TWI747422B - Successive approximation register analog-to-digital converter - Google Patents

Successive approximation register analog-to-digital converter Download PDF

Info

Publication number
TWI747422B
TWI747422B TW109126614A TW109126614A TWI747422B TW I747422 B TWI747422 B TW I747422B TW 109126614 A TW109126614 A TW 109126614A TW 109126614 A TW109126614 A TW 109126614A TW I747422 B TWI747422 B TW I747422B
Authority
TW
Taiwan
Prior art keywords
digital
transistor
analog
voltage
input node
Prior art date
Application number
TW109126614A
Other languages
Chinese (zh)
Other versions
TW202207634A (en
Inventor
許哲維
張順志
Original Assignee
財團法人成大研究發展基金會
奇景光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人成大研究發展基金會, 奇景光電股份有限公司 filed Critical 財團法人成大研究發展基金會
Priority to TW109126614A priority Critical patent/TWI747422B/en
Application granted granted Critical
Publication of TWI747422B publication Critical patent/TWI747422B/en
Publication of TW202207634A publication Critical patent/TW202207634A/en

Links

Images

Abstract

A successive approximation register (SAR) analog-to-digital converter (ADC) includes a first digital-to-analog converter (DAC) coupled to receive a first input voltage to generate a first output voltage; a second DAC coupled to receive a second input voltage to generate a second output voltage; a comparator having a positive input node coupled to receive the first output voltage of the first DAC, and a negative input node coupled to receive the second output voltage of the second DAC; a SAR controller that controls switching of the first DAC and the second DAC according to a comparison output of the comparator, thereby generating an output code; a first calibration circuit coupled between the positive input node of the comparator and a ground voltage; and a second calibration circuit coupled between the negative input node of the comparator and the ground voltage.

Description

循續漸近式類比至數位轉換器Step-by-step analog to digital converter

本發明係有關一種循續漸近式(SAR)類比至數位轉換器(ADC),特別是關於一種可校正上板殘電壓(top-plate residue voltage)的循續漸近式類比至數位轉換器。 The present invention relates to a continuous asymptotic (SAR) analog-to-digital converter (ADC), in particular to a continuous asymptotic analog-to-digital converter capable of correcting top-plate residue voltage.

循續漸近式類比至數位轉換器(successive approximation register analog-to-digital converter,SAR ADC)為類比至數位轉換器(ADC)的一種,用以等效轉換類比信號為數位信號。循續漸近式類比至數位轉換器藉由比較與搜尋所有可能的量化階層以執行轉換,用以得到數位輸出。相較於一般的類比至數位轉換器,循續漸近式類比至數位轉換器使用較少的電路面積與功率消耗。 A successive approximation register analog-to-digital converter (SAR ADC) is a type of analog-to-digital converter (ADC) for equivalently converting analog signals into digital signals. The progressive analog-to-digital converter performs conversion by comparing and searching all possible quantization levels to obtain a digital output. Compared with the general analog-to-digital converter, the progressive analog-to-digital converter uses less circuit area and power consumption.

分時(time-interleaved)循續漸近式類比至數位轉換器使用多個次類比至數位轉換器(sub-ADC),以加速轉換。然而,這些次類比至數位轉換器之間的增益誤差(gain error)或偏移誤差(offset error),會使得循續漸近式類比至數位轉換器的整體線性度降低。 The time-interleaved progressive analog-to-digital converter uses multiple sub-analog-to-digital converters (sub-ADC) to speed up the conversion. However, the gain error or offset error between these sub-analog-to-digital converters will reduce the overall linearity of the progressive analog-to-digital converter.

因此亟需提出一種新穎的校正機制,用以降低循續漸近式類比至數位轉換器當中多個次類比至數位轉換器之間的增益誤差。 Therefore, there is an urgent need to propose a novel correction mechanism to reduce the gain error between multiple analog-to-digital converters in the cyclical analog-to-digital converter.

鑑於上述,本發明實施例的目的之一在於提出一種循續漸近式(SAR)類比至數位轉換器(ADC),可校正上板殘電壓,藉以增強類比至數位轉換器的增益與輸入範圍。 In view of the foregoing, one of the objectives of the embodiments of the present invention is to provide a SAR analog-to-digital converter (ADC), which can correct the residual voltage on the board, thereby enhancing the gain and input range of the analog-to-digital converter.

