TWI747565B - Heterojunction bipolar transistor - Google Patents
Heterojunction bipolar transistor Download PDFInfo
- Publication number
- TWI747565B TWI747565B TW109136683A TW109136683A TWI747565B TW I747565 B TWI747565 B TW I747565B TW 109136683 A TW109136683 A TW 109136683A TW 109136683 A TW109136683 A TW 109136683A TW I747565 B TWI747565 B TW I747565B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- collector
- emitter
- thickness
- doping
- Prior art date
Links
Images
Landscapes
- Bipolar Transistors (AREA)
Abstract
一種異質接面雙載子電晶體,包含:一基板,其具備一第一表面及相反側之第二表面;一子射極層,位在基板之第一表面上;一複合射極層,位在子射極層上,使子射極層及複合射極層形成一射極層;一基極層,位在複合射極層上;一集極突出邊緣層,位在基極層上;一集極層,位在集極突出邊緣層上;一橫向氧化區,設在複合射極層之第一區域形成一電流阻擋區,且複合射極層之第一區域包圍複合射極層之第二區域,使複合射極層之第二區域形成一電流孔徑。A heterojunction bi-carrier transistor includes: a substrate with a first surface and a second surface on the opposite side; a sub-emitter layer located on the first surface of the substrate; and a composite emitter layer, It is located on the sub-emitter layer, so that the sub-emitter layer and the composite emitter layer form an emitter layer; a base layer is located on the composite emitter layer; a collector protrudes from the edge layer and is located on the base layer ; A collector layer, located on the edge layer of the collector protruding; a lateral oxidation zone, set in the first area of the composite emitter layer to form a current blocking area, and the first area of the composite emitter layer surrounds the composite emitter layer The second area makes the second area of the composite emitter layer form a current aperture.
Description
本發明係有關一種異質接面雙載子電晶體,尤指一種集極位在上方與射極位在底部之異質接面雙載子電晶體。The present invention relates to a heterojunction bi-carrier transistor, especially a heterojunction bi-carrier transistor with the collector at the top and the emitter at the bottom.
按,異質接面雙載子電晶體(Heterojunction Bipolar Transistor,HBT)具有射極、基極及集極,通常射極位在上方,經由施加Vce電壓及Vbe電壓,電子先從射極注入至集極之前,傳輸通過基極層,且電子注入從基極進入集極,而電子從射極流向集電極期間會產生熱量。惟查,增益、最大振盪頻率及頻寬,亦高度依賴基極-集極電容(Base-Collector capacitance),如何減少基極-集極電容,亦為本發明所欲解決的課題。Press, Heterojunction Bipolar Transistor (HBT) has an emitter, a base and a collector. Usually the emitter is located above. By applying Vce voltage and Vbe voltage, electrons are first injected from the emitter to the collector. Before the electrode, it is transported through the base layer, and electrons are injected from the base to the collector, and heat is generated during the flow of electrons from the emitter to the collector. However, the gain, maximum oscillation frequency and bandwidth are also highly dependent on the base-collector capacitance. How to reduce the base-collector capacitance is also the subject to be solved by the present invention.
緣是,本發明之主要目的,係在提供一種異質接面雙載子電晶體,其通過集極-基極電容(collector-base capacitance)減少,而改善大訊號射頻(RF)性能,亦為了射頻電晶體與功率放大器有更好增益、最大振盪頻率(fmax)及頻寬。The reason is that the main purpose of the present invention is to provide a heterojunction bi-carrier transistor, which reduces the collector-base capacitance and improves the large-signal radio frequency (RF) performance. RF transistors and power amplifiers have better gain, maximum oscillation frequency (fmax) and bandwidth.
本發明之又一目的,係在提供一種異質接面雙載子電晶體,其改善熱性能,亦由於熱能減少有更好可靠性與大訊號射頻效能。Another object of the present invention is to provide a heterojunction bi-carrier transistor, which improves thermal performance, and also has better reliability and large-signal radio frequency performance due to reduced thermal energy.
本發明之另一目的,係在提供一種異質接面雙載子電晶體,其功率放大器尺寸減少,減少分立式射頻設備和積體電路製造成本。Another object of the present invention is to provide a heterojunction bi-carrier transistor with reduced power amplifier size and reduced manufacturing cost of discrete radio frequency equipment and integrated circuits.
為達上述目的,本發明採用之技術手段包含: 一基板,其具備一第一表面及相反側之第二表面;一子射極層,位在該基板之第一表面上;一複合射極層,位在該子射極層上,使該子射極層及該複合射極層形成一射極層;一基極層,位在該複合射極層上;一集極突出邊緣層,位在該基極層上;一集極層,位在該集極突出邊緣層上;以及一橫向氧化區,設在該複合射極層之一部分形成一電流阻擋區,且該複合射極層之第一區域包圍該複合射極層之第二區域,使該複合射極層之第二區域形成一電流孔徑。To achieve the above objective, the technical means adopted in the present invention include: a substrate with a first surface and a second surface on the opposite side; a sub-emitter layer located on the first surface of the substrate; and a composite emitter The layer is located on the sub-emitter layer, so that the sub-emitter layer and the composite emitter layer form an emitter layer; a base layer is located on the composite emitter layer; a collector protrudes from the edge layer, Is located on the base layer; a collector layer is located on the protruding edge layer of the collector; and a lateral oxidation zone is provided on a part of the composite emitter layer to form a current blocking area, and the composite emitter layer The first area surrounds the second area of the composite emitter layer, so that the second area of the composite emitter layer forms a current aperture.
依據前揭特徵,該複合射極層由一第一射極層與一第二射極層所組成,且該第二射極層位在該第一射極層上。According to the aforementioned features, the composite emitter layer is composed of a first emitter layer and a second emitter layer, and the second emitter layer is located on the first emitter layer.
