TWI746137B - Memory structures and methods for forming the same - Google Patents

Memory structures and methods for forming the same Download PDF

Info

Publication number
TWI746137B
TWI746137B TW109129373A TW109129373A TWI746137B TW I746137 B TWI746137 B TW I746137B TW 109129373 A TW109129373 A TW 109129373A TW 109129373 A TW109129373 A TW 109129373A TW I746137 B TWI746137 B TW I746137B
Authority
TW
Taiwan
Prior art keywords
electrode
electrical channel
layer
channel layer
memory structure
Prior art date
Application number
TW109129373A
Other languages
Chinese (zh)
Other versions
TW202209721A (en
Inventor
許博硯
吳伯倫
郭澤綿
張維哲
張碩哲
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW109129373A priority Critical patent/TWI746137B/en
Application granted granted Critical
Publication of TWI746137B publication Critical patent/TWI746137B/en
Publication of TW202209721A publication Critical patent/TW202209721A/en

Links

Images

Abstract

A memory device includes a substrate, an electrical channel layer, a first electrode, a resistive switching layer, a second electrode, and a conductive structure. The electrical channel layer is disposed on the substrate. The first electrode is disposed on the substrate and extends into the electrical channel layer. The resistive switching layer is disposed between the first electrode and the electrical channel layer. The second electrode is disposed on the electrical channel layer. The conductive structure connects the electrical channel layer and the second electrode.

Description

記憶體結構及其製造方法Memory structure and manufacturing method thereof

本發明是關於半導體製造技術,特別是有關於記憶體結構及其製造方法。 The present invention relates to semiconductor manufacturing technology, in particular to memory structure and manufacturing method thereof.

隨著半導體裝置尺寸的微縮,製造半導體裝置的難度也大幅提升,半導體裝置的製程期間可能產生不想要的缺陷,這些缺陷可能會造成裝置的效能降低或損壞。因此,必須持續改善半導體裝置,以提升良率並改善製程寬裕度。 With the shrinking of the size of semiconductor devices, the difficulty of manufacturing semiconductor devices has also increased significantly. Unwanted defects may occur during the manufacturing process of the semiconductor devices, and these defects may cause the performance of the device to be reduced or damaged. Therefore, semiconductor devices must be continuously improved to increase yield and improve process margins.

根據本發明的一些實施例,提供記憶體結構。此記憶體結構包含基底;電性通道層設置於基底上;第一電極設置於基底上並延伸至電性通道層中;電阻轉態層設置於第一電極與電性通道層之間;第二電極設置於電性通道層上;以及導電結構連接電性通道層和第二電極。 According to some embodiments of the present invention, a memory structure is provided. The memory structure includes a substrate; an electrical channel layer is provided on the substrate; a first electrode is provided on the substrate and extends into the electrical channel layer; the resistance transition layer is provided between the first electrode and the electrical channel layer; The two electrodes are arranged on the electrical channel layer; and the conductive structure connects the electrical channel layer and the second electrode.

根據本發明的一些實施例,提供記憶體結構。此記憶體結構包含基底;電性通道層設置於基底上並沿第一方向延伸;第一電極設置於基底上並沿第二方向延伸至電性通道層中,第二方向不同於第一方向;電阻轉態層設置於第一電極與電性通道層之間;第二電極設置於電性通道層上,其中基底、電性通道層和第二電極係以第二方向堆疊;以及導電結構連接電性通道層和第二電極並沿第二方向延伸。 According to some embodiments of the present invention, a memory structure is provided. The memory structure includes a substrate; an electrical channel layer is disposed on the substrate and extends in a first direction; a first electrode is disposed on the substrate and extends into the electrical channel layer in a second direction, the second direction is different from the first direction The resistance transition layer is arranged between the first electrode and the electrical channel layer; the second electrode is arranged on the electrical channel layer, wherein the substrate, the electrical channel layer and the second electrode are stacked in the second direction; and the conductive structure The electrical channel layer is connected to the second electrode and extends along the second direction.

根據本揭露的一些實施例,提供記憶體結構的製造方法。此方法包含在基底上形成電性通道層;在基底上形成第一電極延伸至電性通道層中;在第一電極與電性通道層之間形成電阻轉態層;以及在電性通道層上形成導電結構連接至第二電極。 According to some embodiments of the present disclosure, a manufacturing method of a memory structure is provided. The method includes forming an electrical channel layer on a substrate; forming a first electrode on the substrate to extend into the electrical channel layer; forming a resistance transition layer between the first electrode and the electrical channel layer; and forming the electrical channel layer The conductive structure is formed on the upper side and is connected to the second electrode.

100,200:記憶體結構 100, 200: Memory structure

102,110,204:接觸件 102, 110, 204: contacts

104,212:第一電極 104,212: first electrode

106,210:電阻轉態層 106, 210: Resistance transition layer

108,222:第二電極 108,222: second electrode

202:基底 202: Base

205:介電層 205: Dielectric layer

206:高介電常數層 206: High dielectric constant layer

208:電性通道層 208: electrical channel layer

209:溝槽 209: Groove

214A,214B:通孔 214A, 214B: through hole

216A,216B,220:阻障層 216A, 216B, 220: barrier layer

218A,218B:導電結構 218A, 218B: conductive structure

224:電流 224: Current

226:導電絲 226: Conductive wire

D1:第一方向 D1: First direction

D2:第二方向 D2: second direction

D3:第三方向 D3: Third party

以下將配合所附圖式詳述本發明之實施例。應注意的是,依據產業上的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本發明的特徵。 The embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. It should be noted that, according to industry standard practices, various features are not drawn to scale and are only used for illustration and illustration. In fact, it is possible to arbitrarily enlarge or reduce the size of the element to clearly express the characteristics of the present invention.

第1圖是根據一些實施例繪示記憶體結構的剖面示意圖。 FIG. 1 is a schematic cross-sectional view of a memory structure according to some embodiments.

第2A~2E圖是根據一些實施例繪示在製造記憶體結構的各個階段之剖面示意圖。 2A to 2E are schematic cross-sectional diagrams illustrating various stages of manufacturing a memory structure according to some embodiments.

第3圖是根據一些實施例繪示記憶體結構的剖面示意圖。 FIG. 3 is a schematic cross-sectional view of a memory structure according to some embodiments.

第4圖是根據一些實施例繪示記憶體結構的上視示意圖。 FIG. 4 is a schematic top view of a memory structure according to some embodiments.

