TWI741291B - Verification method of time-of-flight camera module and verification system thereof - Google Patents
Verification method of time-of-flight camera module and verification system thereof Download PDFInfo
- Publication number
- TWI741291B TWI741291B TW108115961A TW108115961A TWI741291B TW I741291 B TWI741291 B TW I741291B TW 108115961 A TW108115961 A TW 108115961A TW 108115961 A TW108115961 A TW 108115961A TW I741291 B TWI741291 B TW I741291B
- Authority
- TW
- Taiwan
- Prior art keywords
- camera module
- verification
- time
- flight camera
- marks
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
Description
本發明是有關於一種驗證方法及其驗證系統,且特別是有關於一種飛行時間相機模組的驗證方法及其驗證系統。The invention relates to a verification method and a verification system, and more particularly to a verification method and a verification system for a time-of-flight camera module.
飛行時間(Time of Flight,TOF)測距是目前一種常見的主動式深度感測技術。TOF測距技術是發出經調變過的調變光(例如紅外光),調變光遇物體後反射,再根據被物體反射的調變光的反射時間差或相位差來換算被拍攝物體的距離,以產生深度資訊。Time of Flight (TOF) ranging is currently a common active depth sensing technology. TOF distance measurement technology is to emit modulated light (such as infrared light) that has been modulated, and the modulated light is reflected when it meets the object, and then the distance of the object is converted according to the reflection time difference or phase difference of the modulated light reflected by the object To generate in-depth information.
若要實際運用一飛行時間相機模組,其飛行時間相機模組的各個元件都必須經過誤差的校正。例如,透鏡的參數校正、系統性測量誤差校正、像素誤差校正等等。系統性測量誤差例如是飛行時間相機模組的拍攝模組的測量值的誤差校正。通常方法是藉由一已知光強度的光源以及一校正用的反射面,將此光源所發出的光束入射至校正用的反射面,並藉由拍攝模組取得反射後的光束。之後,藉由比較飛行時間相機模組所測得的距離與校正用反射面的實際距離,即可校正飛行時間相機模組的拍攝模組的測量值的誤差。To actually use a time-of-flight camera module, all components of the time-of-flight camera module must be corrected for errors. For example, lens parameter correction, systematic measurement error correction, pixel error correction, and so on. The systematic measurement error is, for example, the error correction of the measurement value of the shooting module of the time-of-flight camera module. The usual method is to use a light source with a known light intensity and a reflective surface for correction, the light beam emitted by this light source is incident on the reflective surface for correction, and the reflected light beam is obtained by a photographing module. Then, by comparing the distance measured by the time-of-flight camera module with the actual distance of the reflective surface for correction, the error of the measurement value of the shooting module of the time-of-flight camera module can be corrected.
再者,現有的驗證校正後的飛行時間相機模組的驗證方法是採用絕對距離驗證法。絕對距離驗證法例如是使用線性平移載台(Linear Translation Stage,LTS),將一反射面沿著線性平移載台放置在距離飛行時間相機模組不同的位置,並分別對反射面進行拍攝以取得多組量測距離。此多組量測距離與反射面在線性平移載台的真實距離的誤差值即可反應校正後的飛行時間相機模組是否通過驗證。Furthermore, the existing verification method for verifying the corrected time-of-flight camera module adopts the absolute distance verification method. The absolute distance verification method, for example, uses a linear translation stage (LTS), a reflective surface is placed along the linear translation stage at a different position from the time-of-flight camera module, and the reflective surface is photographed separately to obtain Multiple sets of measuring distance. The error values between the multiple sets of measured distances and the true distance of the reflecting surface on the linear translation stage can reflect whether the corrected time-of-flight camera module passes the verification.
然而,反射面的反射率會影響所取得的量測距離。再者,放置在線性平移載台的反射面必須是垂直於飛行時間相機模組的拍攝方向才能保證驗證後的結果具有可靠性,但實作時卻難以保證反射面是垂直於飛行時間相機模組的拍攝方向,或者若欲確保反射面垂直於拍攝方向會花費過多的時間。However, the reflectivity of the reflecting surface will affect the measured distance obtained. Furthermore, the reflective surface placed on the linear translation stage must be perpendicular to the shooting direction of the time-of-flight camera module to ensure the reliability of the verified results. However, it is difficult to ensure that the reflective surface is perpendicular to the time-of-flight camera module during implementation. The shooting direction of the group, or if you want to ensure that the reflective surface is perpendicular to the shooting direction, it will take too much time.
