TWI741244B - 用於缺陷檢測及再檢測的方法及系統 - Google Patents

用於缺陷檢測及再檢測的方法及系統 Download PDF

Info

Publication number
TWI741244B
TWI741244B TW107147063A TW107147063A TWI741244B TW I741244 B TWI741244 B TW I741244B TW 107147063 A TW107147063 A TW 107147063A TW 107147063 A TW107147063 A TW 107147063A TW I741244 B TWI741244 B TW I741244B
Authority
TW
Taiwan
Prior art keywords
defect
features
defects
pattern
image
Prior art date
Application number
TW107147063A
Other languages
English (en)
Other versions
TW201941246A (zh
Inventor
方偉
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW201941246A publication Critical patent/TW201941246A/zh
Application granted granted Critical
Publication of TWI741244B publication Critical patent/TWI741244B/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/698Matching; Classification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/305Contactless testing using electron beams
    • G01R31/307Contactless testing using electron beams of integrated circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本發明揭示用於偵測缺陷之系統及方法。根據某些實施例,一種執行影像處理之方法包括:獲取一樣本之一或多個影像;對該一或多個影像執行第一影像分析;識別該一或多個影像中之複數個第一特徵;判定對應於該複數個第一特徵之圖案資料;基於該圖案資料選擇該複數個第一特徵中之至少一者;及執行該複數個第一特徵中之該至少一者之第二影像分析。方法亦可包括基於該圖案資料判定該複數個第一特徵之缺陷機率。選擇該複數個第一特徵中之該至少一者可基於該缺陷機率。