根據本發明實施例,循續漸近式類比至數位轉換器包含第一數位至類比轉換器、第二數位至類比轉換器、比較器、循續漸近式控制器、第一校正電路及第二校正電路。第一數位至類比轉換器於其輸入節點接收第一輸入電壓,於其輸出節點產生第一輸出電壓。第二數位至類比轉換器於其輸入節點接收第二輸入電壓,於其輸出節點產生第二輸出電壓。比較器的正輸入節點接收第一數位至類比轉換器的第一輸出電壓,其負輸入節點接收第二數位至類比轉換器的第二輸出電壓。循續漸近式控制器根據比較器的比較輸出以控制第一數位至類比轉換器與第二數位至類比轉換器的切換,以產生輸出碼。第一校正電路連接於比較器之正輸入節點與地電壓之間。第二校正電路連接於比較器之負輸入節點與地電壓之間。 According to an embodiment of the present invention, the cyclically asymptotic analog-to-digital converter includes a first digital-to-analog converter, a second digital-to-analog converter, a comparator, a cyclic asymptotic controller, a first correction circuit, and a second correction Circuit. The first digital-to-analog converter receives a first input voltage at its input node and generates a first output voltage at its output node. The second digital-to-analog converter receives a second input voltage at its input node and generates a second output voltage at its output node. The positive input node of the comparator receives the first output voltage of the first digital-to-analog converter, and its negative input node receives the second output voltage of the second digital-to-analog converter. The cyclical controller controls the switching of the first digital-to-analog converter and the second digital-to-analog converter according to the comparison output of the comparator to generate an output code. The first correction circuit is connected between the positive input node of the comparator and the ground voltage. The second correction circuit is connected between the negative input node of the comparator and the ground voltage.

100:循續漸近式類比至數位轉換器 100: Step-by-step analog to digital converter

11A:第一數位至類比轉換器 11A: The first digital to analog converter

11B:第二數位至類比轉換器 11B: Second digital to analog converter

12:比較器 12: Comparator

13:循續漸近式控制器 13: Continuous and progressive controller

14A:第一校正電路 14A: The first correction circuit

14B:第二校正電路 14B: Second correction circuit

21:第一反向器 21: The first inverter

22:第二反向器 22: second inverter

SWp:第一啟動開關 SWp: First start switch

SWn:第二啟動開關 SWn: second start switch

SWcal_1:第一校正開關 SWcal_1: The first calibration switch

SWcal_2:第二校正開關 SWcal_2: The second calibration switch

SWrst:重置開關 SWrst: reset switch

SWr_goal:目標開關 SWr_goal: target switch

Ccal_1:第一校正電容器 Ccal_1: the first correction capacitor

Ccal_2:第二校正電容器 Ccal_2: The second correction capacitor

Vip:第一輸入電壓 Vip: the first input voltage

Vin:第二輸入電壓 Vin: second input voltage

Vrefp:正參考電壓 Vrefp: Positive reference voltage

Vrefn:負參考電壓 Vrefn: negative reference voltage

Vop:第一輸出電壓 Vop: first output voltage

Von:第二輸出電壓 Von: second output voltage

Vr_goal:目標電壓 Vr_goal: target voltage

Vdd:電源電壓 Vdd: power supply voltage

M1:第一電晶體 M1: The first transistor

M2:第二電晶體 M2: second transistor

M3:第三電晶體 M3: third transistor

M4:第四電晶體 M4: The fourth transistor

M5:第五電晶體 M5: Fifth transistor

M6:第六電晶體 M6: The sixth transistor

M7:第七電晶體 M7: seventh transistor

M8:第八電晶體 M8: Eighth Transistor

M9:第九電晶體 M9: Ninth Transistor

C:電容器 C: Capacitor

CLK:時脈信號 CLK: clock signal

R:重置節點 R: reset node

第一圖顯示本發明實施例之可校正上板殘電壓的循續漸近式類比至數位轉換器的方塊圖。 The first figure shows a block diagram of a cyclic analog-to-digital converter capable of correcting the residual voltage of the upper board according to an embodiment of the present invention.

