TWI762387B - Time of flight devide and inspecting method for the same - Google Patents

Time of flight devide and inspecting method for the same Download PDF

Info

Publication number
TWI762387B
TWI762387B TW110126206A TW110126206A TWI762387B TW I762387 B TWI762387 B TW I762387B TW 110126206 A TW110126206 A TW 110126206A TW 110126206 A TW110126206 A TW 110126206A TW I762387 B TWI762387 B TW I762387B
Authority
TW
Taiwan
Prior art keywords
phase
signal
value
depth value
processing unit
Prior art date
Application number
TW110126206A
Other languages
Chinese (zh)
Other versions
TW202305402A (en
Inventor
黃郁儒
張恒維
張紹雄
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW110126206A priority Critical patent/TWI762387B/en
Application granted granted Critical
Publication of TWI762387B publication Critical patent/TWI762387B/en
Publication of TW202305402A publication Critical patent/TW202305402A/en

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

An inspecting method for a time-of-flight device having a light system and an electronic system is disclosed and includes: providing multiple reference phase-signal values by an MCU; computing, by the electronic system, a testing phase delay based on the multiple reference phase-signal values, and a testing depth value based on the testing phase delay; computing a difference between the testing depth value and a reference depth value corresponding to the multiple reference phase-signal values; determining that the electronic system is normal when the difference is determined to be within a tolerance scope; sensing an external environment to generate an environmental image and compute a distance between the time-of-flight device and a target object; determining whether the light system is normal in accordance with the environmental image; and, outputting the computed distance if the light system is determined to be normal.

Description

飛行測距裝置及其檢測方法Flight ranging device and detection method thereof

本發明涉及一種飛行測距裝置,尤其涉及一種可以實現系統自我檢測程序的飛行測距裝置,以及其使用的檢測方法。The present invention relates to a flight ranging device, in particular to a flight ranging device that can realize a system self-detection program, and a detection method used therefor.

飛行測距(Time of Flight, ToF)技術是一種藉由光訊號來測量距離或深度的技術。具體地,飛行測距技術是藉由裝置對外發射光訊號,並且接收光訊號打在目標物體上後所反射的反射光訊號,最後再依據光訊號與反射光訊號間的相位延遲來計算出裝置與目標物體間的距離(即,目標物體相對於裝置的深度)。Time of Flight (ToF) technology is a technology that uses light signals to measure distance or depth. Specifically, the flight ranging technology uses the device to emit an optical signal, and receives the reflected optical signal reflected by the optical signal after hitting the target object, and finally calculates the device according to the phase delay between the optical signal and the reflected optical signal. The distance to the target object (ie, the depth of the target object relative to the device).

參閱圖1,為相關技術的飛行測距裝置的作動示意圖。相關技術中的飛行測距裝置主要具有處理器11與感測器12,其中,感測器12用以對外發射光訊號並且接收反射光訊號,處理器11用以計算光訊號與反射光訊號間的相位延遲,藉此計算出裝置與目標物體間的距離。Referring to FIG. 1 , it is a schematic diagram of the operation of the flight ranging device of the related art. The flight ranging device in the related art mainly has a processor 11 and a sensor 12, wherein the sensor 12 is used for externally transmitting an optical signal and receiving the reflected optical signal, and the processor 11 is used for calculating the difference between the optical signal and the reflected optical signal. to calculate the distance between the device and the target object.

為了確保飛行測距裝置的運作正常,相關技術中的飛行測距裝置內至少會設置兩個冗餘的處理器11(圖1中以第一處理器111與第二處理器112為例),由這兩個處理器111、112分別對感測器12接收的反射光訊號進行計算並得到兩筆結果(即,兩筆相位延遲),並且進行這兩筆結果的一致性判斷(步驟S01)。若兩筆結果一致,則可確定飛行測距裝置的運作正常,因而可接著執行儲存程序以記錄現在的狀態(步驟S02),並且可依據計算所得的相位延遲進一步執行處理程序以計算飛行測距裝置與外部環境中的目標物體間的距離(步驟S03)。In order to ensure the normal operation of the flight ranging device, at least two redundant processors 11 are set in the flight ranging device in the related art (the first processor 111 and the second processor 112 are taken as examples in FIG. 1 ), The two processors 111 and 112 respectively calculate the reflected light signal received by the sensor 12 and obtain two results (ie, two phase delays), and then judge the consistency of the two results (step S01 ) . If the two results are consistent, it can be determined that the operation of the flight ranging device is normal, so the storage program can be executed to record the current state (step S02), and the processing program can be further executed according to the calculated phase delay to calculate the flight ranging The distance between the device and the target object in the external environment (step S03).

若判斷第一處理器111與第二處理器112的計算結果不一致,則可確定飛行測距裝置的電子系統異常(步驟S04),故暫不執行距離的計算,而是先執行數位輸出程序以對外進行告警(步驟S05),或是執行暫存器寫入程序以將現在的狀態寫入暫存器(Register)中(步驟S06)。If it is determined that the calculation results of the first processor 111 and the second processor 112 are inconsistent, it can be determined that the electronic system of the flight ranging device is abnormal (step S04 ), so the distance calculation is not performed for the time being, but the digital output program is executed first to Send an alarm to the outside world (step S05 ), or execute the register writing program to write the current state into the register (step S06 ).

然而,上述的檢測方式只能測試飛行測距裝置內部的電子系統(包含感測器12與處理器11等元件)是否運作正常,但無法用來檢測飛行測距裝置上的光學系統(例如光源、透鏡等)是否正常。例如,當飛行測距裝置感測到的外部環境改變(例如飛行測距裝置的鏡頭遭撞擊而脫落,或是光源發射的光訊號改變)時,感測器12接收到的訊號已經失真,即使電子系統的運作正常,但飛行測距裝置最後計算出來的距離仍然會是錯誤的。However, the above detection method can only test whether the electronic system (including the sensor 12 and the processor 11 , etc.) inside the flight ranging device operates normally, but cannot be used to detect the optical system (such as the light source) on the flight ranging device. , lens, etc.) is normal. For example, when the external environment sensed by the flight ranging device changes (for example, the lens of the flight ranging device falls off due to impact, or the light signal emitted by the light source changes), the signal received by the sensor 12 has been distorted, even if The electronic system is functioning normally, but the final distance calculated by the flight rangefinder will still be wrong.

綜上所述,如何改進相關技術中的飛行測距裝置,以實現同時對電子系統以及光學系統的檢測,並確保最終計算結果的準確性,實相當重要。To sum up, how to improve the flight ranging device in the related art to realize the detection of the electronic system and the optical system at the same time, and to ensure the accuracy of the final calculation result, is very important.

本發明的主要目的,在於提供一種飛行測距裝置及其檢測方法,可分別檢測飛行測距裝置內的電子系統以及光學系統的狀態是否正常。The main purpose of the present invention is to provide an in-flight ranging device and a detection method thereof, which can respectively detect whether the electronic system and the optical system in the in-flight ranging device are in normal state.

為了達成上述的目的,本發明的檢測方法係應用於包括一電子系統及一光學系統的一飛行測距裝置,並且包括:In order to achieve the above object, the detection method of the present invention is applied to a flight ranging device including an electronic system and an optical system, and includes:

a)由一微控制單元提供多個參考相位訊號值,其中該微控制單元記錄多個預設相位區間及一參考深度值,該多個參考相位訊號值是基於一參考相位延遲及該多個預設相位區間所產生,該參考相位延遲是基於該參考深度值所產生;a) A plurality of reference phase signal values are provided by a micro-control unit, wherein the micro-control unit records a plurality of preset phase intervals and a reference depth value, and the plurality of reference phase signal values are based on a reference phase delay and the plurality of generated by a preset phase interval, and the reference phase delay is generated based on the reference depth value;

b)由該電子系統依據該多個參考相位訊號值計算一測試相位延遲,並依據該測試相位延遲計算一測試深度值;b) calculating a test phase delay by the electronic system according to the plurality of reference phase signal values, and calculating a test depth value according to the test phase delay;

c)由該微控制單元計算該測試深度值與該參考深度值的一差異值;c) calculating a difference value between the test depth value and the reference depth value by the micro-control unit;

d)於該差異值落入一誤差範圍時判斷該電子系統為正常;d) judging that the electronic system is normal when the difference value falls within an error range;

e)感測一外部環境以產生一環境影像,並且計算該飛行測距裝置與一目標物體之間的一距離,其中該環境影像包括至少一個該目標物體及至少一定位標誌;e) Sensing an external environment to generate an environmental image, and calculating a distance between the flight ranging device and a target object, wherein the environmental image includes at least one target object and at least one positioning marker;

f)依據環境影像中的該定位標誌判斷該光學系統的一即時狀態是否為正常;及f) judging whether a real-time state of the optical system is normal according to the positioning mark in the environmental image; and

g)當該光學系統的該即時狀態為正常時,輸出該飛行測距裝置與該目標物體之間的該距離,並且儲存該環境影像。g) When the real-time state of the optical system is normal, output the distance between the flight ranging device and the target object, and store the environment image.

為了達成上述目的,本發明的飛行測距裝置包括:In order to achieve the above purpose, the flight ranging device of the present invention includes:

一電子系統,包括:an electronic system, including:

一處理單元,接收多個參考相位訊號值,依據該多個參考相位訊號值計算一測試相位延遲,並依據該測試相位延遲計算一測試深度值;a processing unit that receives a plurality of reference phase signal values, calculates a test phase delay according to the plurality of reference phase signal values, and calculates a test depth value according to the test phase delay;

一微控制單元,連接該處理單元,記錄多個預設相位區間及一參考深度值,其中該參考深度值用於計算一參考相位延遲,該參考相位延遲與該多個預設相位區間用於計算該多個參考相位訊號值,並且該微控制單元計算該測試深度值與該參考深度值的一差異值,並於該差異值落入一誤差範圍時判斷該電子系統為正常;A micro-control unit, connected to the processing unit, records a plurality of preset phase intervals and a reference depth value, wherein the reference depth value is used to calculate a reference phase delay, and the reference phase delay and the plurality of preset phase intervals are used for calculating the plurality of reference phase signal values, and the micro-control unit calculates a difference value between the test depth value and the reference depth value, and judges that the electronic system is normal when the difference value falls within an error range;

一感測單元,連接該處理單元;及a sensing unit connected to the processing unit; and

一光學系統,向一外部環境發射一光訊號,其中該外部環境包括至少一目標物體及至少一定位標誌;an optical system that emits an optical signal to an external environment, wherein the external environment includes at least one target object and at least one positioning marker;

其中,該感測單元自該外部環境接收對應於該光訊號的一反射光訊號並產生一環境影像,並計算該飛行測距裝置與該環境影像中的該目標物體之間的一距離,該處理單元依據環境影像中的該定位標誌判斷該光學系統的一即時狀態是否為正常,並且於該光學系統的該即時狀態為正常輸出該距離並且儲存該環境影像。Wherein, the sensing unit receives a reflected light signal corresponding to the light signal from the external environment and generates an environmental image, and calculates a distance between the flight ranging device and the target object in the environmental image, the The processing unit determines whether a real-time state of the optical system is normal according to the positioning mark in the environment image, and outputs the distance and stores the environment image when the real-time state of the optical system is normal.