Description

用於缺陷檢測及再檢測的方法及系統
本文中之描述係關於缺陷偵測之領域,且更特定言之,係關於樣本上之缺陷之檢測及再檢測。
在積體電路(IC)之製造程序中,檢測未完成或已完成的電路組件以確保其係根據設計而製造且無缺陷。可使用利用光學顯微鏡或帶電粒子(例如電子)光束顯微鏡,諸如掃描電子顯微鏡(SEM)之檢測系統。隨著IC組件之實體大小繼續縮小,缺陷偵測之準確度及良率變得愈來愈重要。然而,檢測工具之成像解析度及產出率艱難地跟上IC組件之不斷減小之特徵大小。
當技術節點降低至例如10 nm時,一些檢測工具可產生大量有礙缺陷(亦即,錯誤肯定)。舉例而言,在一些檢測系統中,90%的所識別缺陷可能會成為有礙缺陷。因此,缺陷再檢測變得愈來愈具決定性的。可使用涉及晶圓上之先前經識別缺陷或懷疑部位的重新確認之缺陷再檢測。
在例如廠房處之一些檢測系統中,SEM再檢測工具可用以再檢測缺陷。該工具可基於樣本選擇規則選擇預定數目個缺陷進行再檢測。樣本選擇規則可為在晶圓上發現的整個缺陷群體之隨機取樣。然而,在經識別之缺陷當中,其之僅一小部分實際上可為真實缺陷。因此,真實缺陷再檢測率變低,且可導致由於再檢測而提供之誤導性資訊。另外,可需要重新選擇新潛在缺陷以供再檢測,從而確保適當量之真實缺陷再檢測覆蓋範圍。然而,進行重複之缺陷再檢測係耗時的。
因此,相關技術系統在提供關於偵測到之缺陷之有用資訊方面面臨例如準確度及產出率的限制。對此項技術之進一步改良係所希望的。
本發明之實施例提供用於缺陷偵測之系統及方法。在一些實施例中,提供一種帶電粒子束系統。該帶電粒子系統可包括經組態以產生一帶電粒子束之一帶電粒子束裝置。
在一些實施例中,一帶電粒子束系統之一控制器經組態以實施一種執行影像處理之方法、一種檢測一樣本之方法或其他方法。一種執行影像處理之方法可包括:獲取一樣本之一或多個影像;對該一或多個影像執行第一影像分析;識別該一或多個影像中之複數個第一特徵;判定對應於該複數個第一特徵之圖案資料;基於該圖案資料選擇該複數個第一特徵中之至少一者;及執行該複數個第一特徵中之該至少一者之第二影像分析。方法亦可包括基於該圖案資料判定該複數個第一特徵之缺陷機率。選擇該複數個第一特徵中之該至少一者可基於該缺陷機率。
根據一些實施例,可達成一種可增強一帶電粒子束系統中之缺陷偵測之配置。
所揭示實施例之額外態樣及優點將在以下描述中部分地闡述,且部分地將自該描述顯而易見,或可藉由該等實施例之實踐習得。所揭示實施例之目標及優點可藉由在申請專利範圍中所闡述之要素及組合來實現及獲得。然而,未必需要本發明之例示性實施例達成此類例示性目標及優點,且一些實施例可能不會達成所陳述目標及優點中之任一者。
應理解,前文一般描述及以下詳細描述兩者僅為例示性及解釋性的,且並不限定如所主張之所揭示實施例。
現在將詳細參考例示性實施例,在隨附圖式中說明該等例示性實施例之實例。以下描述參考附圖,其中除非另外表示,否則不同圖式中之相同編號表示相同或相似元件。闡述於例示性實施例之以下描述中之實施並不表示符合本發明的所有實施。實情為,其僅為符合關於如所附申請專利範圍中所敍述的主題之態樣的裝置、系統及方法之實例。舉例而言,儘管一些實施例係在利用電子束之內容背景中予以描述,但本發明不限於此。可相似地應用其他類型之帶電粒子束。此外,可使用其他成像系統,諸如光學成像、光偵測、x射線偵測等。
本發明之實施例可提供可用於帶電粒子成像之帶電粒子系統。該帶電粒子系統可適用作掃描電子顯微鏡(SEM)工具,以用於成像及檢測樣本。該帶電粒子系統可用於缺陷偵測。
缺陷可指樣本上之組件處之可導致故障的異常條件。
在一些例示性實施例中,提供取樣方法以基於圖案分組及圖案缺陷機率而增加真實缺陷選擇機會。
在一例示性方法中,可執行第一缺陷搜尋。第一缺陷搜尋可為檢測步驟,其中成像工具檢查晶圓上缺陷之存在或不存在,且判定缺陷之對應的位置。第一缺陷搜尋可包括搜尋可能的缺陷且儲存可能缺陷部位之清單。接著,可基於可能缺陷部位自設計計劃提取晶圓圖案資料。接下來,可執行圖案分組以將圖案相似結構之圖案分組在一起。可藉由叢集技術執行分組。可基於經分組圖案及其經分析之缺陷率來構建圖案庫。
詳言之,第一缺陷搜尋可包括使用第一參數集合及/或第一影像處理演算法對晶圓表面之所捕捉影像執行影像分析。影像分析可經由缺陷掃描程序之輸出(例如klarf檔案,或可登記缺陷座標之其他檔案)來識別可能缺陷。可接著使用經識別之可能缺陷的部位資料以自晶圓設計提取圖案資料。舉例而言,可將晶圓設計計劃儲存於資料庫中。晶圓設計計劃可基於圖形資料系統(Graphic Data System; GDS)或開放式藝術品系統互換標準(Open Artwork System Interchange Standard; OASIS)設計,及其類似者。可基於可能的缺陷部位資料提取晶圓設計中之特徵之圖案資料,諸如形狀、大小、幾何形狀等。基於圖案資料,可將在第一缺陷搜尋中所識別的可能缺陷分類成若干群組。舉例而言,可基於彼此或與標準圖案之對應程度將具有相似形狀資料的特徵分組在一起。
在第一缺陷搜尋之後,可對經識別之可能缺陷執行缺陷再檢測。缺陷再檢測可包含分析及分類在先前檢測中所發現之缺陷。可基於樣本選擇規則選擇預定數目個缺陷進行再檢測。樣本選擇規則可為在晶圓上發現之可能缺陷之整個群體的隨機取樣,或某其他規則。舉例而言,可隨機地選擇200個缺陷以供再檢測。預定數目可基於可用機器時間。樣本選擇規則亦可基於使用者輸入,諸如特定所關注區域之使用者選擇。
在缺陷再檢測中,可比第一缺陷搜尋更詳細地分析可能之缺陷。舉例而言,可以更高解析度使選定可能缺陷之部位再次成像。缺陷再檢測可包括使用第二參數集合及/或第二影像處理演算法對晶圓表面之所捕捉影像執行影像分析。可相應地確認及分類缺陷。影像分析可揭示可能缺陷是否為真實缺陷。
可基於缺陷再檢測之結果而判定缺陷機率。舉例而言,自圖案分組步驟,一起分組於同一群組中的可能缺陷可彼此相關聯。可基於自一群組中之所有可能缺陷判定之缺陷率來計算該群組之缺陷機率。可針對群組中之每一者判定缺陷機率。
可將經判定之缺陷機率回饋至圖案庫中。舉例而言,可將與特定群組及其缺陷機率相關聯的項目儲存於圖案庫中。可運用包含新近發現之缺陷類型之新項目來不斷更新圖案庫。當識別出具有不存在於圖案庫中之圖案的可能缺陷時,可新增具有經初始化之缺陷機率之該圖案。
第二缺陷搜尋可包括對晶圓表面之所捕捉影像執行影像分析,其相似於第一缺陷搜尋。舉例而言,第二缺陷搜尋可使用第一參數集合及/或第一影像處理演算法。在識別出可能缺陷之後,可提取圖案資料且可執行圖案分組。接下來,可對經識別之可能缺陷執行缺陷再檢測。
選擇供再檢測之可能缺陷可基於來自圖案庫之資訊。舉例而言,可搜尋圖案庫以查找對應於經識別之可能缺陷的圖案資料。若發現關於經識別之可能缺陷之項目,則可將該可能缺陷指派給對應群組且可載入缺陷機率。若不存在關於經識別之可能缺陷之項目,則可將該可能缺陷標記為新缺陷類型。對於該新缺陷類型,可例如基於預設值指派缺陷機率。另外,可基於經提取之圖案資料,諸如圖案之幾何形狀之複雜度,及其他因素判定缺陷機率。因此,即使對於預先不存在缺陷率之資料的經識別之可能缺陷,亦可向高風險圖案指派反映缺陷可能性之缺陷機率。同樣地,可識別低風險圖案。
對用於再檢測之可能缺陷之選擇可基於缺陷機率。舉例而言,在缺陷搜尋中所識別之所有缺陷當中,可向具有最高缺陷機率之缺陷給出優先級,且因此可僅選擇具有最高缺陷機率之缺陷以供重新確認及再檢測。因此,在缺陷搜尋中所識別的具有作為真實缺陷之低機率的可能缺陷可基於其圖案資料而濾除。因此,有可能自缺陷再檢測省略有礙缺陷,從而允許增加缺陷再檢測速度且為使用者提供資訊更多的缺陷偵測資訊。
現在參看 1 ,其說明符合本發明之實施例的例示性電子束檢測(EBI)系統100。該EBI系統100可用於成像。如 1 中所展示,EBI 系統100包括主腔室101、裝載/鎖定腔室102、電子束工具104及設備前端模組(EFEM) 106。電子束工具104位於主腔室101內。EFEM 106包括第一裝載埠106a及第二裝載埠106b。EFEM 106可包括額外裝載埠。第一裝載埠106a及第二裝載埠106b收納含有待檢測之晶圓(例如,半導體晶圓或由其他材料製成之晶圓)或樣本的晶圓前開式單元匣(FOUP) (晶圓及樣本在本文中可被集體地稱作「晶圓」)。可裝載含有複數個晶圓之一批次以作為批量進行處理。
EFEM 106中之一或多個機器人臂(圖中未繪示)可將晶圓運送至裝載/鎖定腔室102。裝載/鎖定腔室102連接至裝載/鎖定真空泵系統(圖中未繪示),該裝載/鎖定真空泵系統移除裝載/鎖定腔室102中之氣體分子以達到低於大氣壓力之第一壓力。在達到第一壓力之後,一或多個機器人臂(圖中未示)可將晶圓自裝載/鎖定腔室102運送至主腔室101。主腔室101連接至主腔室真空泵系統(圖中未繪示),該主腔室真空泵系統移除主腔室101中之氣體分子以達到低於第一壓力之第二壓力。在達到第二壓力之後,晶圓經受電子束工具104之檢測。電子束工具104可為單射束系統或多射束系統。控制器109電子地連接至電子束工具104。控制器109可為經組態以執行對EBI系統100之各種控制的電腦。雖然控制器109在 1 中被展示為在包括主腔室101、裝載/鎖定腔室102及EFEM 106之結構之外,但應瞭解,控制器109可為該結構之部分。
