TWI743793B - 超音波檢查裝置及檢查方法 - Google Patents

超音波檢查裝置及檢查方法 Download PDF

Info

Publication number
TWI743793B
TWI743793B TW109116490A TW109116490A TWI743793B TW I743793 B TWI743793 B TW I743793B TW 109116490 A TW109116490 A TW 109116490A TW 109116490 A TW109116490 A TW 109116490A TW I743793 B TWI743793 B TW I743793B
Authority
TW
Taiwan
Prior art keywords
ultrasonic
ultrasonic probe
probe
blade
rotor blade
Prior art date
Application number
TW109116490A
Other languages
English (en)
Other versions
TW202100997A (zh
Inventor
上林正和
杉浦篤
増田拓郎
Original Assignee
日商三菱動力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱動力股份有限公司 filed Critical 日商三菱動力股份有限公司
Publication of TW202100997A publication Critical patent/TW202100997A/zh
Application granted granted Critical
Publication of TWI743793B publication Critical patent/TWI743793B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2694Wings or other aircraft parts

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

超音波檢查裝置(100)是用以藉由超音波來檢查轉子葉盤的裝置。 超音波檢查裝置(100)具備: 檢查部(10),其係具有往轉子葉盤的葉盤面發送超音波的超音波探頭; 第1磁石(11),其係相對於轉子葉盤的葉盤面,可移動地保持超音波探頭; 驅動輪(12),其係使超音波探頭往與轉子葉盤的半徑方向交叉的方向移動; 操舵輪(13),其係調整驅動輪(12)的移動方向; 行程感測器(14),其係檢測出相對於葉盤面保持的超音波探頭的半徑方向的位置;及 控制裝置,其係根據行程感測器(14)所檢測出的資訊,控制操舵輪(13),使超音波探頭的半徑方向的位置成為預定的範圍內。