依據前揭特徵,該第一射極層包括一第一過渡層、一中間層及一第二過渡層,而該第一過渡層之材料為N -GaAs、該第二過渡層之材料為N -GaAs及該中間層之材料為高含量鋁包括Al xGa 1-xAs(0.80≦x≦0.98),且該橫向氧化區設在該中間層及該橫向氧化區為N -Al xGa 1-xAs。 According to the features disclosed above, the first emitter layer includes a first transition layer, an intermediate layer, and a second transition layer, and the material of the first transition layer is N - GaAs, and the material of the second transition layer is N - and material of GaAs of the intermediate layer is aluminum high content comprises Al x Ga 1-x as ( 0.80 ≦ x ≦ 0.98), and the lateral oxidation regions provided in the intermediate layer and the lateral oxidation zone of N - Al x Ga 1 -x As.
依據前揭特徵,該第一過渡層與該中間層之間設有一第一選擇層、該中間層與該第二過渡層之間設有一第二選擇層,而該第一選擇層之材料為N -AlGaAs、該第二選擇層之材料為N -AlGaAs。 According to the features disclosed above, a first selection layer is provided between the first transition layer and the intermediate layer, a second selection layer is provided between the intermediate layer and the second transition layer, and the material of the first selection layer is N - AlGaAs, the material of the second selection layer is N - AlGaAs.
依據前揭特徵,該第一過渡層之厚度為20~100nm、摻雜物種為Si及該Si摻雜濃度從4e18降至3e17cm -3;該橫向氧化區之厚度為0.4~2.5nm、摻雜物種為Si及該Si摻雜濃度為0~6e18cm -3;該第二過渡層之厚度為20~100nm、摻雜物種為Si及該Si摻雜濃度為5e16~5e17cm -3。 According to the aforementioned features, the thickness of the first transition layer is 20-100nm, the doping species is Si, and the Si doping concentration is reduced from 4e18 to 3e17cm -3 ; the thickness of the lateral oxide region is 0.4-2.5nm, doped The species is Si and the Si doping concentration is 0-6e18 cm -3 ; the thickness of the second transition layer is 20-100 nm, the doping species is Si, and the Si doping concentration is 5e16-5e17 cm -3 .
依據前揭特徵,該集極突出邊緣層之N -InGaP材料為有序化且帶隙大約在18.5eV。 According to the aforementioned features, the N - InGaP material of the protruding edge layer of the collector is ordered and has a band gap of approximately 18.5 eV.
依據前揭特徵,該第一過渡層之厚度為50nm、摻雜物種為Si及該Si摻雜濃度從4e18降至3e17cm -3;該橫向氧化區之厚度為1nm、摻雜物種為Si及該Si摻雜濃度為4e18cm -3;該第二過渡層之厚度為50nm、摻雜物種為Si及該Si摻雜濃度為3e17cm -3。 According to the features disclosed above, the thickness of the first transition layer is 50nm, the doping species is Si and the Si doping concentration is reduced from 4e18 to 3e17cm -3 ; the thickness of the lateral oxide region is 1nm, the doping species is Si and the The Si doping concentration is 4e18cm -3 ; the thickness of the second transition layer is 50nm, the doping species is Si, and the Si doping concentration is 3e17cm -3 .
依據前揭特徵,更包括一基極金屬,該基極金屬位在該集極突出邊緣層上,且該基極金屬向下擴散於該集極突出邊緣層進入該基極層。According to the aforementioned features, it further includes a base metal, the base metal is located on the collector protruding edge layer, and the base metal diffuses downward in the collector protruding edge layer and enters the base layer.
依據前揭特徵,更包括一基極金屬,該基極金屬蝕刻穿越該集極突出邊緣層至該基極層,且該基極金屬沉澱進入蝕刻區並連接該基極層。According to the aforementioned features, it further includes a base metal. The base metal is etched through the collector protruding edge layer to the base layer, and the base metal is deposited into the etching area and connected to the base layer.
依據前揭特徵,該基極層之材料為P +GaAs、P +InGaAs或其組合。 According to the aforementioned features, the material of the base layer is P + GaAs, P + InGaAs, or a combination thereof.
依據前揭特徵,更包括一集極蓋層,該集極蓋層,位在該集極層上。According to the aforementioned features, a collector cap layer is further included, and the collector cap layer is located on the collector layer.
依據前揭特徵,該基板之材料為半絕緣GaAs;該子射極層之材料為N +GaAs;該第二射極層之材料為N -InGaP;該基極層之材料為P +GaAs;該集極突出邊緣層之材料為N -InGaP;該集極層之材料為N -GaAs;該集極蓋層之材料為N +GaAs或 N +InGaAs。 According to the features disclosed above, the material of the substrate is semi-insulating GaAs; the material of the sub-emitter layer is N + GaAs; the material of the second emitter layer is N - InGaP; the material of the base layer is P + GaAs; The material of the collector protruding edge layer is N - InGaP; the material of the collector layer is N - GaAs; the material of the collector cap layer is N + GaAs or N + InGaAs.
