TWI740490B - Solar power generation system and test method - Google Patents

Solar power generation system and test method Download PDF

Info

Publication number
TWI740490B
TWI740490B TW109115280A TW109115280A TWI740490B TW I740490 B TWI740490 B TW I740490B TW 109115280 A TW109115280 A TW 109115280A TW 109115280 A TW109115280 A TW 109115280A TW I740490 B TWI740490 B TW I740490B
Authority
TW
Taiwan
Prior art keywords
converter
power generation
solar panel
detection
solar
Prior art date
Application number
TW109115280A
Other languages
Chinese (zh)
Other versions
TW202143632A (en
Inventor
李雷鳴
林信晃
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW109115280A priority Critical patent/TWI740490B/en
Application granted granted Critical
Publication of TWI740490B publication Critical patent/TWI740490B/en
Publication of TW202143632A publication Critical patent/TW202143632A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Control Of Electrical Variables (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present disclosure relates to a test method for testing a solar power generation system. The solar power generation system includes a solar panel and a DC-AC converter. When the DC-AC converter is in a power generation mode, an electrical energy generated by the solar panel is transmitted to an external power grid through the DC-AC converter. When the DC-AC converter is in a test mode different from the power generation mode, controlling the DC-AC converter to draw electrical energy from the external power grid to generate a testing electrical energy and transmit it to the solar panel, so that when the testing electrical energy passes through the solar panel, a test device obtains a test result of the solar panel.

Description

太陽能發電系統及檢測方法Solar power generation system and detection method

本揭示內容關於一種太陽能發電系統及檢測方法,特別是用以檢測太陽能板是否異常的技術。 The present disclosure relates to a solar power generation system and a detection method, especially a technology for detecting whether the solar panel is abnormal.

太陽能發電的原理,是利用光電半導體製成的太陽能板(Solar panel)吸收太陽光,將光能轉換為電能,以輸出電壓或電流。然而,太陽能發電系統於長期運作後,太陽能板會因為各種因素導致效能下降,例如:被外物砸中、或內部元件損壞等。因此,需要定期檢測,以確保太陽能發電系統的運作正常。 The principle of solar power generation is to use solar panels made of photoelectric semiconductors to absorb sunlight and convert light energy into electrical energy to output voltage or current. However, after a long-term operation of the solar power system, the solar panel will suffer from performance degradation due to various factors, such as being hit by an external object or damage to internal components. Therefore, regular inspections are required to ensure the normal operation of the solar power generation system.

本案的一種實施態樣為一種檢測方法,用以對太陽能發電系統進行檢測。太陽能發電系統包含太陽能板以及直交流轉換器,當直交流轉換器處於發電模式時,太陽能板產生之光電電能經過直交流轉換器傳送至外部電網。檢測方法包含:當直交流轉換器進入與發電模式相異的檢測 模式時,控制直交流轉換器由外部電網汲取電能,產生檢測電能傳送至太陽能板,使太陽能板在檢測電能通過的情況下由檢測儀器得到太陽能板的檢測結果。 An implementation aspect of this case is a detection method for detecting the solar power generation system. The solar power generation system includes a solar panel and a DC-AC converter. When the DC-AC converter is in power generation mode, the photovoltaic power generated by the solar panel is transmitted to the external power grid through the DC-AC converter. The detection method includes: when the direct-to-ac converter enters the detection that is different from the power generation mode In the mode, the DC-AC converter is controlled to draw power from the external power grid, generate detection power and transmit it to the solar panel, so that the detection instrument obtains the detection result of the solar panel when the detection power passes through the solar panel.

