TWI741291B - Verification method of time-of-flight camera module and verification system thereof - Google Patents

Verification method of time-of-flight camera module and verification system thereof Download PDF

Info

Publication number
TWI741291B
TWI741291B TW108115961A TW108115961A TWI741291B TW I741291 B TWI741291 B TW I741291B TW 108115961 A TW108115961 A TW 108115961A TW 108115961 A TW108115961 A TW 108115961A TW I741291 B TWI741291 B TW I741291B
Authority
TW
Taiwan
Prior art keywords
camera module
verification
time
flight camera
marks
Prior art date
Application number
TW108115961A
Other languages
Chinese (zh)
Other versions
TW202032154A (en
Inventor
魏守德
陳韋志
吳峻豪
Original Assignee
大陸商光寶電子(廣州)有限公司
光寶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商光寶電子(廣州)有限公司, 光寶科技股份有限公司 filed Critical 大陸商光寶電子(廣州)有限公司
Publication of TW202032154A publication Critical patent/TW202032154A/en
Application granted granted Critical
Publication of TWI741291B publication Critical patent/TWI741291B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

A verification method of a time-of-flight (TOF) camera module and a verification system thereof are provided. The verification method includes: providing a calibrated TOF camera module; photographing a verification jig by the TOF camera module to obtain a plurality of sets of mark images respectively located at different distances; calculating a plurality of detected sizes of the plurality of sets of mark images according to a three-dimensional coordinates of the plurality of sets of the mark images detected by the TOF camera module; and comparing the plurality of detected sizes with actual sizes of the plurality of sets of mark images to determine whether the TOF camera module passes verification.

Description

飛行時間相機模組的驗證方法及其驗證系統Verification method and verification system of time-of-flight camera module

本發明是有關於一種驗證方法及其驗證系統,且特別是有關於一種飛行時間相機模組的驗證方法及其驗證系統。The invention relates to a verification method and a verification system, and more particularly to a verification method and a verification system for a time-of-flight camera module.

飛行時間(Time of Flight,TOF)測距是目前一種常見的主動式深度感測技術。TOF測距技術是發出經調變過的調變光(例如紅外光),調變光遇物體後反射,再根據被物體反射的調變光的反射時間差或相位差來換算被拍攝物體的距離,以產生深度資訊。Time of Flight (TOF) ranging is currently a common active depth sensing technology. TOF distance measurement technology is to emit modulated light (such as infrared light) that has been modulated, and the modulated light is reflected when it meets the object, and then the distance of the object is converted according to the reflection time difference or phase difference of the modulated light reflected by the object To generate in-depth information.

若要實際運用一飛行時間相機模組,其飛行時間相機模組的各個元件都必須經過誤差的校正。例如,透鏡的參數校正、系統性測量誤差校正、像素誤差校正等等。系統性測量誤差例如是飛行時間相機模組的拍攝模組的測量值的誤差校正。通常方法是藉由一已知光強度的光源以及一校正用的反射面,將此光源所發出的光束入射至校正用的反射面,並藉由拍攝模組取得反射後的光束。之後,藉由比較飛行時間相機模組所測得的距離與校正用反射面的實際距離,即可校正飛行時間相機模組的拍攝模組的測量值的誤差。To actually use a time-of-flight camera module, all components of the time-of-flight camera module must be corrected for errors. For example, lens parameter correction, systematic measurement error correction, pixel error correction, and so on. The systematic measurement error is, for example, the error correction of the measurement value of the shooting module of the time-of-flight camera module. The usual method is to use a light source with a known light intensity and a reflective surface for correction, the light beam emitted by this light source is incident on the reflective surface for correction, and the reflected light beam is obtained by a photographing module. Then, by comparing the distance measured by the time-of-flight camera module with the actual distance of the reflective surface for correction, the error of the measurement value of the shooting module of the time-of-flight camera module can be corrected.

再者,現有的驗證校正後的飛行時間相機模組的驗證方法是採用絕對距離驗證法。絕對距離驗證法例如是使用線性平移載台(Linear Translation Stage,LTS),將一反射面沿著線性平移載台放置在距離飛行時間相機模組不同的位置,並分別對反射面進行拍攝以取得多組量測距離。此多組量測距離與反射面在線性平移載台的真實距離的誤差值即可反應校正後的飛行時間相機模組是否通過驗證。Furthermore, the existing verification method for verifying the corrected time-of-flight camera module adopts the absolute distance verification method. The absolute distance verification method, for example, uses a linear translation stage (LTS), a reflective surface is placed along the linear translation stage at a different position from the time-of-flight camera module, and the reflective surface is photographed separately to obtain Multiple sets of measuring distance. The error values between the multiple sets of measured distances and the true distance of the reflecting surface on the linear translation stage can reflect whether the corrected time-of-flight camera module passes the verification.

然而,反射面的反射率會影響所取得的量測距離。再者,放置在線性平移載台的反射面必須是垂直於飛行時間相機模組的拍攝方向才能保證驗證後的結果具有可靠性,但實作時卻難以保證反射面是垂直於飛行時間相機模組的拍攝方向,或者若欲確保反射面垂直於拍攝方向會花費過多的時間。However, the reflectivity of the reflecting surface will affect the measured distance obtained. Furthermore, the reflective surface placed on the linear translation stage must be perpendicular to the shooting direction of the time-of-flight camera module to ensure the reliability of the verified results. However, it is difficult to ensure that the reflective surface is perpendicular to the time-of-flight camera module during implementation. The shooting direction of the group, or if you want to ensure that the reflective surface is perpendicular to the shooting direction, it will take too much time.

本發明實施例提供一種飛行時間相機模組的驗證方法及其驗證系統,其能以較方便、簡單的方式來進行驗證,且可有效縮短驗證所需的時間。The embodiment of the present invention provides a verification method and a verification system for a time-of-flight camera module, which can perform verification in a more convenient and simple manner, and can effectively shorten the time required for verification.

本發明的一實施例的飛行時間相機模組的驗證方法包括:提供一校正後的飛行時間相機模組;利用飛行時間相機模組拍攝一驗證治具,以取得多組分別位於不同距離的標記影像;利用飛行時間相機模組所測得的多組標記影像的三維座標計算出多組標記影像的多個測得尺寸;以及比較這些測得尺寸與這些組標記影像的實際尺寸,以決定飛行時間相機模組是否通過驗證。A verification method for a time-of-flight camera module according to an embodiment of the present invention includes: providing a calibrated time-of-flight camera module; using the time-of-flight camera module to photograph a verification jig to obtain multiple sets of marks located at different distances Images; use the three-dimensional coordinates of the multiple sets of marker images measured by the time-of-flight camera module to calculate the multiple measured sizes of the multiple sets of marker images; and compare these measured sizes with the actual sizes of these sets of marker images to determine the flight Whether the time camera module has passed the verification.