依據前揭特徵,該子射極層之厚度為500~1000nm,摻雜物種為Si及該Si摻雜濃度為1e18~2e19cm -3;該第二射極層之厚度為30~60nm,摻雜物種為Si及該Si摻雜濃度為5e16~5e17cm -3;該基極層之厚度為40~120nm,摻雜物種為C及該C摻雜濃度為1e19~1e20cm -3;該集極突出邊緣層之厚度為0.4~100nm,摻雜物種為Si及該Si摻雜濃度為5e16~5e17cm -3;該集極層由一第一集極層與一第二集極層所組成,該第一集極層之厚度為300~1200nm,摻雜物種為Si及該Si摻雜濃度為1e17~2e14cm -3,該第二集極層之厚度為0~800nm,摻雜物種為Si及該Si摻雜濃度為1e16~1e17cm -3;一集極過渡層,該集極過渡層延伸至該第二集極層,該集極過渡層之厚度為20~100nm,摻雜物種為Si及該Si摻雜濃度大於1e19cm -3,該集極蓋層延伸至該集極過渡層,該集極蓋層之厚度為20~100nm,摻雜物種為Si及該Si摻雜濃度大於1e19cm -3。 According to the features disclosed above, the thickness of the sub-emitter layer is 500~1000nm, the doping species is Si and the Si doping concentration is 1e18~2e19cm -3 ; the thickness of the second emitter layer is 30~60nm, doped The species is Si and the Si doping concentration is 5e16~5e17cm -3 ; the thickness of the base layer is 40~120nm, the doping species is C and the C doping concentration is 1e19~1e20cm -3 ; the collector protruding edge The thickness of the layer is 0.4~100nm, the doping species is Si and the Si doping concentration is 5e16~5e17cm -3 ; the collector layer is composed of a first collector layer and a second collector layer, the first The thickness of the collector layer is 300~1200nm, the doping species is Si and the Si doping concentration is 1e17~2e14cm -3 , the thickness of the second collector layer is 0~800nm, the doping species is Si and the Si doping The impurity concentration is 1e16~1e17cm -3 ; a collector transition layer, the collector transition layer extends to the second collector layer, the thickness of the collector transition layer is 20-100nm, the doping species is Si and the Si doped If the impurity concentration is greater than 1e19cm -3 , the collector cap layer extends to the collector transition layer, the collector cap layer has a thickness of 20-100 nm, the doping species is Si and the Si doping concentration is greater than 1e19 cm -3 .
依據前揭特徵,該子射極層之厚度為800nm,摻雜物種為Si及該Si摻雜濃度為4e18cm -3;該第二射極層之厚度為50nm,摻雜物種為Si及該Si摻雜濃度為3e17cm -3;該基極層之厚度為80nm,摻雜物種為C及該C摻雜濃度為3e19cm -3;該集極突出邊緣層之厚度為5nm,摻雜物種為Si及該Si摻雜濃度為3e17cm -3;該集極層由一第一集極層與一第二集極層所組成,該第一集極層之厚度為900nm,摻雜物種為Si及該Si摻雜濃度為2e15cm -3,該第二集極層之厚度為300nm,摻雜物種為Si及該Si摻雜濃度為5e16cm -3;一集極過渡層,該集極過渡層延伸至該第二集極層,該集極過渡層之厚度為50nm,摻雜物種為Si及該Si摻雜濃度大於1e19cm -3,該集極蓋層延伸至該集極過渡層,該集極蓋層之厚度為50nm,摻雜物種為Si及該Si摻雜濃度大於1e19cm -3。 According to the features disclosed above, the thickness of the sub-emitter layer is 800nm, the doping species is Si and the Si doping concentration is 4e18cm -3 ; the thickness of the second emitter layer is 50nm, the doping species are Si and the Si The doping concentration is 3e17cm -3 ; the thickness of the base layer is 80nm, the doping species is C and the C doping concentration is 3e19cm -3 ; the thickness of the collector protruding edge layer is 5nm, and the doping species is Si and The Si doping concentration is 3e17cm -3 ; the collector layer is composed of a first collector layer and a second collector layer, the thickness of the first collector layer is 900 nm, and the doping species is Si and the Si The doping concentration is 2e15cm -3 , the thickness of the second collector layer is 300nm, the doping species is Si and the Si doping concentration is 5e16cm -3 ; a collector transition layer, the collector transition layer extends to the first Two collector layers, the thickness of the collector transition layer is 50nm, the doping species is Si and the Si doping concentration is greater than 1e19cm -3 , the collector cap layer extends to the collector transition layer, the collector cap layer The thickness is 50nm, the doping species is Si and the Si doping concentration is greater than 1e19cm -3 .
依據前揭特徵,在該基極層與該第二射極層之接合處,而該第二射極層之N -InGaP材料為無序化或有序化。 According to the aforementioned features, at the junction of the base layer and the second emitter layer, the N - InGaP material of the second emitter layer is disordered or ordered.
依據前揭特徵,更包括一隔離植入區,設在該子射極層與該基板。According to the features disclosed above, it further includes an isolation implantation area, which is arranged on the sub-emitter layer and the substrate.
依據前揭特徵,該隔離植入區之材料為硼、氬、氫、氦、鋁或其組合。According to the aforementioned features, the material of the isolation implantation region is boron, argon, hydrogen, helium, aluminum or a combination thereof.
依據前揭特徵,該集極蓋層及該集極層形成一第一高台,與該集極突出邊緣層、該基極層及該複合射極層形成一第二高台,而該第一高台小於該第二高台;一射極金屬,位在該子射極層上;一基極金屬,位在該集極突出邊緣層上,且該基極金屬向下擴散於該集極突出邊緣層進入該基極層;一集極金屬,位在該集極蓋層上;藉此,電子流從該射極金屬至該集極金屬,而以該電流阻擋區阻擋電流,只允許電流通過該電流孔徑。According to the aforementioned features, the collector cap layer and the collector layer form a first plateau, and the collector protruding edge layer, the base layer and the composite emitter layer form a second plateau, and the first plateau Smaller than the second plateau; an emitter metal located on the sub-emitter layer; a base metal located on the collector protruding edge layer, and the base metal diffuses downward on the collector protruding edge layer Enter the base layer; a collector metal is located on the collector cap layer; thereby, electrons flow from the emitter metal to the collector metal, and the current blocking region blocks the current, and only allows current to pass through the Current aperture.