相較於相關技術,本發明藉由額外增設的微控制單元提供預產生的多個相位訊號值給處理單元進行計算,並與預儲存的參考深度值進行比對以確認處理單元是否正常,可以克服一般藉由兩個冗餘的處理單元進行重覆計算時,即使外部訊號異常,仍會得出電子系統運作正常的檢測結果的問題。因此,本發明的檢測技術除了可以檢測電子系統是否正常之外,亦可用來檢測光學系統是否正常。Compared with the related art, the present invention provides a plurality of pre-generated phase signal values to the processing unit for calculation by an additional micro-control unit, and compares them with the pre-stored reference depth value to confirm whether the processing unit is normal or not. It overcomes the problem that the detection result of the normal operation of the electronic system will still be obtained even if the external signal is abnormal when the repeated calculation is generally performed by two redundant processing units. Therefore, in addition to detecting whether the electronic system is normal, the detection technology of the present invention can also be used to detect whether the optical system is normal.

茲就本發明之一較佳實施例,配合圖式,詳細說明如後。Hereinafter, a preferred embodiment of the present invention will be described in detail in conjunction with the drawings.

首請參閱圖2,為本發明的飛行測距裝置的方塊圖的第一具體實施例。本發明揭露了一種飛行測距裝置2,所述飛行測距裝置2包括電子系統3以及光學系統4,其中電子系統3包括用來進行訊號處理的元件,光學系統4包括用來協助光訊號與反射光訊號的發射與接收的元件,但並不以此為限。First, please refer to FIG. 2 , which is a first specific embodiment of the block diagram of the flight ranging device of the present invention. The present invention discloses an in-flight ranging device 2. The in-flight ranging device 2 includes an electronic system 3 and an optical system 4, wherein the electronic system 3 includes components for signal processing, and the optical system 4 includes components for assisting the optical signal and the optical signal to be processed. Elements for transmitting and receiving reflected light signals, but not limited to this.

如圖2所示,所述電子系統3可例如包括處理單元31,並且包括與處理單元31連接的感測單元32及微控制單元(Micro Control Unit, MCU)33。於一實施例中,處理單元31可例如為系統單晶片(System on Chip, SoC)、中央處理單元(Central Process Unit, CPU)或場域可編程邏輯閘陣列(Field Programmable Gate Array, FPGA),但並不以此為限。As shown in FIG. 2 , the electronic system 3 may include, for example, a processing unit 31 , and includes a sensing unit 32 and a Micro Control Unit (MCU) 33 connected to the processing unit 31 . In one embodiment, the processing unit 31 may be, for example, a System on Chip (SoC), a Central Process Unit (CPU), or a Field Programmable Gate Array (FPGA), But not limited to this.

電子系統3還可包括與處理單元連接31的儲存單元34,用以儲存電子系統3的計算結果,例如飛行測距裝置2與目標物體(圖未標示)間的距離。於一實施例中,儲存單元34可例如為唯讀記憶體(Read Only Memory, ROM)、隨機存取記憶體(Random Access Memory, RAM)、非揮發性記憶體(Non-Volatile Memory, NVM)、快閃記憶體(Flash Memory)、硬碟機(Hard Disk Drive, HDD)或光碟機等,但不以此為限。The electronic system 3 may further include a storage unit 34 connected to the processing unit 31 for storing calculation results of the electronic system 3, such as the distance between the flight ranging device 2 and the target object (not shown). In one embodiment, the storage unit 34 may be, for example, a Read Only Memory (ROM), a Random Access Memory (RAM), or a Non-Volatile Memory (NVM) , Flash Memory (Flash Memory), Hard Disk Drive (HDD) or CD-ROM, etc., but not limited thereto.

電子系統3還可包括與感測單元32或處理單元31連接的驅動器35,用以對飛行測距裝置2中的光學系統4進行控制。The electronic system 3 may further include a driver 35 connected with the sensing unit 32 or the processing unit 31 to control the optical system 4 in the flight ranging device 2 .

於一實施例中,光學系統4可包括光源41、第一透鏡42以及第二透鏡43。如圖2所示,光源41連接驅動器35,以接受驅動器35的控制而朝向外部環境發射光訊號。第一透鏡42對應光源41的位置設置,以聚焦或發散光源41所發射的光訊號。第二透鏡43對應感測單元32的位置設置,用以從外部環境中將對應至所述光訊號的反射光訊號導至感測單元32,以被感測單元32所接收。In one embodiment, the optical system 4 may include a light source 41 , a first lens 42 and a second lens 43 . As shown in FIG. 2 , the light source 41 is connected to the driver 35 to be controlled by the driver 35 to emit light signals toward the external environment. The first lens 42 is disposed corresponding to the position of the light source 41 to focus or diffuse the light signal emitted by the light source 41 . The second lens 43 is disposed corresponding to the position of the sensing unit 32 for guiding the reflected light signal corresponding to the light signal from the external environment to the sensing unit 32 to be received by the sensing unit 32 .

所述光源41可例如為雷射光、紅外光等的發射光源。所述感測單元32可例如為具有成象功能以及運算功能的感光元件。惟,上述僅為本發明的一個具體實施範例,但並不以此為限。The light source 41 can be, for example, an emission light source of laser light, infrared light, or the like. The sensing unit 32 can be, for example, a photosensitive element having an imaging function and an arithmetic function. However, the above is only a specific embodiment of the present invention, but not limited thereto.

本發明的其中一個技術特徵在於,微控制單元33中儲存有預先設定的多個預設相位區間331以及至少一個參考深度值332。基於所述多個預設相位區間331以及至少一個參考深度值332,微控制單元33可以執行電子系統檢測程序,以確認電子系統3的運作是否正常(主要是確認電子系統3中的處理單元31是否正常)。One of the technical features of the present invention is that the micro-control unit 33 stores a plurality of preset phase intervals 331 and at least one reference depth value 332 in advance. Based on the plurality of preset phase intervals 331 and the at least one reference depth value 332, the micro-control unit 33 may execute an electronic system detection program to confirm whether the electronic system 3 operates normally (mainly confirming the processing unit 31 in the electronic system 3). is normal).

若於檢測後判斷電子系統3的運作正常,則飛行測距裝置2可以通過處理單元31來進一步執行光學系統檢測程序,以確認光學系統3的即時狀態是否正常(例如,飛行測距裝置2是否遭受撞擊而歪斜、第一透鏡42與第二透鏡43是否脫落、光源41發射的光訊號是否改變等)。若確認光學系統3的即時狀態正常,則飛行測距裝置2可以通過處理單元31來基於感測單元32所接收的訊號來計算並輸出飛行測距裝置2與外部的目標物體間的距離(容後詳述)。If it is determined that the electronic system 3 is operating normally after the detection, the flight ranging device 2 can further execute the optical system detection program through the processing unit 31 to confirm whether the real-time status of the optical system 3 is normal (for example, whether the flight ranging device 2 is Is it skewed due to impact, whether the first lens 42 and the second lens 43 fall off, whether the light signal emitted by the light source 41 changes, etc.). If it is confirmed that the real-time state of the optical system 3 is normal, the flight ranging device 2 can use the processing unit 31 to calculate and output the distance between the flight ranging device 2 and the external target object based on the signal received by the sensing unit 32 (content detailed later).

於一實施例中,飛行測距裝置2中的微控制單元33基於預先記錄的參考深度值3執行特定計算公式,以產生對應的參考相位延遲,並且基於參考相位延遲以及預先記錄的多個預設相位區間來執行特定計算公式,以產生對應的多個參考相位訊號值。藉此,微控制單元33提供多個參考相位訊號值給處理單元31以進行檢測。本發明中,所述參考深度值3、參考相位延遲以及多個參考相位訊號值都是為了檢測處理單元31是否正常而產生,與實際要測量的目標物體和飛行測距裝置2間的距離並無直接關聯。In one embodiment, the micro-control unit 33 in the flight ranging device 2 executes a specific calculation formula based on the pre-recorded reference depth value 3 to generate a corresponding reference phase delay, and based on the reference phase delay and a plurality of pre-recorded pre-recorded The phase interval is set to execute a specific calculation formula to generate a plurality of corresponding reference phase signal values. Thereby, the micro-control unit 33 provides a plurality of reference phase signal values to the processing unit 31 for detection. In the present invention, the reference depth value 3, the reference phase delay and a plurality of reference phase signal values are all generated to detect whether the processing unit 31 is normal, and the distance between the actual target object to be measured and the flight ranging device 2 is not Not directly related.

在飛行測距裝置2啟動後,處理單元31可以在預設的一或多個檢測時間點到達時接收微控制單元33提供的多個參考相位訊號值,以藉由多個參考相位訊號值來進行檢測。於一實施例中,處理單元31將微控制單元33提供的多個參考相位訊號值視為是由感測單元32實際接收外部的反射光訊號並且經過計算後所得的多個相位訊號值。意即,處理單元31會基於多個參考相位訊號值來執行與實際測距時所執行的相同運算(容後詳述)。上述檢測時間點可例如為飛行測距裝置2啟動後、驅動器35控制光源41發射光訊號前、光源41發射光訊號後、感測單元32接收反射光訊號後、處理單元31要計算飛行測距裝置2與目標物體間的距離前、處理單元31計算出飛行測距裝置2與目標物體間的距離後等,並不加以限定。After the flight ranging device 2 is activated, the processing unit 31 can receive a plurality of reference phase signal values provided by the micro-control unit 33 when one or more preset detection time points arrive, so as to use the plurality of reference phase signal values to determine the test. In one embodiment, the processing unit 31 regards the plurality of reference phase signal values provided by the micro-control unit 33 as the plurality of phase signal values obtained after the sensing unit 32 actually receives the external reflected light signal and calculates it. That is, the processing unit 31 performs the same operation as the actual ranging (described in detail later) based on the plurality of reference phase signal values. The above detection time points can be, for example, after the flight ranging device 2 is activated, before the driver 35 controls the light source 41 to emit an optical signal, after the light source 41 emits an optical signal, after the sensing unit 32 receives the reflected light signal, and the processing unit 31 calculates the flight ranging. Before the distance between the device 2 and the target object, after the processing unit 31 calculates the distance between the flight ranging device 2 and the target object, etc., it is not limited.

處理單元31接收微控制單元33提供的多個參考相位訊號值後,依據多個參考相位訊號值計算測試相位延遲,並且再依據測試相位延遲計算測試深度值。本發明中,處理單元31採用與微控制單元33相同的演算法來計算測試相位延遲以及測試深度值,因此若處理單元31的運作正常,則處理單元31基於多個參考相位訊號值計算產生的測試深度值,將會相等或相近於微控制單元33預先儲存的參考深度值332(即,多個參考相位訊號值的計算基礎)。After receiving the plurality of reference phase signal values provided by the micro-control unit 33, the processing unit 31 calculates the test phase delay according to the plurality of reference phase signal values, and further calculates the test depth value according to the test phase delay. In the present invention, the processing unit 31 uses the same algorithm as the micro-control unit 33 to calculate the test phase delay and the test depth value. Therefore, if the processing unit 31 operates normally, the processing unit 31 calculates the generated signal based on the multiple reference phase signal values. The test depth value will be equal to or similar to the reference depth value 332 pre-stored by the micro-control unit 33 (ie, the calculation basis of a plurality of reference phase signal values).

本發明中,處理單元31將計算後的測試深度值傳送至微控制單元33,再由微控制單元33計算測試深度值與所述參考深度值332的一差異值。所述差異值可為一個有理數的絕對值,但不以此為限。微控制單元33判斷所述差異值是否落入預設的誤差範圍內,於差異值落入誤差範圍內時(例如差異值小於或等於門檻值)認定處理單元31為正常,並且於差異值未落入誤差範圍內時(例如差異值大於門檻值)認定處理單元31為異常。In the present invention, the processing unit 31 transmits the calculated test depth value to the micro-control unit 33 , and the micro-control unit 33 calculates a difference value between the test depth value and the reference depth value 332 . The difference value may be an absolute value of a rational number, but is not limited thereto. The micro-control unit 33 determines whether the difference value falls within the preset error range, and when the difference value falls within the error range (for example, the difference value is less than or equal to the threshold value), it determines that the processing unit 31 is normal, and when the difference value does not fall within the error range. When it falls within the error range (for example, the difference value is greater than the threshold value), the processing unit 31 is determined to be abnormal.

值得一提的是,本發明中的光學系統檢測程序是由處理單元31來執行,因此於一實施例中,飛行測距裝置2只有在確認處理單元31為正常時才會執行光學系統檢測程序。於一實施例中,飛行測距裝置2會在執行光學系統檢測程序時計算飛行測距裝置2與外部環境中的至少一目標物體間的距離,並且只有在確認電子系統3以及光學系統4皆正常時才會輸出所述距離。於另一實施例中,飛行測距裝置2只有在確認電子系統3以及光學系統4皆正常時,才會計算飛行測距裝置2與外部環境中的至少一目標物體間的距離,但並不加以限定。It is worth mentioning that the optical system detection program in the present invention is executed by the processing unit 31, so in an embodiment, the flight ranging device 2 will only execute the optical system detection program when it is confirmed that the processing unit 31 is normal. . In one embodiment, the flight ranging device 2 calculates the distance between the flight ranging device 2 and at least one target object in the external environment when performing the optical system detection procedure, and only after confirming that both the electronic system 3 and the optical system 4 are The distance is only output when normal. In another embodiment, the flight ranging device 2 only calculates the distance between the flight ranging device 2 and at least one target object in the external environment when it is confirmed that the electronic system 3 and the optical system 4 are normal, but does not. be limited.

請同時參閱圖3及圖4,分為本發明的外部環境檢測示意圖的第一具體實施例與第二具體實施例。如上所述,若經過電子系統檢測程序確認電子系統3正常(即,處理單元31正常),則處理單元31發出指令給驅動器35,以由驅動器35控制光學系統4朝向外部環境5發射光訊號S1。於圖3的實施例中,外部環境5中可包含至少一目標物體51以及至少一定位標誌52。本實施例中,目標物體51是飛行測距裝置2的主要測量目標,定位標誌52則是用以做為飛行測距裝置2的光學系統4是否正常的判斷基準。Please refer to FIG. 3 and FIG. 4 at the same time, which are divided into a first specific embodiment and a second specific embodiment of the external environment detection schematic diagram of the present invention. As mentioned above, if it is confirmed that the electronic system 3 is normal (that is, the processing unit 31 is normal) through the electronic system testing procedure, the processing unit 31 sends an instruction to the driver 35 so that the driver 35 controls the optical system 4 to emit the optical signal S1 toward the external environment 5 . In the embodiment of FIG. 3 , the external environment 5 may include at least one target object 51 and at least one positioning mark 52 . In this embodiment, the target object 51 is the main measurement target of the flight ranging device 2 , and the positioning mark 52 is used as a criterion for judging whether the optical system 4 of the flight ranging device 2 is normal.

當光訊號S1照射在外部環境5中後,飛行測距裝置2的感測單元32可以通過光學系統4來從外部環境接收對應於光訊號S1的反射光訊號S2。通過所接收的反射光訊號2,感測單元32可以生成對應的環境影像,並且環境影像的內容對應至光訊號S1的照射範圍。例如,若光訊號S1的照射範圍包含了外部環境5中的一個目標物體51以及多個定位標誌52,則感測單元32生成的環境影像中也會包含對應的一個目標物體51的影像以及對應的多個定位標誌52的影像。After the light signal S1 is irradiated in the external environment 5 , the sensing unit 32 of the flight ranging device 2 can receive the reflected light signal S2 corresponding to the light signal S1 from the external environment through the optical system 4 . Through the received reflected light signal 2, the sensing unit 32 can generate a corresponding environment image, and the content of the environment image corresponds to the illumination range of the light signal S1. For example, if the irradiation range of the light signal S1 includes a target object 51 and a plurality of positioning marks 52 in the external environment 5 , the environment image generated by the sensing unit 32 will also include an image of a corresponding target object 51 and a corresponding image of the target object 51 . image of the plurality of positioning markers 52 .

於一實施例中,所述環境影像可為一維影像、二維影像、三維影像或四維影像等,但不以此為限。In one embodiment, the environment image may be a one-dimensional image, a two-dimensional image, a three-dimensional image, or a four-dimensional image, etc., but not limited thereto.

本發明的其中一個技術特徵在於,處理單元31可以在感測單元32產生了環境影像後,依據環境影像中的定位標誌52來判斷光學系統4的即時狀態是否為正常。如圖4所示,若處理單元31分析感測單元32所產生的環境影像後,發現環境影像中的多個定位標誌52’的資訊(例如座標)改變,並且改變程度大於預設的門檻值,則可判斷光學系統4的即時狀態不正常。圖4的實施例是以本次檢測時定位標誌52’的位置與定位標誌52的初始位置相比,沿著順時針方向產生了偏轉為例,但不以此為限。One of the technical features of the present invention is that the processing unit 31 can determine whether the real-time state of the optical system 4 is normal according to the positioning mark 52 in the environment image after the sensing unit 32 generates the environment image. As shown in FIG. 4 , if the processing unit 31 analyzes the environmental image generated by the sensing unit 32 and finds that the information (eg coordinates) of the positioning marks 52 ′ in the environmental image has changed, and the change degree is greater than the preset threshold value , it can be judged that the real-time state of the optical system 4 is abnormal. In the embodiment of FIG. 4 , the position of the positioning mark 52' is compared with the initial position of the positioning mark 52 during the current detection and is deflected in the clockwise direction as an example, but it is not limited thereto.

續請同時參閱圖5,為本發明的檢測流程圖的第一具體實施例。本發明還揭露了一種檢測方法,應用於如圖2所示的飛行測距裝置2,用以檢測飛行測距裝置2內部的電子系統3是否運作正常。Please also refer to FIG. 5 , which is a first specific embodiment of the detection flow chart of the present invention. The present invention also discloses a detection method, which is applied to the flight ranging device 2 as shown in FIG. 2 to detect whether the electronic system 3 inside the flight ranging device 2 operates normally.

於一實施例中,飛行測距裝置2可以預先設定一或多個檢測時間點,並且於檢測時間點到達時,自動執行圖5所示的檢測方法以執行電子系統檢測程序。In one embodiment, the flight ranging device 2 can preset one or more detection time points, and when the detection time point arrives, automatically execute the detection method shown in FIG. 5 to execute the electronic system detection procedure.

如圖5所示,於任一檢測時間點到達時,飛行測距裝置2首先由微控制單元33提供預產生或預儲存的多個參考相位訊號值給處理單元31(步驟S10)。As shown in FIG. 5 , when any detection time point arrives, the flight ranging device 2 firstly provides a plurality of pre-generated or pre-stored reference phase signal values from the micro-control unit 33 to the processing unit 31 (step S10 ).

於一實施例中,微控制單元33可以預儲存多個參考相位訊號值,並且於步驟S10中直接提供給處理單元31。於另一實施例中,微控制單元33儲存所述多個預設相位區間331及所述參考深度值332,並且在任一檢測時間點到達時,微控制單元33先依據參考深度值332來計算產生參考相位延遲,再依據參考相位延遲以及多個預設相位區間331來計算產生多個參考相位訊號值(容後詳述)。藉此,再於步驟S10中將即時產生的多個參考相位訊號值提供給處理單元31。In one embodiment, the micro-control unit 33 can pre-store a plurality of reference phase signal values, and directly provide them to the processing unit 31 in step S10 . In another embodiment, the micro-control unit 33 stores the plurality of preset phase intervals 331 and the reference depth value 332, and when any detection time point arrives, the micro-control unit 33 first calculates according to the reference depth value 332 A reference phase delay is generated, and then a plurality of reference phase signal values are calculated and generated according to the reference phase delay and a plurality of preset phase intervals 331 (described in detail later). Thereby, in step S10 , a plurality of reference phase signal values generated in real time are provided to the processing unit 31 .

惟,上述僅為本發明的部分具體實施範例,但並不以上述者為限。However, the above are only some specific embodiments of the present invention, but are not limited to the above.

接著,處理單元31自微控制單元33接收多個參考相位訊號值,並且依據多個參考相位訊號值計算測試相位延遲(步驟S12),接著再依據計算所得的測試相位延遲計算測試深度值(步驟S14)。Next, the processing unit 31 receives a plurality of reference phase signal values from the micro-control unit 33, and calculates a test phase delay according to the plurality of reference phase signal values (step S12), and then calculates a test depth value according to the calculated test phase delay (step S12). S14).

於一實施例中,處理單元31在步驟S10中可接收微控制單元33提供的四個參考相位訊號值,包括第一參考相位訊號值、第二參考相位訊號值、第三參考相位訊號值與第四參考相位訊號值。In one embodiment, the processing unit 31 may receive four reference phase signal values provided by the micro-control unit 33 in step S10, including the first reference phase signal value, the second reference phase signal value, the third reference phase signal value and the The fourth reference phase signal value.

在步驟S12中,處理單元31主要是基於四個參考相位訊號來執行第一公式,以計算所述測試相位延遲。所述第一公式可例如為:

Figure 02_image001
,其中Øt為測試相位延遲,Qr1至Qr4分別為第一參考相位訊號值至第四參考相位訊號值。 In step S12, the processing unit 31 mainly executes the first formula based on the four reference phase signals to calculate the test phase delay. The first formula can be, for example:
Figure 02_image001
, where Øt is the test phase delay, and Qr1 to Qr4 are the first to fourth reference phase signal values, respectively.

在步驟S14中,處理單元31主要是基於所述測試相位延遲來執行第二公式,以計算所述測試深度值。所述第二公式可例如為:

Figure 02_image003
,其中Dt為測試深度值,Øt為測試相位延遲,c為光速,f為飛行測距裝置2採用的調變頻率。具體地,所述第一公式與第二公式可記錄於處理單元31的韌體中,但不以此為限。 In step S14, the processing unit 31 executes the second formula mainly based on the test phase delay to calculate the test depth value. The second formula can be, for example:
Figure 02_image003
, where Dt is the test depth value, Øt is the test phase delay, c is the speed of light, and f is the modulation frequency used by the flight ranging device 2 . Specifically, the first formula and the second formula may be recorded in the firmware of the processing unit 31, but not limited thereto.

請同時參閱圖6,為本發明的訊號示意圖的第一具體實施例。圖6揭露了本案的飛行測距裝置2在實際執行測距程序(即,測量飛行測距裝置2與目標物體之間的距離)時,感測單元32與處理單元31所實際產生並使用的訊號內容。本發明中,微控制單元33採用了與感測單元32、處理單元31在實際執行測距程序時所採用的相同演算法來產生多個參考相位訊號值以及參考深度值332。因此,下面段落將以圖6將結合感測單元32與處理單元31執行的測距程序來進行說明,但其技術內容適用於微控制單元33對於多個參考相位訊號值的產生程序。Please also refer to FIG. 6 , which is a first specific embodiment of a signal schematic diagram of the present invention. FIG. 6 discloses the actual data generated and used by the sensing unit 32 and the processing unit 31 when the flight ranging device 2 of the present case actually performs the ranging procedure (ie, measuring the distance between the flight ranging device 2 and the target object). signal content. In the present invention, the micro-control unit 33 adopts the same algorithm as the sensing unit 32 and the processing unit 31 when actually executing the ranging procedure to generate a plurality of reference phase signal values and reference depth values 332 . Therefore, the following paragraphs will be described with reference to FIG. 6 in conjunction with the ranging procedure performed by the sensing unit 32 and the processing unit 31 , but its technical content is applicable to the generation procedure of the micro-control unit 33 for multiple reference phase signal values.

如圖6所示,飛行測距裝置2通過光學系統4對外發射光訊號S1,並且通過感測單元32從外部環境接收反射光訊號S2。其中,光訊號S1的相位以相位0度為例,而反射光訊號S2與光訊號S1之間具有相位延遲Ø(因為反射光訊號S2的接收時間晚於光訊號S1的發射時間)。As shown in FIG. 6 , the flight ranging device 2 transmits the optical signal S1 through the optical system 4 , and receives the reflected optical signal S2 from the external environment through the sensing unit 32 . The phase of the optical signal S1 is 0 degrees as an example, and there is a phase delay Ø between the reflected optical signal S2 and the optical signal S1 (because the receiving time of the reflected optical signal S2 is later than the transmitting time of the optical signal S1).

於一實施例中,所述多個預設相位區間331包括第一預設相位區間I1、第二預設相位區間I2、第三預設相位區間I3以及第四預設相位區間I4,其中,第一預設相位區間I1可設定為[0,π],第二預設相位區間I2可設定為[

Figure 02_image005
,
Figure 02_image007
],第三預設相位區間I3可設定為[π,2π],第四預設相位區間I4可設定為[
Figure 02_image009
,
Figure 02_image011
]。 In one embodiment, the plurality of predetermined phase intervals 331 include a first predetermined phase interval I1, a second predetermined phase interval I2, a third predetermined phase interval I3 and a fourth predetermined phase interval I4, wherein, The first preset phase interval I1 can be set to [0, π], and the second preset phase interval I2 can be set to [
Figure 02_image005
,
Figure 02_image007
], the third preset phase interval I3 can be set to [π, 2π], and the fourth preset phase interval I4 can be set to [
Figure 02_image009
,
Figure 02_image011
].

在接收了反射光訊號S2後,感測單元32可基於上述四個預設相位區間I1-I4來分別對反射光訊號S2進行積分,以計算四個相位訊號值。具體地,感測單元32基於第一預設相位區間I1對反射光訊號S2進行積分,以計算相對於相位0度的第一相位訊號值Q1。感測單元32基於第二預設相位區間I2對反射光訊號S2進行積分,以計算相對於相位90度的第二相位訊號值Q2。感測單元32基於第三預設相位區間I3對反射光訊號S2進行積分,以計算相對於相位180度的第三相位訊號值Q3。感測單元32基於第四預設相位區間I4對反射光訊號S2進行積分,以計算相對於相位270度的第四相位訊號值Q4。After receiving the reflected light signal S2, the sensing unit 32 can respectively integrate the reflected light signal S2 based on the above-mentioned four preset phase intervals I1-I4 to calculate four phase signal values. Specifically, the sensing unit 32 integrates the reflected light signal S2 based on the first preset phase interval I1 to calculate the first phase signal value Q1 relative to the phase of 0 degrees. The sensing unit 32 integrates the reflected light signal S2 based on the second preset phase interval I2 to calculate a second phase signal value Q2 that is 90 degrees relative to the phase. The sensing unit 32 integrates the reflected light signal S2 based on the third preset phase interval I3 to calculate a third phase signal value Q3 that is 180 degrees relative to the phase. The sensing unit 32 integrates the reflected light signal S2 based on the fourth preset phase interval I4 to calculate the fourth phase signal value Q4 relative to the phase of 270 degrees.

接著,感測單元32將上述第一相位訊號值Q1、第二相位訊號值Q2、第三相位訊號值Q3以及第四相位訊號值Q4傳遞給處理單元31,而處理單元31通過前述第一公式(即,

Figure 02_image013
)來計算相位延遲Ø。並且,在計算得到相位延遲Ø後,處理單元31可進一步通過上述第二公式(即,
Figure 02_image015
)來計算飛行測距裝置2與目標物體51間的距離。 Next, the sensing unit 32 transmits the first phase signal value Q1, the second phase signal value Q2, the third phase signal value Q3 and the fourth phase signal value Q4 to the processing unit 31, and the processing unit 31 passes the aforementioned first formula (which is,
Figure 02_image013
) to calculate the phase delay Ø. Moreover, after calculating the phase delay Ø, the processing unit 31 can further use the above-mentioned second formula (ie,
Figure 02_image015
) to calculate the distance between the flight ranging device 2 and the target object 51 .

請同時參閱圖7,為本發明的參考訊號示意圖的第一具體實施例。於一實施例中,本發明的微控制單元33可預先儲存有基於多個預設相位區間331與參考深度值332所產生的多個參考相位訊號值。於此實施例中,微控制單元33不需經過任何運算,即可直接提供多個參考相位訊號值給處理單元31,以執行電子系統檢測程序。Please also refer to FIG. 7 , which is a first embodiment of a schematic diagram of a reference signal of the present invention. In one embodiment, the micro-control unit 33 of the present invention may pre-store a plurality of reference phase signal values generated based on a plurality of preset phase intervals 331 and a reference depth value 332 . In this embodiment, the micro-control unit 33 can directly provide a plurality of reference phase signal values to the processing unit 31 without any calculation, so as to execute the electronic system detection procedure.

於另一實施例中,微控制單元33預先儲存多個預設相位區間331以及參考深度值332,並且在需要執行電子系統檢測程序時,經過與上述處理單元31所採用的相同演算法來即時產生多個參考相位訊號值。In another embodiment, the micro-control unit 33 pre-stores a plurality of preset phase intervals 331 and the reference depth value 332, and when the electronic system detection program needs to be executed, the same algorithm as that used by the above-mentioned processing unit 31 is used to real-time Generate multiple reference phase signal values.

具體地,如圖7所示,由於對於微控制單元33來說,參考深度值332為已知的數值,因此微控制單元33可通過上述第二公式(即,Dr

Figure 02_image017
)來計算一個參考相位延遲,其中Dr指參考深度值332,Ør指參考相位延遲。於一實施例中,所述第二公式可記錄於微控制單元33的韌體中,但不加以限定。 Specifically, as shown in FIG. 7 , since the reference depth value 332 is a known value for the micro-control unit 33, the micro-control unit 33 can pass the above-mentioned second formula (ie, Dr.
Figure 02_image017
) to calculate a reference phase delay, where Dr refers to the reference depth value 332 and Ør refers to the reference phase delay. In one embodiment, the second formula can be recorded in the firmware of the micro-control unit 33, but it is not limited.

於一實施例中,所述參考深度值332是經過實際量測後計算所得的數據,並且記錄於微控制單元33中。因此,對於微控制單元33來說,於實際量測時所採用的光訊號(下面稱為參考光訊號Sr1)也是已知的訊號。於本實施例中,當微控制單元33計算出參考相位延遲Ør後,即可依據參考相位延遲Ør對參考光訊號Sr1進行處理以產生參考反射光訊號Sr2。In one embodiment, the reference depth value 332 is calculated data after actual measurement, and is recorded in the micro-control unit 33 . Therefore, for the micro-control unit 33, the optical signal used in the actual measurement (hereinafter referred to as the reference optical signal Sr1) is also a known signal. In this embodiment, after the micro-control unit 33 calculates the reference phase delay Ør, it can process the reference optical signal Sr1 according to the reference phase delay Ør to generate the reference reflected light signal Sr2.

如上所述,微控制單元33預儲存的多個預設相位區間可包括第一預設相位區間(預設為[0,π])、第二預設相位區間(預設為[

Figure 02_image005
,
Figure 02_image007
])、第三預設相位區間(預設為[π,2π])與第四預設相位區間(預設為[
Figure 02_image009
,
Figure 02_image011
]),故微控制單元33可以基於四個預設相位區間來分別對參考反射光訊號Sr2進行積分,以計算對應的四個參考相位訊號值,包括第一參考相位訊號值Qr1、第二參考相位訊號值Qr2、第三參考相位訊號值Qr3以及第四參考相位訊號值Qr4。接著,微控制單元33可以將上述四個參考相位訊號值Qr1-Qr4提供給處理單元31。 As described above, the plurality of preset phase intervals pre-stored by the micro-control unit 33 may include a first preset phase interval (default is [0, π]), a second preset phase interval (default is [
Figure 02_image005
,
Figure 02_image007
]), the third preset phase interval (the default is [π, 2π]), and the fourth preset phase interval (the default is [
Figure 02_image009
,
Figure 02_image011
]), so the micro-control unit 33 can respectively integrate the reference reflected light signal Sr2 based on the four preset phase intervals to calculate the corresponding four reference phase signal values, including the first reference phase signal value Qr1, the second reference The phase signal value Qr2, the third reference phase signal value Qr3, and the fourth reference phase signal value Qr4. Next, the micro-control unit 33 may provide the above-mentioned four reference phase signal values Qr1 - Qr4 to the processing unit 31 .

回到圖5。於步驟S12中,處理單元31基於所接收的至少四個參考相位訊號Qr1-Qr4執行所述第一公式(即,

Figure 02_image001
)以計算測試相位延遲Øt。於步驟S14中,處理單元31基於測試相位延遲Øt執行所述第二公式(即,
Figure 02_image003
)以計算測試深度值Dt。 Return to Figure 5. In step S12, the processing unit 31 executes the first formula based on the received at least four reference phase signals Qr1-Qr4 (ie,
Figure 02_image001
) to calculate the test phase delay Øt. In step S14, the processing unit 31 executes the second formula based on the test phase delay Øt (ie,
Figure 02_image003
) to calculate the test depth value Dt.

步驟S14後,處理單元31將測試深度值傳送至微控制單元33,並且由微控制單元33計算測試深度值與預儲存的參考深度值332的差異值(步驟S16)。例如,微控制單元33可將測試深度值與參考深度值進行相減並且取其絕對值,以做為所述差異值,但不以此為限。After step S14, the processing unit 31 transmits the test depth value to the micro-control unit 33, and the micro-control unit 33 calculates the difference value between the test depth value and the pre-stored reference depth value 332 (step S16). For example, the micro-control unit 33 may subtract the test depth value from the reference depth value and take the absolute value thereof as the difference value, but it is not limited thereto.

於步驟S16後,微控制單元33判斷所述差異值是否落入預定的誤差範圍(步驟S18),例如,判斷差異值是否小於或等於門檻值。並且,微控制單元33在差異值沒有落入誤差範圍(例如差異值大於門檻值)時,判斷電子系統3為異常(步驟S20)。意即,處理單元31基於所接收的四個參考相位訊號值計算所得的測試深度值,與做為四個參考相位訊號值的計算基礎的參考深度值332不相符。反之,微控制單元33在差異值落入誤差範圍(例如差異值小於或等於預設門檻值)時,判斷電子系統3為正常(步驟S22)。After step S16, the micro-control unit 33 determines whether the difference value falls within a predetermined error range (step S18), for example, determines whether the difference value is less than or equal to a threshold value. In addition, when the difference value does not fall within the error range (for example, the difference value is greater than the threshold value), the micro-control unit 33 determines that the electronic system 3 is abnormal (step S20 ). That is, the test depth value calculated by the processing unit 31 based on the received four reference phase signal values does not match the reference depth value 332 on which the four reference phase signal values are calculated. On the contrary, when the difference value falls within the error range (eg, the difference value is less than or equal to the preset threshold value), the micro-control unit 33 determines that the electronic system 3 is normal (step S22 ).

若微控制單元33於步驟S20中判斷電子系統3為異常,則飛行測距裝置2不執行光學系統檢測方法,亦不計算飛行測距裝置2與目標物體51間的距離。於此實施例中,飛行測距裝置2可選擇性地執行數位輸出程序以進行告警,或是執行暫存器寫入程序以將異常狀態寫入暫存器中。通過上述技術手段,管理者可以在檢測到異常的當下就收到告警,或是從暫存器中確認異常的發生時間,藉此可以有效節省飛行測距裝置2的檢測時間。If the micro-control unit 33 determines in step S20 that the electronic system 3 is abnormal, the flight ranging device 2 does not execute the optical system detection method, and does not calculate the distance between the flight ranging device 2 and the target object 51 . In this embodiment, the flight ranging device 2 can selectively execute a digital output procedure to give an alarm, or execute a register write procedure to write an abnormal state into the register. Through the above technical means, the administrator can receive an alarm when the abnormality is detected, or confirm the occurrence time of the abnormality from the temporary register, thereby effectively saving the detection time of the flight ranging device 2 .

若微控制單元33於步驟S22中判斷電子系統3為正常,則飛行測距裝置2可進一步通過感測單元32感測外部環境5以產生對應的環境影像,並且通過感測單元32所提供的資訊(例如上述第一相位訊號值Q1至第四相位訊號值Q4)來計算飛行測距裝置2與環境影像中的至少一目標物體51間的距離(步驟S24)。如圖3、圖4所示,所述環境影像可對應光訊號S1在外部環境5中的照射範圍,並包括外部環境5中的至少一個目標物體51的影像以及至少一個定位標誌52的影像。If the micro-control unit 33 determines in step S22 that the electronic system 3 is normal, the flight ranging device 2 can further sense the external environment 5 through the sensing unit 32 to generate a corresponding environment image, and the sensing unit 32 provides the The information (such as the first phase signal value Q1 to the fourth phase signal value Q4) is used to calculate the distance between the flight ranging device 2 and the at least one target object 51 in the environment image (step S24). As shown in FIGS. 3 and 4 , the environment image corresponds to the irradiation range of the light signal S1 in the external environment 5 , and includes an image of at least one target object 51 and an image of at least one positioning marker 52 in the external environment 5 .

步驟S24後,處理單元31接收感測單元32產生的環境影像,並且依據環境影像中的定位標誌52的狀態來判斷光學系統4的即時狀態是否正常(步驟S26)。After step S24, the processing unit 31 receives the environment image generated by the sensing unit 32, and determines whether the real-time state of the optical system 4 is normal according to the state of the positioning marker 52 in the environment image (step S26).

若微控制單元33於步驟S26中判斷光學系統4異常,則處理單元31不輸出飛行測距裝置2與目標物體51間的距離,並且不儲存當前的環境影像。於此實施例中,處理單元31可選擇性地執行數位輸出程序以進行告警,或是執行暫存器寫入程序以將異常狀態寫入暫存器中。若處理單元31於步驟S26中判斷光學系統4正常,則處理單元31可進一步輸出於步驟S24中計算的飛行測距裝置2與目標物體51間的距離,並且儲存當前的環境影像(步驟S28)。If the micro-control unit 33 determines in step S26 that the optical system 4 is abnormal, the processing unit 31 does not output the distance between the flight ranging device 2 and the target object 51 and does not store the current environment image. In this embodiment, the processing unit 31 can selectively execute the digital output procedure to give an alarm, or execute the register write procedure to write the abnormal state into the register. If the processing unit 31 determines in step S26 that the optical system 4 is normal, the processing unit 31 may further output the distance between the flight ranging device 2 and the target object 51 calculated in step S24, and store the current environment image (step S28) .

續請參閱圖8,為本發明的測距流程圖的第一具體實施例。圖8用以說明在經過電子系統檢測程序認定電子系統3正常,進而執行光學系統檢測程序時,處理單元31如何依據感測單元32提供的資訊計算飛行測距裝置2與目標物體51間的距離。Please refer to FIG. 8 , which is a first specific embodiment of a ranging flowchart of the present invention. 8 is used to illustrate how the processing unit 31 calculates the distance between the flight ranging device 2 and the target object 51 according to the information provided by the sensing unit 32 when the electronic system 3 is determined to be normal through the electronic system detection procedure and the optical system detection procedure is executed. .

如圖8所示,在飛行測距裝置2正常運作時,首先由電子系統3(例如驅動器35)控制光學系統4對外發射光訊號S1(步驟S30),並且經由光學系統4(例如第二透鏡43)而令感測單元32接收相對所述光訊號S1的反射光訊號S2(步驟S32)。於一實施例中,所述光訊號S1與反射光訊號S2為周期性變化的連續波。As shown in FIG. 8 , when the flight ranging device 2 is operating normally, the electronic system 3 (eg, the driver 35 ) controls the optical system 4 to emit an optical signal S1 (step S30 ), and the optical system 4 (eg, the second lens) transmits the optical signal S1 to the outside. 43) The sensing unit 32 receives the reflected light signal S2 relative to the light signal S1 (step S32). In one embodiment, the optical signal S1 and the reflected optical signal S2 are continuous waves that change periodically.

接著,如前文中針對圖6之說明,感測單元32基於多個預設相位區間(例如第一預設相位區間I1至第四預設相位區間I4)分別對反射光訊號S2進行積分,以計算多個相位訊號值(例如第一相位訊號值Q1至第四相位訊號值Q4)(步驟S34),其中各個相位訊號值Q1至Q4分別對應至不同的相位區間。Next, as described above with respect to FIG. 6 , the sensing unit 32 respectively integrates the reflected light signal S2 based on a plurality of preset phase intervals (eg, the first preset phase interval I1 to the fourth preset phase interval I4 ) to obtain A plurality of phase signal values (eg, the first phase signal value Q1 to the fourth phase signal value Q4 ) are calculated (step S34 ), wherein each phase signal value Q1 to Q4 corresponds to different phase intervals respectively.

於步驟S34後,處理單元31從感測單元32處取得多個相位訊號值,並且基於多個相位訊號值計算反射光訊號S2相對於光訊號S1的相位延遲(步驟S36)。如前文所述,處理單元31可基於多個相位訊號值執行所述第一公式(即,

Figure 02_image013
),以計算反射光訊號S2相對於光訊號S1的相位延遲Ø。 After step S34, the processing unit 31 obtains a plurality of phase signal values from the sensing unit 32, and calculates the phase delay of the reflected light signal S2 relative to the light signal S1 based on the plurality of phase signal values (step S36). As described above, the processing unit 31 may execute the first formula (ie, based on a plurality of phase signal values)
Figure 02_image013
) to calculate the phase delay Ø of the reflected optical signal S2 relative to the optical signal S1.

步驟S36後,處理單元31可基於計算所得的相位延遲Ø來計算出飛行測距裝置2與目標物體51間的距離(步驟S38)。如前文所述,處理單元31可基於相位延遲Ø執行所述第二公式(即,

Figure 02_image019
),以計算飛行測距裝置2與目標物體51間的距離D。 After step S36, the processing unit 31 may calculate the distance between the flight ranging device 2 and the target object 51 based on the calculated phase delay Ø (step S38). As previously described, the processing unit 31 may execute the second formula based on the phase delay Ø (ie,
Figure 02_image019
) to calculate the distance D between the flight ranging device 2 and the target object 51 .

於步驟S38後,處理單元31已計算得出飛行測距裝置2與目標物體51間的距離D,並且可進一步將所述距離D儲存至儲存單元34中(步驟S40),或是基於所述距離D執行對應功能。After step S38, the processing unit 31 has calculated the distance D between the flight ranging device 2 and the target object 51, and can further store the distance D in the storage unit 34 (step S40), or based on the The distance D performs the corresponding function.

值得一提的是,本發明中,飛行測距裝置2可以預先設定一或多個檢測時間點。於檢測時間點到達時,微控制單元33自動提供所述多個參考相位訊號值(例如第一參考相位訊號值Qr1-Qr4)給處理單元31(步驟S42)。於此實施例中,處理單元31將多個參考相位訊號值視為感測單元32直接提供的多個相位訊號值,並且基於前述步驟S36及步驟S38的技術手段來基於多個參考相位訊號值計算得出對應的測試深度值。It is worth mentioning that, in the present invention, the flight ranging device 2 can preset one or more detection time points. When the detection time point arrives, the micro-control unit 33 automatically provides the plurality of reference phase signal values (eg, the first reference phase signal values Qr1-Qr4) to the processing unit 31 (step S42). In this embodiment, the processing unit 31 regards the plurality of reference phase signal values as the plurality of phase signal values directly provided by the sensing unit 32, and based on the technical means of the aforementioned steps S36 and S38, the plurality of reference phase signal values are based on Calculate the corresponding test depth value.

於步驟S38後,處理單元31將測試深度值傳送給微控制單元33,並且由微控制單元33判斷測試深度值與預儲存的參考深度值332是否一致(步驟S44)。於一實施例中,微控制單元33是於測試深度值與參考深度值332之間的差異值沒有落入預設的誤差範圍內時,認定測試深度值與參考深度值332不一致。After step S38, the processing unit 31 transmits the test depth value to the micro-control unit 33, and the micro-control unit 33 determines whether the test depth value is consistent with the pre-stored reference depth value 332 (step S44). In one embodiment, the micro-control unit 33 determines that the test depth value is inconsistent with the reference depth value 332 when the difference between the test depth value and the reference depth value 332 does not fall within a predetermined error range.

若微控制單元33於步驟S44中判斷測試深度值與參考深度值332不一致,則可認定處理單元31的狀態異常,因此控制飛行測距裝置2停止執行光學系統檢測程序,並且停止執行測距程序。並且,如前文所述,微控制單元33可以執行數位輸出程序以對外進行告警,或是執行暫存器寫入程序以將處理單元31的異常狀態寫入暫存器中。If the micro-control unit 33 determines in step S44 that the test depth value is inconsistent with the reference depth value 332, it can be determined that the state of the processing unit 31 is abnormal, and thus controls the flight ranging device 2 to stop executing the optical system detection program and stop executing the ranging program . Moreover, as mentioned above, the micro-control unit 33 can execute a digital output program to give an external alarm, or execute a register write program to write the abnormal state of the processing unit 31 into the register.

續請參閱圖9,為本發明的檢測流程圖的第二具體實施例。在微控制單元33藉由上述電子系統檢測程序確認處理單元31正常後,處理單元31可進一步通過圖9所示的方法來執行光學系統檢測程序,以在電子系統3正常的基礎上確認光學系統4是否正常。Please refer to FIG. 9 , which is a second specific embodiment of the detection flow chart of the present invention. After the micro-control unit 33 confirms that the processing unit 31 is normal through the above-mentioned electronic system detection program, the processing unit 31 can further execute the optical system detection program through the method shown in FIG. 9 to confirm the optical system on the basis of the normal electronic system 3 4 is normal.

本發明中,處理單元31可以先取得並儲存做為檢測基礎的參考環境影像(例如儲存於儲存單元34)。當飛行測距裝置2在執行測距程序時,光學系統4會持續對外發射光訊號S1,並且感測單元32會持續接收反射光訊號S2。於一實施例中,感測單元32除了會基於反射光訊號S2來計算多個相位訊號值以令處理單元31計算飛行測距裝置2與目標物體51間的距離之外,還會基於反射光訊號S2來產生對應的環境影像。藉由環境影像與所述參考環境影像的比對,處理單元31可以確認光學系統4的即時狀態。In the present invention, the processing unit 31 may first obtain and store the reference environment image (eg, stored in the storage unit 34 ) as the basis for detection. When the flight ranging device 2 is performing the ranging procedure, the optical system 4 will continue to transmit the optical signal S1 to the outside, and the sensing unit 32 will continue to receive the reflected optical signal S2. In one embodiment, the sensing unit 32 not only calculates a plurality of phase signal values based on the reflected light signal S2 to enable the processing unit 31 to calculate the distance between the flight ranging device 2 and the target object 51, but also based on the reflected light The signal S2 is used to generate the corresponding environment image. By comparing the environmental image with the reference environmental image, the processing unit 31 can confirm the real-time state of the optical system 4 .

如圖9所示,首先,在正式開始監控外部環境5並且執行測距程序前,先由感測單元32對外部環境5進行感測,以產生對應的環境影像,並將環境影像儲存為參考環境影像(步驟S50)。具體地,飛行測距裝置2可由處理單元31控制驅動器35來驅動光學系統4朝向外部環境5發射光訊號S1,並且由感測單元32接收反射光訊號S2,並且由感測單元32基於反射光訊號S2產生所述參考環境影像。As shown in FIG. 9 , first, before officially starting to monitor the external environment 5 and executing the ranging procedure, the external environment 5 is sensed by the sensing unit 32 to generate a corresponding environmental image, and the environmental image is stored as a reference Environment image (step S50). Specifically, the flight ranging device 2 can control the driver 35 by the processing unit 31 to drive the optical system 4 to emit the light signal S1 toward the external environment 5 , and the reflected light signal S2 is received by the sensing unit 32 , and the reflected light signal S2 is received by the sensing unit 32 based on the reflected light. Signal S2 generates the reference environment image.

本發明中,產生並儲存所述參考環境影像的目的在於判斷光學系統4的狀態是否正常,因此參考環境影像中至少需包括如圖3所示的定位標誌52的影像。並且,處理單元31對參考環境影像進行影像分析,以取得參考環境影像中的定位標誌52的資訊(步驟S52),例如座標、角度等,但不加以限定。In the present invention, the purpose of generating and storing the reference environment image is to determine whether the state of the optical system 4 is normal. Therefore, the reference environment image must at least include the image of the positioning mark 52 shown in FIG. 3 . Furthermore, the processing unit 31 performs image analysis on the reference environment image to obtain information of the positioning marker 52 in the reference environment image (step S52 ), such as coordinates, angles, etc., but not limited thereto.

於儲存了參考環境影像後,處理單元31通過驅動器35控制光學系統4持續發射光訊號S1,並且控制感測單元32持續接收反射光訊號S2並且產生對應的環境影像(步驟S54)。After storing the reference environment image, the processing unit 31 controls the optical system 4 to continuously emit the light signal S1 through the driver 35, and controls the sensing unit 32 to continuously receive the reflected light signal S2 and generate the corresponding environment image (step S54).

具體地,本發明的飛行測距裝置2用以測量不特定目標物體5的深度(即,目標物體5與飛行測距裝置2間的距離),也就是說目標物體5是可移動的。但是基於檢測目的,外部環境51中的定位標誌52是固定不動的。本發明中,處理單元31持續將所述環境影像與參考環境影像進行比對(步驟S56),並且判斷環境影像中的定位標誌與參考環境影像中的定位標誌間的偏差值是否大於門檻值(步驟S58)。所述偏差值可例如為位移量或旋轉量等,但不以此為限。Specifically, the flight ranging device 2 of the present invention is used to measure the depth of an unspecified target object 5 (ie, the distance between the target object 5 and the flight ranging device 2 ), that is, the target object 5 is movable. However, for detection purposes, the positioning markers 52 in the external environment 51 are fixed. In the present invention, the processing unit 31 continuously compares the environment image with the reference environment image (step S56), and determines whether the deviation value between the positioning markers in the environment image and the positioning markers in the reference environment image is greater than a threshold value ( step S58). The deviation value can be, for example, a displacement amount or a rotation amount, etc., but is not limited thereto.

若於步驟S58中判斷環境影像中的定位標誌與參考環境影像中的定位標誌間的偏差值沒有大於門檻值,則處理單元31可認定光學系統4的即時狀態為正常,並且將檢測結果儲存至儲存單元34中(步驟S60)。若於步驟S58中判斷所述偏差值大於門檻值,則處理單元31可認定光學系統4的即時狀態為異常,因此不輸出在先測距程序計算產生的飛行測距裝置2與目標物體51之間的距離。相對地,處理單元31可執行數位輸出程序以對外進行告警,或是執行暫存器寫入程序以將異常狀態寫入暫存器中(步驟S62)。If it is determined in step S58 that the deviation between the positioning marks in the environment image and the positioning marks in the reference environment image is not greater than the threshold value, the processing unit 31 may determine that the real-time state of the optical system 4 is normal, and store the detection results in the in the storage unit 34 (step S60). If it is determined in step S58 that the deviation value is greater than the threshold value, the processing unit 31 can determine that the real-time state of the optical system 4 is abnormal, and therefore does not output the relationship between the flight ranging device 2 and the target object 51 calculated by the previous ranging program. distance between. On the other hand, the processing unit 31 can execute a digital output program to give an external alarm, or execute a register write program to write an abnormal state into the register (step S62 ).

本實施例中,處理單元31可持續判斷飛行測距裝置2是否停止執行測距程序(步驟S64),並且於停止執行測距程序前持續執行上述步驟S54至步驟S62。藉此,處理單元31可以在測距過程中,即時判斷光學系統4是否發生問題(例如第一透鏡42、第二透鏡43遭撞擊而脫落)。In this embodiment, the processing unit 31 can continuously determine whether the flight ranging device 2 stops executing the ranging procedure (step S64 ), and continues to execute the above steps S54 to S62 before stopping executing the ranging procedure. In this way, the processing unit 31 can immediately determine whether there is a problem with the optical system 4 (for example, the first lens 42 and the second lens 43 fall off due to impact) during the ranging process.

本發明通過上述電子系統檢測程序,可以確保在執行光學系統檢測程序時,處理單元31的狀態為正常。而通過上述光學系統檢測程序,可以確保感測單元32接收到的訊號是正確的,而可以確保處理單元31所計算的距離/深度的準確度。The present invention can ensure that the state of the processing unit 31 is normal when the optical system detection program is executed through the above-mentioned electronic system detection program. Through the above optical system detection procedure, it can be ensured that the signal received by the sensing unit 32 is correct, and the accuracy of the distance/depth calculated by the processing unit 31 can be ensured.

值得一提的是,於部分環境下,飛行測距裝置2需要同時發射多組光訊號S1至同一個目標物體51上,才能夠在接收反射光訊號S2後產生有效的環境影像。因此,於另一實施例中,飛行測距裝置2的光學系統4可包括一組以上的光源41。It is worth mentioning that, in some environments, the flight ranging device 2 needs to transmit multiple sets of optical signals S1 to the same target object 51 at the same time, so as to generate an effective environmental image after receiving the reflected optical signal S2. Therefore, in another embodiment, the optical system 4 of the flight ranging device 2 may include more than one set of light sources 41 .

請參閱圖10,為本發明的飛行測距裝置的方塊圖的第二具體實施例。圖10揭露了另一飛行測距裝置2’。與圖2所示的飛行測距裝置2的差異在於,飛行測距裝置2’的光學系統4中包含了至少兩個光源41與至少兩個第一透鏡42,並且電子系統3包括了至少兩個驅動器35以及一個訊號重覆器(Signal Repeater)36。Please refer to FIG. 10 , which is a second specific embodiment of the block diagram of the flight ranging device of the present invention. Figure 10 discloses another in-flight ranging device 2'. The difference from the flight ranging device 2 shown in FIG. 2 is that the optical system 4 of the flight ranging device 2 ′ includes at least two light sources 41 and at least two first lenses 42 , and the electronic system 3 includes at least two A driver 35 and a signal repeater (Signal Repeater) 36 .

如圖10所示,訊號重覆器36連接感測單元32或處理單元31,至少兩個驅動器35分別連接訊號重覆器36以及兩個光源41。本實施例中,由於飛行測距裝置2’需要通過光學系統4發射至少兩組的光訊號S1,因此感測單元32通過訊號重覆器36對控制指令進行處理後,再分別傳送給至少兩個驅動器35。As shown in FIG. 10 , the signal repeater 36 is connected to the sensing unit 32 or the processing unit 31 , and at least two drivers 35 are respectively connected to the signal repeater 36 and the two light sources 41 . In this embodiment, since the flight ranging device 2 ′ needs to transmit at least two sets of optical signals S1 through the optical system 4 , the sensing unit 32 processes the control commands through the signal repeater 36 , and then transmits them to at least two sets of optical signals S1 respectively. 35 drives.

本實施例中,驅動器35的數量、光源41的數量以及第一透42的數量相同,並且其連接關係與圖2所示的飛行測距裝置2中所示的連接關係相同。通過至少兩個驅動器35的控制,至少兩個光源41可以分別通過各自對應的第一透鏡42來對外發射光訊號S1。In this embodiment, the number of drivers 35 , the number of light sources 41 and the number of first lenses 42 are the same, and their connection relationship is the same as that shown in the flight ranging device 2 shown in FIG. 2 . Through the control of the at least two drivers 35 , the at least two light sources 41 can respectively emit light signals S1 through the corresponding first lenses 42 to the outside.

值得一提的是,於光學系統4具備多個光源41與多個第一透鏡42的實施例中,多組光訊號S1需要同時被發射至待測量的目標物體51上,才會形成一個有效的反射光訊號S2,並且經由第二透鏡43而被感測單元32所接收。It is worth mentioning that, in the embodiment in which the optical system 4 is provided with a plurality of light sources 41 and a plurality of first lenses 42 , multiple sets of optical signals S1 need to be simultaneously transmitted to the target object 51 to be measured in order to form an effective The reflected light signal S2 is received by the sensing unit 32 through the second lens 43 .

通過本發明的技術方案,飛行測距裝置2、2’可以在確認電子系統3正常後才進行光學系統4的檢測,藉此節省除錯所需花費的時間。並且,飛行測距裝置2只有在確認電子系統3以及光學系統4的狀態皆正常後,才會進行測距程序,藉此可令測量結果更為準確。Through the technical solution of the present invention, the flight ranging devices 2, 2' can detect the optical system 4 only after confirming that the electronic system 3 is normal, thereby saving the time spent on debugging. In addition, the flight ranging device 2 will perform the ranging procedure only after confirming that the states of the electronic system 3 and the optical system 4 are normal, thereby making the measurement result more accurate.

以上所述僅為本發明之較佳具體實例,非因此即侷限本發明之專利範圍,故舉凡運用本發明內容所為之等效變化,均同理皆包含於本發明之範圍內,合予陳明。The above description is only a preferred specific example of the present invention, and therefore does not limit the scope of the patent of the present invention. Therefore, all equivalent changes made by using the content of the present invention are all included in the scope of the present invention. bright.

11:處理器 111:第一處理器 112:第二處理器 12:感測器 S01~S06:處理程序 2、2’:飛行測距裝置 3:電子系統 31:處理單元 32:感測單元 33:微控制單元 331:預設相位區間 332:參考深度值 34:儲存單元 35:驅動器 36:訊號重覆器 4:光學系統 41:光源 42:第一透鏡 43:第二透鏡 5:外部環境 51:目標物體 52、52’:定位標誌 Ø:相位延遲 Ør:參考相位延遲 I1:第一預設相位區間 I2:第二預設相位區間 I3:第三預設相位區間 I4:第四預設相位區間 S1:光訊號 S2:反射光訊號 Sr1:參考光訊號 Sr2:參考反射光訊號 Q1:第一相位訊號值 Q2:第二相位訊號值 Q3:第三相位訊號值 Q4:第四相位訊號值 Qr1:第一參考相位訊號值 Qr2:第二參考相位訊號值 Qr3:第三參考相位訊號值 Qr4:第四參考相位訊號值 S10~S28:檢測步驟 S30~S44:測距步驟 S50~S64:光學系統檢測步驟11: Processor 111: The first processor 112: Second processor 12: Sensor S01~S06: Processing program 2, 2': flight ranging device 3: Electronic system 31: Processing unit 32: Sensing unit 33: Micro Control Unit 331: Preset phase interval 332: Reference depth value 34: Storage unit 35: Drive 36: Signal Repeater 4: Optical system 41: Light source 42: The first lens 43: Second lens 5: External environment 51: target object 52, 52': positioning mark Ø: Phase delay Ør: Reference phase delay I1: The first preset phase interval I2: The second preset phase interval I3: The third preset phase interval I4: Fourth preset phase interval S1: Optical signal S2: Reflected light signal Sr1: reference optical signal Sr2: Reference reflected light signal Q1: The first phase signal value Q2: The second phase signal value Q3: The third phase signal value Q4: Fourth phase signal value Qr1: first reference phase signal value Qr2: The second reference phase signal value Qr3: The third reference phase signal value Qr4: Fourth reference phase signal value S10~S28: detection steps S30~S44: Ranging steps S50~S64: Optical system inspection steps

圖1為相關技術的飛行測距裝置的作動示意圖。FIG. 1 is a schematic diagram of the operation of a flight ranging device in the related art.

圖2為本發明的飛行測距裝置的方塊圖的第一具體實施例。FIG. 2 is a first specific embodiment of the block diagram of the flight ranging device of the present invention.

圖3為本發明的外部環境檢測示意圖的第一具體實施例。FIG. 3 is a first specific embodiment of a schematic diagram of an external environment detection according to the present invention.

圖4為本發明的外部環境檢測示意圖的第二具體實施例。FIG. 4 is a second specific embodiment of a schematic diagram of external environment detection according to the present invention.

圖5為本發明的檢測流程圖的第一具體實施例。FIG. 5 is a first specific embodiment of a detection flow chart of the present invention.

圖6為本發明的訊號示意圖的第一具體實施例。FIG. 6 is a first specific embodiment of a signal schematic diagram of the present invention.

圖7為本發明的參考訊號示意圖的第一具體實施例。FIG. 7 is a first embodiment of a schematic diagram of a reference signal of the present invention.

圖8為本發明的測距流程圖的第一具體實施例。FIG. 8 is a first specific embodiment of a ranging flowchart of the present invention.

圖9為本發明的檢測流程圖的第二具體實施例。FIG. 9 is a second specific embodiment of the detection flow chart of the present invention.

圖10為本發明的飛行測距裝置的方塊圖的第二具體實施例。FIG. 10 is a second specific embodiment of the block diagram of the flight ranging device of the present invention.

2:飛行測距裝置 2: Flight ranging device

3:電子系統 3: Electronic system

31:處理單元 31: Processing unit

32:感測單元 32: Sensing unit

33:微控制單元 33: Micro Control Unit

331:預設相位區間 331: Preset phase interval

332:參考深度值 332: Reference depth value

34:儲存單元 34: Storage unit

35:驅動器 35: Drive

4:光學系統 4: Optical system

41:光源 41: Light source

42:第一透鏡 42: The first lens

43:第二透鏡 43: Second lens

Claims (13)

一種飛行測距裝置的檢測方法,應用於包括一電子系統及一光學系統的一飛行測距裝置,該檢測方法包括: a)由一微控制單元提供多個參考相位訊號值,其中該微控制單元記錄多個預設相位區間及一參考深度值,該多個參考相位訊號值是基於一參考相位延遲及該多個預設相位區間所產生,該參考相位延遲是基於該參考深度值所產生; b)由該電子系統依據該多個參考相位訊號值計算一測試相位延遲,並依據該測試相位延遲計算一測試深度值; c)由該微控制單元計算該測試深度值與該參考深度值的一差異值; d)於該差異值落入一誤差範圍時判斷該電子系統為正常; e)感測一外部環境以產生一環境影像,並且計算該飛行測試裝置與該外部環境中的一目標物體之間的一距離,其中該環境影像包括至少一個該目標物體及至少一定位標誌; f)依據環境影像中的該至少一定位標誌判斷該光學系統的一即時狀態是否為正常;及 g)當該光學系統的該即時狀態為正常時,輸出該飛行測距裝置與該目標物體之間的該距離,並且儲存該環境影像。 A detection method of a flight ranging device is applied to a flight ranging device including an electronic system and an optical system, and the detection method includes: a) A plurality of reference phase signal values are provided by a micro-control unit, wherein the micro-control unit records a plurality of preset phase intervals and a reference depth value, and the plurality of reference phase signal values are based on a reference phase delay and the plurality of generated by a preset phase interval, and the reference phase delay is generated based on the reference depth value; b) calculating a test phase delay by the electronic system according to the plurality of reference phase signal values, and calculating a test depth value according to the test phase delay; c) calculating a difference value between the test depth value and the reference depth value by the micro-control unit; d) judging that the electronic system is normal when the difference value falls within an error range; e) Sensing an external environment to generate an environmental image, and calculating a distance between the flight test device and a target object in the external environment, wherein the environmental image includes at least one target object and at least one positioning marker; f) judging whether a real-time state of the optical system is normal according to the at least one positioning mark in the environmental image; and g) When the real-time state of the optical system is normal, output the distance between the flight ranging device and the target object, and store the environment image. 如請求項1所述的檢測方法,其中該微控制單元通過一第一公式計算該參考相位延遲:
Figure 03_image021
,其中Dr為該參考深度值,Ør為該參考相位延遲,c為光速,f為一調變頻率。
The detection method of claim 1, wherein the micro-control unit calculates the reference phase delay by a first formula:
Figure 03_image021
, where Dr is the reference depth value, Ør is the reference phase delay, c is the speed of light, and f is a modulation frequency.
如請求項2所述的檢測方法,其中該微控制單元依據該參考相位延遲對一參考光訊號進行處理以產生一參考反射光訊號,並且基於該多個預設相位區間分別對該參考反射光訊號進行積分以計算該多個參考相位訊號值。The detection method of claim 2, wherein the micro-control unit processes a reference light signal according to the reference phase delay to generate a reference reflected light signal, and the reference reflected light is respectively based on the plurality of preset phase intervals The signals are integrated to calculate the plurality of reference phase signal values. 請求項3所述的檢測方法,其中該多個預設相位區間包括一第一預設相位區間、一第二預設相位區間、一第三預設相位區間及一第四預設相位區間,該第一預設相位區間為[0,π],該第二預設相位區間為[
Figure 03_image005
,
Figure 03_image007
],該第三預設相位區間為[π,2π],該第四預設相位區間為[
Figure 03_image009
,
Figure 03_image011
]。
The detection method of claim 3, wherein the plurality of preset phase intervals include a first preset phase interval, a second preset phase interval, a third preset phase interval, and a fourth preset phase interval, The first preset phase interval is [0, π], and the second preset phase interval is [
Figure 03_image005
,
Figure 03_image007
], the third preset phase interval is [π, 2π], and the fourth preset phase interval is [
Figure 03_image009
,
Figure 03_image011
].
如請求項1所述的檢測方法,其中該步驟b)通過一第一公式計算該測試深度值,並且通過一第二公式計算該測試相位延遲;其中該第一公式為:
Figure 03_image003
,其中Dt為該測試深度值,Øt為該測試相位延遲,c為光速,f為一調變頻率;該第二公式為:
Figure 03_image001
,其中Øt為該測試相位延遲,Qr1為該多個參考相位訊號值中的一第一參考相位訊號值,Qr2為該多個參考相位訊號值中的一第二參考相位訊號值,Qr3為該多個參考相位訊號值中的一第三參考相位訊號值,Qr4為該多個參考相位訊號值中的一第四參考相位訊號值。
The detection method according to claim 1, wherein the step b) calculates the test depth value by a first formula, and calculates the test phase delay by a second formula; wherein the first formula is:
Figure 03_image003
, where Dt is the test depth value, Øt is the test phase delay, c is the speed of light, and f is a modulation frequency; the second formula is:
Figure 03_image001
, where Øt is the test phase delay, Qr1 is a first reference phase signal value among the plurality of reference phase signal values, Qr2 is a second reference phase signal value among the plurality of reference phase signal values, and Qr3 is the A third reference phase signal value among the plurality of reference phase signal values, and Qr4 is a fourth reference phase signal value among the plurality of reference phase signal values.
如請求項1所述的檢測方法,其中更包括一步驟h):感測該外部環境並產生一參考環境影像,其中該參考環境影像至少包括該定位標誌; 其中,該步驟e)包括: e1)由該光學系統對外同時發射至少一光訊號,並由該電子系統接收相對於該至少一光訊號的至少一反射光訊號;及 e2)依據該至少一反射光訊號產生該環境影像; 其中,該步驟f)是依據該環境影像中的該定位標誌與該參考環境影像中的該定位標誌間的一偏差值判斷該光學系統的該即時狀態是否為正常。 The detection method according to claim 1, further comprising a step h): sensing the external environment and generating a reference environment image, wherein the reference environment image at least includes the positioning marker; Wherein, this step e) comprises: e1) simultaneously transmit at least one optical signal externally by the optical system, and receive at least one reflected optical signal relative to the at least one optical signal by the electronic system; and e2) generating the environmental image according to the at least one reflected light signal; Wherein, the step f) is to judge whether the real-time state of the optical system is normal according to a deviation value between the positioning mark in the environment image and the positioning mark in the reference environment image. 如請求項6所述的檢測方法,其中該步驟e)還包括: e3)基於該多個預設相位區間分別對該反射光訊號進行積分以計算多個相位訊號值; e4)基於該多個相位訊號值計算該反射光訊號相對於該光訊號的一相位延遲;及 e5)基於該相位延遲計算該飛行測距裝置與該目標物體間的該距離。 The detection method as claimed in claim 6, wherein the step e) further comprises: e3) respectively integrating the reflected light signal based on the plurality of preset phase intervals to calculate a plurality of phase signal values; e4) calculating a phase delay of the reflected optical signal relative to the optical signal based on the plurality of phase signal values; and e5) Calculate the distance between the flight ranging device and the target object based on the phase delay. 如請求項7所述的檢測方法,其中該多個預設相位區間至少包括一第一預設相位區間、一第二預設相位區間、一第三預設相位區間及一第四預設相位區間,該第一預設相位區間為[0,π],該第二預設相位區間為[
Figure 03_image005
,
Figure 03_image007
],該第三預設相位區間為[π,2π],該第四預設相位區間為[
Figure 03_image009
,
Figure 03_image011
],該步驟e4)通過一第二公式計算該相位延遲,該步驟e5)通過一第一公式計算該距離,其中該第一公式為:
Figure 03_image015
,其中D為該距離,Ø為該相位延遲,c為光速,f為一調變頻率;該第二公式為:
Figure 03_image013
,其中Ø為該相位延遲,Q1為一第一相位訊號值,Q2為一第二相位訊號值,Q3為一第三相位訊號值,Q4為一第四相位訊號值。
The detection method according to claim 7, wherein the plurality of predetermined phase intervals at least include a first predetermined phase interval, a second predetermined phase interval, a third predetermined phase interval and a fourth predetermined phase interval interval, the first preset phase interval is [0, π], and the second preset phase interval is [
Figure 03_image005
,
Figure 03_image007
], the third preset phase interval is [π, 2π], and the fourth preset phase interval is [
Figure 03_image009
,
Figure 03_image011
], this step e4) calculates this phase delay by a second formula, this step e5) calculates this distance by a first formula, wherein this first formula is:
Figure 03_image015
, where D is the distance, Ø is the phase delay, c is the speed of light, and f is a modulation frequency; the second formula is:
Figure 03_image013
, where Ø is the phase delay, Q1 is a first phase signal value, Q2 is a second phase signal value, Q3 is a third phase signal value, and Q4 is a fourth phase signal value.
一種飛行測距裝置,包括: 一電子系統,包括: 一處理單元,接收多個參考相位訊號值,依據該多個參考相位訊號值計算一測試相位延遲,並依據該測試相位延遲計算一測試深度值; 一微控制單元,連接該處理單元,記錄多個預設相位區間及一參考深度值,其中該參考深度值用於計算一參考相位延遲,該參考相位延遲與該多個預設相位區間用於計算該多個參考相位訊號值,並且該微控制單元計算該測試深度值與該參考深度值的一差異值,並於該差異值落入一誤差範圍時判斷該電子系統為正常; 一感測單元,連接該處理單元;及 一光學系統,向一外部環境發射一光訊號,其中該外部環境包括至少一目標物體及至少一定位標誌; 其中,該感測單元自該外部環境接收對應於該光訊號的一反射光訊號並產生一環境影像,並計算該飛行測距裝置與該外部環境中的該目標物體之間的一距離,並且該處理單元依據環境影像中的該定位標誌判斷該光學系統的一即時狀態是否為正常,並且於該光學系統的該即時狀態為正常時輸出該距離並儲存該環境影像。 A flight ranging device, comprising: an electronic system, including: a processing unit that receives a plurality of reference phase signal values, calculates a test phase delay according to the plurality of reference phase signal values, and calculates a test depth value according to the test phase delay; A micro-control unit, connected to the processing unit, records a plurality of preset phase intervals and a reference depth value, wherein the reference depth value is used to calculate a reference phase delay, and the reference phase delay and the plurality of preset phase intervals are used for calculating the plurality of reference phase signal values, and the micro-control unit calculates a difference value between the test depth value and the reference depth value, and judges that the electronic system is normal when the difference value falls within an error range; a sensing unit connected to the processing unit; and an optical system that emits an optical signal to an external environment, wherein the external environment includes at least one target object and at least one positioning marker; wherein, the sensing unit receives a reflected light signal corresponding to the light signal from the external environment and generates an environmental image, and calculates a distance between the flight ranging device and the target object in the external environment, and The processing unit determines whether a real-time state of the optical system is normal according to the positioning mark in the environment image, and outputs the distance and stores the environment image when the real-time state of the optical system is normal. 如請求項9所述的飛行測距裝置,其中該光訊號與該反射光訊號為周期性變化的一連續波。The in-flight ranging device as claimed in claim 9, wherein the optical signal and the reflected optical signal are a continuous wave that changes periodically. 如請求項9所述的飛行測距裝置,其中該處理單元為系統單晶片、中央處理單元或場域可編程邏輯閘陣列,該光學系統包括一第一透鏡、通過該第一透鏡發射該光訊號的一光源以及將該反射光訊號導至該感測單元的一第二透鏡,該電子系統包括連接該光源並控制該光源發射該光訊號的一驅動器。The in-flight ranging device according to claim 9, wherein the processing unit is a system-on-chip, a central processing unit or a field programmable logic gate array, and the optical system includes a first lens through which the light is emitted A light source for the signal and a second lens for guiding the reflected light signal to the sensing unit, the electronic system includes a driver that connects the light source and controls the light source to emit the light signal. 如請求項11所述的飛行測距裝置,其中該光學系統包括兩個以上的該第一透鏡,以及兩個以上分別對應各該第一透鏡設置的該光源,該電子系統包括兩個以上連接各該光源並同時控制各該光源發射該光訊號的該驅動器,以及連接各該驅動器及該感測單元以對發送給各該驅動器的一控制指令進行處理的一訊號重覆器。The flight ranging device according to claim 11, wherein the optical system includes two or more first lenses, and two or more light sources corresponding to the first lenses, and the electronic system includes two or more connections Each of the light sources simultaneously controls the driver for each of the light sources to emit the optical signal, and a signal repeater connected to each of the drivers and the sensing unit to process a control command sent to each of the drivers. 如請求項9所述的飛行測距裝置,其中該微控制單元記錄有一第一公式,該處理單元記錄有該第一公式及一第二公式;該處理單元通過該第一公式計算該參考相位延遲,依據該參考相位延遲對一參考光訊號進行處理以產生一參考反射光訊號,並基於該多個預設相位區間分別對該參考反射光訊號進行積分以計算該多個參考相位訊號;該處理單元通過該第一公式計算該測試深度值,並通過該第二公式計算測試相位延遲;該第一公式為:
Figure 03_image003
,其中Dt為該測試深度值或該參考深度值,Øt為該測試相位延遲或該參考相位延遲,c為光速,f為一調變頻率;該第二公式為:
Figure 03_image001
,其中Qr1為該多個參考相位訊號值中的一第一參考相位訊號值,Qr2為該多個參考相位訊號值中的一第二參考相位訊號值,Qr3為該多個參考相位訊號值中的一第三參考相位訊號值,Qr4為該多個參考相位訊號值中的一第四參考相位訊號值。
The flight ranging device according to claim 9, wherein the micro-control unit records a first formula, the processing unit records the first formula and a second formula; the processing unit calculates the reference phase through the first formula delaying, processing a reference optical signal according to the reference phase delay to generate a reference reflected optical signal, and respectively integrating the reference reflected optical signal based on the plurality of preset phase intervals to calculate the plurality of reference phase signals; the The processing unit calculates the test depth value through the first formula, and calculates the test phase delay through the second formula; the first formula is:
Figure 03_image003
, where Dt is the test depth value or the reference depth value, Øt is the test phase delay or the reference phase delay, c is the speed of light, and f is a modulation frequency; the second formula is:
Figure 03_image001
, wherein Qr1 is a first reference phase signal value among the plurality of reference phase signal values, Qr2 is a second reference phase signal value among the plurality of reference phase signal values, and Qr3 is one of the plurality of reference phase signal values A third reference phase signal value of , Qr4 is a fourth reference phase signal value among the plurality of reference phase signal values.
TW110126206A 2021-07-16 2021-07-16 Time of flight devide and inspecting method for the same TWI762387B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110126206A TWI762387B (en) 2021-07-16 2021-07-16 Time of flight devide and inspecting method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110126206A TWI762387B (en) 2021-07-16 2021-07-16 Time of flight devide and inspecting method for the same

Publications (2)

Publication Number Publication Date
TWI762387B true TWI762387B (en) 2022-04-21
TW202305402A TW202305402A (en) 2023-02-01

Family

ID=82199298

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110126206A TWI762387B (en) 2021-07-16 2021-07-16 Time of flight devide and inspecting method for the same

Country Status (1)

Country Link
TW (1) TWI762387B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201312144A (en) * 2011-07-15 2013-03-16 Softkinetic Sensors Nv Method and time-of-flight camera for providing distance information
US20180074175A1 (en) * 2016-05-18 2018-03-15 James Thomas O'Keeffe Laser range finder with dynamically positioned detector aperture
TW202006399A (en) * 2018-07-18 2020-02-01 日商索尼半導體解決方案公司 Light-receiving element and distance measurement module
CN111337933A (en) * 2018-12-03 2020-06-26 三星电子株式会社 Light detection and ranging apparatus and driving method thereof
CN111398979A (en) * 2020-06-08 2020-07-10 深圳市汇顶科技股份有限公司 Ranging method based on flight time and related ranging system
CN111580067A (en) * 2019-02-19 2020-08-25 光宝电子(广州)有限公司 Operation device, sensing device and processing method based on time-of-flight ranging
TW202109079A (en) * 2019-08-23 2021-03-01 大陸商光寶電子(廣州)有限公司 Computation apparatus, sensing apparatus, and processing method based on time of flight
CN112946686A (en) * 2019-12-09 2021-06-11 爱思开海力士有限公司 Time-of-flight sensing system and image sensor used therein
TW202122823A (en) * 2019-12-09 2021-06-16 韓商愛思開海力士有限公司 Time of flight sensing system and image sensor used therein

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201312144A (en) * 2011-07-15 2013-03-16 Softkinetic Sensors Nv Method and time-of-flight camera for providing distance information
US20180074175A1 (en) * 2016-05-18 2018-03-15 James Thomas O'Keeffe Laser range finder with dynamically positioned detector aperture
TW202006399A (en) * 2018-07-18 2020-02-01 日商索尼半導體解決方案公司 Light-receiving element and distance measurement module
CN111337933A (en) * 2018-12-03 2020-06-26 三星电子株式会社 Light detection and ranging apparatus and driving method thereof
CN111580067A (en) * 2019-02-19 2020-08-25 光宝电子(广州)有限公司 Operation device, sensing device and processing method based on time-of-flight ranging
TW202109079A (en) * 2019-08-23 2021-03-01 大陸商光寶電子(廣州)有限公司 Computation apparatus, sensing apparatus, and processing method based on time of flight
CN112946686A (en) * 2019-12-09 2021-06-11 爱思开海力士有限公司 Time-of-flight sensing system and image sensor used therein
TW202122823A (en) * 2019-12-09 2021-06-16 韓商愛思開海力士有限公司 Time of flight sensing system and image sensor used therein
CN111398979A (en) * 2020-06-08 2020-07-10 深圳市汇顶科技股份有限公司 Ranging method based on flight time and related ranging system

Also Published As

Publication number Publication date
TW202305402A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
JP5681715B2 (en) Method for optically scanning and measuring the environment
US20170356993A1 (en) Object detecting method and apparatus using light detection and ranging (lidar) sensor and radar sensor
JP4894360B2 (en) Radar equipment
EP1607766B1 (en) Light wave distance measuring method and light wave distance measuring system
JP6061616B2 (en) Measuring apparatus, control method therefor, and program
JP2005351745A (en) Surveying apparatus
TWI690694B (en) System and method for calibrating light intensity
CN109782258A (en) Method for detecting position, device and the storage medium of vehicle laser radar
JP7351540B2 (en) Optical substance detection device control method, device, and optical substance detection device
WO2022193828A1 (en) Method, apparatus, and device for verifying precision of calibration angle, and storage medium
US20220113171A1 (en) Sensor diagnosis device and computer readable medium
US20220244382A1 (en) Device and method for measuring distance using laser
US10379619B2 (en) Method and device for controlling an apparatus using several distance sensors
JP6805700B2 (en) Distance measuring device, distance measuring method, and distance measuring program
TWI762387B (en) Time of flight devide and inspecting method for the same
JP2009014481A (en) Distance measuring device and its calibration method
US20120133584A1 (en) Apparatus and method for calibrating 3D position in 3D position and orientation tracking system
US8111379B2 (en) Automated determination of height and tilt of a substrate surface within a lithography system
JP2011226860A (en) Surrounding object detection apparatus
CN115616589A (en) Flight distance measuring device and detection method thereof
KR20150071324A (en) Apparatus and method for measuringing the distance
WO2022014270A1 (en) Information processing device, information processing method, and information processing program
JP4342649B2 (en) Method for measuring cross-sectional shape in hollow tube
JP2008008650A (en) Angle detector and method
JP6253932B2 (en) Direction detection device and survey system