第二圖顯示第一圖之類比至數位轉換器的重置開關的電路圖。 The second figure shows the circuit diagram of the reset switch of the analog-to-digital converter in the first figure.

第一圖顯示本發明實施例之可校正上板殘電壓(top-plate residue voltage)的循續漸近式(SAR)類比至數位轉換器(ADC)100的方塊圖。 The first figure shows a block diagram of a SAR analog-to-digital converter (ADC) 100 capable of correcting top-plate residue voltage according to an embodiment of the present invention.

在本實施例中,循續漸近式類比至數位轉換器(以下簡稱類比至數位轉換器)100可包含第一數位至類比轉換器(DAC)11A,藉由第一啟動(bootstrapped)開關SWp,於其輸入節點接收第一(或正)輸入電壓Vip,因此於其輸 出節點產生第一輸出電壓Vop。第一數位至類比轉換器11A可包含複數電容器(未顯示),其上板連接至第一數位至類比轉換器11A的輸入節點,其下板可切換至正參考電壓Vrefp與負參考電壓Vrefn。 In this embodiment, the progressive analog to digital converter (hereinafter referred to as the analog to digital converter) 100 may include a first digital to analog converter (DAC) 11A, by means of the first bootstrapped switch SWp, It receives the first (or positive) input voltage Vip at its input node, so the input The output node generates the first output voltage Vop. The first digital-to-analog converter 11A may include a complex capacitor (not shown), the upper plate of which is connected to the input node of the first digital-to-analog converter 11A, and the lower plate of which can be switched to the positive reference voltage Vrefp and the negative reference voltage Vrefn.

類似的情形,類比至數位轉換器100可包含第二數位至類比轉換器11B,藉由第二啟動開關SWn,於其輸入節點接收第二(或負)輸入電壓Vin,因此於其輸出節點產生第二輸出電壓Von。第二數位至類比轉換器11B可包含複數電容器(未顯示),其上板連接至第二數位至類比轉換器11B的輸入節點,其下板可切換至正參考電壓Vrefp與負參考電壓Vrefn。 In a similar situation, the analog-to-digital converter 100 may include a second digital-to-analog converter 11B. The second start switch SWn receives the second (or negative) input voltage Vin at its input node, thereby generating a second (or negative) input voltage Vin at its output node. The second output voltage Von. The second digital-to-analog converter 11B may include a complex capacitor (not shown), the upper plate of which is connected to the input node of the second digital-to-analog converter 11B, and the lower plate of which can be switched to the positive reference voltage Vrefp and the negative reference voltage Vrefn.

本實施例之類比至數位轉換器100可包含比較器12,其正輸入節點接收第一數位至類比轉換器11A的第一輸出電壓Vop,其負輸入節點接收第二數位至類比轉換器11B的第二輸出電壓Von。 The analog-to-digital converter 100 of this embodiment may include a comparator 12, the positive input node of which receives the first output voltage Vop of the first digital-to-analog converter 11A, and the negative input node of which receives the second digital-to-analog converter 11B. The second output voltage Von.

本實施例之類比至數位轉換器100可包含循續漸近式(SAR)控制器13,根據比較器12的比較輸出以控制第一數位至類比轉換器11A與第二數位至類比轉換器11B的切換,用以依序從最高有效位元(MSB)至最低有效位元(LSB)產生輸出碼(code)。 The analog-to-digital converter 100 of this embodiment may include a SAR controller 13, which controls the first digital-to-analog converter 11A and the second digital-to-analog converter 11B according to the comparison output of the comparator 12 Switching is used to generate an output code (code) from the most significant bit (MSB) to the least significant bit (LSB) in sequence.