2 說明根據本發明之實施例之成像系統200。 2 之電子束工具104可經組態以用於EBI系統100。電子束工具104可為單射束裝置或多射束裝置。
系統200可用於檢測樣本台上之晶圓230,且包含電子束工具104,如上文所論述。系統200亦包含影像處理系統199,該影像處理系統包括影像獲取器120、儲存器130及控制器109。影像獲取器120可包含一或多個處理器。舉例而言,影像獲取器120可包含電腦、伺服器、大型電腦主機、終端機、個人電腦、任何種類之行動計算器件及其類似者,或其一組合。影像獲取器120可經由諸如電導體、光纖纜線、攜帶型儲存媒體、IR、藍芽、網際網路、無線網路、無線電或其組合之媒體與電子束工具104之偵測器244連接。影像獲取器120可自偵測器244接收信號,且可建構一影像。影像獲取器120可因此獲取晶圓230之影像。影像獲取器120亦可執行各種後處理功能,諸如產生輪廓、疊加指示符於所獲取影像上,及其類似者。影像獲取器120可經組態以執行所獲取影像之亮度及對比度等的調整。儲存器130可為儲存媒體,諸如硬碟、隨機存取記憶體(RAM)、其他類型之電腦可讀記憶體及其類似者。儲存器130可與影像獲取器120耦接,且可用於保存經掃描原始影像資料作為原始影像,及後處理影像。影像獲取器120及儲存器130可連接至控制器109。在一些實施例中,影像獲取器120、儲存器130及控制器109可一起整合為一個控制單元。
在一些實施例中,影像獲取器120可基於自偵測器244接收之成像信號獲取樣本之一或多個影像。成像信號可對應於用於進行帶電粒子成像之掃描操作。所獲取影像可為包含複數個成像區域之單一影像。單一影像可儲存於儲存器130中。單一影像可為可劃分成複數個區的原始影像。該等區中之每一者可包含含有晶圓230之特徵的一個成像區域。
在一些實施例中,可提供電腦系統,其可識別晶圓影像上之缺陷且根據缺陷類型將缺陷歸類成若干類別。舉例而言,一旦獲取晶圓影像,就可將其傳輸至電腦系統以供處理。 3 為符合本發明之實施例的缺陷再檢測系統300之方塊圖。
參看 3 ,缺陷再檢測系統300可包括晶圓檢測系統310、自動缺陷分類(ADC)伺服器320,及電耦合至ADC伺服器320之知識推薦伺服器330。晶圓檢測系統310可為關於 1 所描述之EBI系統100。應瞭解,ADC伺服器320及知識推薦伺服器330可為EBI系統100之部分及/或遠離EBI系統100。
晶圓檢測系統310可為可產生晶圓之檢測影像的任何檢測系統。晶圓可為半導體晶圓基板,或例如具有一或多個磊晶層及/或程序膜之半導體晶圓基板。晶圓檢測系統310可為任何當前可用或開發中之晶圓檢測系統。本發明之實施例並不限制晶圓檢測系統310之特定類型,只要此系統可產生具有足夠高解析度之晶圓影像以觀測晶圓上之關鍵特徵(例如小於20奈米)即可。
ADC伺服器320可包括電耦合至晶圓檢測系統310以接收晶圓影像之通信介面322。ADC伺服器320亦可包括處理器324,該處理器經組態以分析晶圓影像,且藉由使用缺陷知識檔案來偵測及分類呈現於晶圓影像上之晶圓缺陷。缺陷知識檔案可由操作員手動提供至ADC伺服器320。替代地,根據本發明之一些實施例,缺陷知識檔案可由知識推薦伺服器330自動提供至ADC伺服器320。
舉例而言,知識推薦伺服器330可電耦合至ADC伺服器320。知識推薦伺服器330可包括處理器332及儲存器334。處理器332可經組態以構建複數個缺陷知識檔案,且將該複數個缺陷知識檔案儲存於儲存器334中。該複數個缺陷知識檔案可含有與在晶圓製造程序之各種階段期間產生的各種類型之缺陷有關的資訊。晶圓製造程序之各種階段可包括但不限於:微影程序、蝕刻程序、化學機械拋光(CMP)程序及互連成型程序。
處理器332可經組態以基於複數個缺陷截圖影像(defect patch image)構建複數個缺陷知識檔案。該複數個缺陷截圖影像可由晶圓檢測工具產生,晶圓檢測工具諸如 2 中所說明之電子束工具104。缺陷截圖影像可為含有缺陷之晶圓之一部分的小影像(例如,34×34像素)。缺陷截圖影像可在缺陷上居中,且可包括缺陷之相鄰像素。
可經由機器學習程序訓練處理器332,以基於一特定類型之缺陷之複數個缺陷截圖影像來構建與彼類型之缺陷有關的知識檔案。舉例而言,可訓練處理器332以基於在互連成型程序中產生之虛線缺陷之複數個缺陷截圖影像而構建與該等虛線缺陷有關的知識檔案。
處理器332亦可經組態以回應於來自ADC伺服器320之對知識推薦之請求而搜尋匹配於包括於所接收請求中的晶圓影像之知識檔案,且將知識檔案提供至ADC伺服器320。
儲存器334可儲存ADC資料中心,ADC資料中心含有與在晶圓製造程序之各種階段期間產生的各種類型之缺陷有關的複數個缺陷知識檔案。ADC資料中心中之複數個缺陷知識檔案可由知識推薦伺服器330之處理器332構建。替代地,儲存器334中之缺陷知識檔案之一部分可由使用者或外部電腦系統預設,且可經預先載入至儲存器334中。
缺陷知識檔案可包括關於單種類型之缺陷的一般資訊。一般資訊可包括截圖影像及待用於單種類型之缺陷之稍後分類的特徵參數(例如大小、邊緣粗糙度、深度、高度等)。替代地,根據本發明之一些實施例,缺陷知識檔案可包括關於存在於晶圓之同一程序層中的複數種類型之缺陷之一般資訊。單個程序層可為例如基板層、磊晶層、薄膜層、光阻層、氧化物層、金屬互連層等。
4 為說明符合本發明之實施例的例示性影像處理方法之流程圖。可藉由可與帶電粒子束裝置耦接之一或多個處理器執行該影像處理方法。舉例而言,控制器109可包括一或多個處理器且可經程式化以實施影像處理方法。控制器109可產生各種控制信號以控制帶電粒子束裝置之操作。控制器109可自帶電粒子束裝置接收並處理資料。在一些實施例中,可藉由缺陷再檢測系統300之處理器324或處理器332執行影像處理方法。
在步驟S101中,可控制帶電粒子束裝置以使晶圓成像。成像可包含掃描晶圓以使晶圓之至少一部分成像。在步驟S110中,可獲得成像區域之一或多個經掃描原始影像。一或多個經掃描原始影像可包含晶圓之整個表面。步驟S110中之影像獲取可包含自帶電粒子束裝置之偵測器接收信號或自儲存器載入影像。在步驟S120中,識別晶圓上之一或多個特徵。一或多個特徵可包含可能的缺陷。步驟S120可包括晶圓映射。可藉由進行缺陷搜尋來執行可能缺陷之識別。舉例而言,步驟S120之缺陷搜尋可包括使用第一參數集合及/或使用第一影像處理演算法對晶圓表面之所獲取影像執行影像分析。可能缺陷之識別可包括判定晶圓表面上之在x-y座標中的一部位、部位群組或部位範圍。部位資訊可儲存於晶圓圖資料庫中。儲存器130可包含晶圓圖資料庫。
在步驟S130中,可判定對應於經識別可能缺陷之圖案資料。可基於在步驟S120中所搜集之部位資訊而自晶圓設計計劃提取圖案資料。可預先登記晶圓設計計劃。舉例而言,晶圓設計計劃可為晶圓表面上之特徵之圖形表示。晶圓設計計劃可基於用於設計晶圓之圖案佈局。晶圓設計計劃可對應於用以製造晶圓之光罩。可將晶圓設計計劃儲存於晶圓設計資料庫中。儲存器130可包含晶圓設計資料庫。根據來自步驟S120之資訊資料,可提取對應於經識別之可能缺陷的個別特徵。舉例而言,基於在步驟S120中所識別之可能缺陷部位之x-y座標,可搜集包含原始特徵設計之幾何形狀資訊的圖案資料。每一經識別之可能缺陷可具有一對應的原始特徵設計。
可藉由在晶圓設計計劃之圖形表示中疊加特徵上之輪廓來提取圖案資料。圖案資料亦可以晶圓設計計劃之原生格式提供。舉例而言,可自晶圓設計計劃之圖形表示直接提取圖案資料,作為晶圓設計計劃之一部分。
在判定步驟S140中,判定用於經識別之可能缺陷之圖案資料是否存在於圖案庫中。儲存器130或儲存器334可包含圖案庫。該方法可基於對應度搜尋圖案庫以查找匹配圖案。舉例而言,若特徵設計輪廓與圖案庫中之另一圖案有90%或更高的相似度,則可將圖案判定為匹配。圖案庫中之圖案可包含先前提取之圖案、標準圖案(諸如標準IC特徵之圖案),及其類似者。
若發現匹配圖案,則方法可前進至步驟S150。在步驟S150中,自圖案庫載入缺陷機率。圖案庫可包含具有圖案資料、缺陷機率、圖案群組及與其相關聯之其他資訊的個別項目。缺陷機率可基於先前計算之結果、所儲存之資料、模擬、標準值(諸如用於標準IC特徵之產業標準率),及其類似者。可將經載入之缺陷機率指派給經識別之可能缺陷。
在步驟S150之後,方法可前進至步驟S160。在步驟S160中,可將經識別之可能缺陷指派給群組。分組指派可基於圖案資料。舉例而言,可將圖案資料與群組中之其他缺陷之圖案資料相似的經識別之可能缺陷新增至該群組。該群組可具有共同的缺陷機率。
若在判定步驟S140中未發現匹配圖案,則方法可前進至步驟S170。舉例而言,若經識別之可能缺陷之特徵設計輪廓與圖案庫中之任何其他圖案並不具有90%或更高的相似度,則可判定不存在匹配圖案且經識別之可能缺陷為新的缺陷圖案。在一些實施例中,可使用除90%之外的臨限值。在步驟S170中,可將經識別之可能缺陷之圖案資料新增至圖案庫。在步驟S180中,可將可能缺陷標記為新缺陷類型。在步驟S190中,可將缺陷機率指派給經識別之可能缺陷。缺陷機率可基於例如初始化值、預設值,或可基於經提取之圖案資料,諸如圖案之幾何形狀之複雜度,及其他因素予以判定。
可針對步驟S120中所識別之每一可能缺陷重複步驟S130。在一些實施例中,可處理具有例如200,000或更多個總經識別之可能缺陷的晶圓。因此,可針對經識別之可能缺陷中的每一者進行步驟S120至S190。