本發明的一實施例的飛行時間相機模組的驗證系統用以驗證一飛行時間相機模組。驗證系統包括一驗證治具以及一運算電路。運算電路用以接收來自飛行時間相機模組的訊號,其中飛行時間相機模組拍攝驗證治具,以取得多組分別位於不同距離的標記影像,並將多組標記影像的相關資訊傳遞至運算電路,運算電路用以利用飛行時間相機模組所測得的多組標記影像的三維座標計算出多組標記影像的多個測得尺寸,且比較這些測得尺寸與這些組標記影像的實際尺寸,以決定飛行時間相機模組是否通過驗證。The verification system for a time-of-flight camera module according to an embodiment of the present invention is used to verify a time-of-flight camera module. The verification system includes a verification fixture and an arithmetic circuit. The arithmetic circuit is used to receive signals from the time-of-flight camera module, where the time-of-flight camera module shoots a verification fixture to obtain multiple sets of marked images located at different distances, and transmits relevant information of the multiple sets of marked images to the calculation circuit , The arithmetic circuit is used to use the three-dimensional coordinates of the multiple sets of marker images measured by the time-of-flight camera module to calculate multiple measured sizes of the multiple sets of mark images, and to compare these measured sizes with the actual sizes of the sets of mark images, To determine whether the time-of-flight camera module passes the verification.

基於上述,由於本發明實施例的驗證方法以及驗證系統可直接拍攝擺放至不同位置的驗證治具即可決定飛行時間相機模組是否通過驗證,因此,本發明實施例的驗證方法以及驗證系統能以較方便、簡單的方式來進行驗證,且可有效縮短驗證所需的時間。Based on the above, the verification method and verification system of the embodiment of the present invention can directly photograph verification fixtures placed in different positions to determine whether the time-of-flight camera module passes verification. Therefore, the verification method and verification system of the embodiment of the present invention It can be verified in a more convenient and simple way, and the time required for verification can be effectively shortened.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

圖1A是依據本發明的一實施例的飛行時間相機模組的驗證系統的方塊圖。圖1B是依據本發明的一實施例的一種飛行時間相機模組與驗證治具的示意圖。請參照圖1A與圖1B,本實施例的飛行時間相機模組的驗證系統100用以驗證一校正後的飛行時間相機模組200。驗證系統100包括一驗證治具120以及一運算電路140。運算電路140用以接收來自飛行時間相機模組200的訊號,其中飛行時間相機模組200拍攝驗證治具120的標記122,以取得多組分別位於不同距離L的標記影像I,並將多組標記影像I的相關資訊傳遞至運算電路140,運算電路140用以利用飛行時間相機模組200所測得的多組標記影像I的三維座標計算出多組標記影像I的多個測得尺寸S,且比較這些測得尺寸S與這些組標記影像I的實際尺寸,以決定飛行時間相機模組200是否通過驗證。FIG. 1A is a block diagram of a verification system for a time-of-flight camera module according to an embodiment of the present invention. FIG. 1B is a schematic diagram of a time-of-flight camera module and verification fixture according to an embodiment of the present invention. 1A and 1B, the verification system 100 of the time-of-flight camera module of this embodiment is used to verify a corrected time-of-flight camera module 200. The verification system 100 includes a verification fixture 120 and an arithmetic circuit 140. The arithmetic circuit 140 is used to receive the signal from the time-of-flight camera module 200, where the time-of-flight camera module 200 photographs the mark 122 of the verification fixture 120 to obtain multiple sets of mark images I located at different distances L, and combine multiple sets The relevant information of the marker image I is transmitted to the arithmetic circuit 140, and the arithmetic circuit 140 is used to calculate the multiple measured sizes S of the plurality of marker images I by using the three-dimensional coordinates of the plurality of marker images I measured by the time-of-flight camera module 200 , And compare the measured size S with the actual size of the set of marked images I to determine whether the time-of-flight camera module 200 passes the verification.

上述的運算電路140例如是包括中央處理單元(central processing unit, CPU)、微處理器(microprocessor)、數位訊號處理器(digital signal processor, DSP)、可程式化控制器、可程式化邏輯裝置(programmable logic device, PLD)或其他類似裝置或這些裝置的組合,本發明並不加以限制。此外,在一實施例中,運算電路140的各功能可被實作為多個程式碼。這些程式碼會被儲存在一個記憶體中,由運算電路140來執行這些程式碼。或者,在一實施例中,運算電路140的各功能可被實作為一或多個電路。本發明並不限制用軟體或硬體的方式來實作運算電路140的各功能。The aforementioned arithmetic circuit 140 includes, for example, a central processing unit (CPU), a microprocessor (microprocessor), a digital signal processor (DSP), a programmable controller, and a programmable logic device ( The present invention is not limited by programmable logic device (PLD) or other similar devices or combinations of these devices. In addition, in an embodiment, each function of the arithmetic circuit 140 can be implemented as a plurality of program codes. These program codes are stored in a memory, and the arithmetic circuit 140 executes the program codes. Alternatively, in an embodiment, the functions of the arithmetic circuit 140 may be implemented as one or more circuits. The present invention does not limit the use of software or hardware to implement the functions of the arithmetic circuit 140.

圖2是依據本發明的一實施例的飛行時間相機模組的驗證方法的流程圖。請參照圖2,具體而言,利用本實施例的飛行時間相機模組的驗證系統100的驗證方法包括:提供一校正後的飛行時間相機模組200(步驟S100);利用飛行時間相機模組200拍攝一驗證治具120,以取得多組分別位於不同距離的標記影像I(步驟S120);利用飛行時間相機模組200所測得的多組標記影像I的三維座標計算出多組標記影像I的多個測得尺寸S(步驟S140);以及比較這些測得尺寸S與這些組標記影像I的實際尺寸,以決定飛行時間相機模組200是否通過驗證(步驟S160)。2 is a flowchart of a verification method for a time-of-flight camera module according to an embodiment of the present invention. 2, specifically, the verification method using the verification system 100 of the time-of-flight camera module of this embodiment includes: providing a corrected time-of-flight camera module 200 (step S100); using the time-of-flight camera module 200 shoot a verification jig 120 to obtain multiple sets of marked images I located at different distances (step S120); use the three-dimensional coordinates of the multiple sets of marked images I measured by the time-of-flight camera module 200 to calculate multiple sets of marked images A plurality of measured sizes S of I (step S140); and compare these measured sizes S with the actual sizes of the set of mark images I to determine whether the time-of-flight camera module 200 passes the verification (step S160).