本案的另一種實施態樣為一種太陽能發電系統,包含直交流轉換器及控制單元。直交流轉換器耦接於外部電網以及太陽能板之間。控制單元耦接直交流轉換器,控制單元用以控制直交流轉換器在發電模式以及檢測模式之間切換。當直交流轉換器處於發電模式下,太陽能板產生之光電電能經過直交流轉換器轉換傳送至外部電網。當直交流轉換器處於檢測模式下,控制單元控制直交流轉換器由外部電網汲取電能並產生檢測電能傳送至太陽能板,使該太陽能板在檢測電能通過的情況下由檢測儀器得到太陽能板的檢測結果。 Another implementation aspect of this case is a solar power generation system including a DC-AC converter and a control unit. The DC-AC converter is coupled between the external power grid and the solar panel. The control unit is coupled to the DC-AC converter, and the control unit is used for controlling the DC-AC converter to switch between the power generation mode and the detection mode. When the DC-AC converter is in the power generation mode, the photovoltaic energy generated by the solar panel is converted and transmitted to the external power grid by the DC-AC converter. When the DC-AC converter is in the detection mode, the control unit controls the DC-AC converter to draw power from the external power grid and generate detection power to be sent to the solar panel, so that the solar panel can be detected by the detection instrument when the detection power passes. result.

在太陽能發電系統提供檢測電能給太陽能板的情況下,檢測儀器將能較簡易且有效地檢測太陽能板是否正常或存在損壞。 In the case that the solar power generation system provides detection power to the solar panel, the detection instrument will be able to easily and effectively detect whether the solar panel is normal or damaged.

100:太陽能發電系統 100: Solar power system

110,110A-110E:直交流轉換器 110,110A-110E: Direct AC converter

120:控制單元 120: control unit

121:電流感測器 121: current sensor

130,130A,130B:直流轉換器 130, 130A, 130B: DC converter

131,131A,131B:二極體 131, 131A, 131B: Diode

132:電感 132: Inductance

140,740:旁路開關電路 140, 740: Bypass switch circuit

141,641,741,742:旁路開關元件 141,641,741,742: Bypass switching element

142:單向導通元件 142: One-way components

521a-521d:電流感測器 521a-521d: current sensor

541:絕緣閘雙極電晶體切換開關 541: Insulated gate bipolar transistor switch

542:繼電器 542: Relay

621a-621d:電流感測器 621a-621d: current sensor

821a,821b:電流感測器 821a, 821b: current sensor

840:旁路開關電路 840: Bypass switch circuit

Vs:連接節點 Vs: Connect node

Vc:匯流排電壓 Vc: bus voltage

C:儲能電容 C: Energy storage capacitor

D:檢測儀器 D: Testing equipment

E:外部電網 E: External grid

SP,SP1-SP4:太陽能板 SP, SP1-SP4: solar panels

T1,T2:電晶體開關 T1, T2: Transistor switch

Ta,Ta:切換開關 Ta, Ta: Toggle switch

W51-W55,WA1-WA5,WB1-WB5:開關元件 W51-W55, WA1-WA5, WB1-WB5: switching element

S401-S408:步驟 S401-S408: steps

第1圖為根據部份實施例之太陽能發電系統的示意圖。 Figure 1 is a schematic diagram of a solar power generation system according to some embodiments.

第2A圖為根據部份實施例之太陽能發電系統的示意圖。 Figure 2A is a schematic diagram of a solar power generation system according to some embodiments.

第2B圖 為根據部份實施例之太陽能發電系統的示意圖。 Figure 2B is a schematic diagram of a solar power generation system according to some embodiments.

第3A~3E圖為根據部份實施例之直交流轉換器的示意圖。 Figures 3A to 3E are schematic diagrams of DC-AC converters according to some embodiments.

第4圖為根據部份實施例之檢測方式的步驟流程圖。 Figure 4 is a flow chart of the detection method according to some embodiments.

第5A圖為根據部份實施例之太陽能發電系統的示意圖。 FIG. 5A is a schematic diagram of a solar power generation system according to some embodiments.

第5B圖為根據部份實施例之太陽能發電系統的示意圖。 FIG. 5B is a schematic diagram of a solar power generation system according to some embodiments.