在步驟S195中,可選擇經識別之可能缺陷中的一或多者以用於第二影像分析。選擇可基於選擇規則。可應用選擇規則以判定總經識別之可能缺陷當中的哪些經識別之可能缺陷應用於第二影像分析。
選擇規則可基於經識別之可能缺陷之缺陷機率。舉例而言,可根據缺陷機率將經識別之可能缺陷分類,且可選擇具有最高缺陷機率的經識別之可能缺陷以用於第二影像處理。選擇規則亦可基於預定數目。預定數目可為可搜尋缺陷之最大數目。舉例而言,可搜尋缺陷之最大數目可受可用機器時間、使用者之排程及其類似者限制。在一些實施例中,使用者可指定例如一小時之缺陷再檢測時間。因此,可將可搜尋缺陷之最大數目設定為可在一小時內再檢測的缺陷之數目。因此,用於第二影像處理所選擇之經識別之可能缺陷可為包含具有最高缺陷機率之缺陷的最大數目個可搜尋缺陷。
在一些實施例中,選擇可包含具有大於預定臨限值之缺陷機率的任何經識別之可能缺陷。舉例而言,若機器時間不受限制,則使用者希望再檢測具有為真實缺陷之高可能性的所有經識別之可能缺陷,可相應地設定選擇規則。
步驟S195亦可包括選擇要應用複數個選擇規則中之哪一者。舉例而言,若被標記為新的經識別之可能缺陷之數目大於第一臨限值,則可判定應應用隨機取樣選擇規則。可基於標記為新的經識別之可能缺陷對經識別之可能缺陷之總數目的比率來作出判定。在一些實施例中,可判定圖案庫資料不足以基於經記錄之缺陷機率為選擇準則提供有意義的基礎。替代地,在一些實施例中,未必需要基於實際缺陷再檢測之先前所儲存之缺陷機率,且可使用經模擬之缺陷機率。經模擬之缺陷機率可基於針對經識別之可能缺陷所提取的圖案資料之複雜度。舉例而言,具有具大量側面及大量頂點之形狀輪廓的圖案特徵可具有高的經模擬之缺陷機率。具有其中線以不到某一距離彼此間隔開的形狀輪廓之圖案特徵可具有高的經模擬之缺陷機率。可應用各種準則。此外,一圖案可由使用者標記為重要的,且可將對應的缺陷機率設定為高。
5 為說明符合本發明之實施例的例示性缺陷偵測方法之流程圖。可藉由與帶電粒子束裝置耦接之一或多個處理器執行該缺陷偵測方法。舉例而言,控制器109可經程式化以與EBI系統100一起實施缺陷偵測方法。處理器324或332亦可經組態以實施缺陷偵測方法。
在步驟S201中,收納一或多個晶圓。舉例而言,可將在一晶圓晶匣或多於一個晶匣中包含若干晶圓的一批次收納於帶電粒子束系統之裝載埠中。在步驟S210中,裝載晶圓。舉例而言,可將晶圓置放於樣本載物台上且準備用於成像。
在步驟S220中,獲取晶圓之影像。該影像可為經掃描之原始影像。在步驟S230中,執行第一影像分析。步驟S230可包括使用第一參數集合及/或使用第一影像處理演算法對晶圓表面之所獲取影像執行影像分析。步驟S230亦可包括諸如藉由如上文關於 4 所論述之步驟S120至S190識別可能的缺陷及其類似者。
在步驟S240中,選擇應藉由第二影像分析而分析的經識別之可能缺陷。可藉由選擇規則來執行該選擇。在步驟S250中,執行第二影像分析。第二影像分析可包括使用不同於第一參數集合的第二參數集合及/或使用不同於第一影像處理演算法的第二影像處理演算法對晶圓表面之所獲取影像執行影像分析。第二參數集合及/或第二影像處理演算法分別可比第一參數集合及/或第一影像處理演算法更詳細。第二影像分析可包括獲取晶圓之新影像。舉例而言,第二影像分析可包括使經選擇用於比第一影像分析更詳細地進行第二影像分析的經識別之可能缺陷之部位成像。該第二影像分析可將經識別之可能缺陷驗證為真實缺陷或並非真實缺陷。
第二影像分析可包括缺陷再檢測。在缺陷再檢測中,可將經識別之可能缺陷分類,如將在下文所論述。此外,可向缺陷指派缺陷度等級。舉例而言,可將缺陷歸類為安全的、不確定的、弱的及致命的。儘管晶圓上之結構可具有缺陷,但該缺陷可並不干涉其應在IC器件中執行之功能。因此,此缺陷可被歸類為安全的。另一方面,若缺陷如此極端以致於IC器件可受損,則該缺陷可被歸類為致命的。
根據第二影像分析之結果,可判定偵測機率。在步驟S255中,可更新經識別之可能缺陷之缺陷機率。若經由第二影像分析將經識別之可能缺陷確認為真實缺陷,則可指派預定數字作為其缺陷機率。更新可包含覆寫先前與經識別之可能缺陷相關聯的缺陷機率之值。更新可包含寫入關於經識別之可能缺陷之缺陷機率的初始值。
缺陷機率之值可基於由於第二影像分析而判定的缺陷度等級。舉例而言,關於「致命」缺陷之缺陷機率之數值可大於關於「安全」缺陷之缺陷機率之數值。
被經識別之可能缺陷被確認為有礙缺陷,則其缺陷機率可為零。舉例而言,在第一影像分析中,可使用低解析度影像。然而,隨著IC特徵之尺寸變得較小,此低解析度影像可不足以適當地識別缺陷之存在或不存在。舉例而言,將一些結構識別為可能的缺陷可歸因於影像離焦,此係因為特徵可在成像工具之焦平面之外。因此,在例如以較高解析度且以較準確聚焦使用第二影像分析來執行成像後,即可判定出結構並非實際上有缺陷的。
雖然已在本文中使用名稱「有礙缺陷」,但本發明不必限於此。舉例而言,作為真實缺陷但缺陷機率小到可忽略的缺陷在選擇用於第二影像分析時可被相似地忽視。可相應地使用缺陷機率之預定臨限值。
步驟S255可包括判定群組之缺陷機率。舉例而言,可基於經識別之可能缺陷之圖案資料將該經識別之可能缺陷指派給群組。因此,瞬時第二影像分析及缺陷機率判定之結果可用以判定群組缺陷機率。群組缺陷機率可基於平均值。群組缺陷機率可基於加權平均值,其中更為新近資料被提供更多權重。群組缺陷機率可基於平均值,其中使用預定數目個最新近的缺陷機率判定,而捨棄其他的缺陷機率判定。
可將群組缺陷機率計算為藉由第二影像分析確認之缺陷之數目對在晶圓上發現之經識別之可能缺陷之總數目的比率。舉例而言,在一些實施例中,不論缺陷是否被歸類為安全的、不確定的、弱的、致命的等,若存在真實缺陷,則對缺陷進行計數。可在每個晶圓的基礎上計算群組缺陷機率。可藉由橫越一或多個晶圓進行平均化來計算群組缺陷機率。群組缺陷機率亦可基於批次。
缺陷可包括各種類型之缺陷,例如如下所論述之缺陷。在微影程序中引發的一些共同類型之缺陷可包括歸因於光阻(PR)劣化或雜質之PR殘餘物缺陷、剝落缺陷、橋接缺陷、氣泡缺陷及歸因於圖案位移之虛設圖案缺失缺陷。在蝕刻程序中引發的缺陷可包括蝕刻殘餘物缺陷、過度蝕刻缺陷及斷路缺陷。在化學機械平坦化(CMP)程序中引發的缺陷可包括研磨漿殘餘物缺陷、表面凹陷缺陷,及歸因於不同的拋光率之侵蝕缺陷、歸因於拋光之刮痕等。另外,當程序節點繼續縮小時,將引入新材料及程序,其可引發新缺陷類型。舉例而言,因為圖案之實體尺寸可小於所應用之微影波長(例如193 nm)之光學解析度,所以曝光於晶圓上之臨界尺寸可引發偏移。細化缺陷為在程序節點縮小時不可避免引發的另一類型之缺陷。為了減少多層互連結構中之RC延遲,可引入低k介電層及銅材料。由於當使用銅時蝕刻可並非理想的,故可使用將金屬填充至介電層中的金屬鑲嵌程序。因此,一些其他隱藏缺陷可能被覆蓋於層下,諸如空隙缺陷、蝕刻殘餘物缺陷、過度蝕刻缺陷,層下粒子及在互連程序中引發的通孔開口。
另外,其他類型之半導體程序可引發額外類型之缺陷。舉例而言,用於半導體業中之一些其他處理技術可包括物理氣相沈積(PVD)、化學氣相沈積(CVD)、電化學沈積(EPC)、分子束磊晶法(MBE)、原子層沈積(ALD)及其他處理技術。其他技術,諸如用於電屬性(例如摻雜)之圖案化、移除及修改的技術亦可引發額外類型之缺陷。
缺陷再檢測可包括根據缺陷之類型將缺陷分類。
將損害預期結構之功能的某一類型之缺陷可進一步基於缺陷之類型進行歸類。舉例而言,對於線圖案結構,可將缺陷分類為細化缺陷,且因此該結構可能將無法執行信號輸送之預期功能。若跡線變得過細,則其根據設計規範可能無法處置意欲通過其之電力負載。另外,若圖案變細以致於出現斷開缺陷,則結構將完全不能夠輸送信號。因此,根據缺陷分類,可指派安全的、不確定的、弱的、致命的等之對應類別。
缺陷可包含系統性缺陷及非系統性缺陷。系統性缺陷可在晶圓中被重複且系統地發現,其方式為使得缺陷圖案可用作分類中之參考,以判定例如哪一程序引發此類缺陷的根本原因。更特定言之,可將系統性缺陷分類為對準或機器偏移中之倍縮光罩誤差、由配方或材料引發的程序錯誤、晶圓探測中之探針損壞、晶圓表面上之刮痕,及由PR塗層或熱應力之非均一性引發的構形之晶圓邊緣效應。
非系統性缺陷可包括隨機粒子缺陷,諸如晶圓中留下的隨機殘餘物。分佈及特性剖面可作為區分系統性缺陷與非系統性缺陷之有用參考。非系統性缺陷,諸如由隨機落在晶圓上之空氣中之粒子引發的隨機粒子缺陷,可並不容易被識別及解析。然而,此類缺陷之識別及分類可提供資訊。
缺陷分類亦可包括判定缺陷是為系統性的亦或非系統性的。分類及詳細再檢測對於各種應用可為重要的。舉例而言,在一些情況下,可需要區分系統性缺陷與隨機缺陷。
缺陷可具有各種類型之結構及特性。然而,前驅體圖案可具有標準圖案幾何形狀。舉例而言,相同類型之前驅體圖案可與不同類型之缺陷相關聯,且反之亦然。
缺陷機率之判定可基於缺陷分類。
繼續 5 之流程圖,方法可前進至步驟S260。在步驟S260中,可自工具釋放晶圓使得可裝載新晶圓。在判定步驟S270中,判定是否存在其他晶圓以供處理。舉例而言,該方法可請求對批次中之接下來的晶圓進行成像及分析,且當沒有剩餘的晶圓需要檢測時,該批次之處理可完成,如在步驟S280中。