請再參考圖1A、圖1B與圖2,步驟S120包括利用飛行時間相機模組200分別在多個不同的距離(即飛行時間相機模組200與校正治具120之間的距離L)拍攝驗證治具120,以分別取得多組位於不同距離的標記影像I(步驟S122)。舉例而言,可先將驗證治具120擺放於某一個距離(例如圖1B,使得飛行時間相機模組200與驗證治具120之間的距離為L),然後利用飛行時間相機模組200拍攝驗證治具120一次,以取得一組標記影像I。然後,再將驗證治具120擺放於另一個不同的距離,然後再利用飛行時間相機模組200再拍攝驗證治具一次,以取得另一組標記影像I。如此重複移動驗證治具120至另一個不同的位置然後對其拍攝,直到取得了所有的這些組分別位於不同距離的標記影像I。Please refer to FIG. 1A, FIG. 1B and FIG. 2 again. Step S120 includes using the time-of-flight camera module 200 to shoot at a plurality of different distances (ie, the distance L between the time-of-flight camera module 200 and the calibration fixture 120). The jig 120 is used to obtain multiple sets of marking images I located at different distances (step S122). For example, the verification jig 120 can be placed at a certain distance (for example, in FIG. 1B, so that the distance between the time-of-flight camera module 200 and the verification jig 120 is L), and then the time-of-flight camera module 200 can be used The verification jig 120 is shot once to obtain a set of marked images I. Then, the verification jig 120 is placed at a different distance, and the time-of-flight camera module 200 is used to shoot the verification jig again to obtain another set of marking images I. Repeatedly moving the verification jig 120 to another different position and then photographing it, until all these groups of marked images I located at different distances are obtained.

詳細來說,飛行時間相機模組200先發出調變光EM至驗證治具120,例如是飛行時間相機模組200的光源發出調變光EM,而調變光EM例如紅外光或其他波段的光。驗證治具120具有多個標記122。入射至多個標記122的調變光EM會被多個標記122反射,被反射的調變光EM再由飛行時間相機模組200接收而形成標記影像I。此外,飛行時間相機模組200除了可像一般相機一樣拍攝出驗證治具120上的多個標記122的影像(即二維影像)之外,還可以測得影像的各畫素之距離值(即此畫素所對應的驗證治具120上的點至飛行時間相機模組200的距離)。因此,前述飛行時間相機模組200所拍攝到的標記影像I所位於的距離即對應至驗證治具120上的標記122至飛行時間相機模組200的距離。In detail, the time-of-flight camera module 200 first emits the modulated light EM to the verification fixture 120. For example, the light source of the time-of-flight camera module 200 emits the modulated light EM, and the modulated light EM is such as infrared light or other wavelength bands. Light. The verification jig 120 has a plurality of marks 122. The modulated light EM incident on the plurality of marks 122 is reflected by the plurality of marks 122, and the reflected modulated light EM is received by the time-of-flight camera module 200 to form a mark image I. In addition, the time-of-flight camera module 200 can not only capture images (ie, two-dimensional images) of multiple marks 122 on the verification jig 120 like a general camera, but can also measure the distance value of each pixel of the image ( That is, the distance from the point on the verification fixture 120 corresponding to this pixel to the time-of-flight camera module 200). Therefore, the distance at which the mark image I captured by the aforementioned time-of-flight camera module 200 is located corresponds to the distance from the mark 122 on the verification jig 120 to the time-of-flight camera module 200.

在進行步驟S140之前,步驟S120更包括利用運算電路140從飛行時間相機模組200所拍攝到的畫面辨識出多組標記影像I。Before step S140 is performed, step S120 further includes using the arithmetic circuit 140 to identify multiple sets of marker images I from the images captured by the time-of-flight camera module 200.

接著,飛行時間相機模組200的驗證方法執行步驟S140。步驟S140包括:利用運算電路140計算出每一組標記影像I中的每一個標記影像I的幾何中心(步驟S142);以及利用每一組標記影像I中的多個標記影像I的多個幾何中心所分別對應的三維座標,計算出每一組標記影像I中的這些幾何中心的距離,其中多組標記影像I中的這些幾何中心的多個距離分別為這些測得尺寸S(步驟S144)。Next, the verification method of the time-of-flight camera module 200 executes step S140. Step S140 includes: using the arithmetic circuit 140 to calculate the geometric center of each marker image I in each group of marker images I (step S142); The three-dimensional coordinates corresponding to the centers are calculated, and the distances between the geometric centers in each group of marked images I are calculated, where the distances of the geometric centers in the multiple groups of marked images I are the measured sizes S (step S144) .

再者,步驟S160包括計算出這些測得尺寸S分別相對於這些組標記影像I的實際尺寸的多個誤差,並根據這些誤差決定飛行時間相機模組200是否通過驗證(步驟S162)。Furthermore, step S160 includes calculating a plurality of errors of the measured sizes S with respect to the actual sizes of the group of mark images I, and determining whether the time-of-flight camera module 200 passes the verification according to the errors (step S162).

也就是說,依據在上述的步驟S120所取得的標記影像I的各像素的位置及各像素對應的距離值(即深度值),可計算出驗證治具120上的標記122的幾何中心的三維座標。再藉由標記122的幾何中心的三維座標可計算出多組標記122之間的距離(即測得尺寸S)。由於多組標記122之間的實際距離(實際尺寸)是已知的,藉由比較標記122之間的測得尺寸S與實際尺寸,本實施例的驗證方法可決定飛行時間相機模組200是否通過驗證。In other words, according to the position of each pixel of the mark image I obtained in the above step S120 and the distance value (ie depth value) corresponding to each pixel, the three-dimensional geometric center of the mark 122 on the verification jig 120 can be calculated. coordinate. Then, the distance between the multiple sets of marks 122 can be calculated by the three-dimensional coordinates of the geometric center of the mark 122 (ie, the measured size S). Since the actual distance (actual size) between the multiple sets of marks 122 is known, by comparing the measured size S between the marks 122 with the actual size, the verification method of this embodiment can determine whether the time-of-flight camera module 200 is approved.

舉例來說,在一實施例中,將驗證治具120依次擺放至距離校正後的飛行時間相機模組200的m/n、2*m/n、…、n*m/n公尺處,其中n為正整數,且m公尺為飛行時間相機模組200的可量測範圍,並依次取得n組位於不同距離的標記影像I(也就是步驟S120)。接著,再依序完成步驟S140至S160,使用者即可決定校正後的飛行時間相機模組200是否通過驗證。For example, in one embodiment, the verification jig 120 is sequentially placed at m/n, 2*m/n,..., n*m/n meters of the time-of-flight camera module 200 after the distance correction. , Where n is a positive integer, and m meters is the measurable range of the time-of-flight camera module 200, and n sets of marked images I located at different distances are sequentially obtained (that is, step S120). Then, steps S140 to S160 are completed in sequence, and the user can determine whether the corrected time-of-flight camera module 200 passes the verification.

圖3是依據本發明的一實施例的另一種飛行時間相機模組與驗證治具的示意圖。請參照圖3,圖3的實施例具有6個標記122,任意兩個標記122即可作為一組標記,但在本實施例中僅簡單的示意出其中三組,此三組標記122與飛行時間相機模組200之間的距離分別是L1、L2與L3。在另一實施例中,驗證治具120可具有n組標記122,其中n為正整數。此n組標記122與飛行時間相機模組200之間的距離可不同。因此,飛行時間相機模組200可拍攝一次就能取得n組位於不同距離的標記影像I(也就是步驟S120)。接著,再依序完成步驟S140至S180,使用者即可決定校正後的飛行時間相機模組200是否通過驗證。3 is a schematic diagram of another time-of-flight camera module and verification fixture according to an embodiment of the present invention. Please refer to FIG. 3, the embodiment of FIG. 3 has 6 marks 122, any two marks 122 can be used as a set of marks, but in this embodiment, only three of them are simply shown. The distances between the time camera modules 200 are L1, L2, and L3, respectively. In another embodiment, the verification jig 120 may have n sets of marks 122, where n is a positive integer. The distance between the n groups of marks 122 and the time-of-flight camera module 200 may be different. Therefore, the time-of-flight camera module 200 can obtain n sets of marker images I located at different distances in one shot (that is, step S120). Then, steps S140 to S180 are completed in sequence, and the user can determine whether the corrected time-of-flight camera module 200 passes the verification.