依據前揭特徵,更包括一背面金屬,位在該基板之第二表面上,且在該基板與該子射極層設有一背面導通孔,使該背面金屬藉由該背面導通孔可電性連接至該射極金屬。According to the aforementioned features, it further includes a back metal located on the second surface of the substrate, and a back via hole is provided between the substrate and the sub-emitter layer, so that the back metal can be electrically connected through the back via hole Connect to the emitter metal.
依據前揭特徵,更包括一選擇/非必要的(optional)下凸塊金屬,其直接連接至該集極金屬;藉此,將從異質接面雙載子電晶體發出的熱流通過該下凸塊金屬傳導至一凸塊,該凸塊可以是焊接凸塊,覆晶凸塊或其他凸塊。According to the aforementioned features, it further includes an optional/optional under bump metal, which is directly connected to the collector metal; thereby, the heat flow from the heterojunction bi-carrier transistor passes through the under bump The bulk metal is conducted to a bump, which may be a solder bump, a flip chip bump or other bumps.
藉助上揭技術手段, 本發明改良先前技術之功效,如下所述: 一、具有GaAs垂直共振腔面射型雷射(Vertical Cavity Surface Emitting Laser,VCSEL)技術能夠精準控制該橫向氧化區的距離(distance)、均勻性(uniformity)及重複性(repeatability),並在該高含量鋁包括Al xGa 1-xAs(0.80≦x≦0.98)的橫向氧化區已經有極大改善。橫向氧化技術能夠精確該電流孔徑控制,以防止電子被注入至該基極金屬之區域外部之第一高台,避免電子被重組、困住、蒐集至該基極金屬而導致電晶體性能下降,並透過減少基極至集極之電容產生更好的增益、最大振盪頻率、頻寬、功率及效能。 二、製作該基極金屬向下擴散,並通過該集極突出邊緣層進入該基極層,形成良好的歐姆接觸。該基極金屬接觸集極突出邊緣層形成蕭特基接觸,以消耗該集極突出邊緣層電量,且防止其表面電流以避免電晶體性能下降。 三、以該集極突出邊緣層保護該基極層,防止電流孔徑區域外的該基極層之P +GaAs材料裸露,避免電子在該基極層之表面重新組合,亦改善電晶體效能,又需要該集極突出邊緣層之N -InGaP材料為有序化,以防止任何電子注入,而從該基極層進入該集極層被阻止,按順序將InGaP與GaAs晶格匹配,或若使用該集極突出邊緣層之N -InGaP材料為無序化,則傳導帶從該基極層之P +GaAs材料過渡至該集極突出邊緣層之N -InGaP材料有一個突波(spike),亦可防止電子注入且以避免電晶體性能下降。被重組、困住、蒐集在電流孔徑外的電子被阻擋在突波和有序化的N -InGaP和P +GaAs之間,電子將不會被蒐集至集極金屬,因此,可防止電晶體性能下降。 四、該集極突出邊緣層為一蝕刻停止層,所以該集極層與該集極蓋層在該集極突出邊緣層可被蝕刻,因此,該集極突出邊緣層之N -InGaP材料相對於該集極層N -GaAs材料與該集極蓋層之N +InGaAs材料的高蝕刻選擇性。 With the aid of the technical means, the present invention improves the effects of the prior art as follows: 1. The GaAs Vertical Cavity Surface Emitting Laser (VCSEL) technology can precisely control the distance of the lateral oxidation zone ( distance), uniformity (uniformity) and repeatability (repeatability), and the high content of aluminum including Al x Ga 1-x As (0.80≦x≦0.98) in the lateral oxide zone has been greatly improved. Lateral oxidation technology can accurately control the current aperture to prevent electrons from being injected into the first plateau outside the region of the base metal, avoid electrons being recombined, trapped, and collected to the base metal, which will cause the performance of the transistor to decrease, and By reducing the base-to-collector capacitance, it produces better gain, maximum oscillation frequency, bandwidth, power and performance. 2. Making the base metal diffuse downwards and enter the base layer through the collector protruding edge layer to form a good ohmic contact. The base metal contacts the collector protruding edge layer to form a Schottky contact, so as to consume the power of the collector protruding edge layer and prevent its surface current to avoid degradation of the transistor performance. 3. Protect the base layer with the protruding edge layer of the collector, prevent the P + GaAs material of the base layer outside the current aperture area from being exposed, avoid recombination of electrons on the surface of the base layer, and improve the performance of the transistor. It is also necessary for the N - InGaP material of the protruding edge layer of the collector to be ordered to prevent any electron injection, and entry from the base layer to the collector layer is prevented, and the InGaP and GaAs lattices are matched in order, or if When the N- InGaP material of the collector protruding edge layer is disordered, there is a spike in the conduction band transition from the P + GaAs material of the base layer to the N- InGaP material of the collector protruding edge layer It can also prevent electron injection and avoid degradation of transistor performance. The electrons that are reorganized, trapped, and collected outside the current aperture are blocked between the surge and the ordered N - InGaP and P + GaAs. The electrons will not be collected to the collector metal. Therefore, the transistor can be prevented Performance drops. 4. The collector protruding edge layer is an etch stop layer, so the collector layer and the collector cap layer can be etched on the collector protruding edge layer. Therefore, the N - InGaP material of the collector protruding edge layer is opposite The N - GaAs material in the collector layer and the N + InGaAs material in the collector cap layer have high etching selectivity.