在一些實施例中,可基於圖案資料對晶圓上之結構執行影像分析。舉例而言,可使用選擇性檢測。在選擇性檢測中,可在晶圓之實際檢測之前分析晶圓設計計劃。可基於自圖案庫可得到之圖案資料判定晶圓檢測計劃。在一些實施例中,可搜尋圖案庫以判定哪些圖案具有最高缺陷機率。根據圖案庫搜尋之結果,可構建晶圓檢測計劃使得向包含具有最高缺陷機率之圖案的晶圓之部位提供優先權。圖案庫中之資料可基於其他晶圓之先前缺陷偵測運行。其他晶圓可為含有待檢測之晶圓之批次中的其他晶圓。在一些實施例中,圖案庫中之資料可例如基於一些其他訓練資料。
使用選擇性檢測,可基於圖案庫中之資料執行第一影像分析及第二影像分析。選擇性檢測可有助於進一步增加產出率。
6 說明展示符合本發明之實施例的對晶圓之經判定缺陷計數的圖表。舉例而言,可在圖表中以圖形方式表示用於經識別之可能缺陷的缺陷機率資訊。在一些實施例中,缺陷機率可基於藉由第二影像分析,諸如藉由缺陷再檢測確認之缺陷之計數。可將缺陷計數細分成藉由各種準則而組織之缺陷。舉例而言,可將缺陷歸類為安全的、不確定的、弱的、致命的等。
6 中所展示,計數可與基於圖案資料之圖案群組相關聯。舉例而言,圖案1可表示具有特定幾何形狀之圖案資料的缺陷。圖案1可與具有彼此匹配之圖案資料的經識別之可能缺陷之群組相關聯。如 7 中所展示,圖案1可與三端半導體圖案相關聯。
7 說明展示符合本發明之實施例的圖案庫中之例示性項目之表。在一些實施例中,如 7 中所展示之群組標籤可對應於 6 之水平軸線中所展示的圖案數目,且可對應於圖案群組。缺陷機率資訊可包括諸如如所展示之符號A、B、C等等之表示。符號A、B、C等等可為缺陷機率之表示,諸如數值。
尤其如 6 7 中所展示的圖案8、14、20、21可歸因於其低的真實缺陷計數而被認為係有礙缺陷。舉例而言,有礙缺陷之缺陷計數可為零。
來自諸如缺陷再檢測之第二影像分析之結果可用以不斷地更新圖案庫。回饋控制可用以不斷地將項目新增至圖案庫且在晶圓繼續待處理時更新缺陷機率資訊。
雖然控制器、儲存器及一或多個電路在上文在一些實施例中被論述為單獨的單元,但電腦可進行所有此類單元之處理。
舉例而言,可提供電腦系統。 8 為可實施本文中所描述之實施例之例示性電腦系統800的方塊圖。如上文所描述之知識推薦伺服器、缺陷分類伺服器及影像處理系統中之一或多者可藉由電腦系統800來實施。
電腦系統800包括:用於傳達資訊之匯流排802或其他通信機構,及與匯流排802耦接以用於處理資訊的一或多個硬體處理器804 (出於簡單之目的而表示為處理器804;例如 2 之控制器109之處理器,或 3 之知識推薦伺服器330之處理器332或缺陷分類伺服器320之處理器324)。舉例而言,硬體處理器804可為一或多個微處理器。
電腦系統800亦包括耦接至匯流排802以用於儲存待由處理器804執行之資訊及指令的主記憶體806,諸如隨機存取記憶體(RAM)或其他動態儲存器件。主記憶體806亦可用於在待由處理器804執行之指令之執行期間儲存暫時性變數或其他中間資訊。此類指令在儲存於處理器804可存取之非暫時性儲存媒體中之後,使電腦系統800呈現為經自訂以執行該等指令中所指定之操作的專用機器。
電腦系統800進一步包括耦接至匯流排802以用於儲存用於處理器804之靜態資訊及指令的唯讀記憶體(ROM) 808或其他靜態儲存器件。可提供儲存器件810 (例如 2 之儲存器130,或 3 之知識推薦伺服器330之儲存器334),諸如磁碟、光碟或USB隨身碟(thumb drive/Flash drive)等,且將該儲存器件810耦接至匯流排802以用於儲存資訊及指令。
電腦系統800可經由匯流排802耦接至諸如陰極射線管(CRT)、液晶顯示器(LCD)或觸控式螢幕之顯示器812,以用於將資訊顯示給電腦使用者。包括文數字按鍵及其他按鍵之輸入器件814可耦接至匯流排802以用於將資訊及命令選擇傳達至處理器804。另一類型之使用者輸入器件可為用於將方向資訊及命令選擇傳達至處理器804且用於控制顯示器812上之游標移動的游標控制件816,諸如滑鼠、軌跡球或游標方向按鍵。輸入器件可具有在兩個軸線-第一軸線(例如x)及第二軸線(例如y)中之兩個自由度,其允許該器件指定在平面中之位置。在一些實施例中,可經由接收觸控式螢幕上之觸摸來實施與游標控制件相同的方向資訊及命令選擇,而不用游標。
電腦系統800可包括用以實施圖形使用者介面(GUI)之使用者介面模組,該圖形使用者介面可作為藉由一或多個計算器件執行之可執行軟體碼儲存於大容量儲存器件中。作為實例,此模組及其他模組可包括組件(諸如軟體組件、物件導向軟體組件、類別組件及任務組件)、程序、函數、欄位、工序、次常式、程式碼之片段、驅動程式、韌體、微碼、電路系統、資料、資料庫、資料結構、表、陣列及變數。該等模組可包括例如 3 中所說明之系統300之一或多個組件。
電腦系統800可使用自訂硬佈線邏輯、一或多個ASIC或FPGA、韌體及/或程式邏輯來實施本文中所描述之技術,結合電腦系統之自訂硬佈線邏輯、一或多個ASIC或FPGA、韌體及/或程式邏輯致使電腦系統800或使電腦系統800程式化為專用機器。根據一些實施例,回應於處理器804執行含於主記憶體806中之一或多個指令之一或多個序列,由電腦系統800執行本文中所描述之操作、功能性及技術及其他特徵。可將此類指令自另一儲存媒體(諸如儲存器件810)讀取至主記憶體806中。主記憶體806中所含有之指令序列之執行可致使處理器804執行本文中所描述之方法步驟(例如如 4 所展示之程序,或如 5 所展示之程序)。在替代實施例中,可代替或結合軟體指令而使用硬佈線電路系統。
可提供儲存指令以供處理器(例如控制器109之處理器)進行影像處理、資料處理、資料庫管理、圖形顯示、帶電粒子束裝置或其他成像器件之操作等的非暫時性電腦可讀媒體。舉例而言,常見形式之非暫時性媒體包括:軟碟、可撓性磁碟、硬碟、固態磁碟機、磁帶或任何其他磁性資料儲存媒體;CD-ROM;任何其他光學資料儲存媒體;具有孔圖案之任何實體媒體;RAM、PROM及EPROM、FLASH-EPROM或任何其他快閃記憶體;NVRAM;快取記憶體;暫存器;任何其他記憶體晶片或卡匣;及其聯網版本。
非暫時性媒體不同於傳輸媒體但可結合傳輸媒體使用。傳輸媒體可參與在儲存媒體之間傳送資訊。舉例而言,傳輸媒體可包括同軸纜線、銅線及光纖,包括包含匯流排802之電線。傳輸媒體亦可採取聲波或光波形式,諸如在無線電波及紅外資料通信期間產生之聲波或光波。
可在將一或多個指令之一或多個序列攜載至處理器804以供執行時涉及各種形式之媒體。舉例而言,該等指令最初可攜載於遠端電腦之磁碟或固態磁碟機上。遠端電腦可將指令載入至其動態記憶體中,且使用數據機經由電話線而發送指令。在電腦系統800本端之數據機可接收電話線上之資料,且使用紅外線傳輸器以將資料轉換成紅外線信號。紅外線偵測器可接收紅外線信號中所攜載之資料,且適當電路系統可將資料置放於匯流排802上。匯流排802將資料攜載至主記憶體806,處理器804自該主記憶體806擷取及執行指令。由主記憶體806接收之指令可視情況在由處理器804執行之前或之後儲存於儲存器件810上。
電腦系統800亦可包括耦接至匯流排802之通信介面818。通信介面818 (例如 3 之缺陷分類伺服器320之通信介面322或知識推薦伺服器330之任何通信介面(圖中未繪示))可提供至網路鏈路820之雙向資料通信耦合,該網路鏈路820可連接至區域網路822。舉例而言,通信介面818可為整合服務數位網路(ISDN)卡、電纜數據機、衛星數據機或用以將資料通信連接提供至對應類型之電話線的數據機。作為另一實例,通信介面818可為區域網路(LAN)卡以提供對相容LAN之資料通信連接。亦可實施無線鏈路。在任何此類實施中,通信介面818可發送及接收攜載表示各種類型之資訊之數位資料流的電信號、電磁信號或光信號。
網路鏈路820可通常經由一或多個網路將資料通信提供至其他資料器件。舉例而言,網路鏈路820可經由區域網路822而向主機電腦824或向由網際網路服務提供者(ISP) 826操作之資料設備提供連接。ISP 826又可經由全球封包資料通信網路(現在通常被稱作「網際網路」) 828而提供資料通信服務。區域網路822及網際網路828兩者皆使用攜載數位資料串流之電信號、電磁信號或光信號。經由各種網路之信號及網路鏈路820上且經由通信介面818之信號可為傳輸媒體之實例形式,該等信號將數位資料攜載至電腦系統800及自電腦系統800攜載數位資料。
電腦系統800可經由網路、網路鏈路820及通信介面818發送訊息及接收資料,包括程式碼。在網際網路實例中,伺服器830可經由網際網路828、ISP 826、區域網路822及通信介面818而傳輸用於應用程式之經請求程式碼。
所接收程式碼可在其被接收時由處理器804執行,及/或儲存於儲存器件810或其他非揮發性儲存器中以供稍後執行。在一些實施例中,伺服器830可提供資訊以供顯示於顯示器上。