Description

超音波檢查裝置及檢查方法
本案是有關超音波檢查裝置及檢查方法。
發電設備(plant)的蒸汽渦輪機的渦輪機轉子(turbine rotor)是在高的溫度條件下被運轉。因此,若被長期間使用,則有在接受應力的部位發生SCC(應力腐蝕龜裂)的情形。特別是在被植入動葉的葉根部的轉子葉盤(rotor disk)的葉溝部,因為應力大幅度作用,所以容易發生SCC。因此,進行在葉溝部發生的SCC的非破壞檢查。作為葉溝部的非破壞檢查的手法,由泛用性或現場施工性的觀點,有超音波探傷法常被適用的情形。
在專利文獻1記載有用以藉由超音波來檢查轉子葉盤的葉植入部的超音波檢查裝置。此裝置是具備:探針(probe),及用以使探針沿著轉子葉盤來相對移動於轉子葉盤的周方向的台車。 台車是包含: 用以行走於轉子葉盤的葉盤面之複數的轉子葉盤行走用滾輪; 用以行走於與轉子葉盤同心地設置的轉子軸的周面之複數的轉子軸行走用滾輪; 包含在對向於葉盤面的狀態下保持探針的夾具之夾具組合(holder assembly);及 用以將夾具引導於轉子軸的徑方向之至少一個的導軌。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2016-206049號公報
(發明所欲解決的課題)
可是,大型的渦輪機轉子的葉盤面,為了將來自動葉的蒸汽的流動效率佳地流至靜葉(機匣)側,而在葉盤面設置凸緣。因此,具有比其他的區域更突出的凸緣的部分是成為與鄰接的葉盤的間隙窄的狹隘部。由於專利文獻1的裝置是具備使探針移動於葉盤的周方向的台車,因此比較大型。所以,狹隘部因為與和超音波檢查裝置鄰接的渦輪機轉子干擾等的理由,有探針的周方向行走成為不安定的可能性。
並且,從在葉盤面具有凸緣的葉盤面,以超音波檢查來探傷葉溝部時,需要在凸緣的彎曲面配置超音波探頭。由於專利文獻1的裝置是未考慮配置於凸緣的彎曲面,因此從葉盤面的凸緣的彎曲面探傷葉溝部時,安裝了超音波探頭的裝置無法物理性地配置於渦輪機轉子的葉盤間,且在超音波探頭與彎曲的葉盤面之間形成有空氣層等等,有超音波的有效性的入射不能的可能性。
並且,在專利文獻1的裝置,從葉盤面彎曲的葉盤面,以超音波檢查來探傷時,為了使超音波聚集於成為探傷區域的葉溝範圍,需要準備具有以能對應於彎曲部的形狀(曲率)之方式模仿彎曲形狀的元件配列之探頭,或成為用以使超音波從一般被配列成平滑狀的元件射入至彎曲面的中間媒質的楔子(wedge)等。因此,無法任意驅使元件,有檢查的準備變繁雜的可能性。
由如此的觀點,專利文獻1的裝置是在渦輪機轉子的葉盤面為彎曲的大型的渦輪機轉子中,有不能適當地進行檢查的可能性。
本案是有鑑於如此的情事而研發者,以提供一種在渦輪機轉子的葉盤面為彎曲的大型的渦輪機轉子中,可適當地進行檢查的超音波檢查裝置及檢查方法為目的。 (用以解決課題的手段)
為了解決上述課題,本案的超音波檢查裝置及檢查方法是採用以下的手段。 本案的第1形態的超音波檢查裝置,係用以藉由超音波來檢查轉子葉盤的超音波檢查裝置,其特徵係具備: 超音波探頭,其係往前述轉子葉盤的葉盤面發送超音波; 保持部,其係相對於前述轉子葉盤的前述葉盤面,可移動地保持前述超音波探頭; 移動部,其係使前述超音波探頭往與前述轉子葉盤的半徑方向交叉的方向移動; 調整部,其係調整前述移動部的移動方向; 位置檢測部,其係檢測出相對於前述葉盤面保持的前述超音波探頭的前述半徑方向的位置;及 控制部,其係根據前述位置檢測部所檢測出的資訊,控制前述調整部,使前述超音波探頭的前述半徑方向的位置成為預定的範圍內。
上述構成,相對於轉子葉盤的葉盤面,超音波探頭可移動地被保持,且超音波探頭會藉由移動部來移動。藉此,超音波檢查裝置行走於轉子葉盤的葉盤面。又,上述構成,控制部會控制調整部,使超音波探頭的半徑方向的位置成為預定的範圍內。藉此,當超音波探頭往與轉子葉盤的半徑方向交叉的方向移動時,可將超音波探頭的半徑方向的位置設為預定的範圍內。亦即,可使超音波探頭一直維持預定的半徑方向的位置而往周方向移動。
如此,上述構成,超音波檢查裝置可行走於轉子葉盤的葉盤面周方向。因此,例如,與藉由設置被固定於轉子軸的台車等來固定超音波探頭的半徑方向的位置之構成作比較,不設置台車等的部分,可小型化。因此,例如大型的轉子葉盤等般,即使是與鄰接的轉子葉盤的距離為短的轉子葉盤,也可容易地將超音波檢查裝置設置於轉子葉盤的葉盤面。
又,本案的第1形態的超音波檢查裝置,係亦可具備驅動前述移動部的驅動部。
上述構成,超音波檢查裝置具備驅動移動部的驅動部。藉此,不需要從外部取得動力,因此超音波檢查裝置可自走於轉子葉盤的葉盤面。所以,與超音波檢查裝置從外部取得動力的構造作比較,無動力線的應對,可確保超音波檢查裝置的移動自由度。 又,由於超音波檢查裝置自走,因此不需要作業員以手動來移動超音波檢查裝置,所以作業員等的手不易到達的大型的轉子葉盤的檢查也可適用。
又,本案的第1形態的超音波檢查裝置,係前述保持部具有吸附於前述葉盤面的磁石,前述磁石亦可與前述葉盤面分離。
上述構成,磁石是與葉盤面分離間。藉此,可減低超音波檢查裝置移動時的行走阻力。
又,本案的第1形態的超音波檢查裝置,係亦可具備:檢測出藉由前述移動部來移動的距離之移動距離檢測部。
上述構成,具有檢測出移動的距離的移動距離檢測部。藉此,可掌握超音波檢查裝置的周方向的位置。因此,可將超音波探頭的檢查結果與周方向的位置建立關聯。所以,可特定在轉子葉盤產生的損傷的位置。
本案的第2形態的超音波檢查裝置,係用以藉由超音波來檢查轉子葉盤的超音波檢查裝置,其特徵係具備: 超音波探頭,其係往前述轉子葉盤的葉盤面發送超音波; 探頭側夾具,其係固定前述超音波探頭; 變形部,其係被設在前述超音波探頭與前述葉盤面之間,透過超音波,藉由推壓至前述葉盤面而可變形; 轉子葉盤側夾具,其係具有吸附於前述葉盤面的吸附部,被設在比前述探頭側夾具更靠前述轉子葉盤側,保持前述變形部;及 彈撥部,其係將前述探頭側夾具彈撥至前述轉子葉盤側。
上述構成,在超音波探頭與轉子葉盤之間設有藉由被推壓至轉子葉盤而變形的變形部。藉此,藉由將變形部推壓至轉子葉盤,變形部會按照轉子葉盤的表面而變形,因此超音波探頭與轉子葉盤之間的空氣層會被除去,可從超音波探頭往轉子葉盤適當地傳達超音波。因此,例如大型的轉子葉盤等般,即使是葉盤面為彎曲的轉子葉盤,也可藉由使變形部變形來適當地進行檢查。
又,上述構成,變形部會按照葉盤面的彎曲形態而變化,所以任一彎曲形態皆可除取空氣層。因此,例如,超音波檢查裝置移動時,有隨著移動而檢查對象的葉盤面的彎曲形態變化的情形。即使是如此的情況,也可按照葉盤面的彎曲形態的變化而變形部變化。因此,可邊使超音波檢查裝置移動,邊適當地進行檢查。
又,上述構成,探頭側夾具會藉由彈撥部來被彈撥至轉子葉盤側。藉此,可經由探頭側夾具來將變形部推壓至轉子葉盤。因此,可更適當地將變形部推壓至轉子葉盤。因此,可更適當地使變形部按照轉子葉盤的葉盤面而變形,除去空氣層。
又,本案的第2形態的超音波檢查裝置,係亦可具備變更前述超音波探頭相對於前述葉盤面的角度之角度調整部。
上述構成,具備變更超音波探頭相對於轉子葉盤的葉盤面的角度之角度調整部。藉此,藉由調整超音波探頭的角度,可準確地往目的處(檢查對象處)發送超音波。
本案的第3形態的超音波檢查裝置,係用以藉由超音波來檢查轉子葉盤的超音波檢查裝置,其特徵係具備: 第1超音波探頭,其係往前述轉子葉盤的葉盤面發送超音波; 第2超音波探頭,其係往前述葉盤面發送超音波,與前述第1超音波探頭鄰接而設; 第1傾斜手段,其係使前述第1超音波探頭往前述第2超音波探頭的相反側傾斜;及 第2傾斜手段,其係使前述第2超音波探頭往前述第1超音波探頭的相反側傾斜。
上述構成,具備:使第1超音波探頭往第2超音波探頭的相反側傾斜的第1傾斜手段,及使第2超音波探頭往第1超音波探頭的相反側傾斜的第2傾斜手段。藉此,在使第1超音波探頭及第2超音波探頭傾斜的狀態下,藉由從第1超音波探頭及第2超音波探頭發送超音波,可使從第1超音波探頭發送的超音波及從第2超音波探頭發送的超音波聚集於轉子葉盤的內部。又,藉由調整傾斜角度,可調整超音波的聚集位置的深度(離轉子葉盤的葉盤面的距離)。因此,例如大型的轉子葉盤等般,即使是葉盤面為彎曲的渦輪機,也可按照彎曲部的形狀,調整第1超音波探頭及第2超音波探頭的傾斜角度,藉此使超音波聚集於所望的位置。因此,不需要準備計算折射角的元件等來使能夠對應於彎曲部的形狀(曲率),所以可使檢查容易化。