第6A圖為根據部份實施例之太陽能發電系統的示意圖。 Figure 6A is a schematic diagram of a solar power generation system according to some embodiments.

第6B圖為根據部份實施例之太陽能發電系統的示意圖。 Figure 6B is a schematic diagram of a solar power generation system according to some embodiments.

第7A圖為根據部份實施例之太陽能發電系統的示意圖。 FIG. 7A is a schematic diagram of a solar power generation system according to some embodiments.

第7B圖為根據部份實施例之太陽能發電系統的示意圖。 FIG. 7B is a schematic diagram of a solar power generation system according to some embodiments.

第8圖為根據部份實施例之太陽能發電系統的示意圖。 Figure 8 is a schematic diagram of a solar power generation system according to some embodiments.

以下將以圖式揭露本發明之複數個實施方式,許多實務上的細節將在以下敘述中一併說明,但這些實務上的細節不應用以限制本發明。在部分實施方式中,這些實務上的細節是非必要的。為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。於本文中,當一元件被稱為「連接」或「耦接」時,可指「電性連接」或「電性耦接」,亦可用以表示二或多個元件間相互搭配操作或互動。雖然本文中使用「第一」、「第二」、…等用語描述不同元件,該用語僅是用以區別以相同技術用語描述的元件或操作。除非上下文清楚指明,否則該用語並非特別指稱或暗示次序或順位,亦非用以限定本發明。 Hereinafter, a plurality of embodiments of the present invention will be disclosed in drawings. Many practical details will be described in the following description, but these practical details should not be used to limit the present invention. In some implementations, these practical details are unnecessary. To simplify the drawings, some conventionally used structures and elements are shown in the drawings in a simple and schematic manner. In this text, when a component is referred to as "connected" or "coupled", it can refer to "electrical connection" or "electrical coupling", and can also be used to mean that two or more components cooperate or interact with each other. . Although terms such as “first”, “second”, etc. are used herein to describe different elements, the terms are only used to distinguish elements or operations described in the same technical terms. Unless the context clearly indicates, the terms do not specifically refer to or imply order or sequence, nor are they used to limit the present invention.

如第1圖所示,在一實施例中,太陽能發電系統100至少包含太陽能板SP、直交流轉換器110及控制單元120。直交流轉換器110係耦接於外部電網E及太陽能 板SP之間,控制單元120則耦接於直交流轉換器110。當太陽能板SP被陽光照射時,將會因光電效應而產生電壓或電流。為便於說明本揭示內容,在此將前述發電的狀態稱為太陽能發電系統100或直交流轉換器110的「發電模式」。此外,由於本領域人士能理解太陽能板SP的結構與原理,故在此不另贅述。除前述「發電模式」外,當太陽能板SP未被陽光照射時,太陽能發電系統100能透過直交流轉換器110接收外部電網E傳來的電能,使直交流轉換器110反向對太陽能板SP供電,藉此檢測太陽能板SP的狀態。在此將前述檢測過程稱為太陽能發電系統100或直交流轉換器110的「檢測模式」。 As shown in FIG. 1, in one embodiment, the solar power generation system 100 includes at least a solar panel SP, a DC-AC converter 110 and a control unit 120. The direct-to-ac converter 110 is coupled to the external power grid E and solar energy Between the boards SP, the control unit 120 is coupled to the DC-AC converter 110. When the solar panel SP is irradiated by sunlight, voltage or current will be generated due to the photoelectric effect. To facilitate the description of the present disclosure, the aforementioned state of power generation is referred to herein as the “power generation mode” of the solar power generation system 100 or the DC-AC converter 110. In addition, since those skilled in the art can understand the structure and principle of the solar panel SP, it will not be repeated here. In addition to the aforementioned "power generation mode", when the solar panel SP is not exposed to sunlight, the solar power system 100 can receive the electric energy from the external power grid E through the direct-to-ac converter 110, so that the direct-to-ac Power is supplied, thereby detecting the state of the solar panel SP. Here, the aforementioned detection process is referred to as the “detection mode” of the solar power generation system 100 or the DC-AC converter 110.