可使用以下條項進一步描述實施例: 1. 一種執行影像處理之方法,其包含: 獲取一樣本之一或多個影像; 使用第一影像分析來識別該一或多個影像中之複數個第一特徵; 判定對應於該複數個第一特徵之圖案資料; 基於該圖案資料選擇該複數個第一特徵中之至少一者;及 執行該複數個第一特徵中之該至少一者之第二影像分析。 2. 如條項1之方法,其進一步包含: 基於該圖案資料判定該複數個第一特徵中之每一者之一缺陷機率, 其中選擇該複數個第一特徵中之該至少一者係基於該缺陷機率。 3. 如條項1至2中任一項之方法,其中該第一影像分析包含使用一第一參數集合或使用一第一影像處理演算法來獲取該樣本之一影像,且該第二影像分析包含使用一第二參數集合或使用一第二影像處理演算法來獲取該樣本之一影像。 4. 如條項1至3中任一項之方法,其中該第一影像分析包含缺陷檢測且該第二影像分析包含缺陷再檢測。 5. 如條項1至4中任一項之方法,其中該圖案資料包含該樣本之一設計計劃。 6. 如條項5之方法,其中判定該圖案資料包含基於在該第一影像分析中判定之該等第一特徵之一部位而自該樣本之該設計計劃提取圖案。 7. 如條項1至6中任一項之方法,其進一步包含: 基於該圖案資料將第一數目個該等第一特徵分組於一第一群組中;及 基於該第一群組之其他成員之缺陷機率判定該第一群組之一第一缺陷機率,其中該缺陷機率係基於該第一群組之該等其他成員之缺陷再檢測的結果,且其中選擇該複數個第一特徵中之該至少一者係基於該第一缺陷機率。 8. 如條項1至7中任一項之方法,其進一步包含: 搜尋一圖案庫;及 基於該圖案資料判定該複數個第一特徵中之該至少一者與該圖案庫中之一項目的一匹配,其中選擇該複數個第一特徵中之該至少一者係基於該圖案庫中之該項目之資訊。 9. 如條項1至7之方法,其進一步包含: 將對應於該複數個第一特徵中之該至少一者的該圖案資料新增至一圖案庫。 10. 一種檢測一樣本之方法,其包含: 執行該樣本之至少一部分之第一成像以獲取該樣本之一第一影像; 識別該第一影像中之複數個第一特徵; 判定對應於該複數個第一特徵之圖案資料; 基於該圖案資料選擇該複數個第一特徵中之至少一者;及 在對應於該複數個第一特徵之部位處執行該樣本之第二成像。 11. 如條項10之方法,其進一步包含: 基於該圖案資料判定該複數個第一特徵中之每一者之一缺陷機率, 其中選擇該複數個第一特徵中之該至少一者係基於該缺陷機率。 12. 如條項10至11中任一項之方法,其中該第一成像包含使用一第一參數集合或使用一第一影像處理演算法來獲取該樣本之一影像,且該第二成像包含使用一第二參數集合或使用一第二影像處理演算法來獲取該樣本之一影像。 13. 如條項10至12中任一項之方法,其中該第一成像包含缺陷檢測且該第二成像包含缺陷再檢測。 14. 如條項10至13中任一項之方法,其中該圖案資料包含該樣本之一設計計劃。 15. 如條項14之方法,其中判定該圖案資料包含基於在該識別中所判定之該等第一特徵之一部位而自該樣本之該設計計劃提取圖案。 16. 如條項10至15中任一項之方法,其進一步包含: 基於該圖案資料將第一數目個該等第一特徵分組於一第一群組中;及 基於該第一群組之其他成員之缺陷機率判定該第一群組之一第一缺陷機率,其中該缺陷機率係基於該第一群組之該等其他成員之缺陷再檢測的結果,且其中選擇該複數個第一特徵中之該至少一者係基於該第一缺陷機率。 17. 如條項10至16中任一項之方法,其進一步包含: 搜尋一圖案庫;及 基於該圖案資料判定該複數個第一特徵中之該至少一者與該圖案庫中之一項目的一匹配,其中選擇該複數個第一特徵中之該至少一者係基於該圖案庫中之該項目之資訊。 18. 如條項10至16中任一項之方法,其進一步包含: 將對應於該複數個第一特徵中之該至少一者的該圖案資料新增至一圖案庫。 19. 如條項10至18中任一項之方法,其進一步包含: 檢測一第一樣本及一第二樣本; 基於該第一樣本之第二成像判定該第一樣本之一或多個特徵的一缺陷機率; 基於該第一樣本之該一或多個特徵的該缺陷機率選擇該第二樣本之一或多個特徵;及 在對應於該第二樣本之該一或多個特徵之部位處執行該第二樣本之第二成像。 20. 一種非暫時性電腦可讀媒體,其儲存一指令集,該指令集可由一裝置之至少一個處理器執行以致使該裝置執行包含如下操作之一方法: 執行一樣本之至少一部分之第一成像以獲取該樣本之一第一影像; 識別該第一影像中之複數個第一特徵; 判定對應於該複數個第一特徵之圖案資料; 基於該圖案資料選擇該複數個第一特徵中之至少一者;及 在對應於該複數個第一特徵之部位處執行該樣本之第二成像。 21. 如條項20之電腦可讀媒體,其中該指令集進一步致使該裝置執行如下操作: 基於該圖案資料判定該複數個第一特徵中之每一者之一缺陷機率, 其中選擇該複數個第一特徵中之該至少一者係基於該缺陷機率。 22. 如條項20至21中任一項之電腦可讀媒體,其中該第一成像包含使用一第一參數集合或使用一第一影像處理演算法來獲取該樣本之一影像,且該第二成像包含使用一第二參數集合或使用一第二影像處理演算法來獲取該樣本之一影像。 23. 如條項20至22中任一項之電腦可讀媒體,其中該第一成像包含缺陷檢測且該第二成像包含缺陷再檢測。 24. 如條項20至23中任一項之電腦可讀媒體,其中該圖案資料包含該樣本之一設計計劃。 25. 如條項24之電腦可讀媒體,其中判定該圖案資料包含基於在該識別中所判定之該等第一特徵之一部位而自該樣本之該設計計劃提取圖案。 26. 如條項20至25中任一項之電腦可讀媒體,其中該指令集進一步致使該裝置執行如下操作: 基於該圖案資料將第一數目個該等第一特徵分組於一第一群組中;及 基於該第一群組之其他成員之缺陷機率判定該第一群組之一第一缺陷機率,其中該缺陷機率係基於該第一群組之該等其他成員之缺陷再檢測的結果,且其中選擇該複數個第一特徵中之該至少一者係基於該第一缺陷機率。 27. 如條項20至26中任一項之電腦可讀媒體,其中該指令集進一步致使該裝置執行如下操作: 搜尋一圖案庫;及 基於該圖案資料判定該複數個第一特徵中之該至少一者與該圖案庫中之一項目的一匹配,其中選擇該複數個第一特徵中之該至少一者係基於該圖案庫中之該項目之資訊。 28. 如條項20至26中任一項之電腦可讀媒體,其中該指令集進一步致使該裝置執行如下操作: 將對應於該複數個第一特徵中之該至少一者的該圖案資料新增至一圖案庫。 29. 如條項20之電腦可讀媒體,其中該指令集進一步致使該裝置執行如下操作: 檢測一第一樣本及一第二樣本; 基於該第一樣本之第二成像判定該第一樣本之一或多個特徵的一缺陷機率; 基於該第一樣本之該一或多個特徵的該缺陷機率選擇該第二樣本之一或多個特徵;及 在對應於該第二樣本之該一或多個特徵之部位處執行該第二樣本之第二成像。 30. 如條項20至29中任一項之電腦可讀媒體,其中該裝置為經組態以產生一帶電粒子束之一帶電粒子束裝置。
諸圖中之方塊圖說明根據本發明之各種例示性實施例之系統、方法及電腦硬體/軟體產品之可能實施的架構、功能性及操作。就此而言,流程圖或方塊圖中之每一區塊可表示程式碼之模組、片段或部分,其包含用於實施指定邏輯功能的一或多個可執行指令。應理解,在一些替代實施中,區塊中所指示之功能可不按諸圖中所提及的次序出現。舉例而言,視所涉及之功能性而定,連續展示的兩個區塊可實質上同時執行或實施,或兩個區塊有時可以相反次序執行。一些區塊亦可省略。亦應理解,方塊圖之每一區塊及該等區塊之組合可由執行指定功能或動作之專用基於硬體的系統或由專用硬體及電腦指令之組合實施。
應瞭解,本發明不限於上文所描述及在附圖中所說明之確切構造,且可在不背離本發明之範疇的情況下作出各種修改及改變。
100‧‧‧電子束檢測(EBI)系統 101‧‧‧主腔室 102‧‧‧裝載/鎖定腔室 104‧‧‧電子束工具 106‧‧‧設備前端模組(EFEM) 106a‧‧‧第一裝載埠 106b‧‧‧第二裝載埠 109‧‧‧控制器 120‧‧‧影像獲取器 130‧‧‧儲存器 199‧‧‧影像處理系統 200‧‧‧成像系統 230‧‧‧晶圓 244‧‧‧偵測器 300‧‧‧缺陷再檢測系統 310‧‧‧晶圓檢測系統 320‧‧‧自動缺陷分類(ADC)伺服器 322‧‧‧通信介面 324‧‧‧處理器 330‧‧‧知識推薦伺服器 332‧‧‧處理器 334‧‧‧儲存器 800‧‧‧電腦系統 802‧‧‧匯流排 804‧‧‧硬體處理器 806‧‧‧主記憶體 808‧‧‧唯讀記憶體(ROM) 810‧‧‧儲存器件 812‧‧‧顯示器 814‧‧‧輸入器件 816‧‧‧游標控制件 818‧‧‧通信介面 820‧‧‧網路鏈路 822‧‧‧區域網路 824‧‧‧主機電腦 826‧‧‧網際網路服務提供者(ISP) 828‧‧‧網際網路 830‧‧‧伺服器 S101‧‧‧步驟 S110‧‧‧步驟 S120‧‧‧步驟 S130‧‧‧步驟 S140‧‧‧步驟 S150‧‧‧步驟 S160‧‧‧步驟 S170‧‧‧步驟 S180‧‧‧步驟 S190‧‧‧步驟 S195‧‧‧步驟 S201‧‧‧步驟 S210‧‧‧步驟 S220‧‧‧步驟 S230‧‧‧步驟 S240‧‧‧步驟 S250‧‧‧步驟 S255‧‧‧步驟 S260‧‧‧步驟 S270‧‧‧步驟 S280‧‧‧步驟
1 為說明符合本發明之實施例的例示性電子束檢測(EBI)系統之示意圖。
2 為說明符合本發明之實施例的例示性電子束工具的示意圖,該例示性電子束工具可為 1 之例示性電子束檢測系統之一部分。
3 為符合本發明之實施例的例示性缺陷再檢測系統之方塊圖。
4 為說明符合本發明之實施例的例示性影像處理方法之流程圖。
5 為說明符合本發明之實施例的例示性缺陷偵測方法之流程圖。
6 為展示符合本發明之實施例的對晶圓之經判定缺陷計數的圖表。
7 為展示符合本發明之實施例的圖案庫中之例示性項目之表。
8 為可實施本文中所描述之實施例之例示性電腦系統的方塊圖。