又,藉由將第1超音波探頭的傾斜角度與第2超音波探頭的傾斜角度設為不同的角度,可將超音波的聚集位置設為第1超音波探頭側或第2超音波探頭側。亦即,將第1超音波探頭的傾斜角度設為比第2超音波探頭的傾斜角度更大時,超音波的聚集位置會成為第2超音波探頭側。又,相反地,將第2超音波探頭的傾斜角度設為比第1超音波探頭的傾斜角度更大時,超音波的聚集位置會成為第1超音波探頭側。因此,可使超音波收斂於更廣的範圍。
本案的第1形態的檢查方法,係利用上述第1形態的超音波檢查裝置,藉由超音波來檢查轉子葉盤之檢查方法,其特徵為具備: 超音波發送工程,其係從前述超音波探頭往前述轉子葉盤的前述葉盤面發送超音波; 保持工程,其係藉由前述保持部,相對於前述葉盤面,可移動地保持前述超音波探頭; 移動工程,其係藉由前述移動部,使前述超音波探頭往與前述轉子葉盤的前述半徑方向交叉的方向移動; 調整工程,其係藉由前述調整部,調整前述移動部的移動方向; 位置檢測工程,其係藉由前述位置檢測部,檢測出相對於前述葉盤面保持的前述超音波探頭的前述半徑方向的位置;及 控制工程,其係藉由前述控制部,根據在前述位置檢測工程檢測出的資訊,控制前述調整部,使前述超音波探頭的前述半徑方向的位置成為預定的範圍內。
上述構成,可邊使超音波檢查裝置行走於轉子葉盤的葉盤面周方向,邊檢查轉子葉盤。因此,例如,與藉由設置被固定於轉子軸的台車等來固定超音波探頭的半徑方向的位置之構成作比較,不設台車等的部分,可使超音波檢查裝置小型化。因此,例如大型的轉子葉盤等般,即使是與鄰接的轉子葉盤的距離為短的轉子葉盤,也可容易地將超音波檢查裝置設置於轉子葉盤的葉盤面,因此可容易地進行檢查。
又,本案的第1形態的檢查方法,亦可在前述保持工程中,相對於前述葉盤面的彎曲的面,保持前述超音波探頭。
上述構成,可使超音波探頭保持於轉子葉盤的彎曲的面。
又,本案的第1形態的檢查方法,亦可具備: 收錄工程,其係收錄藉由從前述超音波探頭發送的超音波來取得的檢查資料;及 判斷工程,其係根據在前述收錄工程收錄的前述檢查資料,判斷前述轉子葉盤是否損傷。
上述構成,可適當地判斷轉子葉盤是否損傷。 [發明的效果]
在渦輪機轉子的葉盤面為彎曲的大型的渦輪機轉子中,可適當地進行檢查。
以下,參照圖面說明有關本案的超音波檢查裝置及檢查方法的一實施形態。另外,在以下的說明中,亦將轉子葉盤的半徑方向稱為X方向,將轉子葉盤的板厚方向稱為Y方向,將轉子葉盤的接線方向(與X方向及Y方向正交的方向)稱為Z方向。
圖1是蒸汽渦輪機的縱剖面圖。如圖1所示般,蒸汽渦輪機1是具備:渦輪機轉子2,及被固定於渦輪機轉子2的動葉3。渦輪機轉子2是具有:轉子軸4,及與轉子軸4同心狀地設置的複數的轉子葉盤5。轉子葉盤5是如圖2所示般,形成有在外周部嵌入動葉3的複數的葉溝部6。
本實施形態的超音波檢查裝置100是如圖1所示般,被安裝於轉子葉盤5的葉盤面5a,用以藉由超音波來檢查葉溝部6的裝置。具體而言,藉由朝向葉溝部6發送超音波,檢查是否在葉溝部6發生SCC(應力腐蝕龜裂)等的破損之裝置。在本實施形態中,說明有關複數的轉子葉盤5之中,以大型的轉子葉盤5作為檢查對象的例子。
如圖1所示般,大型的轉子葉盤5的葉盤面5a不是平坦面。詳細,葉盤面5a是在轉子葉盤5的半徑方向彎曲,且在轉子葉盤5的周方向也彎曲,成為二維曲面形狀。在以下的說明中,只是稱「半徑方向」時,意思轉子葉盤5的半徑方向。又,只是稱「周方向」時,意思轉子葉盤5的周方向。又,亦將葉盤面5a的半徑方向的彎曲稱為「小徑R」,將周方向的彎曲稱為「大徑R」。
如圖2所示般,被形成於轉子葉盤5的各葉溝部6是從轉子葉盤5的外周面凹陷的溝,從轉子葉盤5的一側的葉盤面5a朝向另一側的葉盤面5a延伸,所謂的側進型的溝。由於如此的側進型的溝是需要配合被加工於周方向的溝間距而出現的斷續性的形狀反射回波與龜裂反射回波的識別,因此相較於延伸於周方向的溝,檢查困難。 又,各葉溝部6是如圖3所示般,被形成為直線狀的溝會與板厚方向傾斜,所謂的歪斜型的溝。複數的葉溝部6是被形成為在周方向以預定的間隔來排列。動葉3是具有所謂的聖誕樹形狀的葉根部的側進型動葉。 另外,各葉溝部6的形狀是不被限定於上述說明的形狀。例如,各葉溝部6是形成為沿著板厚方向(Y方向)而彎曲,或亦可與板厚方向(Y方向)平行形成。
超音波檢查裝置100是如圖1所示般,被形成於葉溝部6與轉子軸4之間,被安裝於比從葉盤面5a突出的突出部更靠轉子軸4側的彎曲面。又,詳細後述,超音波檢查裝置100是如圖2所示般,沿著轉子葉盤5的周方向來移動於轉子葉盤5的葉盤面5a(參照圖2箭號)。
[超音波檢查裝置] 其次,利用圖4~圖8說明有關超音波檢查裝置100的詳細。 超音波檢查裝置100是如圖4及圖5所示般,具備: 發送超音波的檢查部10; 相對於轉子葉盤5的葉盤面5a,可移動地保持檢查部10的複數的第1磁石(保持部)11; 使檢查部10往與轉子葉盤5的半徑方向交叉的方向移動之驅動輪(移動部)12; 調整驅動輪12的行進方向之操舵輪(調整部)13; 檢測出相對於葉盤面5a保持的檢查部10的半徑方向的位置之2台的行程感測器(stroke sensor)(位置檢測部)14;及 根據行程感測器14所檢測出的資訊來控制操舵輪13之控制裝置(控制部)15。 超音波檢查裝置100是邊藉由驅動輪12等來行走於轉子葉盤5周方向,邊藉由檢查部10來檢測出轉子葉盤5的周方向的全域的資料(UT資料)。 又,超音波檢查裝置100是具備:支撐驅動輪12的驅動輪支撐部16,及支撐操舵輪13的操舵輪支撐部17。驅動輪支撐部16及操舵輪支撐部17是板狀的構件,被設為板面會與轉子葉盤5的葉盤面5a對向。以下,將與葉盤面5a對向的驅動輪支撐部16及操舵輪支撐部17的板面稱為對向面16a、17a。
檢查部10是具有對轉子葉盤5的葉盤面5a發送及接收超音波的超音波探頭31。檢查部10是取得藉由超音波探頭31所取得的UT資料,往控制裝置15發送。檢查部10是被設在驅動輪支撐部16與操舵輪支撐部17之間。如圖6所示般,檢查部10是相對於驅動輪支撐部16及操舵輪支撐部17,可旋轉於滾轉方向(參照圖6的箭號A2)。所謂滾轉方向是以超音波檢查裝置100的行進方向(參照圖6箭號A1)作為中心軸線C1的旋轉方向。有關檢查部10的具體的構造是後述。
第1磁石11是在驅動輪支撐部16設置2個,2個的第1磁石11是在半徑方向排列配置。又,第1磁石11在操舵輪支撐部17也設置2個,2個的第1磁石11是在半徑方向排列配置。各第1磁石11是被固定於驅動輪支撐部16及操舵輪支撐部17的對向面16a、17a。各第1磁石11是被設為從對向面16a、17a往轉子葉盤5方向突出。4個的第1磁石11是藉由磁力來吸附於轉子葉盤5的葉盤面5a,藉此將超音波檢查裝置100保持於葉盤面5a。但,4個的第1磁石11是被配置為從葉盤面5a分離。這是因為驅動輪12及操舵輪13會比第1磁石11更突出至轉子葉盤側(參照圖5)。 各第1磁石11是分別藉由行程控制裝置18來調整離對向面16a、17a的突出的長度。如圖7所示般,在吸附於彎曲面時,行程控制裝置18會將各第1磁石11的突出長度設為對應於彎曲面的長度,藉此第1磁石11與葉盤面5a的距離會成為一定。藉此,第1磁石11可適當地吸附葉盤面5a。另外,行程控制裝置18不是必須,亦可以圖面資訊為基礎事前設定磁石設置位置,使第1磁石11與葉盤面5a的距離成為一定。
驅動輪12是被設在驅動輪支撐部16的對向面16a。驅動輪12是被配置為與轉子葉盤5的葉盤面5a接觸。驅動輪12是藉由來自馬達(圖示省略)的驅動力而旋轉驅動。另外,馬達是亦可被內藏於驅動輪12,或亦可被設在驅動輪12的外部。藉由驅動輪12旋轉驅動,超音波檢查裝置100會行走於葉盤面5a。在驅動輪12的內部是內藏有編碼器(encoder)(移動距離檢測部)。編碼器是檢測出驅動輪12的移動量。編碼器是將檢測出的資訊往控制裝置15發送。
操舵輪13是被設在操舵輪支撐部17的對向面17a。操舵輪13是被配置為與轉子葉盤5的葉盤面5a接觸。操舵輪13是以和對向面17a正交的中心軸線C2為中心可旋轉地被支撐於操舵輪支撐部17。以中心軸線C2為中心使操舵輪13旋轉,藉此調整超音波檢查裝置100的行進方向。