圖4是依據本發明的一實施例的一種驗證治具的示意圖。圖5是依據本發明的一實施例的另一種驗證治具的示意圖。圖6是依據本發明的一實施例的另一種驗證治具的示意圖。請參照圖4、圖5與圖6,詳細來說,本發明實施例的驗證治具120a、120b、120c具有多個標記,多組標記影像I是由拍攝這些標記所得,這些標記的每一者具有一反光區,且反光區為圓形反光區。Fig. 4 is a schematic diagram of a verification jig according to an embodiment of the present invention. Fig. 5 is a schematic diagram of another verification jig according to an embodiment of the present invention. Fig. 6 is a schematic diagram of another verification jig according to an embodiment of the present invention. 4, 5, and 6, in detail, the verification jig 120a, 120b, 120c of the embodiment of the present invention has multiple marks, and multiple sets of mark images I are obtained by shooting these marks. Each of these marks There is a reflective area, and the reflective area is a circular reflective area.

例如,圖4的驗證治具120a具有標記122a1、122a2。標記122a1具有一反光區124a1與一吸光環狀區126a1,且標記122a2具有一反光區124a2與一吸光環狀區126a2。吸光環狀區126a1、126a2分別環繞反光區124a1、124a2。反光區124a1的幾何中心為C1,且反光區124a2的幾何中心為C2。兩個幾何中心C1、C2之間的距離D即為前述的實際尺寸。此外,飛行時間相機模組200對標記122a1、122a2拍攝而得到標記影像I。運算電路140再計算出標記影像I的兩個標記的幾何中心之間的距離,即可計算出測得尺寸S。因此,根據距離D與測得尺寸S的誤差可決定飛行時間相機模組200是否通過驗證。For example, the verification jig 120a of FIG. 4 has marks 122a1 and 122a2. The mark 122a1 has a light-reflecting area 124a1 and a light-absorbing ring-shaped area 126a1, and the mark 122a2 has a light-reflecting area 124a2 and a light-absorbing ring-shaped area 126a2. The light-absorbing annular regions 126a1 and 126a2 respectively surround the light-reflecting regions 124a1 and 124a2. The geometric center of the reflective area 124a1 is C1, and the geometric center of the reflective area 124a2 is C2. The distance D between the two geometric centers C1 and C2 is the aforementioned actual size. In addition, the time-of-flight camera module 200 captures the markers 122a1 and 122a2 to obtain the marker image I. The arithmetic circuit 140 then calculates the distance between the geometric centers of the two markers of the marker image I, and then the measured size S can be calculated. Therefore, according to the error between the distance D and the measured size S, it can be determined whether the time-of-flight camera module 200 passes the verification.

例如,圖5的驗證治具120b具有標記122b1、122b2。標記122b1、122b2分別具有反光區124b1、124b2。再者,驗證治具120b更具有一吸光底色區128b,這些標記122b1、122b2的多個反光區124b1、124b2分佈於吸光底色區128b中。反光區124b1的幾何中心為C1’,且反光區124b2的幾何中心為C2’。兩個幾何中心C1’、C2’之間的距離D’即為前述的實際尺寸。For example, the verification jig 120b in FIG. 5 has marks 122b1 and 122b2. The marks 122b1 and 122b2 have reflective areas 124b1 and 124b2, respectively. Furthermore, the verification jig 120b further has a light-absorbing background color area 128b, and a plurality of light-reflecting areas 124b1, 124b2 of the marks 122b1 and 122b2 are distributed in the light-absorbing background color area 128b. The geometric center of the reflective area 124b1 is C1', and the geometric center of the reflective area 124b2 is C2'. The distance D'between the two geometric centers C1' and C2' is the actual size mentioned above.

例如,圖6的驗證治具120c具有標記122c1、…、122c8。標記122c1、…、122c8分別具有反光區124c1、…、124c8。再者,驗證治具120c更具有吸光底色區128c1、128c2。標記122c1、…、122c4的反光區124c1、…、124c4分佈於吸光底色區128c1,且標記122c5、…、122c8的反光區124c5、…、124c8分佈於吸光底色區128c2中。For example, the verification jig 120c of FIG. 6 has marks 122c1, ..., 122c8. The marks 122c1, ..., 122c8 have light reflecting areas 124c1, ..., 124c8, respectively. Furthermore, the verification jig 120c further has light-absorbing background color areas 128c1 and 128c2. The reflective areas 124c1,..., 124c4 of the marks 122c1,..., 122c4 are distributed in the light-absorbing background color area 128c1, and the reflective areas 124c5,..., 124c8 of the marks 122c5,...,122c8 are distributed in the light-absorbing background color area 128c2.

值得一提的是,圖6的驗證治具120c為一凸面體。驗證治具120c具有多組分別位於不同距離的標記122c1、…、122c8。相較於上述的驗證治具120a與120b,驗證治具120c增加了可測試的距離(飛行時間相機模組200分別與標記122c1、…、122c8之間的距離)。圖6簡單地以二面體示意,本發明不以此為限。It is worth mentioning that the verification jig 120c in FIG. 6 is a convex body. The verification jig 120c has multiple sets of marks 122c1, ..., 122c8 located at different distances. Compared with the above-mentioned verification jigs 120a and 120b, the verification jig 120c increases the testable distance (the distance between the time-of-flight camera module 200 and the marks 122c1, ..., 122c8, respectively). Fig. 6 is simply a dihedron, and the present invention is not limited to this.

再者,上述的驗證治具120a、120b、120c的表面可以不用與拍攝方向垂直,這是因為運算電路140是藉由計算標記影像I的幾何中心的三維位置來得到兩個標記122的幾何中心的距離,因此不論驗證治具120的表面傾斜或垂直於拍攝方向,都可計算出測得尺寸S,如此可增進驗證的方便性,且有效地縮短驗證時間。Furthermore, the surfaces of the aforementioned verification jigs 120a, 120b, and 120c need not be perpendicular to the shooting direction. This is because the arithmetic circuit 140 obtains the geometric centers of the two markers 122 by calculating the three-dimensional position of the geometric center of the marker image I Therefore, whether the surface of the verification jig 120 is inclined or perpendicular to the shooting direction, the measured size S can be calculated, which can improve the convenience of verification and effectively shorten the verification time.