Claims (14)

  1. 一種執行影像處理(image processing)之方法,其包含:獲取一樣本之一或多個影像;使用第一影像分析來識別(identifying)該一或多個影像中之複數個第一特徵;判定對應於該複數個第一特徵之圖案資料;基於該圖案資料選擇該複數個第一特徵中之至少一者;執行該複數個第一特徵中之該至少一者之第二影像分析;搜尋一圖案庫(pattern library);及基於該圖案資料判定該複數個第一特徵中之該至少一者與該圖案庫中之一項目(entry)的一匹配(match),其中選擇該複數個第一特徵中之該至少一者係基於該圖案庫中之該項目之資訊。
  2. 如請求項1之方法,其進一步包含:基於該圖案資料判定該複數個第一特徵中之每一者之一缺陷機率,其中選擇該複數個第一特徵中之該至少一者係基於該缺陷機率。
  3. 如請求項1之方法,其中該第一影像分析包含使用一第一參數集合或使用一第一影像處理演算法來獲取該樣本之一影像,且該第二影像分析包含使用一第二參數集合或使用一第二影像處理演算法來獲取該樣本之一影像。
  4. 如請求項1之方法,其中該第一影像分析包含缺陷檢測且該第二影像分析包含缺陷再檢測。
  5. 如請求項1之方法,其中該圖案資料包含該樣本之一設計計劃。
  6. 如請求項5之方法,其中判定該圖案資料包含:基於在該第一影像分析中判定之該等第一特徵之一部位而自該樣本之該設計計劃提取圖案。
  7. 如請求項1之方法,其進一步包含:基於該圖案資料將第一數目個該等第一特徵分組於一第一群組中;及基於該第一群組之其他成員之缺陷機率判定該第一群組之一第一缺陷機率,其中該缺陷機率係基於該第一群組之該等其他成員之缺陷再檢測的結果,且其中選擇該複數個第一特徵中之該至少一者係基於該第一缺陷機率。
  8. 如請求項1之方法,其進一步包含:將對應於該複數個第一特徵中之該至少一者的該圖案資料新增至一圖案庫。
  9. 一種非暫時性電腦可讀媒體,其儲存一指令集,該指令集可由一裝置之至少一個處理器執行以致使該裝置執行包含如下操作之一方法:執行一樣本之至少一部分之第一成像以獲取該樣本之一第一影像; 識別該第一影像中之複數個第一特徵;判定對應於該複數個第一特徵之圖案資料;基於該圖案資料選擇該複數個第一特徵中之至少一者;在對應於該複數個第一特徵之部位處執行該樣本之第二成像;搜尋一圖案庫;及基於該圖案資料判定該複數個第一特徵中之該至少一者與該圖案庫中之一項目的一匹配,其中選擇該複數個第一特徵中之該至少一者係基於該圖案庫中之該項目之資訊。
  10. 如請求項9之電腦可讀媒體,其中該指令集進一步致使該裝置執行如下操作:基於該圖案資料判定該複數個第一特徵中之每一者之一缺陷機率,其中選擇該複數個第一特徵中之該至少一者係基於該缺陷機率。
  11. 如請求項9之電腦可讀媒體,其中該第一成像包含使用一第一參數集合或使用一第一影像處理演算法來獲取該樣本之一影像,且該第二成像包含使用一第二參數集合或使用一第二影像處理演算法來獲取該樣本之一影像。
  12. 如請求項9之電腦可讀媒體,其中該第一成像包含缺陷檢測且該第二成像包含缺陷再檢測。
  13. 如請求項9之電腦可讀媒體,其中該圖案資料包含該樣本之一設計計 劃。
  14. 如請求項13之電腦可讀媒體,其中判定該圖案資料包含:基於在該識別中所判定之該等第一特徵之一部位而自該樣本之該設計計劃提取圖案。
TW107147063A 2017-12-31 2018-12-26 用於缺陷檢測及再檢測的方法及系統 TWI741244B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762612599P 2017-12-31 2017-12-31
US62/612,599 2017-12-31