首先,請參閱圖1~圖14所示,本發明一種異質接面雙載子電晶體10,包含:一基板11,其具備一第一表面111及相反側之第二表面112,在本實施例中,該基板11之材料為半絕緣GaAs,且該基板11之厚度參閱國際半導體設備與材料產業協會(Semiconductor Equipment and Materials International,SEMI)標準,而單位為nm。First, please refer to FIGS. 1-14. A
一子射極層12,位在該基板11之第一表面111上,在本實施例中,該子射極層12之材料為N
+GaAs,且該子射極層12之厚度為500~1000nm,摻雜物種(Doping Concentration)為Si及該Si摻雜濃度為1e18~2e19cm
-3,或該子射極層12之厚度為800nm,摻雜物種為Si及該Si摻雜濃度為4e18cm
-3,但不限定於此。
A
一複合射極層F,位在該子射極層12上,使該子射極層12及該複合射極層F形成一射極層E,在本實施例中,該複合射極層F由一第一射極層13與一第二射極層14所組成,且該第二射極層14位在該第一射極層13上,該第二射極層14之材料為無序化N
-InGaP,該In組成為49%
,且該第二射極層14之厚度為30~60nm,摻雜物種為Si及該Si摻雜濃度為5e16~5e17cm
-3或該第二射極層14之厚度為50nm,摻雜物種為Si及該Si摻雜濃度為3e17cm
-3,但不限定於此。
A composite emitter layer F is located on the
一基極層15,位在該複合射極層F上,在本實施例中,該基極層15之材料為P
+GaAs、P
+InGaAs或其組合,且該基極層15之厚度為40~120nm,摻雜物種為C及該C摻雜濃度為1e19~1e20cm
-3,或該基極層15之厚度為80nm,摻雜物種為C及該C摻雜濃度為3e19cm
-3,但不限定於此。
A
一集極突出邊緣(collector ledge)層16,位在該基極層15上,在本實施例中,該集極突出邊緣層16之材料為N
-InGaP,該N
-InGaP材料為有序化與該In組成為49%,且該集極突出邊緣層16之厚度為0.4~100nm,摻雜物種為Si及該Si摻雜濃度為5e16~5e17cm
-3,或該集極突出邊緣層16之厚度為5nm,摻雜物種為Si及該Si摻雜濃度為3e17cm
-3,但不限定於此。
A
一集極層17,位在該集極突出邊緣層16上,在本實施例中,該集極層17之材料為N
-GaAs,且該集極層17具有優化基極-集電極電容,基極-集電極崩潰電壓,柯克效應和電晶體的堅固性之功用,但不限定於此。
A
一集極蓋層18,位在該集極層17上,在本實施例中,該集極蓋層18之材料為N
+GaAs或 N
+InGaAs,該In組成大於或等於50%,且該集極蓋層18對集極金屬具有形成低電阻接觸之功用,但不限定於此。
A
如圖1所示,其該基板11、該子射極層12、該複合射極層F、該基極層15、該集極突出邊緣層16、該集極層17及該集極蓋層18形成一半導體結構S,該半導體結構S表面塗布一第一SiN絕緣層D
1。
As shown in FIG. 1, the
如圖2所示,其蝕刻該集極蓋層18及該集極層17進入該第一SiN絕緣層D
1,並停止於該集極突出邊緣層16,使該集極蓋層18及該集極層17形成一第一高台M
1。
2, which etches the
如圖3所示,其蝕刻該集極突出邊緣層16、該基極層15向下至該複合射極層F,使該集極突出邊緣層16、該基極層15及該複合射極層F形成一第二高台M
2,而該第一高台M
1小於該第二高台M
2。
As shown in FIG. 3, it etches the collector protruding
如圖4所示,一橫向氧化(Lateral Oxidation)區19,設在該複合射極層F之第一區域R
1形成一電流阻擋區B,且該複合射極層F之第一區域R
1包圍該複合射極層F之第二區域R
2,使該複合射極層F之第二區域R
2形成一電流孔徑L,因此,藉由高含量鋁包括Al
xGa
1-xAs(0.80≦x≦0.98)的橫向氧化(Lateral Oxidation)形成該電流孔徑L。
As shown in FIG. 4, a lateral oxidation (Lateral Oxidation)
如圖5所示,其沉積一第二SiN絕緣層D
2保護該半導體結構S與該橫向氧化區19,並在該第二SiN絕緣層D
2蝕刻一第一導通孔T
1。
5, a second deposited SiN protective insulating layer D 2 of the semiconductor structure S and the
如圖6所示,其沉積一射極金屬101於該第一導通孔T
1內,使該射極金屬101位在該子射極層12上,並製作該射極金屬101為合金材料至該子射極層12為N
+GaAs材料,形成良好的歐姆接觸。
Shown in Figure 6, which is deposited a
如圖7所示,其一隔離植入區104注入離子進入該第二SiN絕緣層D
2和該子射極層12。該隔離植入區104延伸進入該子射極層12至該基板11,該隔離植入(Isolation Implant)區104防止相鄰裝置之間的電流流動,在本實施例中,該隔離植入區104之材料為硼(Boron)、氬(Argon)、氫(Hydrogen)、氦(Helium)、鋁(Aluminum)或其組合,但不限於此。
As shown in FIG. 7, an
如圖8所示,其在該第二SiN絕緣層D
2蝕刻一第二導通孔T
2,並沉積一基極金屬102至該第二導通孔T
2內,使該基極金屬102位在該集極突出邊緣層16上,並製作該基極金屬102為合金材料向下擴散於該集極突出邊緣層16為N
-InGap材料進入該基極層15為P
+GaAs材料,形成良好的歐姆接觸,該基極金屬102與該集極突出邊緣層16將形成蕭特基接觸,或該基極金屬102蝕刻穿越該集極突出邊緣層16至該基極層15,且該基極金屬102沉澱進入蝕刻區並連接該基極層15。
As shown in FIG. 8, it etches a second via hole T 2 in the second SiN insulating layer D 2 and deposits a
如圖9所示,其在該第二SiN絕緣層D
2蝕刻一第三導通孔T
3,並沉積一集極金屬103至該第三導通孔T
3內,使該集極金屬103位在該集極蓋層18上,形成良好的歐姆接觸,該集極蓋層18的製作材料為N
+InGaAs。此外,因該N
+InGaAs材料為高度摻雜,也可為非合金接觸,但不限於此。
As shown in FIG. 9, it etches a third via hole T 3 in the second SiN insulating layer D 2 and deposits a
如圖9所示,經由圖1~圖9之步驟,亦完成一異質接面雙載子電晶體10,又圖10所示,其電子流e從該射極金屬101至該集極金屬103,而以該電流阻擋區B阻擋電流,只允許電流通過該電流孔徑L,但其步驟不以此為限。As shown in FIG. 9, after the steps of FIGS. 1-9, a
如圖11A所示,該第一射極層13包括一第一過渡層131、一中間層132及一第二過渡層133,且該第二過渡層133具有鎮流電阻之功用,以改善電晶體射頻及熱穩定度,而該第一過渡層131之材料為N