根據本實施例的特徵之一,類比至數位轉換器100可包含第一校正電路14A,連接於比較器12之正輸入節點與地電壓之間。第一校正電路14A可包含複數並聯的第一校正電容器Ccal_1,其上板連接比較器12的正輸入節點,其下板藉由第一校正開關SWcal_1可分別連接至地電壓。 According to one of the features of this embodiment, the analog-to-digital converter 100 may include a first correction circuit 14A connected between the positive input node of the comparator 12 and the ground voltage. The first correction circuit 14A may include a plurality of first correction capacitors Ccal_1 connected in parallel, the upper plate of which is connected to the positive input node of the comparator 12, and the lower plate of which can be respectively connected to the ground voltage through the first correction switch SWcal_1.

類似的情形,類比至數位轉換器100可包含第二校正電路14B,連接於比較器12之負輸入節點與地電壓之間。第二校正電路14B可包含複數並聯的第二校正電容器Ccal_2,其上板連接比較器12的負輸入節點,其下板藉由第二校正開關SWcal_2可分別連接至地電壓。 In a similar situation, the analog-to-digital converter 100 may include a second correction circuit 14B connected between the negative input node of the comparator 12 and the ground voltage. The second calibration circuit 14B may include a plurality of second calibration capacitors Ccal_2 connected in parallel, the upper board of which is connected to the negative input node of the comparator 12, and the lower board of which can be respectively connected to the ground voltage through the second calibration switch SWcal_2.

本實施例之類比至數位轉換器100可包含重置(reset)開關SWrst,連接於比較器12的正輸入節點與負輸入節點之間,用以重置比較器12。本實施例之 類比至數位轉換器100可包含目標(goal)開關SWr_goal,連接於比較器12的正輸入節點與目標電壓Vr_goal之間。 The analog-to-digital converter 100 of this embodiment may include a reset switch SWrst connected between the positive input node and the negative input node of the comparator 12 for resetting the comparator 12. Of this embodiment The analog-to-digital converter 100 may include a goal switch SWr_goal connected between the positive input node of the comparator 12 and the target voltage Vr_goal.

於每一個(或多個)週期的取樣時期與轉換時期之後,可執行校正時期。於校正時期,開啟(亦即導通)重置開關SWrst以產生重置電壓。於關閉(亦即斷開)重置開關SWrst之後,開啟(亦即導通)目標開關SWr_goal。藉此,比較器12比較(正輸入節點之)目標電壓Vr_goal與(負輸入節點之)重置電壓。接著,循續漸近式控制器13根據比較器12的比較結果,以控制(第一校正電路14A的)第一校正電容器Ccal_1與(第二校正電路14B的)第二校正電容器Ccal_2的切換。 After the sampling period and conversion period of each (or more) cycles, a correction period can be performed. During the calibration period, the reset switch SWrst is turned on (that is, turned on) to generate a reset voltage. After turning off (ie turning off) the reset switch SWrst, turn on (ie turning on) the target switch SWr_goal. Thereby, the comparator 12 compares the target voltage Vr_goal (for the positive input node) with the reset voltage (for the negative input node). Then, the progressive controller 13 controls the switching between the first correction capacitor Ccal_1 (of the first correction circuit 14A) and the second correction capacitor Ccal_2 (of the second correction circuit 14B) according to the comparison result of the comparator 12.

第二圖顯示第一圖之類比至數位轉換器100的重置開關SWrst的電路圖。在本實施例中,重置開關SWrst可包含電晶體M1-M9及電容器C,連接如圖所示。 The second figure shows the circuit diagram of the reset switch SWrst of the analog-to-digital converter 100 in the first figure. In this embodiment, the reset switch SWrst may include transistors M1-M9 and capacitor C, and the connection is shown in the figure.

重置開關可包含由(P型)第一電晶體M1與(N型)第二電晶體M2所組成的第一反向器21,且包含由(P型)第三電晶體M3與(N型)第四電晶體M4所組成的第二反向器22。第一反向器21接收時脈信號CLK,第二反向器22接收第一反向器21的輸出。 The reset switch may include a first inverter 21 composed of a (P-type) first transistor M1 and a (N-type) second transistor M2, and includes a (P-type) third transistor M3 and (N-type) Type) A second inverter 22 composed of a fourth transistor M4. The first inverter 21 receives the clock signal CLK, and the second inverter 22 receives the output of the first inverter 21.