本發明實施例提供一種飛行時間相機模組的驗證方法及其驗證系統,其能以較方便、簡單的方式來進行驗證,且可有效縮短驗證所需的時間。The embodiment of the present invention provides a verification method and a verification system for a time-of-flight camera module, which can perform verification in a more convenient and simple manner, and can effectively shorten the time required for verification.
本發明的一實施例的飛行時間相機模組的驗證方法包括:提供一校正後的飛行時間相機模組;利用飛行時間相機模組拍攝一驗證治具,以取得多組分別位於不同距離的標記影像;利用飛行時間相機模組所測得的多組標記影像的三維座標計算出多組標記影像的多個測得尺寸;以及比較這些測得尺寸與這些組標記影像的實際尺寸,以決定飛行時間相機模組是否通過驗證。A verification method for a time-of-flight camera module according to an embodiment of the present invention includes: providing a calibrated time-of-flight camera module; using the time-of-flight camera module to photograph a verification jig to obtain multiple sets of marks located at different distances Images; use the three-dimensional coordinates of the multiple sets of marker images measured by the time-of-flight camera module to calculate the multiple measured sizes of the multiple sets of marker images; and compare these measured sizes with the actual sizes of these sets of marker images to determine the flight Whether the time camera module has passed the verification.
本發明的一實施例的飛行時間相機模組的驗證系統用以驗證一飛行時間相機模組。驗證系統包括一驗證治具以及一運算電路。運算電路用以接收來自飛行時間相機模組的訊號,其中飛行時間相機模組拍攝驗證治具,以取得多組分別位於不同距離的標記影像,並將多組標記影像的相關資訊傳遞至運算電路,運算電路用以利用飛行時間相機模組所測得的多組標記影像的三維座標計算出多組標記影像的多個測得尺寸,且比較這些測得尺寸與這些組標記影像的實際尺寸,以決定飛行時間相機模組是否通過驗證。The verification system for a time-of-flight camera module according to an embodiment of the present invention is used to verify a time-of-flight camera module. The verification system includes a verification fixture and an arithmetic circuit. The arithmetic circuit is used to receive signals from the time-of-flight camera module, where the time-of-flight camera module shoots a verification fixture to obtain multiple sets of marked images located at different distances, and transmits relevant information of the multiple sets of marked images to the calculation circuit , The arithmetic circuit is used to use the three-dimensional coordinates of the multiple sets of marker images measured by the time-of-flight camera module to calculate multiple measured sizes of the multiple sets of mark images, and to compare these measured sizes with the actual sizes of the sets of mark images, To determine whether the time-of-flight camera module passes the verification.
基於上述,由於本發明實施例的驗證方法以及驗證系統可直接拍攝擺放至不同位置的驗證治具即可決定飛行時間相機模組是否通過驗證,因此,本發明實施例的驗證方法以及驗證系統能以較方便、簡單的方式來進行驗證,且可有效縮短驗證所需的時間。Based on the above, the verification method and verification system of the embodiment of the present invention can directly photograph verification fixtures placed in different positions to determine whether the time-of-flight camera module passes verification. Therefore, the verification method and verification system of the embodiment of the present invention It can be verified in a more convenient and simple way, and the time required for verification can be effectively shortened.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.
圖1A是依據本發明的一實施例的飛行時間相機模組的驗證系統的方塊圖。圖1B是依據本發明的一實施例的一種飛行時間相機模組與驗證治具的示意圖。請參照圖1A與圖1B,本實施例的飛行時間相機模組的驗證系統100用以驗證一校正後的飛行時間相機模組200。驗證系統100包括一驗證治具120以及一運算電路140。運算電路140用以接收來自飛行時間相機模組200的訊號,其中飛行時間相機模組200拍攝驗證治具120的標記122,以取得多組分別位於不同距離L的標記影像I,並將多組標記影像I的相關資訊傳遞至運算電路140,運算電路140用以利用飛行時間相機模組200所測得的多組標記影像I的三維座標計算出多組標記影像I的多個測得尺寸S,且比較這些測得尺寸S與這些組標記影像I的實際尺寸,以決定飛行時間相機模組200是否通過驗證。FIG. 1A is a block diagram of a verification system for a time-of-flight camera module according to an embodiment of the present invention. FIG. 1B is a schematic diagram of a time-of-flight camera module and verification fixture according to an embodiment of the present invention. 1A and 1B, the
上述的運算電路140例如是包括中央處理單元(central processing unit, CPU)、微處理器(microprocessor)、數位訊號處理器(digital signal processor, DSP)、可程式化控制器、可程式化邏輯裝置(programmable logic device, PLD)或其他類似裝置或這些裝置的組合,本發明並不加以限制。此外,在一實施例中,運算電路140的各功能可被實作為多個程式碼。這些程式碼會被儲存在一個記憶體中,由運算電路140來執行這些程式碼。或者,在一實施例中,運算電路140的各功能可被實作為一或多個電路。本發明並不限制用軟體或硬體的方式來實作運算電路140的各功能。The aforementioned
圖2是依據本發明的一實施例的飛行時間相機模組的驗證方法的流程圖。請參照圖2,具體而言,利用本實施例的飛行時間相機模組的驗證系統100的驗證方法包括:提供一校正後的飛行時間相機模組200(步驟S100);利用飛行時間相機模組200拍攝一驗證治具120,以取得多組分別位於不同距離的標記影像I(步驟S120);利用飛行時間相機模組200所測得的多組標記影像I的三維座標計算出多組標記影像I的多個測得尺寸S(步驟S140);以及比較這些測得尺寸S與這些組標記影像I的實際尺寸,以決定飛行時間相機模組200是否通過驗證(步驟S160)。2 is a flowchart of a verification method for a time-of-flight camera module according to an embodiment of the present invention. 2, specifically, the verification method using the
請再參考圖1A、圖1B與圖2,步驟S120包括利用飛行時間相機模組200分別在多個不同的距離(即飛行時間相機模組200與校正治具120之間的距離L)拍攝驗證治具120,以分別取得多組位於不同距離的標記影像I(步驟S122)。舉例而言,可先將驗證治具120擺放於某一個距離(例如圖1B,使得飛行時間相機模組200與驗證治具120之間的距離為L),然後利用飛行時間相機模組200拍攝驗證治具120一次,以取得一組標記影像I。然後,再將驗證治具120擺放於另一個不同的距離,然後再利用飛行時間相機模組200再拍攝驗證治具一次,以取得另一組標記影像I。如此重複移動驗證治具120至另一個不同的位置然後對其拍攝,直到取得了所有的這些組分別位於不同距離的標記影像I。Please refer to FIG. 1A, FIG. 1B and FIG. 2 again. Step S120 includes using the time-of-
詳細來說,飛行時間相機模組200先發出調變光EM至驗證治具120,例如是飛行時間相機模組200的光源發出調變光EM,而調變光EM例如紅外光或其他波段的光。驗證治具120具有多個標記122。入射至多個標記122的調變光EM會被多個標記122反射,被反射的調變光EM再由飛行時間相機模組200接收而形成標記影像I。此外,飛行時間相機模組200除了可像一般相機一樣拍攝出驗證治具120上的多個標記122的影像(即二維影像)之外,還可以測得影像的各畫素之距離值(即此畫素所對應的驗證治具120上的點至飛行時間相機模組200的距離)。因此,前述飛行時間相機模組200所拍攝到的標記影像I所位於的距離即對應至驗證治具120上的標記122至飛行時間相機模組200的距離。In detail, the time-of-
在進行步驟S140之前,步驟S120更包括利用運算電路140從飛行時間相機模組200所拍攝到的畫面辨識出多組標記影像I。Before step S140 is performed, step S120 further includes using the
接著,飛行時間相機模組200的驗證方法執行步驟S140。步驟S140包括:利用運算電路140計算出每一組標記影像I中的每一個標記影像I的幾何中心(步驟S142);以及利用每一組標記影像I中的多個標記影像I的多個幾何中心所分別對應的三維座標,計算出每一組標記影像I中的這些幾何中心的距離,其中多組標記影像I中的這些幾何中心的多個距離分別為這些測得尺寸S(步驟S144)。Next, the verification method of the time-of-
再者,步驟S160包括計算出這些測得尺寸S分別相對於這些組標記影像I的實際尺寸的多個誤差,並根據這些誤差決定飛行時間相機模組200是否通過驗證(步驟S162)。Furthermore, step S160 includes calculating a plurality of errors of the measured sizes S with respect to the actual sizes of the group of mark images I, and determining whether the time-of-
也就是說,依據在上述的步驟S120所取得的標記影像I的各像素的位置及各像素對應的距離值(即深度值),可計算出驗證治具120上的標記122的幾何中心的三維座標。再藉由標記122的幾何中心的三維座標可計算出多組標記122之間的距離(即測得尺寸S)。由於多組標記122之間的實際距離(實際尺寸)是已知的,藉由比較標記122之間的測得尺寸S與實際尺寸,本實施例的驗證方法可決定飛行時間相機模組200是否通過驗證。In other words, according to the position of each pixel of the mark image I obtained in the above step S120 and the distance value (ie depth value) corresponding to each pixel, the three-dimensional geometric center of the
舉例來說,在一實施例中,將驗證治具120依次擺放至距離校正後的飛行時間相機模組200的m/n、2*m/n、…、n*m/n公尺處,其中n為正整數,且m公尺為飛行時間相機模組200的可量測範圍,並依次取得n組位於不同距離的標記影像I(也就是步驟S120)。接著,再依序完成步驟S140至S160,使用者即可決定校正後的飛行時間相機模組200是否通過驗證。For example, in one embodiment, the
圖3是依據本發明的一實施例的另一種飛行時間相機模組與驗證治具的示意圖。請參照圖3,圖3的實施例具有6個標記122,任意兩個標記122即可作為一組標記,但在本實施例中僅簡單的示意出其中三組,此三組標記122與飛行時間相機模組200之間的距離分別是L1、L2與L3。在另一實施例中,驗證治具120可具有n組標記122,其中n為正整數。此n組標記122與飛行時間相機模組200之間的距離可不同。因此,飛行時間相機模組200可拍攝一次就能取得n組位於不同距離的標記影像I(也就是步驟S120)。接著,再依序完成步驟S140至S180,使用者即可決定校正後的飛行時間相機模組200是否通過驗證。3 is a schematic diagram of another time-of-flight camera module and verification fixture according to an embodiment of the present invention. Please refer to FIG. 3, the embodiment of FIG. 3 has 6
圖4是依據本發明的一實施例的一種驗證治具的示意圖。圖5是依據本發明的一實施例的另一種驗證治具的示意圖。圖6是依據本發明的一實施例的另一種驗證治具的示意圖。請參照圖4、圖5與圖6,詳細來說,本發明實施例的驗證治具120a、120b、120c具有多個標記,多組標記影像I是由拍攝這些標記所得,這些標記的每一者具有一反光區,且反光區為圓形反光區。Fig. 4 is a schematic diagram of a verification jig according to an embodiment of the present invention. Fig. 5 is a schematic diagram of another verification jig according to an embodiment of the present invention. Fig. 6 is a schematic diagram of another verification jig according to an embodiment of the present invention. 4, 5, and 6, in detail, the
例如,圖4的驗證治具120a具有標記122a1、122a2。標記122a1具有一反光區124a1與一吸光環狀區126a1,且標記122a2具有一反光區124a2與一吸光環狀區126a2。吸光環狀區126a1、126a2分別環繞反光區124a1、124a2。反光區124a1的幾何中心為C1,且反光區124a2的幾何中心為C2。兩個幾何中心C1、C2之間的距離D即為前述的實際尺寸。此外,飛行時間相機模組200對標記122a1、122a2拍攝而得到標記影像I。運算電路140再計算出標記影像I的兩個標記的幾何中心之間的距離,即可計算出測得尺寸S。因此,根據距離D與測得尺寸S的誤差可決定飛行時間相機模組200是否通過驗證。For example, the
例如,圖5的驗證治具120b具有標記122b1、122b2。標記122b1、122b2分別具有反光區124b1、124b2。再者,驗證治具120b更具有一吸光底色區128b,這些標記122b1、122b2的多個反光區124b1、124b2分佈於吸光底色區128b中。反光區124b1的幾何中心為C1’,且反光區124b2的幾何中心為C2’。兩個幾何中心C1’、C2’之間的距離D’即為前述的實際尺寸。For example, the
例如,圖6的驗證治具120c具有標記122c1、…、122c8。標記122c1、…、122c8分別具有反光區124c1、…、124c8。再者,驗證治具120c更具有吸光底色區128c1、128c2。標記122c1、…、122c4的反光區124c1、…、124c4分佈於吸光底色區128c1,且標記122c5、…、122c8的反光區124c5、…、124c8分佈於吸光底色區128c2中。For example, the
值得一提的是,圖6的驗證治具120c為一凸面體。驗證治具120c具有多組分別位於不同距離的標記122c1、…、122c8。相較於上述的驗證治具120a與120b,驗證治具120c增加了可測試的距離(飛行時間相機模組200分別與標記122c1、…、122c8之間的距離)。圖6簡單地以二面體示意,本發明不以此為限。It is worth mentioning that the
再者,上述的驗證治具120a、120b、120c的表面可以不用與拍攝方向垂直,這是因為運算電路140是藉由計算標記影像I的幾何中心的三維位置來得到兩個標記122的幾何中心的距離,因此不論驗證治具120的表面傾斜或垂直於拍攝方向,都可計算出測得尺寸S,如此可增進驗證的方便性,且有效地縮短驗證時間。Furthermore, the surfaces of the
此外,為了減少雜訊(noise)對驗證的影響,在本實施例中,上述的驗證治具120a、120b、120c的反光區可為高反射率的材質,例如是具高反射率的白色塗層或是金屬鏡面。但本發明不以此為限,也可依需求而使用不同灰階的反光區。再者,吸光環狀區與吸光底色區可為高吸收率的材質,例如是具有高吸收率的黑色塗層,但本發明不以此為限。In addition, in order to reduce the influence of noise on verification, in this embodiment, the reflective areas of the
再者,為了克服驗證治具120的反光區的反光特性與飛行時間相機模組200在校正時所採用的反光面的反光特性不同所帶來的驗證結果的問題,在一實施例中,反光區的反光特性相同於飛行時間相機模組200在校正時所採用的反光面的反光特性。在另一實施例中,反光區的材質相同於飛行時間相機模組200在校正時所採用的反光面的材質。Furthermore, in order to overcome the problem of the verification result caused by the difference between the reflective characteristics of the reflective area of the
綜上所述,由於本發明實施例的驗證方法以及驗證系統可直接拍攝擺放至不同位置的驗證治具即可決定飛行時間相機模組是否通過驗證,因此,本發明實施例的驗證方法以及驗證系統能以較方便、簡單的方式來進行驗證,且可有效縮短驗證所需的時間。再者,由於本發明實施例的驗證治具上的標記的反光區為圓形反光區,藉由驗證系統所計算出來的標記的幾何中心不會隨著拍攝的位置的不同而使得計算出來的幾何中心不同。驗證治具的擺放位置與角度較不會影響驗證結果。因此,採用本發明實施例的驗證治具可取得更可靠的驗證結果。In summary, since the verification method and verification system of the embodiments of the present invention can directly photograph verification fixtures placed in different positions to determine whether the time-of-flight camera module passes verification, the verification method and verification system of the embodiments of the present invention The verification system can perform verification in a more convenient and simple manner, and can effectively shorten the time required for verification. Furthermore, since the reflective area of the mark on the verification fixture of the embodiment of the present invention is a circular reflective area, the geometric center of the mark calculated by the verification system will not be calculated depending on the shooting position. The geometric centers are different. The placement and angle of the verification jig will not affect the verification result. Therefore, a more reliable verification result can be obtained by using the verification fixture of the embodiment of the present invention.
此外,由於本發明實施例的驗證治具的反光區的反光特性相同於飛行時間相機模組在校正時所採用的反光面的反光特性,或反光區的材質相同於飛行時間相機模組在校正時所採用的反光面的材質,因此,本發明實施例的驗證方法以及驗證系統可克服反光區的反光特性與反光面的反光特性不同所帶來的驗證結果的問題。再者,本發明的一實施例的驗證治具為凸面體,驗證治具具有多組分別位於不同距離的標記,增加了可測試的距離(飛行時間相機模組分別與標記之間的距離)。In addition, because the reflective area of the verification fixture of the embodiment of the present invention has the same reflective characteristics as the reflective surface of the time-of-flight camera module during calibration, or the material of the reflective area is the same as that of the time-of-flight camera module during calibration. Therefore, the verification method and verification system of the embodiments of the present invention can overcome the problem of verification results caused by the difference between the reflective characteristics of the reflective area and the reflective surface of the reflective surface. Furthermore, the verification fixture of an embodiment of the present invention is a convex body, and the verification fixture has multiple sets of marks located at different distances, which increases the testable distance (the distance between the time-of-flight camera module and the marks) .
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be subject to those defined by the attached patent application scope.
100:驗證系統
120、120a、120b、120c:驗證治具
122、122a1、122a2、122b1、122b2、122c1、122c2、122c3、122c4、122c5、122c6、122c7、122c8:標記
124a1、124a2、124b1、124b2、124c1、124c2、124c3、124c4、124c5、124c6、124c7、124c8:反光區
126a1、126a2:吸光環狀區
128b、128c1、128c2:吸光底色區
140:運算電路
200:飛行時間相機模組
C1、C1’、C2、C2’:幾何中心
D、D’、L、L1、L2、L3:距離
EM:調變光
I:標記影像
S:測得尺寸
S100、S120、S122、S140、S142、S144、S160、S162:步驟100:
圖1A是依據本發明的一實施例的飛行時間相機模組的驗證系統的方塊圖。 圖1B是依據本發明的一實施例的一種飛行時間相機模組與驗證治具的示意圖。 圖2是依據本發明的一實施例的飛行時間相機模組的驗證方法的流程圖。 圖3是依據本發明的一實施例的另一種飛行時間相機模組與驗證治具的示意圖。 圖4是依據本發明的一實施例的一種驗證治具的示意圖。 圖5是依據本發明的一實施例的另一種驗證治具的示意圖。 圖6是依據本發明的一實施例的另一種驗證治具的示意圖。FIG. 1A is a block diagram of a verification system for a time-of-flight camera module according to an embodiment of the present invention. FIG. 1B is a schematic diagram of a time-of-flight camera module and verification fixture according to an embodiment of the present invention. 2 is a flowchart of a verification method for a time-of-flight camera module according to an embodiment of the present invention. 3 is a schematic diagram of another time-of-flight camera module and verification fixture according to an embodiment of the present invention. Fig. 4 is a schematic diagram of a verification jig according to an embodiment of the present invention. Fig. 5 is a schematic diagram of another verification jig according to an embodiment of the present invention. Fig. 6 is a schematic diagram of another verification jig according to an embodiment of the present invention.
S100、S120、S122、S140、S142、S144、S160、S162:步驟 S100, S120, S122, S140, S142, S144, S160, S162: steps
Claims (16)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962807246P | 2019-02-19 | 2019-02-19 | |
US62/807,246 | 2019-02-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202032154A TW202032154A (en) | 2020-09-01 |
TWI741291B true TWI741291B (en) | 2021-10-01 |
Family
ID=72110768
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108115961A TWI741291B (en) | 2019-02-19 | 2019-05-09 | Verification method of time-of-flight camera module and verification system thereof |
TW108121698A TWI696841B (en) | 2019-02-19 | 2019-06-21 | Computation apparatus, sensing apparatus and processing method based on time of flight |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108121698A TWI696841B (en) | 2019-02-19 | 2019-06-21 | Computation apparatus, sensing apparatus and processing method based on time of flight |
Country Status (2)
Country | Link |
---|---|
CN (5) | CN111580117A (en) |
TW (2) | TWI741291B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112954230B (en) * | 2021-02-08 | 2022-09-09 | 深圳市汇顶科技股份有限公司 | Depth measurement method, chip and electronic device |
CN113298778B (en) * | 2021-05-21 | 2023-04-07 | 奥比中光科技集团股份有限公司 | Depth calculation method and system based on flight time and storage medium |
CN113219476B (en) * | 2021-07-08 | 2021-09-28 | 武汉市聚芯微电子有限责任公司 | Ranging method, terminal and storage medium |
TWI762387B (en) * | 2021-07-16 | 2022-04-21 | 台達電子工業股份有限公司 | Time of flight devide and inspecting method for the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150288951A1 (en) * | 2014-04-08 | 2015-10-08 | Lucasfilm Entertainment Company, Ltd. | Automated camera calibration methods and systems |
TWI557393B (en) * | 2015-10-08 | 2016-11-11 | 微星科技股份有限公司 | Calibration method of laser ranging and device utilizing the method |
CN106152947A (en) * | 2015-03-31 | 2016-11-23 | 北京京东尚科信息技术有限公司 | The equipment of measurement dimension of object, method and apparatus |
TWI622960B (en) * | 2017-11-10 | 2018-05-01 | 財團法人工業技術研究院 | Calibration method of depth image acquiring device |
US20180372481A1 (en) * | 2017-06-22 | 2018-12-27 | Hexagon Technology Center Gmbh | Calibration of a triangulation sensor |
WO2018235163A1 (en) * | 2017-06-20 | 2018-12-27 | 株式会社ソニー・インタラクティブエンタテインメント | Calibration device, calibration chart, chart pattern generation device, and calibration method |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002139818A (en) * | 2000-11-01 | 2002-05-17 | Fuji Photo Film Co Ltd | Lens-fitted photographic film unit |
CN101252802B (en) * | 2007-02-25 | 2013-08-21 | 电灯专利信托有限公司 | Charge pump electric ballast for low input voltage |
JP2008209298A (en) * | 2007-02-27 | 2008-09-11 | Fujifilm Corp | Ranging device and ranging method |
US8699008B2 (en) * | 2009-02-27 | 2014-04-15 | Panasonic Corporation | Distance measuring device |
CN102735910B (en) * | 2011-04-08 | 2014-10-29 | 中山大学 | Maximum peak voltage detection circuit |
CN103181156B (en) * | 2011-07-12 | 2017-09-01 | 三星电子株式会社 | Fuzzy Processing device and method |
US9456152B2 (en) * | 2011-07-12 | 2016-09-27 | Samsung Electronics Co., Ltd. | Device and method for blur processing |
EP2728374B1 (en) * | 2012-10-30 | 2016-12-28 | Technische Universität Darmstadt | Invention relating to the hand-eye calibration of cameras, in particular depth image cameras |
AT513589B1 (en) * | 2012-11-08 | 2015-11-15 | Bluetechnix Gmbh | Recording method for at least two ToF cameras |
US9019480B2 (en) * | 2013-02-26 | 2015-04-28 | Jds Uniphase Corporation | Time-of-flight (TOF) system, sensor pixel, and method |
US9681123B2 (en) * | 2014-04-04 | 2017-06-13 | Microsoft Technology Licensing, Llc | Time-of-flight phase-offset calibration |
JP6424338B2 (en) * | 2014-06-09 | 2018-11-21 | パナソニックIpマネジメント株式会社 | Ranging device |
TWI545951B (en) * | 2014-07-01 | 2016-08-11 | 晶相光電股份有限公司 | Sensors and sensing methods |
EP2978216B1 (en) * | 2014-07-24 | 2017-08-16 | Espros Photonics AG | Method for the detection of motion blur |
JP6280002B2 (en) * | 2014-08-22 | 2018-02-14 | 浜松ホトニクス株式会社 | Ranging method and ranging device |
US10061029B2 (en) * | 2015-01-06 | 2018-08-28 | Samsung Electronics Co., Ltd. | Correction of depth images from T-O-F 3D camera with electronic-rolling-shutter for light modulation changes taking place during light integration |
CN104677277B (en) * | 2015-02-16 | 2017-06-06 | 武汉天远视科技有限责任公司 | A kind of method and system for measuring object geometric attribute or distance |
US9945936B2 (en) * | 2015-05-27 | 2018-04-17 | Microsoft Technology Licensing, Llc | Reduction in camera to camera interference in depth measurements using spread spectrum |
CN107850664B (en) * | 2015-07-22 | 2021-11-05 | 新唐科技日本株式会社 | Distance measuring device |
US9716850B2 (en) * | 2015-09-08 | 2017-07-25 | Pixart Imaging (Penang) Sdn. Bhd. | BJT pixel circuit capable of cancelling ambient light influence, image system including the same and operating method thereof |
TWI575248B (en) * | 2015-09-10 | 2017-03-21 | 義明科技股份有限公司 | Non-contact optical sensing device and method for sensing depth and position of an object in three-dimensional space |
US10057526B2 (en) * | 2015-11-13 | 2018-08-21 | Pixart Imaging Inc. | Pixel circuit with low power consumption, image system including the same and operating method thereof |
US9762824B2 (en) * | 2015-12-30 | 2017-09-12 | Raytheon Company | Gain adaptable unit cell |
CN106997582A (en) * | 2016-01-22 | 2017-08-01 | 北京三星通信技术研究有限公司 | The motion blur removing method and equipment of flight time three-dimension sensor |
US10516875B2 (en) * | 2016-01-22 | 2019-12-24 | Samsung Electronics Co., Ltd. | Method and apparatus for obtaining depth image by using time-of-flight sensor |
CN107040732B (en) * | 2016-02-03 | 2019-11-05 | 原相科技股份有限公司 | Image sensing circuit and method |
CN107229056A (en) * | 2016-03-23 | 2017-10-03 | 松下知识产权经营株式会社 | Image processing apparatus, image processing method and recording medium |
KR20180021509A (en) * | 2016-08-22 | 2018-03-05 | 삼성전자주식회사 | Method and device for acquiring distance information |
US10762651B2 (en) * | 2016-09-30 | 2020-09-01 | Magic Leap, Inc. | Real time calibration for time-of-flight depth measurement |
JP6862751B2 (en) * | 2016-10-14 | 2021-04-21 | 富士通株式会社 | Distance measuring device, distance measuring method and program |
CN108616726A (en) * | 2016-12-21 | 2018-10-02 | 光宝电子(广州)有限公司 | Exposal control method based on structure light and exposure-control device |
US20180189977A1 (en) * | 2016-12-30 | 2018-07-05 | Analog Devices Global | Light detector calibrating a time-of-flight optical system |
US10557921B2 (en) * | 2017-01-23 | 2020-02-11 | Microsoft Technology Licensing, Llc | Active brightness-based strategy for invalidating pixels in time-of-flight depth-sensing |
CN108700664A (en) * | 2017-02-06 | 2018-10-23 | 松下知识产权经营株式会社 | Three-dimensional motion acquisition device and three-dimensional motion adquisitiones |
CN110300899B (en) * | 2017-02-17 | 2023-06-23 | 北阳电机株式会社 | Object capturing device |
CN108401098A (en) * | 2018-05-15 | 2018-08-14 | 绍兴知威光电科技有限公司 | A kind of TOF depth camera systems and its method for reducing external error |
CN112363150B (en) * | 2018-08-22 | 2024-05-28 | Oppo广东移动通信有限公司 | Calibration method, calibration controller, electronic device and calibration system |
-
2019
- 2019-04-02 CN CN201910263049.9A patent/CN111580117A/en active Pending
- 2019-04-25 CN CN201910341808.9A patent/CN111586306B/en active Active
- 2019-05-09 TW TW108115961A patent/TWI741291B/en active
- 2019-05-23 CN CN201910435784.3A patent/CN111586307B/en active Active
- 2019-06-21 CN CN201910541119.2A patent/CN111580067B/en active Active
- 2019-06-21 TW TW108121698A patent/TWI696841B/en active
- 2019-10-14 CN CN201910971700.8A patent/CN111624612B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150288951A1 (en) * | 2014-04-08 | 2015-10-08 | Lucasfilm Entertainment Company, Ltd. | Automated camera calibration methods and systems |
CN106152947A (en) * | 2015-03-31 | 2016-11-23 | 北京京东尚科信息技术有限公司 | The equipment of measurement dimension of object, method and apparatus |
TWI557393B (en) * | 2015-10-08 | 2016-11-11 | 微星科技股份有限公司 | Calibration method of laser ranging and device utilizing the method |
WO2018235163A1 (en) * | 2017-06-20 | 2018-12-27 | 株式会社ソニー・インタラクティブエンタテインメント | Calibration device, calibration chart, chart pattern generation device, and calibration method |
US20180372481A1 (en) * | 2017-06-22 | 2018-12-27 | Hexagon Technology Center Gmbh | Calibration of a triangulation sensor |
TWI622960B (en) * | 2017-11-10 | 2018-05-01 | 財團法人工業技術研究院 | Calibration method of depth image acquiring device |
Also Published As
Publication number | Publication date |
---|---|
TWI696841B (en) | 2020-06-21 |
CN111586307B (en) | 2021-11-02 |
CN111580067A (en) | 2020-08-25 |
CN111624612A (en) | 2020-09-04 |
CN111580117A (en) | 2020-08-25 |
CN111580067B (en) | 2022-12-02 |
CN111586306A (en) | 2020-08-25 |
CN111586307A (en) | 2020-08-25 |
TW202032155A (en) | 2020-09-01 |
TW202032154A (en) | 2020-09-01 |
CN111624612B (en) | 2023-04-07 |
CN111586306B (en) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI741291B (en) | Verification method of time-of-flight camera module and verification system thereof | |
US10157458B2 (en) | Laser projection system and method | |
KR102134688B1 (en) | Optical distance measuring method and optical distance measuring device | |
JP5140761B2 (en) | Method for calibrating a measurement system, computer program, electronic control unit, and measurement system | |
CN109373897B (en) | Measuring method based on laser virtual scale | |
JP6366405B2 (en) | Laser radar equipment | |
JP2016516196A (en) | Structured optical scanner correction tracked in 6 degrees of freedom | |
US20150085108A1 (en) | Lasergrammetry system and methods | |
TW561241B (en) | Method and apparatus for calibrating laser three-dimensional digitizing sensor | |
WO2021208582A1 (en) | Calibration apparatus, calibration system, electronic device and calibration method | |
JPH04148814A (en) | Non-contact type measuring apparatus | |
CN110906884A (en) | Three-dimensional geometry measuring apparatus and three-dimensional geometry measuring method | |
CN110702007B (en) | Line structured light three-dimensional measurement method based on MEMS scanning galvanometer | |
US20040263862A1 (en) | Detecting peripheral points of reflected radiation beam spots for topographically mapping a surface | |
CN107978540A (en) | Self-regulation track method and system for measurement platform | |
CN109003306B (en) | Optical axis deflection measuring device and method for vehicle-mounted camera | |
JP4046282B2 (en) | Range finder | |
CN110687540A (en) | Method for detecting distance measurement accuracy of optical module to be detected | |
CN114646261B (en) | Measurement method and system based on oblique observation mirror surface method direction | |
US20220330420A1 (en) | Method of verifying fault of inspection unit, inspection apparatus and inspection system | |
TWI582400B (en) | Target plate for testing, optical testing equipment and optical testing method | |
KR101807371B1 (en) | Apparatus and method for photographic measuring | |
Benjumea et al. | Calibration of a Multimodal Thermographic Fringe Projection Profilometer Using Low-Cost Targets | |
JP2018044863A (en) | Measurement device, measurement method, system and goods manufacturing method | |
US11410297B2 (en) | Method of verifying fault of inspection unit, inspection apparatus and inspection system |