在一實施例中,控制單元120用以控制直交流轉換器110於發電模式及檢測模式之間切換。換言之,當直交流轉換器110處於「發電模式」下,太陽能板SP根據光照而產生的光電電能將經過直交流轉換器110,傳送至外部電網E。反之,當直交流轉換器110處於「檢測模式」下,控制單元120將控制直交流轉換器110由外部電網E汲取電能,以產生檢測電能,並將檢測電能傳送至太陽能板SP。據此,在接收檢測電能時,太陽能板SP的電氣特性(如:電壓、電流、阻抗)或物理狀態(溫度)可被檢測儀器D所偵測,進而檢測太陽能板SP各部位是否有異常。於一實施例中,控制單元120用以執行各種運算或判斷,且可由微控制單元(microcontroller)、微處理器(microprocessor)、數位訊號處理器(digital signal processor)、特殊應用積體電路(application specific integrated circuit,ASIC)或邏輯電路來實現。 In one embodiment, the control unit 120 is used to control the DC/AC converter 110 to switch between the power generation mode and the detection mode. In other words, when the DC-AC converter 110 is in the “power generation mode”, the photovoltaic power generated by the solar panel SP according to the light will pass through the DC-AC converter 110 and be transmitted to the external power grid E. Conversely, when the DC-AC converter 110 is in the “detection mode”, the control unit 120 will control the DC-AC converter 110 to draw power from the external power grid E to generate detection power, and transmit the detection power to the solar panel SP. Accordingly, when receiving and detecting electric energy, the electrical characteristics (such as voltage, current, impedance) or physical state (temperature) of the solar panel SP can be detected by the detection instrument D, and then whether there is an abnormality in each part of the solar panel SP. In one embodiment, the control unit 120 is used to perform various calculations or judgments, and can be implemented by a microcontroller, a microprocessor, or a digital signal processor. processor), application specific integrated circuit (ASIC) or logic circuit.

在部份實施例中,檢測儀器D可用以檢測並判斷流入太陽能板SP的檢測電能的大小,例如:檢測電流或電壓是否異常。檢測儀器D亦可包含熱顯像儀或光譜分析儀。在檢測模式時,熱顯像儀或光譜分析儀用以拍攝具有檢測電流流入的太陽能板SP的檢測影像。接著,由檢測儀器D或其他分析儀器分析檢測影像(如:由影像的顏色來判斷出溫度),以判斷太陽能板是否正常或出現損壞。本揭示內容之太陽能發電系統100係透過反向供電(即,透過直交流轉換器110擷取外部電網E的電能,並供電至太陽能板SP),使太陽能板SP的電氣特性或物理狀態產生變化。檢測人員將可透過檢測儀器D,簡單且快速地對多片太陽能板SP進行檢測,大幅提昇檢測效率。 In some embodiments, the detection instrument D can be used to detect and determine the magnitude of the detected electrical energy flowing into the solar panel SP, for example, to detect whether the current or voltage is abnormal. The detection instrument D may also include a thermal imager or a spectrum analyzer. In the detection mode, a thermal imager or a spectrum analyzer is used to shoot the detection image of the solar panel SP with the detection current flowing in. Then, the detection image is analyzed by the detection instrument D or other analysis instruments (for example, the temperature is determined by the color of the image) to determine whether the solar panel is normal or damaged. The solar power generation system 100 of the present disclosure changes the electrical characteristics or physical state of the solar panel SP through reverse power supply (that is, the electrical energy of the external power grid E is captured by the DC-AC converter 110 and supplied to the solar panel SP). . Inspectors will be able to inspect multiple solar panels SP simply and quickly through the inspection instrument D, greatly improving the inspection efficiency.