行程感測器14是在驅動輪支撐部16及操舵輪支撐部17各設1台。行程感測器14是檢測出轉子葉盤5的半徑方向的基準部與超音波檢查裝置100的距離。行程感測器14是將檢測出的資訊往控制裝置15發送。在圖7的例子中,適用從葉盤面5a突出的肩部5b,作為半徑方向的基準部。具體而言,藉由將設在各行程感測器14的前端的鉤部掛在肩部5b上,掌握基準的位置。另外,基準部是亦可不是肩部5b。只要是成為半徑方向的基準的部分即可,例如,亦可以轉子軸4的外周面作為基準部。
控制裝置15是例如由CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)及電腦可讀取的記憶媒體等所構成。而且,用以實現各種機能的一連串的處理是例如以程式的形式記憶於記憶媒體等,CPU會將此程式讀出至RAM等,藉由實行資訊的加工・運算處理來實現各種機能。另外,程式是亦可適用預先安裝於ROM或其他的記憶媒體的形態,或以被記憶於電腦可讀取的記憶媒體的狀態提供的形態,或者經由利用有線或無線的通訊手段來傳送的形態等。所謂電腦可讀取的記憶媒體是磁碟、光磁碟、CD-ROM、DVD-ROM、半導體記憶體等。
如圖8所示般,控制裝置15具有: 記憶部21,其係記憶:將超音波檢查裝置100設置於葉盤面5a時的超音波檢查裝置100與肩部(基準部)的距離的值(初期值); 操舵輪控制部22,其係根據行程感測器14所檢測出的資訊來控制操舵輪13的方向,使超音波檢查裝置100的半徑方向的位置成為預定的範圍內; 自己位置檢測部(移動距離檢測部)23,其係根據來自編碼器的資訊,檢測出自己位置;及 損傷掌握部24,其係掌握轉子葉盤5的損傷。
操舵輪控制部22是根據記憶部21所記憶的初期值及行程感測器14所檢測出的資訊,控制操舵輪13的旋轉的角度,使超音波檢查裝置100與肩部(基準部)的距離成為初期值。藉由如此控制操舵輪13,可一直維持預定的半徑方向的位置來行走於周方向。
自己位置檢測部23是根據來自編碼器的資訊,算出行走距離,檢測出超音波檢查裝置100的周方向的自己位置。
損傷掌握部24是取時間的同步來記錄檢查部10所檢測出的轉子葉盤5的UT資料及來自編碼器的自己位置的資訊。亦即,將UT資料與該UT資料所取得的周方向的位置建立關係。藉此,可掌握在轉子葉盤5的哪個的部分產生怎樣的損傷。
[檢查部] 其次,利用圖9~圖13來說明有關檢查部10的詳細。另外,在圖4~圖7是模式性地表示檢查部10與操舵輪支撐部17及驅動輪支撐部16的連結構造,但檢查部10與操舵輪支撐部17及驅動輪支撐部16是藉由圖9~圖13所示的固定臂30來連結。並且,在以下的說明中,將轉子葉盤5側的方向稱為一方向,有關與一方向相反方向是稱為另一方向。又,將一方向側的端部稱為一端部,將另一方向側的端部稱為另一端部。
如圖9所示般,檢查部10是具備: 往轉子葉盤5的葉盤面5a發送超音波的2個的超音波探頭31; 固定超音波探頭31的探頭側夾具32; 被設在超音波探頭31與葉盤面5a之間的軟化凝膠部(變形部)33; 被設在比探頭側夾具32更靠轉子葉盤5側,保持軟化凝膠部33的轉子葉盤側夾具34; 將探頭側夾具32彈撥至轉子葉盤5側的彈撥部35;及 變更超音波探頭31相對於葉盤面5a的角度的角度調整部36。
各超音波探頭31是往轉子葉盤5發送超音波的裝置。2個的超音波探頭31是分別經由傾斜調整機構50來固定於探頭側夾具32。有關傾斜機構的詳細是後述。2個的超音波探頭31是排列配置。詳細是在將超音波檢查裝置100往轉子葉盤5設置時,在與徑方向交叉的方向(Z方向)排列配置。在以下的說明中,將一方的超音波探頭31稱為第1超音波探頭31a,將另一方的超音波探頭31稱為第2超音波探頭31b。
探頭側夾具32是對於1對的固定臂30連接。探頭側夾具32是經由1對的固定臂30來連結至驅動輪支撐部16及操舵輪支撐部17。探頭側夾具32與固定臂30是經由角度調整部36及旋轉固定部來連接。有關角度調整部36及旋轉固定部是後述。 探頭側夾具32是具有:在另一端部固定第1超音波探頭31a的第1探頭側夾具32a,及在另一端部固定第2超音波探頭31b的第2探頭側夾具32b。第1探頭側夾具32a與第2探頭側夾具32b是以框體的中心軸線為基準,將矩形的框體分割成對稱的形狀。亦即,第1探頭側夾具32a與第2探頭側夾具32b是藉由端部彼此間接觸,如圖12所示般,構成在中心形成空間S1的大略矩形的框體。在此空間S1是充填有軟化凝膠部33(參照圖13)。探頭側夾具32的一端部是成為平面,與轉子葉盤側夾具34的另一端部抵接。在探頭側夾具32的另一端部是固定2個的超音波探頭31。以下,亦可不分開說明第1探頭側夾具32a及第2探頭側夾具32b時,只稱為探頭側夾具32。
轉子葉盤側夾具34是被設在比探頭側夾具32更靠轉子葉盤5側。轉子葉盤側夾具34的一端部是以能對應於小徑R的方式成為彎曲面。又,轉子葉盤側夾具34的另一端部是成為平面,與探頭側夾具32的一端部抵接。又,轉子葉盤側夾具34是矩形的框形狀,在中心是形成空間S2。空間S2是如圖12所示般,一側會比另一側更Z方向的長度長。空間S2的一側的端部是跨越轉子葉盤側夾具34的Z方向的全域而形成,且藉由遮蔽板37來分割於X方向。空間S2是與被形成於探頭側夾具32的中心的空間S1連通,以S1及S2來形成充填軟化凝膠部33的空間S。
如圖13所示般,轉子葉盤側夾具34是具有:吸附於葉盤面5a的第2磁石(吸附部)38,及球滾輪39。第2磁石38是被埋入至轉子葉盤側夾具34的一端部。球滾輪39是被配置為夾著第2磁石38,一部分會被埋入至轉子葉盤側夾具34的一端部,且一部分會從轉子葉盤側夾具34的一端突出。藉由球滾輪39與葉盤面5a接觸,使轉子葉盤側夾具34與葉盤面5a的相對移動順暢。
軟化凝膠部33是在推壓力不作用的狀態,保持預定的形狀,但在被推壓下變形的構件。又,軟化凝膠部33是適當地透過超音波的構件。軟化凝膠部33是被充填於空間S內。軟化凝膠部33的一端部是被形成對應於安裝超音波檢查裝置100的葉盤面5a的彎曲形態(例如小徑R)的形狀。軟化凝膠部33的一端部是被配置為比轉子葉盤側夾具34的一端部更突出至轉子葉盤5側。藉此,藉由將轉子葉盤側夾具34推壓至葉盤面5a,軟化凝膠部33也被推壓至葉盤面5a。藉由此推壓力,軟化凝膠部33變形為緊貼於葉盤面5a。
如圖9及圖11所示般,彈撥部35是具有: 被固定於固定臂30的板狀的第1托架(bracket)40; 另一端部被固定於第1托架40的彈簧41;及 被固定於探頭側夾具32的板狀的第2托架42。 彈簧41的一端部是抵接於第2托架42。 藉此,彈簧41的彈撥力會經由第2托架42來傳達至探頭側夾具32,因此探頭側夾具32會被彈撥至一端側(轉子葉盤5側)。
又,滑塊部43被固定於第1托架40。又,軌道部44被固定於探頭側夾具32。滑塊部43及軌道部44是延伸於Y方向。滑塊部43及軌道部44是被構成可卡合。藉由滑塊部43與軌道部44卡合,限制固定臂30與探頭側夾具32的X方向及Z方向的移動。
又,第2托架42的一端部是比探頭側夾具32的一端部更突出。第2托架42是此突出的部分會與轉子葉盤側夾具34的X方向的端面抵接或接近。因此,第2托架42是限制探頭側夾具32與轉子葉盤側夾具34的X方向的相對移動。
角度調整部36是如圖10所示般,被設在探頭側夾具32與固定臂30之間。角度調整部36是以相對於固定臂30沿著中心軸線C1(參照圖6)延伸的軸(shaft)(圖示省略)為中心,可旋轉探頭側夾具32。因此,藉由移動被設在角度調整部36的控制桿(lever)45,可將檢查部10設為所望的角度。又,角度調整部36是藉由將被設在固定臂30的旋轉固定用螺絲46鎖進,以橡膠材形成的旋轉固定用螺絲46的前端與軸會抵接,藉此旋轉會被限制。因此,可固定檢查部10的角度。
[傾斜調整機構] 其次,利用圖14~圖17說明有關傾斜調整機構50。 本實施形態的檢查部10是如圖14所示般,可藉由傾斜調整機構(第1傾斜手段,第2傾斜手段)50來使第1探頭側夾具32a及第1超音波探頭31a往第2探頭側夾具32b及第2超音波探頭31b的相反側傾斜所望的角度。又,可藉由傾斜調整機構50來使第2探頭側夾具32b及第2超音波探頭31b往第1探頭側夾具32a及第1超音波探頭31a的相反側傾斜所望的角度傾斜。
使第1探頭側夾具32a及第1超音波探頭31a傾斜的傾斜調整機構50與使第2探頭側夾具32b及第2超音波探頭31b傾斜的傾斜調整機構50是被構成對稱。因此,在以下是說明使第1探頭側夾具32a及第1超音波探頭31a傾斜的傾斜調整機構50,使第2探頭側夾具32b及第2超音波探頭31b傾斜的傾斜調整機構50的說明是省略。