以下概述一些實施例,以使得本發明所屬技術領域中具有通常知識者可以更容易理解本發明。然而,這些實施例只是範例,並非用於限制本發明。可以理解的是,本發明所屬技術領域中具有通常知識者可以根據需求,調整以下描述的實施例,例如改變製程順序及/或包含比在此描述的更多或更少步驟,並且這些調整未超出本發明的範圍。 Some embodiments are summarized below, so that those with ordinary knowledge in the technical field to which the present invention belongs can more easily understand the present invention. However, these embodiments are only examples and are not intended to limit the present invention. It is understandable that those with ordinary knowledge in the technical field to which the present invention pertains can adjust the embodiments described below according to requirements, such as changing the process sequence and/or including more or less steps than those described herein, and these adjustments have not been made. Beyond the scope of the present invention.

此外,可以在以下敘述的實施例的基礎上添加其他元件。舉例來說,「在第一元件上形成第二元件」的描述可能包含第一元件與第二元件直接接觸的實施例,也可能包含第一元件與第二元件之間具有其他元件,使得第一元件與第二元件不直接接觸的實施例,並且第一元件與第二元件的上下關係可能隨著裝置在不同方位操作或使用而改變。 In addition, other elements may be added to the embodiments described below. For example, the description of "form the second element on the first element" may include an embodiment in which the first element is in direct contact with the second element, or may include other elements between the first element and the second element, so that the first element is in contact with the second element. The embodiment in which one element and the second element are not in direct contact, and the up-down relationship between the first element and the second element may change as the device is operated or used in different orientations.

在以下的敘述中,「第一元件穿過第二元件」的描述可以包含第一元件在第二元件中並從第二元件的第一側延伸至相反的第二側,其中第一元件的一表面可以與第二元件的一表面齊平,或者第一元件的一表面也可以在第二元件的一表面之外。另外,本發明可能在不同的實施例中重複參考數字及/或字母,此重複是為了簡化和清楚,而非用以表示所討論的不同實施例之間的關係。 In the following description, the description of "the first element passes through the second element" may include the first element in the second element and extending from the first side of the second element to the opposite second side, where the first element A surface may be flush with a surface of the second element, or a surface of the first element may be outside of a surface of the second element. In addition, the present invention may repeat reference numbers and/or letters in different embodiments, and this repetition is for simplification and clarity, rather than to indicate the relationship between the different embodiments discussed.

以下根據本發明的一些實施例,描述記憶體結構及其製造方法,並且特別適用於非揮發性記憶體(non-volatile memory,NVM),例如可變電阻式記憶體(resistive random-access memory,RRAM)。本發明將電阻轉態層設置成延伸至電性通道層中,可以在不增加形成電壓的情況下,增加導電絲(filament)數量,改善資料保存(data retention)。 Hereinafter, according to some embodiments of the present invention, a memory structure and a manufacturing method thereof are described, and they are particularly suitable for non-volatile memory (NVM), such as resistive random-access memory (NVM). RRAM). In the present invention, the resistive transition layer is arranged to extend into the electrical channel layer, which can increase the number of conductive filaments without increasing the forming voltage and improve data retention.

第1圖是根據一些實施例繪示記憶體結構100的剖面示意圖。如第1圖所示,記憶體結構100包含接觸件102和110,分別連接第一電極104和第二電極108,並且記憶體結構100包含設置於第一電極104和第二電極108之間的電阻轉態層106。 FIG. 1 is a schematic cross-sectional view of a memory structure 100 according to some embodiments. As shown in Figure 1, the memory structure 100 includes contacts 102 and 110, respectively connected to the first electrode 104 and the second electrode 108, and the memory structure 100 includes the first electrode 104 and the second electrode 108 Resistance transition layer 106.

當對記憶體裝置100施加正向電壓時,電阻轉態層106中的氧離子遷移至其上方的電極,並在電阻轉態層106中形成氧空缺導電絲(未繪示),使電阻轉態層106轉換為低電阻狀態。反之,對記憶體裝置100施加反向電壓時,氧離子回到電阻轉態層106中並與電阻轉態層106中的氧空缺結合,導致氧空缺導電絲消失,使電阻轉態層106轉換為高電阻狀態。記憶體裝置100藉由上述方式轉換電阻值以進行資料的儲存或讀取,達到記憶功能。 When a forward voltage is applied to the memory device 100, the oxygen ions in the resistance transition layer 106 migrate to the electrode above it, and an oxygen-vacancy conductive wire (not shown) is formed in the resistance transition layer 106 to make the resistance transition The state layer 106 switches to a low resistance state. Conversely, when a reverse voltage is applied to the memory device 100, oxygen ions return to the resistance transition layer 106 and combine with the oxygen vacancies in the resistance transition layer 106, resulting in the disappearance of the oxygen vacancy conductive filaments, and the resistance transition layer 106 is converted. It is a high resistance state. The memory device 100 converts the resistance value in the above-mentioned manner to store or read data to achieve the memory function.

在一些實施例中,記憶體結構的製造過程使用的高溫會降低低電阻狀態的電流,使資料保存變差。由於導電絲電流與氧空缺濃度有關,一些方法是藉由增加電阻轉態層106的厚度來提供更多氧空缺,以增加低電阻狀態的電流,進而改善資料保存。然而,這樣的方法也引入一些問題。舉例來說,由於電阻轉態層106 的材料較不易被蝕刻,增加電阻轉態層106的厚度也會增加蝕刻製程的難度,例如難以使電阻轉態層106形成想要的形狀。此外,增加電阻轉態層106的厚度也會增加記憶體結構100的形成電壓,其不利於記憶體結構100的大量生產。因此,本發明進一步提供以下的實施例,改善上述問題。 In some embodiments, the high temperature used in the manufacturing process of the memory structure will reduce the current in the low-resistance state, making data preservation worse. Since the current of the conductive filament is related to the oxygen vacancy concentration, some methods provide more oxygen vacancies by increasing the thickness of the resistive transition layer 106 to increase the current in the low-resistance state, thereby improving data preservation. However, this method also introduces some problems. For example, due to the resistance transition layer 106 The material is less easy to be etched. Increasing the thickness of the resistance transition layer 106 will also increase the difficulty of the etching process. For example, it is difficult to form the resistance transition layer 106 into a desired shape. In addition, increasing the thickness of the resistance transition layer 106 will also increase the forming voltage of the memory structure 100, which is not conducive to the mass production of the memory structure 100. Therefore, the present invention further provides the following embodiments to improve the above-mentioned problems.

第2A~2E圖是根據一些其他實施例繪示記憶體結構200的剖面示意圖。如第2A圖所示,記憶體結構200包含基底202。基底202可以使用任何適用於記憶體結構200的基底材料。舉例來說,基底202可以包含氧化物。 2A to 2E are schematic cross-sectional diagrams illustrating the memory structure 200 according to some other embodiments. As shown in FIG. 2A, the memory structure 200 includes a substrate 202. The substrate 202 can use any substrate material suitable for the memory structure 200. For example, the substrate 202 may include oxide.

在一些實施例中,記憶體結構200包含設置於基底202中的接觸件204。接觸件204可以包含導電材料,例如摻雜或未摻雜的多晶矽、金屬、類似的材料或前述之組合。舉例來說,金屬包含金、鎳、鉑、鈀、銥、鈦、鉻、鎢、鋁、銅、鉭、鉿類似的材料、前述之合金、前述之多層結構或前述之組合。根據一些實施例,沉積製程包含物理氣相沉積製程、化學氣相沉積製程、原子層沉積製程、蒸鍍(evaporation)製程、電鍍製程、類似的製程或前述之組合。 In some embodiments, the memory structure 200 includes a contact 204 disposed in the substrate 202. The contact 204 may include conductive materials, such as doped or undoped polysilicon, metals, similar materials, or a combination of the foregoing. For example, the metal includes gold, nickel, platinum, palladium, iridium, titanium, chromium, tungsten, aluminum, copper, tantalum, hafnium, similar materials, the foregoing alloys, the foregoing multilayer structure, or a combination of the foregoing. According to some embodiments, the deposition process includes a physical vapor deposition process, a chemical vapor deposition process, an atomic layer deposition process, an evaporation process, an electroplating process, a similar process, or a combination of the foregoing.

然後,根據一些實施例,在接觸件204上形成介電層205覆蓋接觸件204。在一些實施例中,介電層205與基底202包含相同的材料,因此未繪出介電層205與基底202之間的界面。在另一些實施例中,介電層205與基底202包含不同的材料,介電層 205與基底202之間會存在界面。介電層205的形成方法可以包含化學氣相沉積、原子層沉積、類似的沉積製程或前述之組合。 Then, according to some embodiments, a dielectric layer 205 is formed on the contact 204 to cover the contact 204. In some embodiments, the dielectric layer 205 and the substrate 202 include the same material, so the interface between the dielectric layer 205 and the substrate 202 is not drawn. In other embodiments, the dielectric layer 205 and the substrate 202 comprise different materials, and the dielectric layer There will be an interface between 205 and substrate 202. The method for forming the dielectric layer 205 may include chemical vapor deposition, atomic layer deposition, similar deposition processes, or a combination of the foregoing.

然後,根據一些實施例,在介電層205上形成一對高介電常數層206以及高介電常數層206之間的電性通道層208。高介電常數層206和電性通道層208可以沿第一方向D1延伸。高介電常數層206可以包含介電常數大於3.9的材料,例如氧化鉭、氧化鉿、氧化鋁、類似的材料或前述之組合。電性通道層208可以包含鈦、氮化鈦、鉭、氮化鉭、鉿、氮化鉿類似的材料或前述之組合。高介電常數層206和電性通道層208的形成方法可以類似於介電層205的形成方法,故不再贅述。 Then, according to some embodiments, a pair of high dielectric constant layers 206 and an electrical channel layer 208 between the high dielectric constant layers 206 are formed on the dielectric layer 205. The high dielectric constant layer 206 and the electrical channel layer 208 may extend along the first direction D1. The high dielectric constant layer 206 may include a material with a dielectric constant greater than 3.9, such as tantalum oxide, hafnium oxide, aluminum oxide, similar materials, or a combination of the foregoing. The electrical channel layer 208 may include titanium, titanium nitride, tantalum, tantalum nitride, hafnium, hafnium nitride, similar materials, or a combination of the foregoing. The method for forming the high dielectric constant layer 206 and the electrical channel layer 208 can be similar to the method for forming the dielectric layer 205, so the details are not described again.

電性通道層208的數量與電流的數量有關,在此繪示兩層電性通道層208,但本發明不限於此。可以根據電流的數量使用更多或更少層電性通道層208,並在這些電性通道層208之間設置介電層205。然後,在最上層的電性通道層208上沉積介電層205。 The number of electrical channel layers 208 is related to the number of currents. Two electrical channel layers 208 are shown here, but the present invention is not limited thereto. More or fewer layers of electrical channel layers 208 can be used according to the amount of current, and a dielectric layer 205 is disposed between these electrical channel layers 208. Then, a dielectric layer 205 is deposited on the uppermost electrical channel layer 208.

然後,根據一些實施例,將記憶體裝置200蝕刻出溝槽209。如第2A圖所示,溝槽209穿過介電層205、高介電常數層206和電性通道層208,並露出接觸件204。溝槽209可以沿第二方向D2延伸,第二方向D2不同於第一方向D1。第一方向D1與第二方向D2可以大致互相垂直(perpendicular)或正交(orthogonal)。或者,第一方向D1與第二方向D2之間的夾角可以為約80度至約90度。 Then, according to some embodiments, the memory device 200 is etched out of the trench 209. As shown in FIG. 2A, the trench 209 penetrates the dielectric layer 205, the high dielectric constant layer 206, and the electrical channel layer 208, and exposes the contact 204. The trench 209 may extend in a second direction D2, which is different from the first direction D1. The first direction D1 and the second direction D2 may be substantially perpendicular or orthogonal to each other. Alternatively, the included angle between the first direction D1 and the second direction D2 may be about 80 degrees to about 90 degrees.

在一些實施例中,溝槽209的形成可以藉由在介電層205上設置遮罩層(未繪示),接著使用遮罩層作為蝕刻遮罩進行蝕刻製程。在一些實施例中,遮罩層可以包含硬遮罩,並且可以由氧化矽、氮化矽、氮氧化矽、碳化矽、氮碳化矽、類似的材料或前述之組合形成。遮罩層可以是單層結構或多層結構。遮罩層的形成可以包含沉積製程、微影製程、其他合適的製程或前述之組合。在一些實施例中,沉積製程包含旋轉塗佈、化學氣相沉積、原子層沉積、類似的沉積製程或前述之組合。在一些實施例中,微影製程可以包含光阻塗佈(例如旋轉塗佈)、軟烘烤、光罩對準、曝光、曝光後烘烤、顯影、清洗(rinsing)、乾燥(例如硬烘烤)、其他合適的製程或前述之組合。 In some embodiments, the trench 209 can be formed by disposing a mask layer (not shown) on the dielectric layer 205, and then using the mask layer as an etching mask for an etching process. In some embodiments, the mask layer may include a hard mask, and may be formed of silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbide nitride, similar materials, or a combination of the foregoing. The mask layer can be a single-layer structure or a multi-layer structure. The formation of the mask layer may include a deposition process, a lithography process, other suitable processes, or a combination of the foregoing. In some embodiments, the deposition process includes spin coating, chemical vapor deposition, atomic layer deposition, similar deposition processes, or a combination of the foregoing. In some embodiments, the photolithography process may include photoresist coating (such as spin coating), soft baking, mask alignment, exposure, post-exposure baking, developing, rinsing, drying (such as hard baking). Baking), other suitable processes or a combination of the foregoing.

在一些實施例中,溝槽209的蝕刻製程可以包含乾式蝕刻製程、濕式蝕刻製程或前述之組合。舉例來說,乾式蝕刻製程可以包含反應性離子蝕刻(reactive ion etch,RIE)、感應耦合式電漿(inductively-coupled plasma,ICP)蝕刻、中性束蝕刻(neutral beam etch,NBE)、電子迴旋共振式(electron cyclotron resonance,ERC)蝕刻、類似的蝕刻製程或前述之組合。舉例來說,濕式蝕刻製程可以使用例如氫氟酸、氫氧化銨或任何合適的蝕刻劑。 In some embodiments, the etching process of the trench 209 may include a dry etching process, a wet etching process, or a combination of the foregoing. For example, the dry etching process can include reactive ion etch (RIE), inductively-coupled plasma (ICP) etching, neutral beam etch (NBE), and electron cyclotron etching. Electron cyclotron resonance (ERC) etching, a similar etching process, or a combination of the foregoing. For example, the wet etching process can use, for example, hydrofluoric acid, ammonium hydroxide, or any suitable etchant.

然後,根據一些實施例,如第2B圖所示,在溝槽209的側壁上形成電阻轉態層210。電阻轉態層210可以大致沿第二方向D2延伸。在一些實施例中,電阻轉態層210的材料可以包 含過渡金屬氧化物,例如氧化鎳、氧化鈦、氧化鉿、氧化鋯、氧化鋅、氧化鎢、氧化鋁、氧化鉭、氧化鉬、氧化銅、類似的材料或前述之組合。電阻轉態層210的形成方法可以包含原子層沉積製程、化學氣相沉積製程、物理氣相沉積製程、類似的沉積製程或前述之組合。 Then, according to some embodiments, as shown in FIG. 2B, a resistance transition layer 210 is formed on the sidewall of the trench 209. The resistance transition layer 210 may extend substantially along the second direction D2. In some embodiments, the material of the resistance transition layer 210 may include Transition metal oxides, such as nickel oxide, titanium oxide, hafnium oxide, zirconium oxide, zinc oxide, tungsten oxide, aluminum oxide, tantalum oxide, molybdenum oxide, copper oxide, similar materials, or a combination of the foregoing. The method for forming the resistance transition layer 210 may include an atomic layer deposition process, a chemical vapor deposition process, a physical vapor deposition process, a similar deposition process, or a combination of the foregoing.

然後,根據一些實施例,在溝槽209的剩餘部分形成第一電極212。第一電極212可以大致沿第二方向D2延伸。第一電極212的材料可以包含金屬或金屬氮化物,例如鉑、氮化鈦、金、鈦、鉭、氮化鉭、鎢、氮化鎢、銅、類似的材料或前述之組合。在一些實施例中,第一電極212的材料包含銅。第一電極212的形成方法可以包含原子層沉積製程、化學氣相沉積製程、物理氣相沉積製程、類似的沉積製程或前述之組合。 Then, according to some embodiments, the first electrode 212 is formed on the remaining part of the trench 209. The first electrode 212 may extend substantially in the second direction D2. The material of the first electrode 212 may include metal or metal nitride, such as platinum, titanium nitride, gold, titanium, tantalum, tantalum nitride, tungsten, tungsten nitride, copper, similar materials, or a combination of the foregoing. In some embodiments, the material of the first electrode 212 includes copper. The method for forming the first electrode 212 may include an atomic layer deposition process, a chemical vapor deposition process, a physical vapor deposition process, a similar deposition process, or a combination of the foregoing.

如第2B圖所示,電阻轉態層210鄰接第一電極212,電阻轉態層210位於第一電極212的側壁上並暴露出第一電極212的頂面。在一些實施例中,電阻轉態層210和第一電極212穿過電性通道層208向基底202延伸,並與接觸件204接觸。根據一些實施例,如第2B圖所示,電阻轉態層210和第一電極212大致垂直於基底202的頂面,但本發明不限於此,電阻轉態層210和第一電極212可以與基底202的頂面具有任何合適的角度。然後,可以進行平坦化製程,例如化學機械研磨製程,以移除多餘的材料並提供平坦的表面。 As shown in FIG. 2B, the resistance transition layer 210 is adjacent to the first electrode 212, and the resistance transition layer 210 is located on the sidewall of the first electrode 212 and exposes the top surface of the first electrode 212. In some embodiments, the resistance transition layer 210 and the first electrode 212 extend through the electrical channel layer 208 toward the substrate 202 and contact the contact 204. According to some embodiments, as shown in FIG. 2B, the resistance transition layer 210 and the first electrode 212 are substantially perpendicular to the top surface of the substrate 202, but the present invention is not limited to this. The resistance transition layer 210 and the first electrode 212 may be connected to the The top surface of the base 202 has any suitable angle. Then, a planarization process, such as a chemical mechanical polishing process, can be performed to remove excess material and provide a flat surface.

雖然在第2B圖的實施例中,第一電極212穿過電性通道層208,即第一電極212的頂面在電性通道層208上方,而第一電極212的底面在電性通道層208下方,但本發明不限於此。舉例來說,第一電極212可以部分地延伸至電性通道層208中,使得第一電極212的頂面在電性通道層208中。 Although in the embodiment of FIG. 2B, the first electrode 212 passes through the electrical channel layer 208, that is, the top surface of the first electrode 212 is above the electrical channel layer 208, and the bottom surface of the first electrode 212 is on the electrical channel layer 208. Below 208, but the present invention is not limited to this. For example, the first electrode 212 may partially extend into the electrical channel layer 208 so that the top surface of the first electrode 212 is in the electrical channel layer 208.

然後,根據一些實施例,如第2C圖所示,在第一電極212上形成介電層205覆蓋第一電極212和電阻轉態層210。然後,將記憶體裝置200蝕刻出通孔214A和214B。通孔214A和214B穿過介電層205、高介電常數層206和電性通道層208,並位於第一電極212的兩側。通孔214A和214B的形成方法可以類似溝槽209的形成方法,故不再贅述。 Then, according to some embodiments, as shown in FIG. 2C, a dielectric layer 205 is formed on the first electrode 212 to cover the first electrode 212 and the resistance transition layer 210. Then, the memory device 200 is etched out of the through holes 214A and 214B. The through holes 214A and 214B pass through the dielectric layer 205, the high dielectric constant layer 206 and the electrical channel layer 208, and are located on both sides of the first electrode 212. The formation method of the through holes 214A and 214B can be similar to the formation method of the trench 209, and therefore will not be described in detail.

雖然在第2C圖的實施例中,通孔214A和214B穿過電性通道層208,並且通孔214A和214B的底面在電性通道層208下方,但本發明不限於此。舉例來說,通孔214A和214B可以部分地延伸至電性通道層208中,使得通孔214A和214B的底面在電性通道層208中。或者,根據另一些實施例,通孔214A和214B可以不延伸至電性通道層208中,並且通孔214A和214B的底面與電性通道層208的頂面齊平。此外,通孔214A和214B可以各自具有不同深度,並且通孔的數量可以多於或少於兩個。 Although in the embodiment of FIG. 2C, the through holes 214A and 214B pass through the electrical channel layer 208, and the bottom surfaces of the through holes 214A and 214B are below the electrical channel layer 208, the present invention is not limited thereto. For example, the through holes 214A and 214B may partially extend into the electrical channel layer 208 such that the bottom surfaces of the through holes 214A and 214B are in the electrical channel layer 208. Alternatively, according to other embodiments, the through holes 214A and 214B may not extend into the electrical channel layer 208, and the bottom surfaces of the through holes 214A and 214B are flush with the top surface of the electrical channel layer 208. In addition, the through holes 214A and 214B may each have a different depth, and the number of through holes may be more or less than two.

然後,根據一些實施例,如第2D圖所示,在通孔214A和214B的側壁上分別形成阻障層216A和216B,並在通孔214A和214B的剩餘部分分別形成導電結構218A和218B。導電結 構218A和218B可以大致沿第二方向D2延伸。在一些實施例中,阻障層216A和216B分別位於導電結構218A和218B與電性通道層208之間。阻障層216A和216B的材料可以包含氧化鋁,並且阻障層216A和216B的形成方法可以包含原子層沉積製程、化學氣相沉積製程、物理氣相沉積製程、類似的沉積製程或前述之組合。導電結構218A和218B可以包含導電材料,例如金屬或金屬氮化物。在一些實施例中,導電結構218A和218B的材料包含銅。 Then, according to some embodiments, as shown in FIG. 2D, barrier layers 216A and 216B are formed on the sidewalls of the through holes 214A and 214B, respectively, and conductive structures 218A and 218B are formed on the remaining portions of the through holes 214A and 214B, respectively. Conductive junction The structures 218A and 218B may extend substantially in the second direction D2. In some embodiments, the barrier layers 216A and 216B are located between the conductive structures 218A and 218B and the electrical channel layer 208, respectively. The material of the barrier layers 216A and 216B may include aluminum oxide, and the formation method of the barrier layers 216A and 216B may include an atomic layer deposition process, a chemical vapor deposition process, a physical vapor deposition process, a similar deposition process or a combination of the foregoing . The conductive structures 218A and 218B may include conductive materials, such as metals or metal nitrides. In some embodiments, the material of the conductive structures 218A and 218B includes copper.

如第2E圖所示,導電結構218A和218B延伸至電性通道層208,並且電阻轉態層210位於第一電極212與導電結構218A和218B之間。在一些實施例中,導電結構218A和218B的頂面高於第一電極212的頂面。根據一些實施例,如第2D圖所示,導電結構218A和218B大致垂直於基底202的頂面,但本發明不限於此,導電結構218A和218B可以與基底202的頂面具有任何合適的角度。然後,可以進行平坦化製程,例如化學機械研磨製程,以移除多餘的材料並提供平坦的表面。 As shown in FIG. 2E, the conductive structures 218A and 218B extend to the electrical channel layer 208, and the resistance transition layer 210 is located between the first electrode 212 and the conductive structures 218A and 218B. In some embodiments, the top surfaces of the conductive structures 218A and 218B are higher than the top surface of the first electrode 212. According to some embodiments, as shown in FIG. 2D, the conductive structures 218A and 218B are substantially perpendicular to the top surface of the substrate 202, but the present invention is not limited to this. The conductive structures 218A and 218B can have any suitable angle with the top surface of the substrate 202. . Then, a planarization process, such as a chemical mechanical polishing process, can be performed to remove excess material and provide a flat surface.

導電結構218A和218B的深度取決於通孔214A和214B的深度,因此,如前關於通孔214A和214B的討論,導電結構218A和218B可以穿過或不穿過電性通道層208。具體而言,導電結構218A和218B的底面可以與電性通道層208的頂面齊平,或者導電結構218A和218B的底面可以在電性通道層208之中或下方。 The depth of the conductive structures 218A and 218B depends on the depth of the through holes 214A and 214B. Therefore, as discussed above with respect to the through holes 214A and 214B, the conductive structures 218A and 218B may or may not pass through the electrical channel layer 208. Specifically, the bottom surfaces of the conductive structures 218A and 218B may be flush with the top surface of the electrical channel layer 208, or the bottom surfaces of the conductive structures 218A and 218B may be in or below the electrical channel layer 208.

然後,根據一些實施例,如第2E圖所示,在電性通道層208上形成阻障層220和第二電極222。基底202、電性通道層208和第二電極222可以大致以第二方向D2堆疊。阻障層220的材料可以包含鈦、氮化鈦、氮化鎢、鉭、氮化鉭、類似的材料或前述之組合。第二電極222的材料可以包含導電材料,例如金屬或金屬氮化物。阻障層220和第二電極222的形成方法可以各自獨立地包含原子層沉積製程、化學氣相沉積製程、物理氣相沉積製程、類似的沉積製程或前述之組合。 Then, according to some embodiments, as shown in FIG. 2E, a barrier layer 220 and a second electrode 222 are formed on the electrical channel layer 208. The substrate 202, the electrical channel layer 208, and the second electrode 222 may be stacked substantially in the second direction D2. The material of the barrier layer 220 may include titanium, titanium nitride, tungsten nitride, tantalum, tantalum nitride, similar materials, or a combination of the foregoing. The material of the second electrode 222 may include a conductive material, such as metal or metal nitride. The formation method of the barrier layer 220 and the second electrode 222 may each independently include an atomic layer deposition process, a chemical vapor deposition process, a physical vapor deposition process, a similar deposition process, or a combination of the foregoing.

如第2E圖所示,第二電極222覆蓋導電結構218A和218B,並與導電結構218A和218B電性連接,使電流224從第一電極212經由電性通道層208、導電結構218A和218B流向第二電極222。雖然在第2E圖中,第二電極222同時與導電結構218A和218B電性連接,但也可以設置兩個第二電極222分別與導電結構218A和218B電性連接。 As shown in Figure 2E, the second electrode 222 covers the conductive structures 218A and 218B, and is electrically connected to the conductive structures 218A and 218B, so that the current 224 flows from the first electrode 212 through the electrical channel layer 208, the conductive structures 218A and 218B. The second electrode 222. Although in Figure 2E, the second electrode 222 is electrically connected to the conductive structures 218A and 218B at the same time, two second electrodes 222 may also be provided to be electrically connected to the conductive structures 218A and 218B, respectively.

請參照第3圖,描述形成導電絲226以形成電流224的路徑。第3圖是根據一些實施例繪示記憶體結構200的剖面示意圖。為方便說明,在第3圖中,僅繪示第一電極212、電阻轉態層210和電性通道層208,而未繪示第2E圖中的所有組件。 Please refer to FIG. 3 to describe the formation of the conductive wire 226 to form the path of the current 224. FIG. 3 is a schematic cross-sectional view of a memory structure 200 according to some embodiments. For the convenience of description, in Figure 3, only the first electrode 212, the resistance transition layer 210 and the electrical channel layer 208 are shown, but not all the components in Figure 2E.

如第3圖所示,電阻轉態層210位於第一電極212和電性通道層208之間。當對記憶體裝置200施加正向電壓時,電阻轉態層210分別在鄰接電性通道層208的兩側形成導電絲226,並且兩層電性通道層208可以產生四條導電絲226。這些導電絲226 連接第一電極212和電性通道層208,並形成如第2E圖所示之電流224的路徑。因此,本發明實施例藉由設置延伸至電性通道層208中的電阻轉態層210,可以在不增加電阻轉態層210的厚度的情況下,增加導電絲數量,進而改善資料保存。 As shown in FIG. 3, the resistance transition layer 210 is located between the first electrode 212 and the electrical channel layer 208. When a forward voltage is applied to the memory device 200, the resistive transition layer 210 forms conductive filaments 226 on both sides adjacent to the electrical channel layer 208, and the two electrical channel layers 208 can generate four conductive filaments 226. These conductive wires 226 The first electrode 212 and the electrical channel layer 208 are connected to form a current 224 path as shown in FIG. 2E. Therefore, in the embodiment of the present invention, by providing the resistance transition layer 210 extending into the electrical channel layer 208, the number of conductive wires can be increased without increasing the thickness of the resistance transition layer 210, thereby improving data preservation.

參照第2E圖,記憶體結構200包含導電結構218A和218B和兩層電性通道層208,由於電性通道層208、導電結構218A和218B的數量與電流224的數量有關,因此記憶體結構200可以產生如四個箭頭所示的電流224。可以根據需求調整導電結構和電性通道層的數量。舉例來說,可以僅在第一電極212的一側設置導電結構218A,並設置更多層電性通道層208,使得在較小面積上亦可實現多電流。 Referring to FIG. 2E, the memory structure 200 includes conductive structures 218A and 218B and two electrical channel layers 208. Since the number of electrical channel layers 208, conductive structures 218A and 218B is related to the amount of current 224, the memory structure 200 A current 224 as shown by the four arrows can be generated. The number of conductive structures and electrical channel layers can be adjusted according to requirements. For example, the conductive structure 218A can be provided only on one side of the first electrode 212, and more electrical channel layers 208 can be provided, so that multiple currents can also be realized in a smaller area.

第4圖是根據一些實施例繪示記憶體結構200的上視示意圖。如第4圖所示,在第一方向D1上,導電結構218A和218B設置於第一電極212的兩側。可以沿第三方向D3設置兩個記憶體結構200,但也可以設置一或多個記憶體結構200。第三方向D3不同於第一方向D1。第一方向D1與第三方向D3可以大致互相垂直或正交。或者,第一方向D1與第三方向D3之間的夾角可以為約80度至約90度。 FIG. 4 is a schematic top view of a memory structure 200 according to some embodiments. As shown in FIG. 4, in the first direction D1, the conductive structures 218A and 218B are disposed on both sides of the first electrode 212. Two memory structures 200 can be provided along the third direction D3, but one or more memory structures 200 can also be provided. The third direction D3 is different from the first direction D1. The first direction D1 and the third direction D3 may be substantially perpendicular or orthogonal to each other. Alternatively, the angle between the first direction D1 and the third direction D3 may be about 80 degrees to about 90 degrees.

在上視圖中,第一電極212、導電結構218A和218B為圓形,但也可以是例如橢圓形或其他形狀。阻障層216A和216B可以分別設置於導電結構218A和218B的側壁上,並環繞導電結構218A和218B。電阻轉態層210可以設置於第一電極212的 側壁上,並環繞第一電極212。藉由使電阻轉態層210環繞第一電極212,本發明實施例可以用同一層電阻轉態層210形成多個記憶體單元,而不需要分別形成多個電阻轉態層210以用於多個記憶體單元,因此可以降低成本並縮減記憶體結構200的體積。 In the upper view, the first electrode 212 and the conductive structures 218A and 218B are circular, but may also be, for example, elliptical or other shapes. The barrier layers 216A and 216B may be disposed on the sidewalls of the conductive structures 218A and 218B, respectively, and surround the conductive structures 218A and 218B. The resistance transition layer 210 may be disposed on the first electrode 212 On the sidewall and surround the first electrode 212. By making the resistance transition layer 210 surround the first electrode 212, the embodiment of the present invention can use the same layer of resistance transition layer 210 to form a plurality of memory cells, instead of forming a plurality of resistance transition layers 210 for multiple purposes. Therefore, the cost and the volume of the memory structure 200 can be reduced.

在一些實施例中,第二電極222的頂面的面積可以大於電性通道層208的頂面的面積。電阻轉態層210、阻障層216A和216B的邊緣可以位於電性通道層208的兩側壁之外,並位於第二電極222的兩側壁之內。此外,可以並列設置多個記憶體結構200,並且這些記憶體結構200可以分別包含不同數量的組件,例如不同數量的電性通道層208或導電結構218A、218B。因此,本發明實施例可以具有良好的設計彈性。 In some embodiments, the area of the top surface of the second electrode 222 may be greater than the area of the top surface of the electrical channel layer 208. The edges of the resistance transition layer 210 and the barrier layers 216A and 216B may be located outside the two sidewalls of the electrical channel layer 208 and inside the two sidewalls of the second electrode 222. In addition, multiple memory structures 200 may be arranged in parallel, and these memory structures 200 may respectively include different numbers of components, such as different numbers of electrical channel layers 208 or conductive structures 218A, 218B. Therefore, the embodiments of the present invention can have good design flexibility.

綜上所述,本發明提供的記憶體結構藉由將電阻轉態層設置成延伸至電性通道層中,可以增加導電絲數量,進而改善資料保存,而不需要增加電阻轉態層的厚度,因此可以避免增加厚度所伴隨產生的問題,例如增加蝕刻製程的難度以及增加記憶體結構的形成電壓。 In summary, the memory structure provided by the present invention can increase the number of conductive wires by arranging the resistance transition layer to extend into the electrical channel layer, thereby improving data preservation without increasing the thickness of the resistance transition layer. Therefore, the problems associated with increasing the thickness can be avoided, such as increasing the difficulty of the etching process and increasing the formation voltage of the memory structure.

此外,在一些實施例中,可以調整電性通道層及/或導電結構的數量,以產生所需的導電絲的數量,因此具有良好的設計彈性。另外,根據一些實施例,藉由增加電性通道層的數量,可以在不增加電阻轉態層的情況下形成多個記憶體單元,因此可以降低成本並縮減體積。 In addition, in some embodiments, the number of electrical channel layers and/or conductive structures can be adjusted to generate the required number of conductive filaments, thus having good design flexibility. In addition, according to some embodiments, by increasing the number of electrical channel layers, a plurality of memory cells can be formed without increasing the resistance transition layer, so that the cost and volume can be reduced.

雖然本發明實施例已以多個實施例描述如上,但這些實施例並非用於限定本發明實施例。本發明所屬技術領域中具有通常知識者應可理解,他們能以本發明實施例為基礎,做各式各樣的改變、取代和替換,以達到與在此描述的多個實施例相同的目的及/或優點。本發明所屬技術領域中具有通常知識者也可理解,此類修改或設計並未悖離本發明實施例的精神和範圍。因此,本發明之保護範圍當視後附的申請專利範圍所界定者為準。 Although the embodiments of the present invention have been described above in terms of multiple embodiments, these embodiments are not intended to limit the embodiments of the present invention. Those with ordinary knowledge in the technical field of the present invention should understand that they can make various changes, substitutions and substitutions based on the embodiments of the present invention to achieve the same purpose as the multiple embodiments described herein. And/or advantages. Those with ordinary knowledge in the technical field to which the present invention pertains can also understand that such modifications or designs do not depart from the spirit and scope of the embodiments of the present invention. Therefore, the scope of protection of the present invention shall be subject to those defined by the attached patent scope.

200:記憶體結構 200: Memory structure

202:基底 202: Base

204:接觸件 204: Contact

205:介電層 205: Dielectric layer

206:高介電常數層 206: High dielectric constant layer

208:電性通道層 208: electrical channel layer

210:電阻轉態層 210: Resistance transition layer

212:第一電極 212: first electrode

216A,216B,220:阻障層 216A, 216B, 220: barrier layer

218A,218B:導電結構 218A, 218B: conductive structure

222:第二電極 222: second electrode

224:電流 224: Current

D1:第一方向 D1: First direction

D2:第二方向 D2: second direction

Claims (14)

一種記憶體結構,包括: 一基底; 一電性通道層,設置於該基底上; 一第一電極,設置於該基底上並延伸至該電性通道層中; 一電阻轉態層,設置於該第一電極與該電性通道層之間; 一第二電極,設置於該電性通道層上;以及 一導電結構,連接該電性通道層和該第二電極。 A memory structure including: A base An electrical channel layer disposed on the substrate; A first electrode disposed on the substrate and extending into the electrical channel layer; A resistance transition layer disposed between the first electrode and the electrical channel layer; A second electrode disposed on the electrical channel layer; and A conductive structure connects the electrical channel layer and the second electrode. 如請求項1之記憶體結構,更包括複數個導電結構連接該電性通道層和該第二電極,其中該些導電結構設置於該第一電極的兩側。For example, the memory structure of claim 1, further comprising a plurality of conductive structures connecting the electrical channel layer and the second electrode, wherein the conductive structures are disposed on both sides of the first electrode. 如請求項1之記憶體結構,更包括複數個電性通道層,設置於該基底和該第二電極之間,且該第一電極穿過該些電性通道層。For example, the memory structure of claim 1, further comprising a plurality of electrical channel layers disposed between the substrate and the second electrode, and the first electrode passes through the electrical channel layers. 如請求項1之記憶體結構,其中該電阻轉態層設置於該第一電極的側壁上。Such as the memory structure of claim 1, wherein the resistance transition layer is disposed on the sidewall of the first electrode. 如請求項1之記憶體結構,更包括一介電層,設置於該第一電極與該第二電極之間,其中該導電結構穿過該介電層。For example, the memory structure of claim 1, further comprising a dielectric layer disposed between the first electrode and the second electrode, wherein the conductive structure passes through the dielectric layer. 一種記憶體結構,包括: 一基底; 一電性通道層,設置於該基底上並沿一第一方向延伸; 一第一電極,設置於該基底上並沿一第二方向延伸至該電性通道層中,該第二方向不同於該第一方向; 一電阻轉態層,設置於該第一電極與該電性通道層之間; 一第二電極,設置於該電性通道層上,其中該基底、該電性通道層和該第二電極係以該第二方向堆疊;以及 一導電結構,連接該電性通道層和該第二電極並沿該第二方向延伸。 A memory structure including: A base An electrical channel layer disposed on the substrate and extending along a first direction; A first electrode disposed on the substrate and extending into the electrical channel layer along a second direction, the second direction being different from the first direction; A resistance transition layer disposed between the first electrode and the electrical channel layer; A second electrode disposed on the electrical channel layer, wherein the substrate, the electrical channel layer and the second electrode are stacked in the second direction; and A conductive structure connects the electrical channel layer and the second electrode and extends along the second direction. 一種記憶體結構的製造方法,包括: 在一基底上形成一電性通道層; 在該基底上形成一第一電極延伸至該電性通道層中; 在該第一電極與該電性通道層之間形成一電阻轉態層;以及 在該電性通道層上形成一導電結構連接至一第二電極。 A method for manufacturing a memory structure includes: Forming an electrical channel layer on a substrate; Forming a first electrode on the substrate to extend into the electrical channel layer; Forming a resistance transition layer between the first electrode and the electrical channel layer; and A conductive structure is formed on the electrical channel layer and connected to a second electrode. 如請求項7之記憶體結構的製造方法,其中形成該第一電極和該電阻轉態層包括: 在該電性通道層中形成一溝槽; 在該溝槽的側壁上形成該電阻轉態層;以及 在該溝槽的剩餘部分形成該第一電極。 According to the manufacturing method of the memory structure of claim 7, wherein forming the first electrode and the resistance transition layer includes: Forming a trench in the electrical channel layer; Forming the resistance transition layer on the sidewall of the trench; and The first electrode is formed in the remaining part of the trench. 如請求項8之記憶體結構的製造方法,其中該溝槽暴露出該基底中的一接觸件。According to claim 8, the method of manufacturing a memory structure, wherein the groove exposes a contact in the substrate. 如請求項7之記憶體結構的製造方法,其中該導電結構的形成包括: 形成一通孔延伸至該電性通道層; 在該通孔的側壁上形成一阻障層;以及 在該通孔的剩餘部分形成該導電結構。 For example, the method for manufacturing a memory structure of claim 7, wherein the formation of the conductive structure includes: Forming a through hole extending to the electrical channel layer; Forming a barrier layer on the sidewall of the through hole; and The conductive structure is formed in the remaining part of the through hole. 如請求項7之記憶體結構的製造方法,更包括: 在該第一電極的兩側形成複數個導電結構延伸至該電性通道層;以及 在該電性通道層上形成該第二電極,其中該第二電極與該些導電結構電性連接。 For example, the manufacturing method of the memory structure of claim 7 further includes: Forming a plurality of conductive structures on both sides of the first electrode to extend to the electrical channel layer; and The second electrode is formed on the electrical channel layer, wherein the second electrode is electrically connected with the conductive structures. 如請求項7之記憶體結構的製造方法,更包括在該基底上形成複數個電性通道層,其中該第一電極延伸至該些電性通道層中。According to claim 7, the method for manufacturing a memory structure further includes forming a plurality of electrical channel layers on the substrate, wherein the first electrode extends into the electrical channel layers. 如請求項7之記憶體結構的製造方法,更包括在形成該導電結構之前,形成一介電層覆蓋該第一電極,其中該導電結構的形成包括穿過該介電層。According to claim 7, the manufacturing method of the memory structure further includes forming a dielectric layer to cover the first electrode before forming the conductive structure, wherein the forming of the conductive structure includes passing through the dielectric layer. 如請求項7之記憶體結構的製造方法,其中該電阻轉態層環繞該第一電極且露出該第一電極的頂面。According to the manufacturing method of the memory structure of claim 7, wherein the resistance transition layer surrounds the first electrode and exposes the top surface of the first electrode.
TW109129373A 2020-08-27 2020-08-27 Memory structures and methods for forming the same TWI746137B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109129373A TWI746137B (en) 2020-08-27 2020-08-27 Memory structures and methods for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109129373A TWI746137B (en) 2020-08-27 2020-08-27 Memory structures and methods for forming the same

Publications (2)

Publication Number Publication Date
TWI746137B true TWI746137B (en) 2021-11-11
TW202209721A TW202209721A (en) 2022-03-01

Family

ID=79907648

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109129373A TWI746137B (en) 2020-08-27 2020-08-27 Memory structures and methods for forming the same

Country Status (1)

Country Link
TW (1) TWI746137B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7161167B2 (en) * 2003-08-04 2007-01-09 Intel Corporation Lateral phase change memory
JP2015122478A (en) * 2013-12-20 2015-07-02 アイメックImec Three-dimensional resistive memory array

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7161167B2 (en) * 2003-08-04 2007-01-09 Intel Corporation Lateral phase change memory
JP2015122478A (en) * 2013-12-20 2015-07-02 アイメックImec Three-dimensional resistive memory array

Also Published As

Publication number Publication date
TW202209721A (en) 2022-03-01

Similar Documents

Publication Publication Date Title
US9466794B2 (en) Low form voltage resistive random access memory (RRAM)
KR101851101B1 (en) A resistive random access memory (rram) with improved forming voltage characteristics and method for making
US20110147694A1 (en) Resistive memory device and method for fabricating the same
US8987695B2 (en) Variable resistance memory device and method for fabricating the same
US20210013408A1 (en) Resistive random access memories and method for fabricating the same
TWI746137B (en) Memory structures and methods for forming the same
TWI393216B (en) Resistance memory and method for manufacturing the same
US20220190033A1 (en) Memory structures and methods for forming the same
TWI717138B (en) Resistive random access memory and manufacturing method thereof
TWI717118B (en) Resistive random access memory and manufacturing method thereof
CN114665009A (en) Memory structure and manufacturing method thereof
TWI536556B (en) Resistive random access memory and method of manufacturing the same
TWI521579B (en) Resistive memory and fabricating method thereof
CN112310278B (en) Variable resistance memory and manufacturing method thereof
WO2018123678A1 (en) Resistance variable element, semiconductor device, and manufacturing method for same
TWI724441B (en) Resistive random access memory structure and manufacturing method thereof
TWI785921B (en) Resistive random access memory and method for forming the same
TWI682533B (en) Memory devices and methods for forming the same
TWI803411B (en) Memory device and method of forming the same
CN113078258B (en) Resistive random access memory and manufacturing method thereof
CN112259682A (en) Memory device and method of manufacturing the same
TW202010094A (en) Memory device
TW202147600A (en) Resistive random access memory and method of manufacturing the same
CN112259681A (en) Resistive random access memory structure and manufacturing method thereof
CN113013327A (en) Resistive random access memory and manufacturing method thereof