-GaAs、該第二過渡層133之材料為N
-GaAs及該中間層132之材料為高含量鋁包括Al
xGa
1-xAs,且該橫向氧化區19設在該中間層132及該橫向氧化區19之材料為N
-AlGaAs,該Al含量x在0.80~0.98,在本實施例中,該第一過渡層131之厚度為20~100nm、摻雜物種為Si及該Si摻雜濃度從4e18降至3e17cm
-3;該橫向氧化區19之厚度為0.4~2.5nm、摻雜物種為Si及該Si摻雜濃度為0~6e18cm
-3;該第二過渡層133之厚度為20~100nm、摻雜物種為Si及該Si摻雜濃度為5e16~5e17cm
-3,或該第一過渡層131之厚度為50nm、摻雜物種為Si及該Si摻雜濃度從4e18降至3e17cm
-3;該橫向氧化區19之厚度為1nm、摻雜物種為Si及該Si摻雜濃度為4e18cm
-3;該第二過渡層133之厚度為50nm、摻雜物種為Si及該Si摻雜濃度為3e17cm
-3,但不限定於此。
As shown in FIG. 11A, the
承上,該第一過渡層131與該中間層132之間設有一第一選擇層134、該中間層132與該第二過渡層133之間設有一第二選擇層135。選層提供了從N
-GaAs過渡層到高鋁含量中間層的更平順地的傳導帶過度。而該第一選擇層134之材料為N
-AlGaAs、該第二選擇層135之材料為N
-AlGaAs,但不限定於此。
In addition, a
進一步說明,該中間層132之材料為高含量鋁包括AlGaAs,亦為高度電阻,所以該中間層132需較薄而電子可隧穿。該第二射極層14被使用至注入電子進入該基極層15,並在該基極層15與該第二射極層14之間形成異質,但不限定於此。To further illustrate, the material of the
如圖11B所示,該集極層17由一第一集極層171與一第二集極層172所組成,該第一集極層171之厚度為300~1200nm,摻雜物種為Si及該Si摻雜濃度為1e17~2e14cm
-3,該第二集極層172之厚度為0~800nm,摻雜物種為Si及該Si摻雜濃度為1e16~1e17cm
-3;該集極蓋層18厚度為20~100nm,摻雜物種為Si及該Si摻雜濃度大於1e19cm
-3;一集極過渡層181,該集極過渡層181延伸至該第二集極層172,該集極過渡層181之厚度為20~100nm,摻雜物種為Si及該Si摻雜濃度大於1e19cm
-3,或該集極層17由一第一集極層171與一第二集極層172所組成,該第一集極層171之厚度為900nm,摻雜物種為Si及該Si摻雜濃度為2e15cm
-3,該第二集極層172之厚度為300nm,摻雜物種為Si及該Si摻雜濃度為5e16cm
-3;該集極蓋層18延伸一集極過渡層181,該集極過渡層181延伸至該第二集極層172,該集極過渡層181之厚度為50nm,摻雜物種為Si及該Si摻雜濃度大於1e19cm
-3,該集極過渡層181材料為N
+InGaAs,該In組成為0.50,但不限定於此。該集極蓋層18材料為N
+InGaAs,該In組成為0.50~0.65,該集極蓋層18之厚度為50nm,摻雜物種為Si及該Si摻雜濃度大於1e19cm
-3。
As shown in FIG. 11B, the
如圖12所示,又一實施例中,一背面金屬(Back-side Metal)20,位在該基板11之第二表面112上,且在該基板11與該子射極層12設有一背面導通孔(Back-side Vias)21,使該背面金屬20藉由該背面導通孔21可電性連接至該射極金屬101。如圖13~圖14所示,另一實施例中,其以一介電鈍化層P塗布在該異質接面雙載子電晶體10上,並在該介電鈍化層P設有一導通孔T,並於該導通孔T沉積一下凸塊金屬(under bump metal)30,其直接連接至該集極金屬103;藉此,將從該異質接面雙載子電晶體10發出的熱流通過該下凸塊金屬30傳導至一凸塊40,在本實施例中,該凸塊40沉積在該介電鈍化層P與該下凸塊金屬30上,而該凸塊40可當作熱凸塊,以將熱能更有效拉出而改善性能與可靠性,或該凸塊40可當作覆晶凸塊,以組設在電路板上,或與其他模組共同組設在模塊內的電路板上,或者堆疊在另一個裸晶的頂部。因此,額外該下凸塊金屬30可配合覆晶凸塊、焊接凸塊或熱凸塊,但不限定於此。As shown in FIG. 12, in another embodiment, a back-side metal (Back-side Metal) 20 is located on the
此外,在該基極層15與該第二射極層14之接合處,而該第二射極層14之N
-InGaP材料為無序化或有序化且其帶隙在1.85至1.90eV之間;在該基極層15與該集極突出邊緣層16之接合處,而該集極突出邊緣層16之N
-InGaP材料為有序化且其帶隙大約在1.85eV,但不限於此。
In addition, at the junction of the
基於如此構成,集極位在上方的設計,而由於基極-集極區域較小,使基極-集極電容減少,且氧化射極減少電子注入電流孔徑之外,而提高電晶體之性能,也減少基極-射極區域與基極-射極電容,而基極在該橫向氧化區19也被保護。該集極突出邊緣層16覆蓋該基極層15,以保護裸露該基極層15,而避免從該基極層15之表面捕捉(trapping)與電子重組之問題,進而改善可靠性。該基極金屬102向下擴散通過該集極突出邊緣層16進入接觸該基極層15,因此,該集極突出邊緣層16可保護該基極層15。該集極突出邊緣層16之N
-InGaP材料需生長有序化,以便於沒有傳導帶不連續性,亦可阻止電子從基極至集極。
Based on this structure, the collector is located above the design, and because the base-collector area is small, the base-collector capacitance is reduced, and the oxide emitter reduces the electron injection current outside the aperture, thereby improving the performance of the transistor , It also reduces the base-emitter area and base-emitter capacitance, and the base is also protected in the
綜上所述,本發明所揭示之技術手段,確具「新穎性」、「進步性」及「可供產業利用」等發明專利要件,祈請 鈞局惠賜專利,以勵創作,無任德感。In summary, the technical means disclosed in the present invention do have the requirements of invention patents such as "novelty", "progressiveness" and "available for industrial use". I hope that the Jun Bureau will grant patents to encourage creation without any responsibility. Sense of virtue.