Publications (2)

Publication Number Publication Date
TW201941246A TW201941246A (zh) 2019-10-16
TWI741244B true TWI741244B (zh) 2021-10-01

Family

ID=64870486

Family Applications (2)

Application Number Title Priority Date Filing Date
TW107147063A TWI741244B (zh) 2017-12-31 2018-12-26 用於缺陷檢測及再檢測的方法及系統
TW110131535A TWI767826B (zh) 2017-12-31 2018-12-26 用於缺陷檢測及再檢測的方法及系統

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW110131535A TWI767826B (zh) 2017-12-31 2018-12-26 用於缺陷檢測及再檢測的方法及系統

Country Status (5)

Country Link
US (1) US11450122B2 (zh)
KR (1) KR102536331B1 (zh)
CN (1) CN111542855B (zh)
TW (2) TWI741244B (zh)
WO (1) WO2019129569A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI660249B (zh) * 2017-01-18 2019-05-21 荷蘭商Asml荷蘭公司 缺陷圖案分組方法及系統
WO2020083612A1 (en) * 2018-10-23 2020-04-30 Asml Netherlands B.V. Method and apparatus for adaptive alignment
CN109949286A (zh) * 2019-03-12 2019-06-28 北京百度网讯科技有限公司 用于输出信息的方法和装置
US11861286B2 (en) * 2020-06-30 2024-01-02 Synopsys, Inc. Segregating defects based on computer-aided design (CAD) identifiers associated with the defects
US11443095B2 (en) * 2020-07-10 2022-09-13 Taiwan Semiconductor Manufacturing Co., Ltd. Hotspot avoidance method for manufacturing integrated circuits
WO2022088084A1 (zh) * 2020-10-30 2022-05-05 京东方科技集团股份有限公司 数据处理方法、装置及系统、电子设备
US12080042B2 (en) * 2021-07-16 2024-09-03 Taiwan Semiconductor Manufacturing Company, Ltd. Method for retrieving images from database
CN113465529B (zh) * 2021-08-31 2021-11-23 武汉飞恩微电子有限公司 一种基于视觉识别的芯片应变测量方法与系统
KR102426829B1 (ko) * 2021-12-16 2022-07-29 주식회사 인터엑스 Ai 기반 제품 표면 검사 장치 및 방법
KR102489548B1 (ko) * 2022-05-11 2023-01-18 김영봉 X선을 이용한 반도체 소자의 결함 검사방법
CN115984267B (zh) * 2023-03-20 2023-07-25 青岛鼎信通讯科技有限公司 一种适用于超声水表的注塑气泡检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200900684A (en) * 2007-03-30 2009-01-01 Dainippon Screen Mfg Defect inspection apparatus, pattern drawing apparatus, pattern drawing system and recording medium storing defect inspection program
TW200945215A (en) * 2008-04-18 2009-11-01 Univ Nat Taiwan Image tracking system and method thereof
US8139843B2 (en) * 2005-11-18 2012-03-20 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
JP2014239230A (ja) * 2008-06-11 2014-12-18 ケーエルエー−テンカー・コーポレーションKla−Tencor Corporation ウェーハー上の設計欠陥および工程欠陥の検出、ウェーハー上の欠陥の精査、設計内の1つ以上の特徴を工程監視特徴として使用するための選択、またはそのいくつかの組み合わせのためのシステムおよび方法
US20160284579A1 (en) * 2015-03-23 2016-09-29 Applied Materials Israel Ltd. Process window analysis
US20170345138A1 (en) * 2014-12-09 2017-11-30 Asml Netherlands B.V. Method and apparatus for image analysis

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3756507B1 (ja) 2004-09-17 2006-03-15 シャープ株式会社 画像処理アルゴリズム評価方法および装置、画像処理アルゴリズム生成方法および装置、プログラムならびにプログラム記録媒体
JP5550862B2 (ja) 2009-07-23 2014-07-16 株式会社日立ハイテクノロジーズ 欠陥分類装置及び分類調整方法
US9098893B2 (en) * 2011-12-21 2015-08-04 Applied Materials Israel, Ltd. System, method and computer program product for classification within inspection images
US9196031B2 (en) * 2012-01-17 2015-11-24 SCREEN Holdings Co., Ltd. Appearance inspection apparatus and method
US9858658B2 (en) * 2012-04-19 2018-01-02 Applied Materials Israel Ltd Defect classification using CAD-based context attributes
US9098891B2 (en) * 2013-04-08 2015-08-04 Kla-Tencor Corp. Adaptive sampling for semiconductor inspection recipe creation, defect review, and metrology
KR101939288B1 (ko) 2014-02-12 2019-01-16 에이에스엠엘 네델란즈 비.브이. 프로세스 윈도우를 최적화하는 방법
CN106204598B (zh) * 2016-07-13 2019-02-05 东方晶源微电子科技(北京)有限公司 在自动缺陷分类流程中管理缺陷的方法及系统
CN106290378B (zh) * 2016-08-23 2019-03-19 东方晶源微电子科技(北京)有限公司 缺陷分类方法和缺陷检查系统
US10190991B2 (en) * 2016-11-03 2019-01-29 Applied Materials Israel Ltd. Method for adaptive sampling in examining an object and system thereof
US10408764B2 (en) * 2017-09-13 2019-09-10 Applied Materials Israel Ltd. System, method and computer program product for object examination

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8139843B2 (en) * 2005-11-18 2012-03-20 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
TW200900684A (en) * 2007-03-30 2009-01-01 Dainippon Screen Mfg Defect inspection apparatus, pattern drawing apparatus, pattern drawing system and recording medium storing defect inspection program
TW200945215A (en) * 2008-04-18 2009-11-01 Univ Nat Taiwan Image tracking system and method thereof
JP2014239230A (ja) * 2008-06-11 2014-12-18 ケーエルエー−テンカー・コーポレーションKla−Tencor Corporation ウェーハー上の設計欠陥および工程欠陥の検出、ウェーハー上の欠陥の精査、設計内の1つ以上の特徴を工程監視特徴として使用するための選択、またはそのいくつかの組み合わせのためのシステムおよび方法
US20170345138A1 (en) * 2014-12-09 2017-11-30 Asml Netherlands B.V. Method and apparatus for image analysis
US20160284579A1 (en) * 2015-03-23 2016-09-29 Applied Materials Israel Ltd. Process window analysis

Also Published As

Publication number Publication date
CN111542855B (zh) 2024-10-15
CN111542855A (zh) 2020-08-14
WO2019129569A1 (en) 2019-07-04
US20200334446A1 (en) 2020-10-22
TWI767826B (zh) 2022-06-11
KR20200095510A (ko) 2020-08-10
US11450122B2 (en) 2022-09-20
TW202215475A (zh) 2022-04-16
KR102536331B1 (ko) 2023-05-26
TW201941246A (zh) 2019-10-16

Similar Documents

Publication Publication Date Title
TWI741244B (zh) 用於缺陷檢測及再檢測的方法及系統
TWI755613B (zh) 基於機器學習之圖案分組方法
KR102083706B1 (ko) 반도체 검사 레시피 생성, 결함 리뷰 및 계측을 위한 적응적 샘플링
TWI706376B (zh) 用於缺陷檢測之系統、方法及非暫時性電腦可讀儲存媒體
TWI660249B (zh) 缺陷圖案分組方法及系統
JP5871446B2 (ja) 試験体上の欠陥を分類するためのコンピュータに実装された方法およびシステム
JP2003240731A (ja) 欠陥検査方法及びその装置
CN108020561B (zh) 用于在检查对象时自适应采样的方法和其系统
TWI688761B (zh) 缺陷顯示方法
US10296702B2 (en) Method of performing metrology operations and system thereof
TW201830334A (zh) 用於分類器及藉由光學工具所捕捉之缺陷之診斷方法
KR102244576B1 (ko) 설계 데이터의 반복 구조를 관심의 대상으로 하는 설계를 규정하기 위한 시스템 및 방법
JP4823473B2 (ja) 集積回路における検査層間のオーバーレイ・オフセットの修正
KR102357310B1 (ko) 결함 검토를 위한 정보 추천
US6944573B2 (en) Method and apparatus for the analysis of scratches on semiconductor wafers
US20230411224A1 (en) System and method for detecting defects on a wafer and related non-transitory computer-readable medium
CN117529803A (zh) 用于主动良率管理的制造指纹
Carlson et al. Use of wafer backside inspection and SPR to address systemic tool and process issues
JP2002057195A (ja) 電子デバイスの検査における欠陥解析用データ作成方法、および、電子デバイスの検査データ解析システム