此外,為了減少雜訊(noise)對驗證的影響,在本實施例中,上述的驗證治具120a、120b、120c的反光區可為高反射率的材質,例如是具高反射率的白色塗層或是金屬鏡面。但本發明不以此為限,也可依需求而使用不同灰階的反光區。再者,吸光環狀區與吸光底色區可為高吸收率的材質,例如是具有高吸收率的黑色塗層,但本發明不以此為限。In addition, in order to reduce the influence of noise on verification, in this embodiment, the reflective areas of the verification fixtures 120a, 120b, and 120c may be made of high-reflectivity materials, such as white coatings with high reflectivity. Layer or metal mirror. However, the present invention is not limited to this, and reflective areas of different gray scales can also be used according to requirements. Furthermore, the light-absorbing ring zone and the light-absorbing base color zone can be made of a material with high absorptivity, such as a black coating with high absorptivity, but the present invention is not limited to this.

再者,為了克服驗證治具120的反光區的反光特性與飛行時間相機模組200在校正時所採用的反光面的反光特性不同所帶來的驗證結果的問題,在一實施例中,反光區的反光特性相同於飛行時間相機模組200在校正時所採用的反光面的反光特性。在另一實施例中,反光區的材質相同於飛行時間相機模組200在校正時所採用的反光面的材質。Furthermore, in order to overcome the problem of the verification result caused by the difference between the reflective characteristics of the reflective area of the verification jig 120 and the reflective surface of the time-of-flight camera module 200 during calibration, in one embodiment, the reflective The light-reflective characteristics of the zone are the same as the light-reflective characteristics of the reflective surface used in the calibration of the time-of-flight camera module 200. In another embodiment, the material of the reflective area is the same as the material of the reflective surface used by the time-of-flight camera module 200 during calibration.

綜上所述,由於本發明實施例的驗證方法以及驗證系統可直接拍攝擺放至不同位置的驗證治具即可決定飛行時間相機模組是否通過驗證,因此,本發明實施例的驗證方法以及驗證系統能以較方便、簡單的方式來進行驗證,且可有效縮短驗證所需的時間。再者,由於本發明實施例的驗證治具上的標記的反光區為圓形反光區,藉由驗證系統所計算出來的標記的幾何中心不會隨著拍攝的位置的不同而使得計算出來的幾何中心不同。驗證治具的擺放位置與角度較不會影響驗證結果。因此,採用本發明實施例的驗證治具可取得更可靠的驗證結果。In summary, since the verification method and verification system of the embodiments of the present invention can directly photograph verification fixtures placed in different positions to determine whether the time-of-flight camera module passes verification, the verification method and verification system of the embodiments of the present invention The verification system can perform verification in a more convenient and simple manner, and can effectively shorten the time required for verification. Furthermore, since the reflective area of the mark on the verification fixture of the embodiment of the present invention is a circular reflective area, the geometric center of the mark calculated by the verification system will not be calculated depending on the shooting position. The geometric centers are different. The placement and angle of the verification jig will not affect the verification result. Therefore, a more reliable verification result can be obtained by using the verification fixture of the embodiment of the present invention.

此外,由於本發明實施例的驗證治具的反光區的反光特性相同於飛行時間相機模組在校正時所採用的反光面的反光特性,或反光區的材質相同於飛行時間相機模組在校正時所採用的反光面的材質,因此,本發明實施例的驗證方法以及驗證系統可克服反光區的反光特性與反光面的反光特性不同所帶來的驗證結果的問題。再者,本發明的一實施例的驗證治具為凸面體,驗證治具具有多組分別位於不同距離的標記,增加了可測試的距離(飛行時間相機模組分別與標記之間的距離)。In addition, because the reflective area of the verification fixture of the embodiment of the present invention has the same reflective characteristics as the reflective surface of the time-of-flight camera module during calibration, or the material of the reflective area is the same as that of the time-of-flight camera module during calibration. Therefore, the verification method and verification system of the embodiments of the present invention can overcome the problem of verification results caused by the difference between the reflective characteristics of the reflective area and the reflective surface of the reflective surface. Furthermore, the verification fixture of an embodiment of the present invention is a convex body, and the verification fixture has multiple sets of marks located at different distances, which increases the testable distance (the distance between the time-of-flight camera module and the marks) .

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be subject to those defined by the attached patent application scope.

100:驗證系統 120、120a、120b、120c:驗證治具 122、122a1、122a2、122b1、122b2、122c1、122c2、122c3、122c4、122c5、122c6、122c7、122c8:標記 124a1、124a2、124b1、124b2、124c1、124c2、124c3、124c4、124c5、124c6、124c7、124c8:反光區 126a1、126a2:吸光環狀區 128b、128c1、128c2:吸光底色區 140:運算電路 200:飛行時間相機模組 C1、C1’、C2、C2’:幾何中心 D、D’、L、L1、L2、L3:距離 EM:調變光 I:標記影像 S:測得尺寸 S100、S120、S122、S140、S142、S144、S160、S162:步驟100: verification system 120, 120a, 120b, 120c: Verification fixture 122, 122a1, 122a2, 122b1, 122b2, 122c1, 122c2, 122c3, 122c4, 122c5, 122c6, 122c7, 122c8: mark 124a1, 124a2, 124b1, 124b2, 124c1, 124c2, 124c3, 124c4, 124c5, 124c6, 124c7, 124c8: reflective area 126a1, 126a2: light-absorbing ring area 128b, 128c1, 128c2: light-absorbing background color area 140: arithmetic circuit 200: Time-of-flight camera module C1, C1’, C2, C2’: geometric center D, D’, L, L1, L2, L3: distance EM: Modulated light I: Mark the image S: Measured size S100, S120, S122, S140, S142, S144, S160, S162: steps

圖1A是依據本發明的一實施例的飛行時間相機模組的驗證系統的方塊圖。 圖1B是依據本發明的一實施例的一種飛行時間相機模組與驗證治具的示意圖。 圖2是依據本發明的一實施例的飛行時間相機模組的驗證方法的流程圖。 圖3是依據本發明的一實施例的另一種飛行時間相機模組與驗證治具的示意圖。 圖4是依據本發明的一實施例的一種驗證治具的示意圖。 圖5是依據本發明的一實施例的另一種驗證治具的示意圖。 圖6是依據本發明的一實施例的另一種驗證治具的示意圖。FIG. 1A is a block diagram of a verification system for a time-of-flight camera module according to an embodiment of the present invention. FIG. 1B is a schematic diagram of a time-of-flight camera module and verification fixture according to an embodiment of the present invention. 2 is a flowchart of a verification method for a time-of-flight camera module according to an embodiment of the present invention. 3 is a schematic diagram of another time-of-flight camera module and verification fixture according to an embodiment of the present invention. Fig. 4 is a schematic diagram of a verification jig according to an embodiment of the present invention. Fig. 5 is a schematic diagram of another verification jig according to an embodiment of the present invention. Fig. 6 is a schematic diagram of another verification jig according to an embodiment of the present invention.