惟,上述所揭露之圖式、說明,僅為本發明之較佳實施例,大凡熟悉此項技藝人士,依本案精神範疇所作之修飾或等效變化,仍應包括在本案申請專利範圍內。However, the drawings and descriptions disclosed above are only the preferred embodiments of the present invention. Anyone familiar with the art should make modifications or equivalent changes based on the spirit of the case and should still be included in the scope of the patent application in this case.
10:異質接面雙載子電晶體 101:射極金屬 102:基極金屬 103:集極金屬 104:隔離植入區 11:基板 111:第一表面 112:第二表面 12:子射極層 13:第一射極層 131:第一過渡層 132:中間層 133:第二過渡層 134:第一選擇層 135:第二選擇層 14:第二射極層 15:基極層 16:集極突出邊緣層 17:集極層 171:第一集極層 172:第二集極層 18:集極蓋層 181:集極過渡層 19:橫向氧化區 20:背面金屬 21:背面導通孔 30:下凸塊金屬 40:凸塊 D 1:第一絕緣層 D 2:第二絕緣層 P:介電鈍化層 R 1:第一區域 R 2:第二區域 B:電流阻擋區 E:射極層 F:複合射極層 M 1:第一高台 M 2:第二高台 L:電流孔徑 T:導通孔 T 1:第一導通孔 T 2:第二導通孔 T 3:第三導通孔 e:電子流10: Heterojunction bi-carrier transistor 101: Emitter metal 102: Base metal 103: Collector metal 104: Isolated implant area 11: Substrate 111: First surface 112: Second surface 12: Sub-emitter layer 13: First emitter layer 131: First transition layer 132: Intermediate layer 133: Second transition layer 134: First selection layer 135: Second selection layer 14: Second emitter layer 15: Base layer 16: Set Extremely protruding edge layer 17: collector layer 171: first collector layer 172: second collector layer 18: collector cap layer 181: collector transition layer 19: lateral oxide region 20: back metal 21: back via 30 : under bump metal 40: bump D 1: a first insulating layer D 2: the second insulating layer P: dielectric passivation layer R 1: a first region R 2: the second region B: the current blocking region E: emitter Layer F: composite emitter layer M 1 : first high stage M 2 : second high stage L: current aperture T: via hole T 1 : first via hole T 2 : second via hole T 3 : third via hole e: electron flow
圖1係本發明以第一SiN絕緣層保護半導體結構表面之示意圖。 圖2係本發明蝕刻第一高台之示意圖。 圖3係本發明蝕刻第二高台之示意圖。 圖4係本發明製作橫向氧化區之示意圖。 圖5係本發明製作第二SiN絕緣層保護與蝕刻第一導通孔之示意圖。 圖6係本發明製作射極金屬之示意圖。 圖7係本發明製作隔離植入區之示意圖。 圖8係本發明製作基極金屬之示意圖。 圖9係本發明製作集極金屬且完成異質接面雙載子電晶體之示意圖。 圖10係本發明電子流從射極金屬至集極金屬之示意圖。 圖11A係本發明第一過渡層至第二過渡層之示意圖。 圖11B係本發明第一集極層至集極蓋層之示意圖。 圖12係本發明背面金屬與背面導通孔之示意圖。 圖13係本發明介電鈍化層塗布於異質接面雙載子電晶體上之示意圖。 圖14係本發明異質接面雙載子電晶體發出的熱流通過下凸塊金屬傳導至凸塊之示意圖。 FIG. 1 is a schematic diagram of protecting the surface of a semiconductor structure with a first SiN insulating layer according to the present invention. Figure 2 is a schematic diagram of the etching of the first plateau of the present invention. Fig. 3 is a schematic diagram of etching the second plateau of the present invention. Fig. 4 is a schematic diagram of the lateral oxidation zone produced by the present invention. FIG. 5 is a schematic diagram of the present invention for making a second SiN insulating layer to protect and etching the first via hole. Figure 6 is a schematic diagram of the present invention for producing emitter metal. Fig. 7 is a schematic diagram of the isolation implantation area made by the present invention. Fig. 8 is a schematic diagram of the production of base metal according to the present invention. FIG. 9 is a schematic diagram of the present invention producing a collector metal and completing a heterojunction bi-carrier transistor. Fig. 10 is a schematic diagram of the electron flow from the emitter metal to the collector metal of the present invention. FIG. 11A is a schematic diagram of the first transition layer to the second transition layer of the present invention. FIG. 11B is a schematic diagram of the first collector layer to the collector cap layer of the present invention. Fig. 12 is a schematic diagram of the backside metal and backside via holes of the present invention. 13 is a schematic diagram of the dielectric passivation layer of the present invention coated on the heterojunction bi-carrier transistor. 14 is a schematic diagram of the heat flow emitted by the heterojunction bi-carrier transistor of the present invention is conducted to the bump through the lower bump metal.
