corp | Battery pack residual capacity estimation method and apparatus |
JP2010093875A (en) * | 2008-10-03 | 2010-04-22 | Hitachi Ltd | Power control apparatus, vehicle running control system, and method for detecting deterioration state of storage battery |
JP2017096851A (en) * | 2015-11-26 | 2017-06-01 | 住友電気工業株式会社 | Full charge capacity calculation device, computer program, and full charge capacity calculation method |
-
2019
- 2019-04-03 JP JP2019071270A patent/JP7271268B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010071703A (en) * | 2008-09-17 | 2010-04-02 | Calsonic Kansei Corp | Battery pack residual capacity estimation method and apparatus |
JP2010093875A (en) * | 2008-10-03 | 2010-04-22 | Hitachi Ltd | Power control apparatus, vehicle running control system, and method for detecting deterioration state of storage battery |
JP2017096851A (en) * | 2015-11-26 | 2017-06-01 | 住友電気工業株式会社 | Full charge capacity calculation device, computer program, and full charge capacity calculation method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI749835B (en) * | 2020-10-29 | 2021-12-11 | 國立中央大學 | Battery diagnosis apparatus, method, and computer program product thereof |
CN113296000A (en) * | 2021-03-23 | 2021-08-24 | 上海工程技术大学 | Disassembly-free lithium battery rapid detection, diagnosis and analysis system and method |
CN116581402A (en) * | 2023-07-13 | 2023-08-11 | 北京索云科技股份有限公司 | Intelligent operation maintenance method and system for universal storage battery |
CN116581402B (en) * | 2023-07-13 | 2023-11-17 | 北京索云科技股份有限公司 | Intelligent operation maintenance method and system for universal storage battery |
Also Published As
Publication number | Publication date |
---|---|
JP7271268B2 (en) | 2023-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5393837B2 (en) | Battery charge rate estimation device | |
JP6111275B2 (en) | Battery control device | |
US10386422B2 (en) | Electrochemical impedance spectroscopy in battery management systems | |
JP5511951B2 (en) | Charge state estimation device | |
US8887872B2 (en) | Method of determining state of charge of energy storage system | |
JP5419831B2 (en) | Battery degradation degree estimation device | |
JP7271268B2 (en) | Storage battery deterioration diagnosis device and deterioration diagnosis method | |
JP6534746B2 (en) | Battery control device and battery system | |
CN110462916B (en) | Power storage element management device and power storage element management method | |
CN109031133B (en) | SOC correction method of power battery | |
JP2012149947A (en) | Device for estimating state of charge of batteries | |
KR20180041149A (en) | Apparatus and method for capacity monitoring and balancing in cascaded lithium-sulfur batteries | |
US20130314042A1 (en) | Method for Ascertaining the Open Circuit Voltage of a Battery, Battery with a Module for Ascertaining the Open Circuit Voltage and a Motor Vehicle Having a Corresponding Battery | |
JP5389136B2 (en) | Charging rate estimation apparatus and method | |
JP5329500B2 (en) | Battery charge rate estimation device | |
JP2012047580A (en) | Charging rate estimation device for battery | |
CN112415411A (en) | Method and apparatus for estimating SOC of battery, vehicle, and storage medium | |
JP7016704B2 (en) | Rechargeable battery system | |
CN110058177B (en) | Power battery electric quantity SOC correction method | |
JP2012063244A (en) | Charging rate estimation device of battery | |
CN109613437A (en) | A kind of battery charge state estimation method based on the identification of on-time model parameter | |
JP2004085574A (en) | Method and apparatus for estimating charging state of battery | |
JP2017195698A (en) | Battery management unit and battery management method | |
Liebhart et al. | Sensitivity analysis of battery cell aging estimators based on impedance spectroscopy regarding temperature compensation | |
JP2020079764A (en) | Secondary-battery state determination method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230411 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230426 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7271268 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |