TWI745256B - 經營管理系統 - Google Patents
經營管理系統 Download PDFInfo
- Publication number
- TWI745256B TWI745256B TW110113093A TW110113093A TWI745256B TW I745256 B TWI745256 B TW I745256B TW 110113093 A TW110113093 A TW 110113093A TW 110113093 A TW110113093 A TW 110113093A TW I745256 B TWI745256 B TW I745256B
- Authority
- TW
- Taiwan
- Prior art keywords
- production
- production equipment
- information
- equipment
- module
- Prior art date
Links
Images
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- General Factory Administration (AREA)
Abstract
本發明揭露一種經營管理系統,其包含雲端網絡商城、生產管理系統及資訊整合系統。雲端網路商城能供使用者操作下單,雲端網絡商城能利用機器學習演算法,建議各銷售商向生產商進行下單的商品數量。生產管理系統具有智慧排程模組及能源監測模組,而生產管理系統能使所有生產設備運行時,達到廢料最少且產量最高的狀態。能源監測模組能使所有生產設備運行時,所有生產設備的即時總用電量不超過契約用電量。資訊整合系統能提供經營決策者即時觀看銷售及生產的狀況。
Description
本發明涉及一種管理系統,特別是一種用來輔助經營決策者進行經營決策的經營管理系統。
一般來說,經銷商會自行建構的網頁,以供相關消費者進行特定商品的下單作業,而後,經銷商會依據接收的訂單及庫存量,決定是否向生產廠商下單。生產廠商則是在接收到經銷商所提出的需求後,才會生產出相對應數量的商品。
上述銷售及生產流程中,存在有諸多問題,例如:經銷商大多是依據過往經驗,來判斷各商品的庫存量,因此,容易發生經銷商有訂單但因庫存量不足,且生產廠商無法即時地提供差額數量的商品,而導致訂單如法如期交付等問題。另外,由於生產廠商無法掌握各經銷商的銷售狀況,因此,生產廠商僅能依單進行生產,為此,導致生產廠商可能無法以最高效率的方式生產商品。
一般來說,生產廠商大多是跟台電簽訂契約用電量,當總用電量超出契約用電量時,則生產廠商必須額外支付費用,相對地,當總用電量遠低於契約用電量時,則生產廠商等於是溢繳電費。因此,容易發生生產廠商依單進行生產時,發生上述兩種狀況,為此,導致生產廠商的營運成本無法得到有效的控制。
本發明公開一種經營管理系統,主要用以改善現有的經銷商的銷售資訊及生產廠商的生產資訊,必須依靠人工的方式進行整合,而使得經營決策者無法即時地掌握銷售及生產狀況。
本發明的其中一實施例公開一種經營管理系統,其包含:一雲端網絡商城、一生產管理系統及一資訊整合系統。雲端網絡商城能運行於一伺服器,雲端網絡商城包含:一銷售網頁、一雲端機器學習模組及一雲端處理模組。銷售網頁用以提供使用者操作以向一銷售商下一訂單,而銷售網頁能對應產生一訂單資訊,訂單資訊包含一銷售商資料、一商品種類、一訂單數量及一交期。雲端機器學習模組用以收集銷售網頁於一預定期間內所產生的所有訂單資訊及各個銷售商的所有商品的一即時庫存量,並利用機器學習演算法計算出各個銷售商對應的一存量基準量,且雲端機器學習模組能依據各個銷售商的存量基準量及一預定時間內所對應的至少一筆訂單資訊的訂單數量,計算出一生產建議量。雲端處理模組能將銷售網頁於一預定時間內,所產生的對應於各個銷售商的所有訂單資訊及相對應的生產建議量整合為一生產總量資訊。生產管理系統能運行於一伺服器,生產管理系統包含:一生產處理模組、多台生產設備、一智慧排程模組及一能源監測模組。生產處理模組能接收雲端網絡商城的雲端處理模組所傳遞的對應於多個銷售商的多筆生產總量資訊。多台生產設備與生產處理模組連接,生產處理模組能控制任一台生產設備生產、停止生產或是暫停生產;生產處理模組能依據各筆生產總量資訊控制相對應的其中一台生產設備生產出對應於生產總量資訊所包含的訂單數量或生產建議量的商品。智慧排程模組連接生產處理模組,智慧排程模組用以至少依據所有生產總量資訊、對應於不同商品的多筆庫存量、各個生產設備當前能生產的商品的種類、各個生產設備當前的運作狀態及各個生產設備的養護時間,以機器學習演算法安排各個生產設備的一生產排程,以使所有生產設備運行時,能達到廢料最少且產量最高的狀態;
其中,各個生產設備當前的運作狀態包含停機或是生產中;智慧排程模組能安排任一個生產設備的生產排程,而使生產設備由停機狀態轉換為運行狀態;智慧排程模組能安排任一個生產設備運作生產排程,而使生產設備由運行狀態轉換為停機狀態;智慧排程模組能安排任一個生產設備的生產排程,而使生產設備生產一預定數量的商品。能源監測模組用以收集各個生產設備運作的一即時用電量,且能源監測模組能依據多筆生產總量資訊中的所有訂單資訊、所有銷售商的生產建議量中的至少一個及各個生產設備所對應的即時用電量,以線性回歸演算法計算出各個生產設備的一預測用電量,並依據所有預測用電量、多筆生產總量資訊及一契約用電量,以機器學習演算法使所有生產設備依據生產排程運行時,所有生產設備的一即時總用電量不超過契約用電量。資訊整合系統能運行於一伺服器,資訊整合系統連接雲端網絡商城及生產管理系統,資訊整合系統能接收並呈現所有訂單資訊、各個銷售商的存量基準量及各個銷售商對應的生產建議量於一資訊整合網頁;其中,所述智慧排程模組用以至少依據所有所述生產總量資訊、對應於不同商品的多筆庫存量、各個所述生產設備當前能生產的商品的種類、各個所述生產設備當前的運作狀態、各個所述生產設備的養護時間及能更換所述生產設備的模仁的人力,以機器學習演算法安排各個所述生產設備的所述生產排程及至少一台所述生產設備的換模的順序。
綜上所述,本發明的經營管理系統通過雲端機器學習模組計算出生產建議量等設計,可以讓銷售商無需依據經驗決定不同種類的商品的庫存量,而各銷售商的庫存量可以更好地應付訂單需求;本發明的經營管理系統通過智慧排程模組等設計,可以讓多台生產設備在依據訂單生產商品時,可以達到最大產量且最少廢料的狀態;本發明的經營管理系統通過資訊整合系統等設計,可以讓經營決策者可以更好地掌握各銷售商的訂單狀態、庫存狀態、各生產設備的生產狀況以及能源使用狀況。
為能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與附圖,但是此等說明與附圖僅用來說明本發明,而非對本發明的保護範圍作任何的限制。
100:經營管理系統
1:雲端網絡商城
10:銷售網頁
11:雲端機器學習模組
12:雲端處理模組
2:生產管理系統
20:生產處理模組
21:生產設備
22:智慧排程模組
23:能源監測模組
24:壽命監控模組
26:監控模組
3:資訊整合系統
30:資訊整合網頁
圖1為本發明的經營管理系統的第一實施例的方塊示意圖。
圖2為本發明的經營管理系統的第二實施例的方塊示意圖。
於以下說明中,如有指出請參閱特定圖式或是如特定圖式所示,其僅是用以強調於後續說明中,所述及的相關內容大部份出現於該特定圖式中,但不限制該後續說明中僅可參考所述特定圖式。
請參閱圖1,本發明的經營管理系統100包含:一雲端網絡商城1、一生產管理系統2及一資訊整合系統3。雲端網絡商城1、生產管理系統2及資訊整合系統3能執行於至少台一伺服器。在實際應用中,雲端網絡商城1、生產管理系統2及資訊整合系統3可以是分別設置於各自獨立的伺服器,且三者能通過網際網路相連線。
雲端網絡商城1包含:一銷售網頁10、一雲端機器學習模組11及一雲端處理模組12。銷售網頁10用以提供使用者操作以向一銷售商下一訂單,而銷售網頁10能對應產生一訂單資訊,訂單資訊可以包含一銷售商資料、一商品種類、一訂單數量及一交期。於此所指的銷售網頁10是指用來供使用者下單使用的網頁,銷售網頁10具體所包含的內容、呈現的方式以及銷售網頁10的數量等,於此皆不加以限制。
具體來說,銷售網頁10中可以是包含有語言切換功能,而使用者可以是依據其所處地區,而通過操作銷售網頁10中的相關功能按鈕,以使銷售網頁切換至相對應地區的訂購畫面;當銷售網頁10切換至對應於使用者的對應地區的訂購畫面時,使用者則可以通過於銷售網頁10的訂購畫面觀
看到各銷售商所提供的商品,而使用者則可依據需求,對任一個銷售商下訂單。
雲端機器學習(Machine Learning)模組與雲端網絡商城1是運行於同一個伺服器,但不以此為限。雲端機器學習模組11用以收集銷售網頁10於一預定期間(例如是每小時、每天、每週、每月、每年)內所產生的所有訂單資訊及各個銷售商的所有商品的一即時庫存量,並利用機器學習演算法計算出各個銷售商對應的一存量基準量,且雲端機器學習模組11能依據各個銷售商的存量基準量及一預定時間(例如是每小時、每天、每週)內所對應的至少一筆訂單資訊的訂單數量計算出一生產建議量。
具體來說,雲端機器學習模組11可以是收集各個銷售商每天、每週、每月、每季、每年的不同商品的銷售量及不同商品的庫存量,而雲端機器學習模組11則能通過該些歷史資料,以機器學習演算法推算出銷售商於當前時點,不同種類的商品需要多少的庫存(即存量基準量),才足以應付目前及未來可能發生的訂單。也就是說,雲端機器學習模組11可以是通過機器學習演算法,預測各個銷售商在當前時點各個不同種類的商品分別可能接到的訂單量,並據以判斷各銷售商的不同種類的商品的庫存量是否足夠;當雲端機器學習模組11判斷各銷售商的任一種類的商品的庫存量不足以應付當前的訂單或未來可能發生的訂單時,雲端機器學習模組11將計算出所述生產建議量。更進一步來說,雲端機器學習模組11針對各個銷售商的不同種類的商品所計算出的生產建議量,可以讓各個銷售商的各種類的商品,不但足以應付當前的訂單,還可以應付未來可能收到的訂單。
在習知技術中,銷售商大多是憑感覺來向供應商下單,因此,常發生有訂單但庫存不足,進而發生無法如期交貨等問題,或者,可能是發生庫存太多而訂單太少的問題。上述本發明的經營管理系統100通過雲端機器學習模組11的設計,可以大幅改善各銷售商發生上述該些問題。
雲端處理模組12能將銷售網頁10於一預定時間內,所產生的對應於各個銷售商的所有訂單資訊及相對應的生產建議量整合為一生產總量資訊,且雲端處理模組12能將多筆生產總量資訊傳遞至生產管理系統2及資訊整合系統3,而生產管理系統2則可依據當前生產廠房的狀況,而控制生產設備21依據多筆生產總量資訊中的訂單資訊的訂單數量或是多筆生產總量資訊中的生產建議量進行相對應的商品生產。
舉例來說,假設銷售商接收到的訂單是100個商品A,則相對應的訂單資訊中的訂單數量則是100個,且假設雲端機器學習模組11所計算出的生產建議量是150個,則生產管理系統2接收到生產總量資訊時,將可依據當前的生產工廠的狀況,決定先生產100個商品A,以使訂單可以相對快速完成,或者,是生產150個商品A,以完成訂單所需數量外另外對相對應的銷售商的庫存補充50個商品A。
生產管理系統2包含:一生產處理模組20、多台生產設備21、一智慧排程模組22及一能源監測模組23。生產處理模組20能接收雲端網絡商城1的雲端處理模組12所傳遞的對應於多個銷售商的多筆生產總量資訊。
多台生產設備21與生產處理模組20連接,生產處理模組20能控制任一台生產設備21生產、停止生產或是暫停生產。生產處理模組20能依據各筆生產總量資訊控制相對應的其中一台生產設備21生產出對應於生產總量資訊所包含的訂單數量或生產建議量的商品。在實際應用中,多台生產設備21所分別生產的商品可以是不完全相同,且各台生產設備21例如可以是可以通過更換部分零件(例如模仁),而生產不相同規格的商品。
智慧排程模組22連接生產處理模組20,智慧排程模組22用以至少依據所有生產總量資訊、對應於不同商品的多筆庫存量、各個生產設備21當前能生產的商品的種類、各個生產設備21當前的運作狀態及各個生產設備21的養護時間,以機器學習演算法安排各個生產設備21的一生產排程,以
使所有生產設備21運行時,能達到廢料最少且產量最高的狀態。其中,智慧排程模組22可以安排任一個生產設備21的生產排程,而使生產設備21生產一預定數量的特定種類的商品;所述預定數量是智慧排程模組22利用機器學習演算法計算所得,而所述預定數量不一定是對應於某一筆訂單資訊中的訂單數量,或是某一筆生產總量資訊中的相關數量。
其中,各個生產設備21當前的運作狀態可以包含停機、生產中、暫停生產、養護中(例如包含經常性的維修保養)、關鍵零組件(例如模仁)更換中,而智慧排程模組22安排任一個生產設備21的生產排程後,可以使生產設備21對應改變當前的運作狀態。
具體來說,在實際生產廠房中存在有以下多種情況:生產處理模組20所接收的多筆生產總量資訊可能對應包含生產多種不同類型的商品,且各種商品的交期、數量不同;各個生產設備21生產不同商品所需的時間及生產效率可能不相同,而在生產處理模組20接收生產總量資訊時,可能不是所有的生產設備21都在生產(即生產設備的運作狀態不相同),且多個生產設備21所分別生產的商品的種類可能不同;廠房內的不同種類的商品的庫存也可能不相同;各個生產設備21需要養護的時間也可能不相同,而生產設備21在不養護的狀況下,可能導致生產良率變低或是生產效率變差等問題。是以,智慧排程模組22在安排每一台生產設備21的生產排程時,是通過機器學習演算法考慮上述各種狀況後,對各生產設備21進行生產排程的規劃,以使各訂單可以如期交付外,還可以使各生產設備運行時能達到廢料最少且產量最高的狀態。
能源監測模組23用以收集各個生產設備21運作的一即時用電量,且能源監測模組能依據多筆生產總量資訊中的所有訂單資訊、所有銷售商的生產建議量中的至少一個及各個生產設備21所對應的即時用電量,以線性回歸演算法計算出各個生產設備21的一預測用電量,並依據所有預測用電
量、多筆生產總量資訊及一契約用電量,以機器學習演算法使所有生產設備21依據生產排程運行時,所有生產設備21的一即時總用電量不超過契約用電量。
在實際應用中,能源監測模組23可以是能收集各個生產設備21依據相對應的至少一筆生產總量資訊生產商品所耗費的時間、總用電量、生產數量及生產良率,並以機器學習演算法計算出各個生產設備21依據當前所對應的至少一筆生產總量資訊進行生產所需的預測用電量。
更進一步來說,當生產廠商所使用的即時總電量超過契約用電量,則超出的部分將會被加收比原契約電費還高的電價,而當生產廠商所使用的即時總電量遠遠不及契約用電量時,未使用到的電量仍然會以相同電價支付;是以,本發明的經營管理系統100通過能源監測模組23的設計,可以讓所有運作中的生產設備21的所述即時總用電量,接近契約用電量,但不超過契約用電量,如此,將可以大幅降低生產廠商的生產成本。
在實際應用中,智慧排程模組22可以是依據各個生產設備21的預測用電量、各筆生產總量資訊中的訂單數量、各筆生產總量資訊中的生產建議量及契約用電量,安排各個生產設備21的生產排程,以使所有生產設備21依據生產排程運行時,在所有生產設備21的即時總用電量不超過契約用電量的前提下,生產出對應於各筆生產總量資訊中的訂單數量的商品,或者,對應於生產出各筆生產總量資訊中的生產建議量的商品,且使各生產設備21運行時能達到廢料最少且產量最高的狀態。
資訊整合系統3連接雲端網絡商城1及生產管理系統2,資訊整合系統3能接收並呈現所有訂單資訊、各個銷售商的存量基準量及各個銷售商對應的生產建議量於一資訊整合網頁30。企業經營者則可以是通過觀看資訊整合網頁30,快速地掌握各銷售商的銷售狀況及生產工廠的生產狀況,從而可以更好地做出經營決策的判斷。
依上所述,本發明的經營管理系統100通過雲端網絡商城1、生產管理系統2及資訊整合系統3等設計,可以讓經營管理者可以更即時且更好地掌握商品的銷售及生產,從而可以更好地做出經營決策。
在其中一個不同的實施例中,雲端機器學習模組11計算單一個銷售商的存量基準量,可以是依據所述銷售商的歷史銷售量、與所述銷售商同一地區的其他銷售商的歷史銷售量、與所述銷售商同一地區的其他銷售商於預定期間(例如每日、每週、每月或每季等)內所對應的所有訂單資訊,以機器學習演算法計算出單一個銷售商的存量基準量。
於前述本發明的經營管理系統100的實施例中,雲端機器學習模組11計算單一個銷售商的存量基準量時,所利用的資料基本上都是來自於所述銷售商的歷史訂單及當下的訂單,而本實施例所舉的例子則是:雲端機器學習模組11在計算單一個銷售商的存量基準量時,不但會利用所述銷售商的歷史訂單及當下的訂單外,還會利用其他相同地區的銷售商的歷史訂單及當下訂單。
舉例來說,在實際應用中,若同一地區的消費者在同一時期對於同一種商品有大量的需求,此時,可能發生原本都跟銷售商A購買商品A的消費者,在銷售商A的銷售網頁上看到商品A的庫存較少時,轉而向銷售商B下單商品A的狀況。是以,本實施例所舉的雲端機器學習模組11,通過一併將同一地區的其他銷售商的銷售狀況加入機器學習演算法的計算中,如此,最終計算出的存量基準量,將可使各銷售商都有足夠的商品供消費者下單。
在其中一個不同的實施例中,智慧排程模組22是用以至少依據所有生產總量資訊、對應於不同商品的多筆庫存量、各個生產設備21當前能生產的商品的種類、各個生產設備21當前的運作狀態、各個生產設備21
的養護時間及能更換生產設備21的模仁的人力,以機器學習演算法安排各個生產設備21的生產排程及至少一台生產設備21的換模的順序。
具體來說,在生產設備21可以是通過人力更換模仁,以生產出不同規格的商品的實施例中,智慧排程模組22在對各個生產設備21安排生產排程時,還會將各個生產設備21更換模仁所需的時間及能更換模仁的相關人員的班表一併進行考慮,如此,需要更換模仁的生產設備21,將會在能更換模仁的相關人員有上班的情況下,被安排暫停生產,以使相關人員能對該生產設備21進行模仁更換作業。
在實際應用中,智慧排程模組22安排出各個生產設備21的生產排程後,能源監測模組23將會依據智慧排程模組22對各個生產設備21所安排的生產排程,計算出所有生產設備21依照相對應的生產排程進行生產時,所有生產設備21總耗電量,且能源監測模組23在計算出,各個生產設備21的預測用電量的總和,是大於契約用電量時,能源監測模組23將通知智慧排程模組22,而智慧排程模組22將重新安排各個生產設備的生產排程,或是,智慧排程模組22將會提供另一個排程給能源監測模組22進行計算。
承上,在實際應用中,智慧排程模組22在對所有生產設備22進行生產排程的規劃時,智慧排程模組22除了紀錄最佳解外,還可以是將多組相對較佳的解,一併紀錄於儲存器中,如此,當能源監測模組23計算出智慧排程模組22所計算出的最佳解所需要耗費的總電量大於契約用電量時,智慧排程模組22則可以將原本預存於儲存器中的次佳解或是其他解傳遞至能源監測模組23進行預測用電量的計算,而智慧排程模組22將無須重新安排各個生產設備的生產排程。當然,在不同的實施例中,智慧排程模組22可以是一次傳遞多組解至能源監測模組23,而使能源監測模組23在最佳解不符合契約用電量的情況下,快速地進行次佳解的計算。
在生產設備21更換模仁後,將會是人員依據過往經驗,調整生產設備21的生產參數,直到生產設備21生產出符合規格的商品。
在不同的實施例中,智慧排程模組22可以是用以至少依據所有生產總量資訊、對應於不同商品的多筆庫存量、各個生產設備21當前能生產的商品的種類、各個生產設備21當前的運作狀態、各個生產設備21的養護時間、能更換生產設備21的模仁的人力、每個生產設備21所對應的一廢料量及各個生產設備21前一次所餘留的一完成品數量,以基因演算法安排各個生產設備21的生產排程及至少一台生產設備21的換模的順序,且利用基因演算法(genetic algorithm,GA)安排各個所述生產設備21的生產排程時,是以每一個生產設備21執行相對應的生產排程能產生最少量的廢料量為目標進行排程的規劃。
具體來說,每一台生產設備21在更換模仁後,可能因為各種因素,生產出不符合規格的商品,而生產設備21通過人工的方式進行相關參數調整後,將可生產出符合規格的商品,在此調整的過程中,生產設備21所生產出的商品的總量,將被視為所述廢料量。
在實際應用中,生產管理系統2還可以包含一監控模組26,監控模組26電性連接各個生產設備26及智慧排程模組22,監控模組26用以監控各個生產設備21的每一次更換模仁後,直到生產出符合預定規範的商品前,所生產出的所有商品的一總量,並據以將各個生產設備的總量紀錄為相對應的廢料量。
請參閱圖2,其顯示為本發明的經營管理系統的第二實施例的方塊示意圖,本實施例與前述實施例其中一個不同之處在於:生產管理系統2還可以包含一壽命監控模組24。壽命監控模組24電性連接多台生產設備21,壽命監控模組24能即時收集各台生產設備21所對應的多筆運作參數,且壽命監控模組24能依據多筆運作參數、生產數量、生產運作時間、生產良率,
以機器學習演算法預測各個生產設備21所包含的至少一個零件的一使用壽命。於此所指的運作參數可以是依據實際生產設備的不同而由使用者自行決定,但各個運作參數基本上都是會影響生產設備整體壽命的參數。
本實施例與前述實施例的其中一個不同之處在於:生產處理模組20能於任一個生產設備21所對應的至少一個使用壽命低於預設值時,停止對該生產設備21安排生產排程,且控制一警示裝置作動,生產處理模組20還會產生並傳遞一更換資訊至資訊整合系統3,資訊整合系統3能於資訊整合網頁30呈現更換資訊。所述警示裝置例如可以是安裝於生產設備的周邊,而警示裝置被控制而運作時,可以是通過發出聲音、發出特定的燈光等方式,來提醒相關人員此生產設備21中的部分零件必須進行更換。資訊整合網頁30例如可以是以文字、圖片等方式來呈現所述更換資訊。
智慧排程模組22連接壽命監控模組24,智慧排程模組22用以依據各個生產設備21的預測用電量、多筆生產總量資訊、契約用電量及各個生產設備21所對應的所有使用壽命,安排各個生產設備21的生產排程,藉此,將不會發生生產設備21在未生產出預定數量的商品的情況下,即因為部分零件需要維護,而無法繼續生產的問題。其中,智慧排程模組22能依據各個生產設備21所對應的所有使用壽命,停止對至少一台生產設備21安排所述生產排程。
綜合上述,本發明的經營管理系統可以讓相關經營決策者更好地掌握銷售及生產,而使經營決策者可以即時地做出更好的決策。本發明的經營管理系統特別適合應用於需要數位轉型的傳統公司,而傳統的公司應用本發明的經營決策系統,能更好地完成數位轉型的需求。
以上所述僅為本發明的較佳可行實施例,非因此侷限本發明的專利範圍,故舉凡運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的保護範圍內。
100:經營管理系統
1:雲端網絡商城
10:銷售網頁
11:雲端機器學習模組
12:雲端處理模組
2:生產管理系統
20:生產處理模組
21:生產設備
22:智慧排程模組
23:能源監測模組
26:監控模組
3:資訊整合系統
30:資訊整合網頁
Claims (9)
- 一種經營管理系統,其包含:一雲端網絡商城,其能運行於一伺服器,所述雲端網絡商城包含:一銷售網頁,其用以提供使用者操作以向一銷售商下一訂單,而所述銷售網頁能對應產生一訂單資訊,所述訂單資訊包含一銷售商資料、一商品種類、一訂單數量及一交期;一雲端機器學習模組,其用以收集所述銷售網頁於一預定期間內所產生的所有所述訂單資訊及各個所述銷售商的所有商品的一即時庫存量,並利用機器學習演算法計算出各個所述銷售商對應的一存量基準量,且所述雲端機器學習模組能依據各個所述銷售商的所述存量基準量及一預定時間內所對應的至少一筆所述訂單資訊的所述訂單數量,計算出一生產建議量;一雲端處理模組,其能將所述銷售網頁於一預定時間內,所產生的對應於各個所述銷售商的所有的所述訂單資訊及相對應的所述生產建議量整合為一生產總量資訊;一生產管理系統,其能運行於一伺服器,所述生產管理系統包含:一生產處理模組,其能接收所述雲端網絡商城的所述雲端處理模組所傳遞的對應於多個所述銷售商的多筆所述生產總量資訊;多台生產設備,其與所述生產處理模組連接,所述生產處理模組能控制任一台所述生產設備生產、停止生產或是暫停生產;所述生產處理模組能依據各筆所述生產總 量資訊控制相對應的其中一台所述生產設備生產出對應於所述生產總量資訊所包含的所述訂單數量或所述生產建議量的商品;一智慧排程模組,其連接所述生產處理模組,所述智慧排程模組用以至少依據所有所述生產總量資訊、對應於不同商品的多筆庫存量、各個所述生產設備當前能生產的商品的種類、各個所述生產設備當前的運作狀態及各個所述生產設備的養護時間,以機器學習演算法安排各個所述生產設備的一生產排程,以使所有所述生產設備運行時,能達到廢料最少且產量最高的狀態;其中,各個所述生產設備當前的運作狀態包含停機或是生產中;所述智慧排程模組能安排任一個所述生產設備的所述生產排程,而使所述生產設備由停機狀態轉換為運行狀態;所述智慧排程模組能安排任一個所述生產設備運作所述生產排程,而使所述生產設備由運行狀態轉換為停機狀態;所述智慧排程模組能安排任一個所述生產設備的所述生產排程,而使所述生產設備生產一預定數量的商品;一能源監測模組,其用以收集各個所述生產設備運作的一即時用電量,且所述能源監測模組能依據多筆所述生產總量資訊中的所有所述訂單資訊、所有所述銷售商的所述生產建議量中的至少一個及各個所述生產設備所對應的所述即時用電量,以線性回歸演算法計算出各個所述生產設備的一預測用電量,並依據所有所述預測用電量、多筆所述生產總量資訊及一契約用電量,以機器學習演算法使所有的所述生產設備依據所述生產排程運行時,所有所述生產設備的一即時總用電量不超過所述契約用電量; 一資訊整合系統,其能運行於一伺服器,所述資訊整合系統連接所述雲端網絡商城及所述生產管理系統,所述資訊整合系統能接收並呈現所有所述訂單資訊、各個所述銷售商的所述存量基準量及各個所述銷售商對應的所述生產建議量於一資訊整合網頁,其特徵在於:所述智慧排程模組用以至少依據所有所述生產總量資訊、對應於不同商品的多筆庫存量、各個所述生產設備當前能生產的商品的種類、各個所述生產設備當前的運作狀態、各個所述生產設備的養護時間及能更換所述生產設備的模仁的人力,以機器學習演算法安排各個所述生產設備的所述生產排程及至少一台所述生產設備的換模的順序。
- 如請求項1所述的經營管理系統,其中,所述智慧排程模組用以至少依據所有所述生產總量資訊、對應於不同商品的多筆庫存量、各個所述生產設備當前能生產的商品的種類、各個所述生產設備當前的運作狀態、各個所述生產設備的養護時間及能更換所述生產設備的模仁的人力、每個所述生產設備所對應的一廢料量及各個所述生產設備前一次所餘留的一完成品數量,以基因演算法安排各個所述生產設備的所述生產排程及至少一台所述生產設備的換模的順序,且利用基因演算法安排各個所述生產設備的所述生產排程時,是以每一個所述生產設備執行相對應的所述生產排程能產生最少量的廢料量為目標進行排程的規劃。
- 如請求項1所述的經營管理系統,其中,所述生產管理系統還包含一監控模組,所述監控模組電性連接各個所述生產設備及所述智慧排程模組,所述監控模組用以監控各個所述生產設備的每一次更換模仁後,直到生產出符合預定 規範的商品前,所生產出的所有商品的一總量,並據以將各個所述生產設備的所述總量紀錄為相對應的所述廢料量。
- 如請求項1所述的經營管理系統,其中,當所述能源監測模組將計算出各個所述生產設備依據所述智慧排程模組所安排的生產排程進行生產時,各個所述生產設備的所述預測用電量的總和,是大於所述契約用電量時,所述智慧排程模組將重新安排各個所述生產設備的所述生產排程。
- 如請求項1所述的經營管理系統,其中,所述雲端機器學習模組是依據所述銷售商的歷史銷售量、與所述銷售商同一地區的其他所述銷售商的歷史銷售量、與所述銷售商同一地區的其他所述銷售商於所述預定期間內所對應的所有所述訂單資訊,以機器學習演算法計算出單一個所述銷售商的所述存量基準量。
- 如請求項1所述的經營管理系統,其中,所述生產管理系統還包含一壽命監控模組,其電性連接多台所述生產設備,所述壽命監控模組能即時收集各台所述生產設備所對應的多筆運作參數,且所述壽命監控模組能依據多筆所述運作參數、生產數量、生產運作時間、生產良率,以機器學習演算法預測各個所述生產設備所包含的至少一個零件的一使用壽命;所述生產處理模組能於任一個所述生產設備所對應的至少一個所述使用壽命低於預設值時,產生一更換資訊,並控制一警示裝置作動,且所述生產處理模組將傳遞所述更換資訊至所述資訊整合系統,所述資訊整合系統能於所述資訊整合網頁呈現所述更換資訊;所述智慧排程模組連接所述壽命監控模組,所述智慧排程模組用以依據各個所述生產設備的所述預測用電量、多筆所述生產總量 資訊、所述契約用電量及各個所述生產設備所對應的所有所述使用壽命,安排各個所述生產設備的所述生產排程。
- 如請求項6所述的經營管理系統,其中,所述智慧排程模組能依據各個所述生產設備所對應的所有所述使用壽命,停止對至少一台所述生產設備安排所述生產排程。
- 如請求項1所述的經營管理系統,其中,所述能源監測模組能收集各個所述生產設備依據相對應的至少一筆所述生產總量資訊生產商品所耗費的時間、總用電量、生產數量及生產良率,並以機器學習演算法計算出各個所述生產設備依據當前所對應的至少一筆所述生產總量資訊進行生產所需的所述預測用電量。
- 如請求項1所述的經營管理系統,其中,所述智慧排程模組用以依據各個所述生產設備的所述預測用電量、各筆所述生產總量資訊中的所述訂單數量、各筆所述生產總量資訊中的所述生產建議量及所述契約用電量,安排各個所述生產設備的所述生產排程,以使所有的所述生產設備依據所述生產排程運行時,在所有所述生產設備的即時總用電量不超過所述契約用電量的前提下,生產出對應於各筆所述生產總量資訊中的所述訂單數量的商品,或者,對應於生產出各筆所述生產總量資訊中的所述生產建議量的商品。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110113093A TWI745256B (zh) | 2021-04-12 | 2021-04-12 | 經營管理系統 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110113093A TWI745256B (zh) | 2021-04-12 | 2021-04-12 | 經營管理系統 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI745256B true TWI745256B (zh) | 2021-11-01 |
TW202240518A TW202240518A (zh) | 2022-10-16 |
Family
ID=79907399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110113093A TWI745256B (zh) | 2021-04-12 | 2021-04-12 | 經營管理系統 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI745256B (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI269990B (en) * | 2005-02-04 | 2007-01-01 | Univ Nat Cheng Kung | Quality prognostics system and method for manufacturing processes with generic embedded devices |
TWI438707B (zh) * | 2009-06-24 | 2014-05-21 | Univ Yuan Ze | Manufacturing cost analysis system |
TWI571820B (zh) * | 2014-11-06 | 2017-02-21 | 財團法人資訊工業策進會 | 工具機耗電量預測系統與方法 |
CN107767068A (zh) * | 2017-11-02 | 2018-03-06 | 山东中烟工业有限责任公司 | 一种精益生产高级计划排产系统及方法 |
CN111295681A (zh) * | 2017-10-31 | 2020-06-16 | 甲骨文国际公司 | 使用加权混合机器学习模型进行需求预测 |
CN111626532A (zh) * | 2019-02-28 | 2020-09-04 | 湖南师范大学 | 一种基于大数据规则自学习的炼钢生产计划智能排程方法 |
TW202105103A (zh) * | 2018-12-29 | 2021-02-01 | 鴻海精密工業股份有限公司 | 加工設備誤差補正方法及系統 |
TW202107073A (zh) * | 2019-08-09 | 2021-02-16 | 大陸商蘇州康代智能科技股份有限公司 | 基於假點缺陷檢測之pcb檢修系統及檢修方法 |
TWI721358B (zh) * | 2018-12-19 | 2021-03-11 | 鴻海精密工業股份有限公司 | 設備檢修裝置、方法及電腦可讀取存儲介質 |
-
2021
- 2021-04-12 TW TW110113093A patent/TWI745256B/zh active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI269990B (en) * | 2005-02-04 | 2007-01-01 | Univ Nat Cheng Kung | Quality prognostics system and method for manufacturing processes with generic embedded devices |
TWI438707B (zh) * | 2009-06-24 | 2014-05-21 | Univ Yuan Ze | Manufacturing cost analysis system |
TWI571820B (zh) * | 2014-11-06 | 2017-02-21 | 財團法人資訊工業策進會 | 工具機耗電量預測系統與方法 |
CN111295681A (zh) * | 2017-10-31 | 2020-06-16 | 甲骨文国际公司 | 使用加权混合机器学习模型进行需求预测 |
CN107767068A (zh) * | 2017-11-02 | 2018-03-06 | 山东中烟工业有限责任公司 | 一种精益生产高级计划排产系统及方法 |
TWI721358B (zh) * | 2018-12-19 | 2021-03-11 | 鴻海精密工業股份有限公司 | 設備檢修裝置、方法及電腦可讀取存儲介質 |
TW202105103A (zh) * | 2018-12-29 | 2021-02-01 | 鴻海精密工業股份有限公司 | 加工設備誤差補正方法及系統 |
CN111626532A (zh) * | 2019-02-28 | 2020-09-04 | 湖南师范大学 | 一种基于大数据规则自学习的炼钢生产计划智能排程方法 |
TW202107073A (zh) * | 2019-08-09 | 2021-02-16 | 大陸商蘇州康代智能科技股份有限公司 | 基於假點缺陷檢測之pcb檢修系統及檢修方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202240518A (zh) | 2022-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Heinen et al. | Assessing the potential of additive manufacturing for the provision of spare parts | |
US7657480B2 (en) | Decision support system and method | |
Atamer et al. | Optimal pricing and production decisions in utilizing reusable containers | |
US8712823B2 (en) | System, method and program recording medium for supply capacity estimation | |
Das | Integrating reverse logistics into the strategic planning of a supply chain | |
JPH02155067A (ja) | 在庫警告方法及びこれを用いた在庫警告システム | |
Koken et al. | A genetic algorithm based heuristic for dynamic lot sizing problem with returns and hybrid products | |
CN111242531A (zh) | 一种原料管控方法、装置和电子设备 | |
CN111352945A (zh) | 一种库存供应链管理系统、方法、装置、设备及介质 | |
Kim et al. | Negotiation model for optimal replenishment planning considering defects under the VMI and JIT environment | |
Hoppe | Inventory optimization with SAP | |
dos Santos et al. | Demand response application in industrial scenarios: A systematic mapping of practical implementation | |
Momeni et al. | Current Order and Inventory Models in Manufacturing Environments: A Review from 2008 to 2018. | |
Boschian et al. | Contribution of simulation to the optimization of maintenance strategies for a randomly failing production system | |
Bailey et al. | MRO inventory reduction—challenges and management: a case study of the Tennessee Valley Authority | |
TWI745256B (zh) | 經營管理系統 | |
KR100730695B1 (ko) | 자동 재고관리 시스템 | |
Hamzaoui et al. | Unified strategy of production, distribution and pricing in a dual-channel supply chain using leasing option | |
JP2004035219A (ja) | サプライチェーン・マネージメント支援方法及びその装置、サプライチェーン・マネージメント支援プログラム | |
Mohammadi et al. | A mixed integer programming model formulation for solving the lot-sizing problem | |
JP2006318254A (ja) | 自動在庫管理システム | |
JP2022065913A (ja) | 生産計画作成方法およびそのシステム | |
Mohammadi et al. | A two-level supply chain with price sensitive random demand, random yield, inspection, and rework process | |
Li | A Study of Supplier Management Inventory Management | |
Zare Mehrjerdi et al. | The Stackelberg game model for vendor-managed inventory systems: a wholesale price versus a two-part tariff contract |