傾斜調整機構50是如圖15A及圖15B所示般,具有貫通第1探頭側夾具32a及轉子葉盤側夾具34的2根的外側螺絲51及2根的內側螺絲52。內側螺絲52的長度是比外側螺絲51的長度更長。在各螺絲的前端是設有球體部51a、52a。2根的外側螺絲51是被配置為夾著第1超音波探頭31a。又,2根的內側螺絲52是比外側螺絲51更靠內側設置,被配置為夾著第1超音波探頭31a。
在第1探頭側夾具32a是形成有:外側螺絲51插通的2個的外側螺絲孔53,及內側螺絲52插通的2個的內側螺絲孔54。被形成於探頭側夾具32的外側螺絲孔53及內側螺絲孔54皆是貫通探頭側夾具32。外側螺絲孔53是外側螺絲51可螺合的陰螺紋會被形成於內周面。內側螺絲孔54的直徑是被形成比內側螺絲52的軸部的直徑更充分地大。亦即,內側螺絲孔54與內側螺絲52是不螺合。
在轉子葉盤側夾具34是形成有:外側螺絲51插通的2個的外側螺絲孔56,及內側螺絲52插通的2個的內側螺絲孔57。被形成於轉子葉盤側夾具34的內側螺絲孔57及外側螺絲孔56是分別形成有底狀的凹部形狀。外側螺絲孔56及內側螺絲孔57的底部是形成有插入球體部51a、52a的球狀空間56a、57a。又,外側螺絲孔56及內側螺絲孔57的內周面是傾斜為內側螺絲52及外側螺絲51可傾斜,從第2探頭側夾具32b及第2超音波探頭31b分離。
並且,在內側螺絲52是螺帽58會螺合於比第1探頭側夾具32a更靠另一側。將螺帽螺合的位置是依用途而不同。例如圖15B所示般,以接觸於第1探頭側夾具32a的方式使螺帽58螺合,如以圖15B的箭號所示般,使外側螺絲51與內側螺絲52同時旋轉時,如圖15C所示般,第1探頭側夾具32a及第1超音波探頭31a會保持平行的狀態從轉子葉盤側夾具34分離。
另一方面,如圖15D所示般,使螺帽58螺合至內側螺絲52的基端側時,藉由軟化凝膠的推壓力(參照箭號A3),僅第1探頭側夾具32a及第1超音波探頭31a的內側會移動至另一側。藉此,第1探頭側夾具32a及第1超音波探頭31a會往第2探頭側夾具32b及第2超音波探頭31b的相反側傾斜。在螺帽58與第1探頭側夾具32a接觸的位置,第1探頭側夾具32a及第1超音波探頭31a停止,因此藉由調整螺帽58的螺合的位置,可將第1探頭側夾具32a及第1超音波探頭31a的傾斜角度θ1設為所望的角度。傾斜角度θ1是第1探頭側夾具32a的一端面與轉子葉盤側夾具34的另一端面所成的角度。
並且,在第1探頭側夾具32a與轉子葉盤側夾具34之間更設置螺帽(圖示省略),使該螺帽與第1探頭側夾具32a的一端面接觸時,可藉由螺帽來支撐第1探頭側夾具32a及第1超音波探頭31a因此可不依靠軟化凝膠的推壓力,將第1探頭側夾具32a及第1超音波探頭31a固定於所望的傾斜角度θ1。
[傾斜調整機構50的變形例] 另外,傾斜調整機構50是亦可被構成為如圖16A~圖16C所示般。 在本變形例中,取代外側螺絲51,設置鉸鏈61及拉伸彈簧62的點,與圖15A~圖15D所示的構成不同。內側螺絲52的構成是與圖15A~圖15D所示的構成大致相同,因此說明省略。鉸鏈61是被固定於轉子葉盤側夾具34的Z方向的外側。又,鉸鏈61是經由拉伸彈簧62來被固定於第1探頭側夾具32a的Z方向的外側。拉伸彈簧62是將第1探頭側夾具32a往轉子葉盤側夾具34方向彈撥。
如此的構成也如圖16C所示般,使螺帽58螺合於內側螺絲52的基端側時,藉由軟化凝膠的推壓力(參照箭號A3),僅第1探頭側夾具32a及第1超音波探頭31a的內側會移動至另一側。藉此,第1探頭側夾具32a及第1超音波探頭31a會往第2探頭側夾具32b及第2超音波探頭31b的相反側傾斜。在螺帽58與第1探頭側夾具32a所接觸的位置,第1探頭側夾具32a及第1超音波探頭31a停止,因此藉由調整螺帽58的螺合的位置,可將第1探頭側夾具32a及第1超音波探頭31a的傾斜角度θ1設為所望的角度。
[檢查方法] 其次,利用圖18的流程圖詳細說明有關使用本實施形態的超音波檢查裝置100來檢查蒸汽渦輪機1的轉子葉盤5的方法。
首先,如在步驟S1所示般,對於探頭側夾具32,固定超音波探頭31(參照圖9及圖11)。 其次,如步驟S2所示般,將操舵輪13的角度θ調成為配合操舵輪13的旋轉半徑。此時,操舵輪13的原始(original)角度θ(在超音波檢查裝置100開始轉子葉盤5的檢查時的操舵輪13的角度θ)是被調整成為超音波檢查裝置100會配合旋轉半徑r而旋轉移動。詳細,角度θ是被設定為符合以下的式(1)。
θ=L/r・・・(1) 在此,L:弧長(操舵輪13與驅動輪12的分開距離) r:旋轉半徑(從轉子葉盤5的中心到操舵輪13的距離)
其次,如步驟S3所示般,將超音波檢查裝置100設置於轉子葉盤5的葉盤面5a的彎曲的面。詳細,如在圖7所示般,藉由使各第1磁石11吸附於葉盤面5a的彎曲的面,將超音波探頭31保持於葉盤面5a(保持工程)。此時,如上述般,藉由將各行程控制裝置18的突出長度設為對應於彎曲面的長度,可使第1磁石11適當地吸附於葉盤面5a。藉由使各第1磁石11吸附於葉盤面5a,操舵輪13、驅動輪12及檢查部10(詳細是探頭側夾具32)會被設置於葉盤面5a。並且,將被設在各行程感測器14的前端的鉤部掛在轉子葉盤5的肩部5b。此時,記憶部21亦可記憶超音波檢查裝置100與肩部5b的距離的值作為初期值。 另外,設置超音波檢查裝置100的面是不被限定於葉盤面5a的彎曲面。超音波檢查裝置100是亦可設置於葉盤面5a的平坦的面。
其次,如步驟S4所示般,以手動來使檢查部10旋轉於滾轉方向(參照圖6的箭號A2),調整從檢查部10的超音波探頭31發送的超音波的入射角度。此時,邊使檢查部10旋轉於滾轉方向,邊確認葉溝部6的形狀回波,調整檢查部10的方向,使從超音波探頭31發送的超音波的入射角度成為適當的角度。然後,固定檢查部10,使檢查部10的方向形成適當的方向。
其次,如步驟S5所示般,使超音波檢查裝置100行走於轉子葉盤5的葉盤面5a上(移動工程)。此時,超音波檢查裝置100是如上述般,往周方向行走於葉盤面5a。此時,超音波檢查裝置100是邊藉由自己位置檢測部23來檢測出自己的位置(位置檢測工程),邊藉由操舵輪控制部22來調整移動方向(調整工程),一直維持預定的半徑方向的位置來移動於周方向(控制工程)。並且,超音波檢查裝置100是邊行走邊從超音波探頭31往轉子葉盤5進行超音波的發送(超音波發送工程)。 超音波檢查裝置100是亦可藉由馬達等來使驅動輪12旋轉而行走。亦即,超音波檢查裝置100是亦可自走。又,超音波檢查裝置100是亦可藉由以手動來將探頭側夾具32等推於旋轉方向而進行。亦即,亦可使超音波檢查裝置100半自動掃描。
其次,如步驟S6所示般,收錄檢查資料(收錄工程)。檢查資料的收錄是可為轉子葉盤5的周方向的全域部分,或亦可為一部分。具體而言,超音波檢查裝置100是邊藉由操舵輪控制部22來一直維持預定的半徑方向的位置而移動於周方向,邊藉由自己位置檢測部23來檢測出周方向的自己位置,邊以預定的間距來收錄檢查資料。
其次,如步驟S7所示般,進行檢查3D資料的產生。具體而言,藉由合併在步驟S6收錄的複數的剖面的檢查資料及3D-CAD資料,進行檢查3D資料的產生。3D-CAD資料是亦可被記憶於記憶部21。
其次,如步驟S8所示般,進行檢查3D資料的分析。具體而言,重疊比較在步驟S7產生的檢查3D資料與3D-CAD資料,藉此進行缺陷回波的識別。亦即,進行形狀回波與雜訊的識別。如此,檢查在轉子葉盤5是否產生損傷(判斷工程)。另外,比較對象的3D-CAD資料是損傷之前的轉子葉盤5的資料,例如設計時的3D-CAD資料。 另外,缺陷回波的識別是亦可在作業者的判斷下識別。又,亦可在控制裝置15具備識別缺陷回波的識別部,藉由識別部來識別。又,亦可根據被蓄積的檢查3D資料,藉由學習的AI來識別。
若根據本實施形態,則取得以下的作用效果。 在本實施形態中,相對於轉子葉盤5的葉盤面5a,超音波檢查裝置100會被保持成可移動,且超音波檢查裝置100會藉由驅動輪12來移動。藉此,超音波檢查裝置100會行走於轉子葉盤5的葉盤面5a。並且,在本實施形態中,控制裝置15會控制操舵部,使超音波探頭31的半徑方向(X方向)的位置成為預定的位置。藉此,超音波探頭31往與轉子葉盤5的半徑方向交叉的方向(Z方向)移動時,可將超音波探頭31的半徑方向的位置設為預定的位置。亦即,可使超音波探頭31一直維持預定的半徑方向的位置而往周方向移動。
如此,在本實施形態中,超音波檢查裝置100可在轉子葉盤5的葉盤面5a行走於周方向。因此,例如,與藉由被固定於轉子軸4的台車等來固定超音波探頭31的半徑方向的位置的構成作比較,不設置台車等的部分,可小型化。因此,例如大型的轉子葉盤5等般,即使是與鄰接的轉子葉盤5的距離為短的轉子葉盤5,也可抑制與鄰接的轉子葉盤5的干擾,可容易將超音波檢查裝置100設置於轉子葉盤5的葉盤面5a。
在本實施形態中,超音波檢查裝置100具備將驅動輪12驅動的馬達。藉此,由於不需要從外部取得動力,因此超音波檢查裝置100可自走於轉子葉盤5的葉盤面5a。所以,與超音波檢查裝置100從外部取得動力的構造作比較,可使構造簡素化。 又,由於超音波檢查裝置100會自走,所以不需要作業員以手動移動超音波檢查裝置100,因此作業員等的手不易到達的大型的轉子葉盤5的檢查也可適用。
在本實施形態中,使用第1磁石11,以不與葉盤面5a接觸的方式,相對於葉盤面5a保持超音波探頭31。藉此,可減低超音波檢查裝置100移動時的行走阻力。
在本實施形態中,具備檢測出移動的距離的編碼器(encoder)。藉此,可掌握超音波檢查裝置100的周方向的位置。因此,可將超音波探頭31的檢查結果與周方向的位置建立關聯。所以,可特定在轉子葉盤5產生的損傷的位置。
在本實施形態中,在超音波探頭31與轉子葉盤5之間設有藉由被推壓至轉子葉盤5而變形的軟化凝膠部33。藉此,由於藉由將軟化凝膠部33推壓至轉子葉盤5,軟化凝膠部33會按照轉子葉盤5的表面而變形,因此可排除轉子葉盤5的表面的空氣層。由於可除去超音波探頭31與轉子葉盤5之間的空氣層,所以可適當地使超音波從超音波探頭31往轉子葉盤5傳達。因此,例如大型的轉子葉盤5等般,即使是葉盤面5a為彎曲的轉子葉盤5,也可藉由使軟化凝膠部33變形來適當地進行檢查。
並且,在本實施形態中,軟化凝膠部33會按照葉盤面5a的彎曲形態而變化,所以任一彎曲形態皆可除取空氣層。藉此,例如,在同一渦輪機轉子探傷複數的葉盤葉溝部時,若在縱剖面圖具有同樣的形狀的凸緣部的彎曲面存在於葉盤面,則檢查對象的葉盤面5a的彎曲形態(大徑R)會依葉盤上的配置探頭的位置的直徑尺寸而變化。即使是如此的情況,軟化凝膠部33也會按照葉盤面5a的彎曲形態的變化而變形。因此,即使葉盤直徑不同,也無對於同一形狀的凸緣部,變更探頭或夾具的情形,可邊使同一超音波檢查裝置100移動,邊適當地進行檢查。
而且,在本實施形態中,探頭側夾具32會藉由彈撥部35來彈撥至轉子葉盤5側。藉此,可經由探頭側夾具32來將軟化凝膠部33推壓至轉子葉盤5。所以,可更適當地將軟化凝膠部33堆壓至轉子葉盤5。因此,可更適當地使軟化凝膠部33按照轉子葉盤5的葉盤面5a而變形,除去空氣層。
在本實施形態中,具備:變更超音波探頭31相對於轉子葉盤5的葉盤面5a的角度之角度調整部36。藉此,藉由調整超音波探頭31的角度,可準確地往目的處(檢查對象處)發送超音波。
在本實施形態中,具備:使第1超音波探頭31a往第2超音波探頭31b的相反側傾斜之傾斜調整機構50,及使第2超音波探頭31b往第1超音波探頭31a的相反側傾斜之傾斜調整機構50。藉此,在使第1超音波探頭31a及第2超音波探頭31b傾斜的狀態下,從第1超音波探頭31a及第2超音波探頭31b發送超音波,可使從第1超音波探頭31a發送的超音波及從第2超音波探頭31b發送的超音波聚集於轉子葉盤5的內部。又,藉由調整傾斜角度θ1,可調整超音波的聚集位置的深度L(離轉子葉盤5的葉盤面5a的距離,參照圖13)。因此,例如大型的轉子葉盤5等般,即使是葉盤面5a為彎曲的渦輪機,也可按照彎曲部的形狀來調整第1超音波探頭31a及第2超音波探頭31b的傾斜角度θ1,藉此使超音波收斂於所望的位置。因此,不需要準備計算折射角的元件等來使能夠對應於彎曲部的形狀(曲率),所以可使檢查容易化。
傾斜調整機構50是可將傾斜角度θ1設為所望的角度。又,藉由將第1超音波探頭31a的傾斜角度與第2超音波探頭31b的傾斜角度設為不同的角度,可將超音波的聚集位置設為第1超音波探頭31a側或第2超音波探頭31b側。亦即,如圖17所示般,將第1超音波探頭31a的傾斜角度設為比第2超音波探頭31b的傾斜角度更大時,超音波的聚集位置P’會成為第2超音波探頭31b側。又,相反的,將第2超音波探頭31b的傾斜角度設為比第1超音波探頭31a的傾斜角度更大時,超音波的聚集位置會成為第1超音波探頭31a側。因此,可使超音波收斂於更廣的範圍。特別是對於如圖3所示般的歪斜型的葉溝部6,不用楔子等,可使超音波收斂於葉溝部6的延伸的方向,因此可使檢查容易化。
另外,本案是不被限定於上述各實施形態,可不脫離其要旨的範圍適當變形。 例如,超音波檢查裝置100是亦可更具備慣性計測裝置或雷射測距儀(Laser Range Finder)或聲納(Sound navigation and ranging,SONAR)等。藉由設置如此的計器類,可使超音波檢查裝置100的控制精度提升。
又,亦可以凝膠等的低摩擦材來覆蓋第1磁石11的表面,使低摩擦材接觸於葉盤面5a。如此的方法也可減低行走阻力。
又,上述實施形態是說明有關將超音波檢查裝置100固定於轉子葉盤5的葉盤面5a的彎曲的面的例子,但本案是不被限定於此。超音波檢查裝置100是亦可固定於轉子葉盤5的葉盤面5a的平坦的面。
1:蒸汽渦輪機 2:渦輪機轉子 3:動葉 4:轉子軸 5:轉子葉盤 5a:葉盤面 6:葉溝部 10:檢查部 11:第1磁石(保持部) 12:驅動輪(移動部) 13:操舵輪(調整部) 14:行程感測器(位置檢測部) 15:控制裝置(控制部) 16:驅動輪支撐部 16a:對向面 17:操舵輪支撐部 17a:對向面 18:行程控制裝置 21:記憶部 22:操舵輪控制部 23:自己位置檢測部(移動距離檢測部) 24:損傷掌握部 30:固定臂 31:超音波探頭 31a:第1超音波探頭 31b:第2超音波探頭 32:探頭側夾具 32a:第1探頭側夾具 32b:第2探頭側夾具 33:軟化凝膠部 34:轉子葉盤側夾具 35:彈撥部 36:角度調整部 37:遮蔽板 38:第2磁石 39:球滾輪 40:第1托架 41:彈簧 42:第2托架 43:滑塊部 44:軌道部 45:控制桿 46:旋轉固定用螺絲 50:傾斜調整機構(第1傾斜手段、第2傾斜手段) 51:外側螺絲 51a:球體部 52a:球體部 52:內側螺絲 53:外側螺絲孔 54:內側螺絲孔 56:外側螺絲孔 56a:球狀空間 57a:球狀空間 57:內側螺絲孔 58:螺帽 61:鉸鏈 62:拉伸彈簧 100:超音波檢查裝置
[圖1]是本案的實施形態的渦輪機轉子及動葉的縱剖面圖。 [圖2]是由正面看本案的實施形態的轉子葉盤的葉盤面的圖。 [圖3]是本案的實施形態的轉子葉盤的上面圖。 [圖4]是本案的實施形態的超音波檢查裝置的模式性的立體圖。 [圖5]是圖4的超音波檢查裝置的側面圖。 [圖6]是本案的實施形態的超音波檢查裝置的立體圖。 [圖7]是表示本案的實施形態的超音波檢查裝置的立體圖,被設置於轉子葉盤的狀態的圖。 [圖8]是本案的實施形態的控制裝置的方塊圖。 [圖9]是本案的實施形態的檢查部的立體圖。 [圖10]是本案的實施形態的檢查部的立體圖,省略臂部的圖。 [圖11]是本案的實施形態的檢查部的立體圖,省略臂部及角度調整部的圖。 [圖12]是表示本案的實施形態的檢查部的剖面的立體圖。 [圖13]是表示被設在本案的實施形態的檢查部的第2磁石及轉動滾輪的模式性的圖。 [圖14]是本案的實施形態的檢查部的模式性的側面圖。 [圖15A]是表示本案的實施形態的傾斜調整機構的模式性的圖。 [圖15B]是表示本案的實施形態的傾斜調整機構的模式性的圖。 [圖15C]是表示本案的實施形態的傾斜調整機構的模式性的圖。 [圖15D]是表示本案的實施形態的傾斜調整機構的模式性的圖。 [圖16A]是表示圖15A的變形例的模式性的圖。 [圖16B]是表示圖15A的變形例的模式性的圖。 [圖16C]是表示圖15A的變形例的模式性的圖。 [圖17]是本案的實施形態的檢查部的模式性的側面圖。 [圖18]是表示本案的實施形態的檢查方法的流程圖。
10:檢查部
11:第1磁石(保持部)
12:驅動輪(移動部)
13:操舵輪(調整部)
14:行程感測器(位置檢測部)
16:驅動輪支撐部
16a:對向面
17:操舵輪支撐部
17a:對向面
18:行程控制裝置
100:超音波檢查裝置

Claims (8)

  1. 一種超音波檢查裝置,係用以藉由超音波來檢查轉子葉盤的超音波檢查裝置,其特徵係具備:超音波探頭,其係可發送及接收超音波,往前述轉子葉盤的葉盤面發送超音波;保持部,其係相對於前述轉子葉盤的前述葉盤面,可移動地保持前述超音波探頭;移動部,其係使前述超音波探頭往與前述轉子葉盤的半徑方向交叉的方向移動;調整部,其係調整前述移動部的移動方向;位置檢測部,其係檢測出相對於前述葉盤面保持的前述超音波探頭的前述半徑方向的位置;及控制部,其係根據前述位置檢測部所檢測出的資訊,控制前述調整部,使前述超音波探頭的前述半徑方向的位置成為預定的範圍內。
  2. 如請求項1之超音波檢查裝置,其中,具備:驅動前述移動部的驅動部。
  3. 如請求項1或2之超音波檢查裝置,其中,前述保持部,係具有吸附於前述葉盤面的磁石,前述磁石,係與前述葉盤面分離。
  4. 如請求項1或2之超音波檢查裝置,其中,具備:檢測出藉由前述移動部來移動的距離之移動距離檢測部。
  5. 如請求項1或2之超音波檢查裝置,,其 中,前述超音波探頭係具有:第1超音波探頭,其係往前述轉子葉盤的葉盤面發送超音波;第2超音波探頭,其係往前述葉盤面發送超音波,與前述第1超音波探頭鄰接而設;更具備:第1傾斜手段,其係使前述第1超音波探頭往前述第2超音波探頭的相反側傾斜;及第2傾斜手段,其係使前述第2超音波探頭往前述第1超音波探頭的相反側傾斜。
  6. 一種檢查方法,係利用請求項1~5中的任一項所記載之超音波檢查裝置,藉由超音波來檢查轉子葉盤之檢查方法,其特徵為具備:超音波發送工程,其係從前述超音波探頭往前述轉子葉盤的前述葉盤面發送超音波;保持工程,其係藉由前述保持部,相對於前述葉盤面,可移動地保持前述超音波探頭;移動工程,其係藉由前述移動部,使前述超音波探頭往與前述轉子葉盤的前述半徑方向交叉的方向移動;調整工程,其係藉由前述調整部,調整前述移動部的移動方向;位置檢測工程,其係藉由前述位置檢測部,檢測出相對於前述葉盤面保持的前述超音波探頭的前述半徑方向的 位置;及控制工程,其係藉由前述控制部,根據在前述位置檢測工程檢測出的資訊,控制前述調整部,使前述超音波探頭的前述半徑方向的位置成為預定的範圍內。
  7. 如請求項6之檢查方法,其中,在前述保持工程中,相對於前述葉盤面的彎曲的面,保持前述超音波探頭。
  8. 如請求項6或7之檢查方法,其中,具備:收錄工程,其係收錄藉由從前述超音波探頭發送的超音波來取得的檢查資料;及判斷工程,其係根據在前述收錄工程收錄的前述檢查資料,判斷前述轉子葉盤是否損傷。
TW109116490A 2019-05-20 2020-05-19 超音波檢查裝置及檢查方法 TWI743793B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-094603 2019-05-20
JP2019094603A JP7391537B2 (ja) 2019-05-20 2019-05-20 超音波検査装置

Publications (2)

Publication Number Publication Date
TW202100997A TW202100997A (zh) 2021-01-01
TWI743793B true TWI743793B (zh) 2021-10-21

Family

ID=73454451

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109116490A TWI743793B (zh) 2019-05-20 2020-05-19 超音波檢查裝置及檢查方法
TW110110225A TWI759154B (zh) 2019-05-20 2020-05-19 超音波檢查裝置及檢查方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW110110225A TWI759154B (zh) 2019-05-20 2020-05-19 超音波檢查裝置及檢查方法

Country Status (7)

Country Link
US (1) US20220236232A1 (zh)
JP (1) JP7391537B2 (zh)
KR (1) KR102675406B1 (zh)
CN (1) CN113826009A (zh)
DE (1) DE112020002473T5 (zh)
TW (2) TWI743793B (zh)
WO (1) WO2020235529A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116531021A (zh) * 2023-07-03 2023-08-04 深圳华大智造云影医疗科技有限公司 超声机器人的检测控制方法及装置、电子设备和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8047078B2 (en) * 2008-06-26 2011-11-01 Kabushiki Kaisha Toshiba Flaw detection testing method
JP2012173259A (ja) * 2011-02-24 2012-09-10 Mitsubishi Heavy Ind Ltd 超音波プローブ用治具及び超音波プローブ装置、並びに、超音波プローブ用治具の製造方法
JP2013529791A (ja) * 2010-06-30 2013-07-22 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー タービン・ディスク用移動式検査装置
EP2040070B1 (en) * 2007-09-18 2015-12-02 Alstom Technology Ltd Method and apparatus for the detection of cracks in the teeth of generator rotors
JP2017191076A (ja) * 2016-04-15 2017-10-19 三菱日立パワーシステムズ株式会社 超音波探傷装置及び超音波探傷方法
WO2018006076A1 (en) * 2016-07-01 2018-01-04 General Electric Company Inspection system for turbine rotors
US10197538B2 (en) * 2016-02-02 2019-02-05 Siemens Energy, Inc. Systems and apparatus for inspection of electric generator rotor slot wedges in-situ and methods of using the same
JP6470460B1 (ja) * 2018-08-21 2019-02-13 三菱日立パワーシステムズ検査株式会社 超音波探傷方法及び探傷装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2680130B2 (ja) * 1989-06-26 1997-11-19 株式会社日立製作所 超音波検査装置
US6098022A (en) * 1997-10-17 2000-08-01 Test Devices, Inc. Detecting anomalies in rotating components
JP2009186446A (ja) * 2008-02-08 2009-08-20 Mitsubishi Heavy Ind Ltd タービンロータ翼溝部の探傷方法及び装置
JP5542534B2 (ja) 2010-06-15 2014-07-09 株式会社東芝 超音波探触子および超音波探傷方法
JP5674419B2 (ja) * 2010-11-04 2015-02-25 一般財団法人首都高速道路技術センター 自走式探傷装置
JP6261939B2 (ja) * 2013-10-23 2018-01-17 三菱重工業株式会社 可搬式の超音波探傷装置及び超音波探傷方法
JP6356508B2 (ja) * 2014-07-09 2018-07-11 株式会社東芝 超音波探傷装置
JP6395498B2 (ja) * 2014-08-12 2018-09-26 三菱重工コンプレッサ株式会社 タービンロータディスクの翼溝部の超音波探傷方法及び装置
JP6488178B2 (ja) 2015-04-24 2019-03-20 三菱日立パワーシステムズ株式会社 超音波検査装置
JP6685683B2 (ja) * 2015-09-24 2020-04-22 Ntn株式会社 等速自在継手の外側継手部材の製造方法および溶接部の超音波探傷検査方法
US10267771B2 (en) * 2016-04-22 2019-04-23 Airbus Operations Sas Method for testing a structural component of a vehicle
US20170322185A1 (en) 2016-05-09 2017-11-09 General Electric Company Machine rotor ultrasonic imaging system and related methods
CN107490623B (zh) * 2017-09-19 2018-10-02 中国航空综合技术研究所 超声扫查器及其检测方法
CN111174894B (zh) * 2020-01-19 2021-06-04 山东省科学院激光研究所 一种激光超声横波声速测量方法
US11525810B2 (en) * 2020-02-20 2022-12-13 The Boeing Company Method for ultrasonic inspection of structure having radiused surface using multi-centric radius focusing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2040070B1 (en) * 2007-09-18 2015-12-02 Alstom Technology Ltd Method and apparatus for the detection of cracks in the teeth of generator rotors
US8047078B2 (en) * 2008-06-26 2011-11-01 Kabushiki Kaisha Toshiba Flaw detection testing method
JP2013529791A (ja) * 2010-06-30 2013-07-22 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー タービン・ディスク用移動式検査装置
JP2012173259A (ja) * 2011-02-24 2012-09-10 Mitsubishi Heavy Ind Ltd 超音波プローブ用治具及び超音波プローブ装置、並びに、超音波プローブ用治具の製造方法
US10197538B2 (en) * 2016-02-02 2019-02-05 Siemens Energy, Inc. Systems and apparatus for inspection of electric generator rotor slot wedges in-situ and methods of using the same
JP2017191076A (ja) * 2016-04-15 2017-10-19 三菱日立パワーシステムズ株式会社 超音波探傷装置及び超音波探傷方法
WO2018006076A1 (en) * 2016-07-01 2018-01-04 General Electric Company Inspection system for turbine rotors
JP6470460B1 (ja) * 2018-08-21 2019-02-13 三菱日立パワーシステムズ検査株式会社 超音波探傷方法及び探傷装置

Also Published As

Publication number Publication date
US20220236232A1 (en) 2022-07-28
JP7391537B2 (ja) 2023-12-05
DE112020002473T5 (de) 2022-02-10
WO2020235529A1 (ja) 2020-11-26
KR102675406B1 (ko) 2024-06-17
TWI759154B (zh) 2022-03-21
TW202100997A (zh) 2021-01-01
CN113826009A (zh) 2021-12-21
TW202134650A (zh) 2021-09-16
JP2020190432A (ja) 2020-11-26
KR20210154216A (ko) 2021-12-20

Similar Documents

Publication Publication Date Title
KR102053800B1 (ko) 향상된 초음파 탐지
JP5801796B2 (ja) レンズ形状測定装置
TWI632342B (zh) 量測設備及量測方法
CN107817299A (zh) 一种环件自动化超声相控阵无损检测方法及装置
US20070114358A1 (en) Dynamic focusing method and appartus
TWI743793B (zh) 超音波檢查裝置及檢查方法
CN105637358A (zh) 可移动式超声波探伤装置及超声波探伤方法
JPH08208376A (ja) ルツボの計測方法
JP2011513719A (ja) 超音波による検査対象物の非破壊材料検査装置
WO2018015529A1 (fr) Procede de martelage robotise et systeme robotise pour la mise en œuvre du procede
RU2289811C2 (ru) Способ и устройство для неразрушающего тестирования или регистрации результатов измерений дискообразных или кольцеобразных объектов
JP2680130B2 (ja) 超音波検査装置
JP2020030070A (ja) 超音波探傷方法及び探傷装置
US8576974B2 (en) Apparatus for ultrasonic inspection of reactor pressure vessel
KR102404461B1 (ko) 초음파 탐상 검사장치
JP4901925B2 (ja) タービンフォーク超音波探傷装置
JP6128635B2 (ja) 加工孔の位置測定装置
CN107949787A (zh) 用于球形本体的超声检验设备
JPH03104787A (ja) 走行制御装置
JP2010032392A (ja) 変位測定装置および変位測定方法
JPS5953149A (ja) ロボツト用計測ヘツド