電容器C的第一板接收第二反向器22的輸出。(P型)第五電晶體M5的汲極與源極連接於電源電壓Vdd與電容器C的第二板之間,且第五電晶體M5的閘極連接至重置節點R。(P型)第六電晶體M6作為通道閘(pass gate),其源極與汲極分別連接至(電容器C的)第二板與重置節點R,其閘極受控於第一反向器21的輸出。 The first plate of the capacitor C receives the output of the second inverter 22. The drain and source of the (P-type) fifth transistor M5 are connected between the power supply voltage Vdd and the second plate of the capacitor C, and the gate of the fifth transistor M5 is connected to the reset node R. The (P-type) sixth transistor M6 acts as a pass gate, its source and drain are respectively connected to the second plate (of the capacitor C) and the reset node R, and its gate is controlled by the first reverse器21 output.

(N型)第七電晶體M7與(N型)第八電晶體M8串聯於重置節點R與地之間。第七電晶體M7的閘極受控於第一反向器21的輸出,第八電晶體M8的閘極連接至電源電壓Vdd。 The (N-type) seventh transistor M7 and the (N-type) eighth transistor M8 are connected in series between the reset node R and the ground. The gate of the seventh transistor M7 is controlled by the output of the first inverter 21, and the gate of the eighth transistor M8 is connected to the power supply voltage Vdd.

(N型)第九電晶體M9作為通道閘,其汲極與源極分別連接至比較器12的正輸入節點與負輸入節點。第九電晶體M9的閘極連接至重置節點R。 The (N-type) ninth transistor M9 serves as a channel gate, and its drain and source are respectively connected to the positive input node and the negative input node of the comparator 12. The gate of the ninth transistor M9 is connected to the reset node R.

於操作重置開關時,當時脈信號CLK為低位準時,電容器C充電,電晶體M5與M7開啟,且電晶體M6與M9關閉。因此,比較器12的負輸出節點之電壓會保持於第九電晶體M9的源極。 When the reset switch is operated, when the clock signal CLK is at a low level, the capacitor C is charged, the transistors M5 and M7 are turned on, and the transistors M6 and M9 are turned off. Therefore, the voltage of the negative output node of the comparator 12 is maintained at the source of the ninth transistor M9.

當時脈信號CLK為高位準時,電容器C放電,電晶體M5與M7關閉,且電晶體M6與M9開啟。因此,第九電晶體M9之汲極(亦即正輸入節點)的電壓可傳送至第九電晶體M9之源極。 When the clock signal CLK is at a high level, the capacitor C is discharged, the transistors M5 and M7 are turned off, and the transistors M6 and M9 are turned on. Therefore, the voltage of the drain (that is, the positive input node) of the ninth transistor M9 can be transmitted to the source of the ninth transistor M9.

以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其它未脫離發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍內。 The above are only the preferred embodiments of the present invention, and are not intended to limit the scope of the patent application of the present invention; all other equivalent changes or modifications made without departing from the spirit of the invention should be included in the following Within the scope of the patent application.

100:循續漸近式類比至數位轉換器 100: Step-by-step analog to digital converter

11A:第一數位至類比轉換器 11A: The first digital to analog converter

11B:第二數位至類比轉換器 11B: Second digital to analog converter

12:比較器 12: Comparator

13:循續漸近式控制器 13: Continuous and progressive controller

14A:第一校正電路 14A: The first correction circuit

14B:第二校正電路 14B: Second correction circuit

SWp:第一啟動開關 SWp: First start switch

SWn:第二啟動開關 SWn: second start switch

SWcal_1:第一校正開關 SWcal_1: The first calibration switch

SWcal_2:第二校正開關 SWcal_2: The second calibration switch

SWrst:重置開關 SWrst: reset switch

SWr_goal:目標開關 SWr_goal: target switch

Ccal_1:第一校正電容器 Ccal_1: the first correction capacitor

Ccal_2:第二校正電容器 Ccal_2: The second correction capacitor

Vip:第一輸入電壓 Vip: the first input voltage

Vin:第二輸入電壓 Vin: second input voltage

Vrefp:正參考電壓 Vrefp: Positive reference voltage

Vrefn:負參考電壓 Vrefn: negative reference voltage

Vop:第一輸出電壓 Vop: first output voltage

Von:第二輸出電壓 Von: second output voltage

Vr_goal:目標電壓 Vr_goal: target voltage

Vdd:電源電壓 Vdd: power supply voltage

Claims (9)