S100、S120、S122、S140、S142、S144、S160、S162:步驟 S100, S120, S122, S140, S142, S144, S160, S162: steps

Claims (16)

一種飛行時間相機模組的驗證方法,包括: 提供一驗證後的飛行時間相機模組; 利用該飛行時間相機模組拍攝一驗證治具,以取得多組分別位於不同距離的標記影像; 利用該飛行時間相機模組所測得的該多組標記影像的三維座標計算出該多組標記影像的多個測得尺寸;以及 比較該些測得尺寸與該些組標記影像的實際尺寸,以決定該飛行時間相機模組是否通過驗證。A verification method for a time-of-flight camera module includes: Provide a verified time-of-flight camera module; Use the time-of-flight camera module to shoot a verification fixture to obtain multiple sets of marked images located at different distances; Using the three-dimensional coordinates of the multiple sets of marked images measured by the time-of-flight camera module to calculate multiple measured sizes of the multiple sets of marked images; and The measured sizes are compared with the actual sizes of the sets of marked images to determine whether the time-of-flight camera module passes the verification. 如申請專利範圍第1項所述的飛行時間相機模組的驗證方法,其中利用該飛行時間相機模組拍攝該驗證治具的步驟包括利用該飛行時間相機模組分別在多個不同的距離拍攝該驗證治具,以分別取得該多組位於不同距離的標記影像。The verification method for a time-of-flight camera module as described in item 1 of the scope of patent application, wherein the step of using the time-of-flight camera module to photograph the verification fixture includes using the time-of-flight camera module to shoot at a plurality of different distances respectively The verification fixture is used to obtain the multiple sets of marked images located at different distances. 如申請專利範圍第1項所述的飛行時間相機模組的驗證方法,其中該驗證治具具有多組分別位於不同距離的標記。According to the verification method of the time-of-flight camera module described in item 1 of the scope of patent application, the verification fixture has multiple sets of marks located at different distances. 如申請專利範圍第1項所述的飛行時間相機模組的驗證方法,其中利用該飛行時間相機模組拍攝該驗證治具,以取得該多組分別位於不同距離的標記影像的步驟更包括利用運算電路從飛行時間相機模組所拍攝到的畫面辨識出多組標記影像。For the verification method of the time-of-flight camera module described in claim 1, wherein the step of using the time-of-flight camera module to photograph the verification jig to obtain the multiple sets of marked images located at different distances further includes using The arithmetic circuit recognizes multiple sets of marker images from the images captured by the time-of-flight camera module. 如申請專利範圍第1項所述的飛行時間相機模組的驗證方法,其中利用該飛行時間相機模組所測得的該多組標記影像的三維座標計算出該多組標記影像的該些測得尺寸的步驟包括: 計算出每一組標記影像中的每一個標記影像的幾何中心;以及 利用每一組標記影像中的多個標記影像的多個幾何中心所分別對應的三維座標,計算出每一組標記影像中的該些幾何中心的距離,其中該多組標記影像中的該些幾何中心的多個距離分別為該些測得尺寸。The verification method for a time-of-flight camera module as described in the first item of the scope of patent application, wherein the three-dimensional coordinates of the multiple sets of marker images measured by the time-of-flight camera module are used to calculate the measurements of the multiple sets of marker images The steps to get the size include: Calculate the geometric center of each marked image in each set of marked images; and Using the three-dimensional coordinates corresponding to the multiple geometric centers of the multiple labeled images in each group of labeled images, the distances of the geometric centers in each group of labeled images are calculated, wherein the multiple sets of labeled images The multiple distances of the geometric center are the measured dimensions respectively. 如申請專利範圍第1項所述的飛行時間相機模組的驗證方法,其中該驗證治具具有多個標記,該多組標記影像是由拍攝該些標記所得,該些標記的每一者具有一反光區,且該反光區的反光特性相同於該飛行時間相機模組在驗證時所採用的反光面的反光特性。The verification method for a time-of-flight camera module as described in claim 1 of the scope of patent application, wherein the verification fixture has multiple marks, the multiple sets of mark images are obtained by shooting the marks, and each of the marks has A reflective area, and the reflective characteristics of the reflective area are the same as the reflective characteristics of the reflective surface used in the verification of the time-of-flight camera module. 如申請專利範圍第1項所述的飛行時間相機模組的驗證方法,其中該驗證治具具有多個標記,該多組標記影像是由拍攝該些標記所得,該些標記的每一者具有一反光區,且該反光區為圓形反光區。The verification method for a time-of-flight camera module as described in claim 1 of the scope of patent application, wherein the verification fixture has multiple marks, the multiple sets of mark images are obtained by shooting the marks, and each of the marks has A reflective area, and the reflective area is a circular reflective area. 如申請專利範圍第1項所述的飛行時間相機模組的驗證方法,其中該驗證治具具有多個標記,該多組標記影像是由拍攝該些標記所得,該些標記的每一者具有一反光區與一吸光環狀區,該吸光環狀區環繞該反光區。The verification method for a time-of-flight camera module as described in claim 1 of the scope of patent application, wherein the verification fixture has multiple marks, the multiple sets of mark images are obtained by shooting the marks, and each of the marks has A light-reflecting area and a light-absorbing ring-shaped area, and the light-absorbing ring-shaped area surrounds the light reflecting area. 如申請專利範圍第1項所述的飛行時間相機模組的驗證方法,其中該驗證治具具有多個標記,該多組標記影像是由拍攝該些標記所得,該些標記的每一者具有一反光區,該驗證治具具有一吸光底色區,該些標記的多個反光區分佈於該吸光底色區中。The verification method for a time-of-flight camera module as described in claim 1 of the scope of patent application, wherein the verification fixture has multiple marks, the multiple sets of mark images are obtained by shooting the marks, and each of the marks has A light-reflecting area, the verification jig has a light-absorbing background color area, and a plurality of light-reflecting areas of the marks are distributed in the light-absorbing background color area. 一種飛行時間相機模組的驗證系統,用以驗證一校正後的飛行時間相機模組,該飛行時間相機模組的驗證系統包括: 一驗證治具;以及 一運算電路,用以接收來自該飛行時間相機模組的訊號,其中該飛行時間相機模組拍攝該驗證治具,以取得多組分別位於不同距離的標記影像,並將該多組標記影像的相關資訊傳遞至運算電路,該運算電路用以利用該飛行時間相機模組所測得的該多組標記影像的三維座標計算出該多組標記影像的多個測得尺寸,且比較該些測得尺寸與該些組標記影像的實際尺寸,以決定該飛行時間相機模組是否通過驗證。A verification system for a time-of-flight camera module is used to verify a corrected time-of-flight camera module. The verification system for the time-of-flight camera module includes: A verification fixture; and An arithmetic circuit for receiving the signal from the time-of-flight camera module, wherein the time-of-flight camera module photographs the verification fixture to obtain multiple sets of marked images located at different distances, and the multiple sets of marked images The relevant information is transmitted to an arithmetic circuit, which is used to calculate the multiple measured sizes of the multiple sets of marker images using the three-dimensional coordinates of the multiple sets of marker images measured by the time-of-flight camera module, and compare the measurements The size and the actual size of the set of marked images are obtained to determine whether the time-of-flight camera module passes the verification. 如申請專利範圍第10項所述的飛行時間相機模組的驗證系統,其中該多組分別位於不同距離的標記影像是由該飛行時間相機模組分別在多個不同的距離拍攝該驗證治具所得到的。The verification system for a time-of-flight camera module described in item 10 of the scope of the patent application, wherein the plurality of sets of marked images located at different distances are respectively captured by the time-of-flight camera module at a plurality of different distances for the verification jig Obtained. 如申請專利範圍第10項所述的飛行時間相機模組的驗證系統,其中該驗證治具具有多組分別位於不同距離的標記。In the verification system for a time-of-flight camera module described in item 10 of the scope of patent application, the verification fixture has multiple sets of marks located at different distances. 如申請專利範圍第10項所述的飛行時間相機模組的驗證系統,其中該運算電路用以計算出每一組標記影像中的每一個標記影像的幾何中心,且利用每一組標記影像中的多個標記影像的多個幾何中心所分別對應的三維座標,計算出每一組標記影像中的該些幾何中心的距離,其中該多組標記影像中的該些幾何中心的多個距離分別為該些測得尺寸。For the verification system of the time-of-flight camera module described in item 10 of the scope of patent application, the arithmetic circuit is used to calculate the geometric center of each mark image in each group of mark images, and use each group of mark images in the verification system The three-dimensional coordinates corresponding to the multiple geometric centers of the multiple marked images are calculated, and the distances between the geometric centers in each set of marked images are calculated, and the multiple distances of the geometric centers in the multiple sets of marked images are respectively Measure the size for these. 如申請專利範圍第10項所述的飛行時間相機模組的驗證系統,其中該驗證治具具有多個標記,該多組標記影像是由拍攝該些標記所得,該些標記的每一者具有一反光區,且該反光區為圓形反光區。For the verification system of the time-of-flight camera module described in item 10 of the scope of patent application, the verification fixture has multiple marks, the multiple sets of mark images are obtained by shooting the marks, and each of the marks has A reflective area, and the reflective area is a circular reflective area. 如申請專利範圍第10項所述的飛行時間相機模組的驗證系統,其中該驗證治具具有多個標記,該多組標記影像是由拍攝該些標記所得,該些標記的每一者具有一反光區與一吸光環狀區,該吸光環狀區環繞該反光區。For the verification system of the time-of-flight camera module described in item 10 of the scope of patent application, the verification fixture has multiple marks, the multiple sets of mark images are obtained by shooting the marks, and each of the marks has A light-reflecting area and a light-absorbing ring-shaped area, and the light-absorbing ring-shaped area surrounds the light reflecting area. 如申請專利範圍第10項所述的飛行時間相機模組的驗證系統,其中該驗證治具具有多個標記,該多組標記影像是由拍攝該些標記所得,該些標記的每一者具有一反光區,該驗證治具具有一吸光底色區,該些標記的多個反光區分佈於該吸光底色區中。For the verification system of the time-of-flight camera module described in item 10 of the scope of patent application, the verification fixture has multiple marks, the multiple sets of mark images are obtained by shooting the marks, and each of the marks has A light-reflecting area, the verification jig has a light-absorbing background color area, and a plurality of light-reflecting areas of the marks are distributed in the light-absorbing background color area.
TW108115961A 2019-02-19 2019-05-09 Verification method of time-of-flight camera module and verification system thereof TWI741291B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962807246P 2019-02-19 2019-02-19
US62/807,246 2019-02-19

Publications (2)

Publication Number Publication Date
TW202032154A TW202032154A (en) 2020-09-01
TWI741291B true TWI741291B (en) 2021-10-01

Family

ID=72110768

Family Applications (2)

Application Number Title Priority Date Filing Date
TW108115961A TWI741291B (en) 2019-02-19 2019-05-09 Verification method of time-of-flight camera module and verification system thereof
TW108121698A TWI696841B (en) 2019-02-19 2019-06-21 Computation apparatus, sensing apparatus and processing method based on time of flight

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108121698A TWI696841B (en) 2019-02-19 2019-06-21 Computation apparatus, sensing apparatus and processing method based on time of flight

Country Status (2)

Country Link
CN (5) CN111580117A (en)
TW (2) TWI741291B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112954230B (en) * 2021-02-08 2022-09-09 深圳市汇顶科技股份有限公司 Depth measurement method, chip and electronic device
CN113298778B (en) * 2021-05-21 2023-04-07 奥比中光科技集团股份有限公司 Depth calculation method and system based on flight time and storage medium
CN113219476B (en) * 2021-07-08 2021-09-28 武汉市聚芯微电子有限责任公司 Ranging method, terminal and storage medium
TWI762387B (en) * 2021-07-16 2022-04-21 台達電子工業股份有限公司 Time of flight devide and inspecting method for the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150288951A1 (en) * 2014-04-08 2015-10-08 Lucasfilm Entertainment Company, Ltd. Automated camera calibration methods and systems
TWI557393B (en) * 2015-10-08 2016-11-11 微星科技股份有限公司 Calibration method of laser ranging and device utilizing the method
CN106152947A (en) * 2015-03-31 2016-11-23 北京京东尚科信息技术有限公司 The equipment of measurement dimension of object, method and apparatus
TWI622960B (en) * 2017-11-10 2018-05-01 財團法人工業技術研究院 Calibration method of depth image acquiring device
US20180372481A1 (en) * 2017-06-22 2018-12-27 Hexagon Technology Center Gmbh Calibration of a triangulation sensor
WO2018235163A1 (en) * 2017-06-20 2018-12-27 株式会社ソニー・インタラクティブエンタテインメント Calibration device, calibration chart, chart pattern generation device, and calibration method