10:異質接面雙載子電晶體 10: Heterojunction bi-carrier transistor
101:射極金屬 101: Emitter Metal
102:基極金屬 102: base metal
103:集極金屬 103: Collector Metal
104:隔離植入區 104: Isolate the implantation area
11:基板 11: substrate
111:第一表面 111: first surface
112:第二表面 112: second surface
12:子射極層 12: Sub-emitter layer
13:第一射極層 13: The first emitter layer
14:第二射極層 14: Second emitter layer
15:基極層 15: Base layer
16:集極突出邊緣層 16: Set extremely protruding edge layer
17:集極層 17: Collector layer
18:集極蓋層 18: Collector cap layer
19:橫向氧化區 19: Lateral oxidation zone
D2:第二絕緣層 D 2 : second insulating layer
R1:第一區域 R 1 : The first region
R2:第二區域 R 2 : second area
B:電流阻擋區 B: Current blocking area
F:複合射極層 F: Composite emitter layer
M1:第一高台 M 1 : The first high platform
M2:第二高台 M 2 : The second highest platform
L:電流孔徑 L: current aperture
T1:第一導通孔 T 1 : first via
T2:第二導通孔 T 2 : second via
T3:第三導通孔 T 3 : third via
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109136683A TWI747565B (en) | 2020-10-22 | 2020-10-22 | Heterojunction bipolar transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109136683A TWI747565B (en) | 2020-10-22 | 2020-10-22 | Heterojunction bipolar transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI747565B true TWI747565B (en) | 2021-11-21 |
TW202218160A TW202218160A (en) | 2022-05-01 |
Family
ID=79907703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109136683A TWI747565B (en) | 2020-10-22 | 2020-10-22 | Heterojunction bipolar transistor |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI747565B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI276152B (en) * | 2005-08-09 | 2007-03-11 | Univ Nat Central | Collector-up heterojunction bipolar transistor and method of fabricating thereof |
US20110147799A1 (en) * | 2004-08-19 | 2011-06-23 | Microlink Devices, Inc. | High on-state breakdown heterojunction bipolar transistor |
US20200043913A1 (en) * | 2016-10-18 | 2020-02-06 | Chan Shin Wu | Structure integrating field-effect transistor with heterojunction bipolar transistor |
-
2020
- 2020-10-22 TW TW109136683A patent/TWI747565B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110147799A1 (en) * | 2004-08-19 | 2011-06-23 | Microlink Devices, Inc. | High on-state breakdown heterojunction bipolar transistor |
TWI276152B (en) * | 2005-08-09 | 2007-03-11 | Univ Nat Central | Collector-up heterojunction bipolar transistor and method of fabricating thereof |
US20200043913A1 (en) * | 2016-10-18 | 2020-02-06 | Chan Shin Wu | Structure integrating field-effect transistor with heterojunction bipolar transistor |
Also Published As
Publication number | Publication date |
---|---|
TW202218160A (en) | 2022-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10074588B2 (en) | Semiconductor devices with a thermally conductive layer and methods of their fabrication | |
US6541346B2 (en) | Method and apparatus for a self-aligned heterojunction bipolar transistor using dielectric assisted metal liftoff process | |
US5734193A (en) | Termal shunt stabilization of multiple part heterojunction bipolar transistors | |
US20070241427A1 (en) | Mesa-type bipolar transistor | |
JP4216634B2 (en) | Semiconductor device | |
JP2002252344A (en) | Semiconductor device and manufacturing method of the same | |
JP2000260784A (en) | Heterojunction bipolar transistor, semiconductor device using the same, and manufacture of the heterojunction bipolar transistor | |
TW201351508A (en) | pHEMT HBT integrated epitaxial structure and a fabrication method thereof | |
US7148557B2 (en) | Bipolar transistor and method for fabricating the same | |
JP4999246B2 (en) | Collector-up heterojunction bipolar transistor and manufacturing method thereof | |
TWI747565B (en) | Heterojunction bipolar transistor | |
US20030047753A1 (en) | Heterojunction bipolar transistor and production process therefor | |
EP0335720A2 (en) | Bipolar transistor device and method of manufacturing the same | |
Xie et al. | 100 nm T-gate GaN-on-Si HEMTs fabricated with CMOS-compatible metallization for microwave and mm-Wave applications | |
US11355586B2 (en) | Heterojuction bipolar transistor | |
CN115995487A (en) | Heterojunction bipolar transistor | |
JP2006114732A (en) | Semiconductor device, manufacturing method thereof, and semiconductor module | |
JP2006344884A (en) | Heterojunction semiconductor device and manufacturing method thereof | |
JP4494739B2 (en) | Bipolar transistor and manufacturing method thereof | |
CN209785942U (en) | Heterojunction bipolar transistor | |
CN218939689U (en) | HBT device | |
JP2003303827A (en) | Semiconductor device and its manufacturing method | |
JP3859149B2 (en) | Method for manufacturing heterojunction bipolar transistor | |
CN113745324B (en) | Radio frequency device with quasi-vertical structure and manufacturing method | |
JP2976664B2 (en) | Manufacturing method of bipolar transistor |