一種循續漸近式類比至數位轉換器,包含:一第一數位至類比轉換器,於其輸入節點接收第一輸入電壓,於其輸出節點產生第一輸出電壓;一第二數位至類比轉換器,於其輸入節點接收第二輸入電壓,於其輸出節點產生第二輸出電壓;一比較器,其正輸入節點接收該第一數位至類比轉換器的第一輸出電壓,其負輸入節點接收該第二數位至類比轉換器的第二輸出電壓;一循續漸近式控制器,根據該比較器的比較輸出以控制該第一數位至類比轉換器與該第二數位至類比轉換器的切換,以產生輸出碼;一第一校正電路,連接於該比較器之正輸入節點與地電壓之間;及一第二校正電路,連接於該比較器之負輸入節點與地電壓之間;其中該第一校正電路包含複數並聯的第一校正電容器,其上板連接該比較器的正輸入節點,其下板藉由第一校正開關可分別連接至地電壓。 A cyclical analog-to-digital converter, comprising: a first digital-to-analog converter, receiving a first input voltage at its input node, and generating a first output voltage at its output node; a second digital-to-analog converter , Receiving a second input voltage at its input node, and generating a second output voltage at its output node; a comparator whose positive input node receives the first output voltage of the first digital-to-analog converter, and its negative input node receives the A second output voltage of the second digital-to-analog converter; a cyclical controller that controls the switching of the first digital-to-analog converter and the second digital-to-analog converter according to the comparison output of the comparator, To generate an output code; a first correction circuit connected between the positive input node of the comparator and the ground voltage; and a second correction circuit connected between the negative input node of the comparator and the ground voltage; wherein the The first correction circuit includes a plurality of first correction capacitors connected in parallel, the upper plate of which is connected to the positive input node of the comparator, and the lower plate of which can be respectively connected to the ground voltage through the first correction switch. 如請求項1之循續漸近式類比至數位轉換器,其中該第一數位至類比轉換器包含複數電容器,其上板連接至該第一數位至類比轉換器的輸入節點,其下板可切換至正參考電壓與負參考電壓。 For example, the cyclic asymptotic analog-to-digital converter of claim 1, wherein the first digital-to-analog converter includes a plurality of capacitors, the upper board of which is connected to the input node of the first digital-to-analog converter, and the lower board is switchable To positive reference voltage and negative reference voltage. 如請求項1之循續漸近式類比至數位轉換器,其中該第二數位至類比轉換器包含複數電容器,其上板連接至該第二數位至類比轉換器的輸入節點,其下板可切換至正參考電壓與負參考電壓。 For example, the cyclic asymptotic analog-to-digital converter of claim 1, wherein the second digital-to-analog converter includes a plurality of capacitors, the upper board of which is connected to the input node of the second digital-to-analog converter, and the lower board is switchable To positive reference voltage and negative reference voltage. 如請求項1之循續漸近式類比至數位轉換器,其中該第二校正電路包含複數並聯的第一校正電容器,其上板連接該比較器的負輸入節點,其下板藉由第二校正開關可分別連接至地電壓。 For example, the cyclic asymptotic analog-to-digital converter of claim 1, wherein the second correction circuit includes a plurality of first correction capacitors connected in parallel, and the upper plate is connected to the negative input node of the comparator, and the lower plate is corrected by the second The switches can be connected to ground voltage respectively. 如請求項1之循續漸近式類比至數位轉換器,更包含:一重置開關,連接於該比較器的正輸入節點與負輸入節點之間,用以重置該比較器;及一目標開關,連接於該比較器的正輸入節點與目標電壓之間。 For example, the cyclic asymptotic analog-to-digital converter of claim 1 further includes: a reset switch connected between the positive input node and the negative input node of the comparator for resetting the comparator; and a target The switch is connected between the positive input node of the comparator and the target voltage. 