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139818A (en) * 2000-11-01 2002-05-17 Fuji Photo Film Co Ltd Lens-fitted photographic film unit
CN101252802B (en) * 2007-02-25 2013-08-21 电灯专利信托有限公司 Charge pump electric ballast for low input voltage
JP2008209298A (en) * 2007-02-27 2008-09-11 Fujifilm Corp Ranging device and ranging method
US8699008B2 (en) * 2009-02-27 2014-04-15 Panasonic Corporation Distance measuring device
CN102735910B (en) * 2011-04-08 2014-10-29 中山大学 Maximum peak voltage detection circuit
CN103181156B (en) * 2011-07-12 2017-09-01 三星电子株式会社 Fuzzy Processing device and method
US9456152B2 (en) * 2011-07-12 2016-09-27 Samsung Electronics Co., Ltd. Device and method for blur processing
EP2728374B1 (en) * 2012-10-30 2016-12-28 Technische Universität Darmstadt Invention relating to the hand-eye calibration of cameras, in particular depth image cameras
AT513589B1 (en) * 2012-11-08 2015-11-15 Bluetechnix Gmbh Recording method for at least two ToF cameras
US9019480B2 (en) * 2013-02-26 2015-04-28 Jds Uniphase Corporation Time-of-flight (TOF) system, sensor pixel, and method
US9681123B2 (en) * 2014-04-04 2017-06-13 Microsoft Technology Licensing, Llc Time-of-flight phase-offset calibration
JP6424338B2 (en) * 2014-06-09 2018-11-21 パナソニックIpマネジメント株式会社 Ranging device
TWI545951B (en) * 2014-07-01 2016-08-11 晶相光電股份有限公司 Sensors and sensing methods
EP2978216B1 (en) * 2014-07-24 2017-08-16 Espros Photonics AG Method for the detection of motion blur
JP6280002B2 (en) * 2014-08-22 2018-02-14 浜松ホトニクス株式会社 Ranging method and ranging device
US10061029B2 (en) * 2015-01-06 2018-08-28 Samsung Electronics Co., Ltd. Correction of depth images from T-O-F 3D camera with electronic-rolling-shutter for light modulation changes taking place during light integration
CN104677277B (en) * 2015-02-16 2017-06-06 武汉天远视科技有限责任公司 A kind of method and system for measuring object geometric attribute or distance
US9945936B2 (en) * 2015-05-27 2018-04-17 Microsoft Technology Licensing, Llc Reduction in camera to camera interference in depth measurements using spread spectrum
CN107850664B (en) * 2015-07-22 2021-11-05 新唐科技日本株式会社 Distance measuring device
US9716850B2 (en) * 2015-09-08 2017-07-25 Pixart Imaging (Penang) Sdn. Bhd. BJT pixel circuit capable of cancelling ambient light influence, image system including the same and operating method thereof
TWI575248B (en) * 2015-09-10 2017-03-21 義明科技股份有限公司 Non-contact optical sensing device and method for sensing depth and position of an object in three-dimensional space
US10057526B2 (en) * 2015-11-13 2018-08-21 Pixart Imaging Inc. Pixel circuit with low power consumption, image system including the same and operating method thereof
US9762824B2 (en) * 2015-12-30 2017-09-12 Raytheon Company Gain adaptable unit cell
CN106997582A (en) * 2016-01-22 2017-08-01 北京三星通信技术研究有限公司 The motion blur removing method and equipment of flight time three-dimension sensor
US10516875B2 (en) * 2016-01-22 2019-12-24 Samsung Electronics Co., Ltd. Method and apparatus for obtaining depth image by using time-of-flight sensor
CN107040732B (en) * 2016-02-03 2019-11-05 原相科技股份有限公司 Image sensing circuit and method
CN107229056A (en) * 2016-03-23 2017-10-03 松下知识产权经营株式会社 Image processing apparatus, image processing method and recording medium
KR20180021509A (en) * 2016-08-22 2018-03-05 삼성전자주식회사 Method and device for acquiring distance information
US10762651B2 (en) * 2016-09-30 2020-09-01 Magic Leap, Inc. Real time calibration for time-of-flight depth measurement
JP6862751B2 (en) * 2016-10-14 2021-04-21 富士通株式会社 Distance measuring device, distance measuring method and program
CN108616726A (en) * 2016-12-21 2018-10-02 光宝电子(广州)有限公司 Exposal control method based on structure light and exposure-control device
US20180189977A1 (en) * 2016-12-30 2018-07-05 Analog Devices Global Light detector calibrating a time-of-flight optical system
US10557921B2 (en) * 2017-01-23 2020-02-11 Microsoft Technology Licensing, Llc Active brightness-based strategy for invalidating pixels in time-of-flight depth-sensing
CN108700664A (en) * 2017-02-06 2018-10-23 松下知识产权经营株式会社 Three-dimensional motion acquisition device and three-dimensional motion adquisitiones
CN110300899B (en) * 2017-02-17 2023-06-23 北阳电机株式会社 Object capturing device
CN108401098A (en) * 2018-05-15 2018-08-14 绍兴知威光电科技有限公司 A kind of TOF depth camera systems and its method for reducing external error
CN112363150B (en) * 2018-08-22 2024-05-28 Oppo广东移动通信有限公司 Calibration method, calibration controller, electronic device and calibration system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150288951A1 (en) * 2014-04-08 2015-10-08 Lucasfilm Entertainment Company, Ltd. Automated camera calibration methods and systems
CN106152947A (en) * 2015-03-31 2016-11-23 北京京东尚科信息技术有限公司 The equipment of measurement dimension of object, method and apparatus
TWI557393B (en) * 2015-10-08 2016-11-11 微星科技股份有限公司 Calibration method of laser ranging and device utilizing the method
WO2018235163A1 (en) * 2017-06-20 2018-12-27 株式会社ソニー・インタラクティブエンタテインメント Calibration device, calibration chart, chart pattern generation device, and calibration method
US20180372481A1 (en) * 2017-06-22 2018-12-27 Hexagon Technology Center Gmbh Calibration of a triangulation sensor
TWI622960B (en) * 2017-11-10 2018-05-01 財團法人工業技術研究院 Calibration method of depth image acquiring device

Also Published As

Publication number Publication date
TWI696841B (en) 2020-06-21
CN111586307B (en) 2021-11-02
CN111580067A (en) 2020-08-25
CN111624612A (en) 2020-09-04
CN111580117A (en) 2020-08-25
CN111580067B (en) 2022-12-02
CN111586306A (en) 2020-08-25
CN111586307A (en) 2020-08-25
TW202032155A (en) 2020-09-01
TW202032154A (en) 2020-09-01
CN111624612B (en) 2023-04-07
CN111586306B (en) 2022-02-01

Similar Documents

Publication Publication Date Title
TWI741291B (en) Verification method of time-of-flight camera module and verification system thereof
US10157458B2 (en) Laser projection system and method
KR102134688B1 (en) Optical distance measuring method and optical distance measuring device
JP5140761B2 (en) Method for calibrating a measurement system, computer program, electronic control unit, and measurement system
CN109373897B (en) Measuring method based on laser virtual scale
JP6366405B2 (en) Laser radar equipment
JP2016516196A (en) Structured optical scanner correction tracked in 6 degrees of freedom
US20150085108A1 (en) Lasergrammetry system and methods
TW561241B (en) Method and apparatus for calibrating laser three-dimensional digitizing sensor
WO2021208582A1 (en) Calibration apparatus, calibration system, electronic device and calibration method
JPH04148814A (en) Non-contact type measuring apparatus
CN110906884A (en) Three-dimensional geometry measuring apparatus and three-dimensional geometry measuring method
CN110702007B (en) Line structured light three-dimensional measurement method based on MEMS scanning galvanometer
US20040263862A1 (en) Detecting peripheral points of reflected radiation beam spots for topographically mapping a surface
CN107978540A (en) Self-regulation track method and system for measurement platform
CN109003306B (en) Optical axis deflection measuring device and method for vehicle-mounted camera
JP4046282B2 (en) Range finder
CN110687540A (en) Method for detecting distance measurement accuracy of optical module to be detected
CN114646261B (en) Measurement method and system based on oblique observation mirror surface method direction
US20220330420A1 (en) Method of verifying fault of inspection unit, inspection apparatus and inspection system
TWI582400B (en) Target plate for testing, optical testing equipment and optical testing method
KR101807371B1 (en) Apparatus and method for photographic measuring
Benjumea et al. Calibration of a Multimodal Thermographic Fringe Projection Profilometer Using Low-Cost Targets
JP2018044863A (en) Measurement device, measurement method, system and goods manufacturing method
US11410297B2 (en) Method of verifying fault of inspection unit, inspection apparatus and inspection system