如請求項5之循續漸近式類比至數位轉換器,其中於校正時期,開啟該重置開關與該目標開關,該循續漸近式控制器根據該比較器的比較結果以控制該第一校正電路與該第二校正電路的切換。 For example, the cyclical analog-to-digital converter of claim 5, wherein during the calibration period, the reset switch and the target switch are turned on, and the cyclical controller controls the first calibration according to the comparison result of the comparator Switching between the circuit and the second correction circuit. 如請求項5之循續漸近式類比至數位轉換器,其中該重置開關包含:一第一電晶體與一第二電晶體,組成一第一反向器,其接收時脈信號;一第三電晶體與一第四電晶體,組成一第二反向器,其接收該第一反向器的輸出;一電容器,其第一板接收該第二反向器的輸出;一第五電晶體,其汲極與源極連接於電源電壓與該電容器的第二板之間,其閘極連接至重置節點;一第六電晶體,其源極與汲極分別連接至該電容器的第二板與該重置節點,其閘極受控於該第一反向器的輸出;一第七電晶體與一第八電晶體,串聯於該重置節點與地之間,該第七電晶體的閘極受控於該第一反向器的輸出,且該第八電晶體的閘極連接至電源電壓;及一第九電晶體,其汲極與源極分別連接至該比較器的正輸入節點與負輸入節點,其閘極連接至該重置節點。 For example, the cyclic asymptotic analog-to-digital converter of claim 5, wherein the reset switch includes: a first transistor and a second transistor, forming a first inverter, which receives a clock signal; Three transistors and a fourth transistor form a second inverter, which receives the output of the first inverter; a capacitor, the first plate of which receives the output of the second inverter; a fifth inverter A crystal whose drain and source are connected between the power supply voltage and the second plate of the capacitor, and whose gate is connected to the reset node; a sixth transistor whose source and drain are respectively connected to the first plate of the capacitor The gate of the second board and the reset node is controlled by the output of the first inverter; a seventh transistor and an eighth transistor are connected in series between the reset node and ground, and the seventh transistor The gate of the crystal is controlled by the output of the first inverter, and the gate of the eighth transistor is connected to the power supply voltage; and a ninth transistor whose drain and source are respectively connected to the comparator The gates of the positive input node and the negative input node are connected to the reset node. 如請求項7之循續漸近式類比至數位轉換器,其中當該時脈信號為低位準時,該電容器充電,該第五電晶體與該第七電晶體開啟,且該第六電晶體與該第九電晶體關閉,因此該比較器的負輸出節點之電壓保持於該第九電晶體的源極。 For example, the cyclic asymptotic analog-to-digital converter of claim 7, wherein when the clock signal is low, the capacitor is charged, the fifth transistor and the seventh transistor are turned on, and the sixth transistor and the The ninth transistor is turned off, so the voltage of the negative output node of the comparator is maintained at the source of the ninth transistor. 如請求項7之循續漸近式類比至數位轉換器,其中當該時脈信號為高位準時,該電容器放電,該第五電晶體與該第七電晶體關閉,且該第六電晶體與該第九電晶體開啟,因此該正輸入節點之電壓傳送至該第九電晶體之源極。For example, the cyclic asymptotic analog-to-digital converter of claim 7, wherein when the clock signal is high, the capacitor is discharged, the fifth transistor and the seventh transistor are turned off, and the sixth transistor and the The ninth transistor is turned on, so the voltage of the positive input node is transferred to the source of the ninth transistor.
TW109126614A 2020-08-06 2020-08-06 Successive approximation register analog-to-digital converter TWI747422B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109126614A TWI747422B (en) 2020-08-06 2020-08-06 Successive approximation register analog-to-digital converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109126614A TWI747422B (en) 2020-08-06 2020-08-06 Successive approximation register analog-to-digital converter

Publications (2)

Publication Number Publication Date
TWI747422B true TWI747422B (en) 2021-11-21
TW202207634A TW202207634A (en) 2022-02-16

Family

ID=79907794

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109126614A TWI747422B (en) 2020-08-06 2020-08-06 Successive approximation register analog-to-digital converter

Country Status (1)

Country Link
TW (1) TWI747422B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448911B1 (en) * 2001-07-30 2002-09-10 Cirrus Logic, Inc. Circuits and methods for linearizing capacitor calibration and systems using the same
US6674386B2 (en) * 2002-05-10 2004-01-06 Analog Devices, Inc. Dual channel analog to digital converter
TWI573460B (en) * 2015-03-12 2017-03-01 豪威科技股份有限公司 Compensation for dual conversion gain high dynamic range sensor
WO2017091928A1 (en) * 2015-11-30 2017-06-08 复旦大学 High-speed pipelined successive approximation adc based on dynamic ringing-based operational amplifier
US10069506B2 (en) * 2016-04-15 2018-09-04 Realtek Semiconductor Corporation Calibration circuit and calibration method for DAC
US10666283B2 (en) * 2018-01-19 2020-05-26 Socionext Inc. Analogue-to-digital converter circuitry comprising capacitive successive-approximation control circuitry

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448911B1 (en) * 2001-07-30 2002-09-10 Cirrus Logic, Inc. Circuits and methods for linearizing capacitor calibration and systems using the same
US6674386B2 (en) * 2002-05-10 2004-01-06 Analog Devices, Inc. Dual channel analog to digital converter
TWI573460B (en) * 2015-03-12 2017-03-01 豪威科技股份有限公司 Compensation for dual conversion gain high dynamic range sensor
WO2017091928A1 (en) * 2015-11-30 2017-06-08 复旦大学 High-speed pipelined successive approximation adc based on dynamic ringing-based operational amplifier
US10069506B2 (en) * 2016-04-15 2018-09-04 Realtek Semiconductor Corporation Calibration circuit and calibration method for DAC
US10666283B2 (en) * 2018-01-19 2020-05-26 Socionext Inc. Analogue-to-digital converter circuitry comprising capacitive successive-approximation control circuitry

Also Published As

Publication number Publication date
TW202207634A (en) 2022-02-16

Similar Documents

Publication Publication Date Title
TWI452846B (en) Segmented analog-to-digital converter and method thereof
TWI454064B (en) Successive approximation analog-to-digital converter having auxiliary prediction circuit and method thereof
US8164504B2 (en) Successive approximation register analog-digital converter and method for operating the same
Cho et al. A 9-bit 80 MS/s successive approximation register analog-to-digital converter with a capacitor reduction technique
TWI783072B (en) Method and apparatus for offset correction in sar adc with reduced capacitor array dac
KR102017310B1 (en) Successive approximation register analog digital converter and operating method thereof
EP3720002A1 (en) Sub-ranging analog-to-digital converter
Tai et al. A 6-bit 1-GS/s two-step SAR ADC in 40-nm CMOS
US10938402B1 (en) Successive approximation register analog-to-digital converter
Roh et al. A 40-nm CMOS 12b 120-MS/s nonbinary SAR-assisted SAR ADC with double clock-rate coarse decision
Ye et al. A 13-bit 180-MS/s SAR ADC with efficient capacitor-mismatch estimation and dither enhancement
Huang et al. A 10-bit 100 MS/s successive approximation register analog-to-digital converter design
TWI747422B (en) Successive approximation register analog-to-digital converter
US10804917B1 (en) SAR ADC and a reference ripple suppression circuit adaptable thereto
US10476513B1 (en) SAR ADC with high linearity
Youn et al. 12-bit 20M-S/s SAR ADC using CR DAC and capacitor calibration
CN114079465A (en) Progressive analog-to-digital converter
Li et al. A 100MS/S 12-bit coarse-fine SAR ADC with shared split-CDAC
Inoue et al. Non-binary cyclic and binary SAR hybrid ADC
Bai et al. Asynchronous capacitive SAR ADC based on Hopfield network
Arian et al. Successive approximation ADC with redundancy using split capacitive-array DAC
Liu et al. A fully differential SAR/single-slope ADC for CMOS imager sensor
Dong et al. A two-step single-side capacitor-reversal high-efficiency switching scheme for SAR ADCs
TWI717900B (en) Sar adc and a reference ripple suppression circuit adaptable thereto
CN112825485B (en) Continuous asymptotic analog-to-digital converter and reference ripple suppression circuit thereof