如第1圖所示,在部份實施例中,太陽能發電系統100還包含直流轉換器130。直流轉換器130耦接於太陽能板SP及直交流轉換器110之間(如:分別連接於匯流排Vc及太陽能板SP的連接節點Vs),用以對太陽能板SP產生的電能進行電能轉換。在操作上,當發電模式運作時,太陽能板SP產生的第一直流電壓先經過直流轉換器130轉換為第二直流電壓。接著,第二直流電壓再經過直交流轉換器110轉換為輸出交流電壓,直交流轉換器110將輸出交流電壓傳送至外部電網E。然而,本揭示內容並 不以此為限,在其他實施例中,直交流轉換器110亦可直接耦接至太陽能板SP,而不透過直流轉換器130。 As shown in FIG. 1, in some embodiments, the solar power generation system 100 further includes a DC converter 130. The DC converter 130 is coupled between the solar panel SP and the DC-AC converter 110 (eg, connected to the bus bar Vc and the connection node Vs of the solar panel SP, respectively), and is used to convert the electric energy generated by the solar panel SP. In operation, when the power generation mode is operating, the first DC voltage generated by the solar panel SP is first converted into the second DC voltage by the DC converter 130. Then, the second DC voltage is converted into an output AC voltage by the DC-AC converter 110, and the DC-AC converter 110 transmits the output AC voltage to the external power grid E. However, this disclosure does not Not limited to this, in other embodiments, the DC-to-AC converter 110 can also be directly coupled to the solar panel SP without passing through the DC converter 130.

在其他部份實施例中,太陽能發電系統100還包含儲能電容C,耦接於太陽能板SP與直交流轉換器110之間(在不同實施例中,儲能電容C亦可並聯耦接於直交流轉換器110及直流轉換器130)。當檢測模式運作時,儲能電容C與直交流轉換器110協同操作,以提供檢測電能傳送至太陽能板SP。舉例而言,直交流轉換器110從外部電網E擷取電能並將其轉換為直流電壓後,直流電壓所對應的電能可儲存至儲能電容C中,透過放電將檢測操作所需要的電能傳遞至太陽能板SP。 In other embodiments, the solar power generation system 100 further includes an energy storage capacitor C, which is coupled between the solar panel SP and the DC-AC converter 110 (in different embodiments, the energy storage capacitor C can also be coupled in parallel to DC to AC converter 110 and DC converter 130). When the detection mode is in operation, the energy storage capacitor C and the DC-AC converter 110 cooperate to provide detection power to be transmitted to the solar panel SP. For example, after the DC-to-AC converter 110 extracts electric energy from the external power grid E and converts it into a DC voltage, the electric energy corresponding to the DC voltage can be stored in the energy storage capacitor C, and the electric energy required for the detection operation is transferred through the discharge To solar panel SP.

於第2A及2B圖中,與第1圖之實施例有關的相似元件與原理已於先前說明,不再贅述。如第2A圖所示,在部份實施例中,太陽能發電系統100還包含旁路開關電路140。旁路開關電路140係與直流轉換器130並聯,且耦接於太陽能板SP及直交流轉換器110之間。控制單元120耦接於旁路開關電路140。在操作上,當檢測模式運作時,控制單元120用以控制旁路開關電路140導通,使檢測電能由直交流轉換器110經由旁路開關電路140傳送至太陽能板SP。如第2B圖所示,在部份實施例中,旁路開關電路140包含旁路開關元件141及單向導通元件142(如:二極體)。旁路開關元件141係耦接於控制單元120,並由控制單元120控制而導通或關斷,藉此控制整個旁路開關電路140的導通或關斷。單向導通元件142則用以防 止當直交流轉換器110處於發電模式時,旁路開關電路140誤導通。 In FIGS. 2A and 2B, similar elements and principles related to the embodiment in FIG. 1 have been described previously, and will not be repeated. As shown in FIG. 2A, in some embodiments, the solar power generation system 100 further includes a bypass switch circuit 140. The bypass switch circuit 140 is connected in parallel with the DC converter 130 and is coupled between the solar panel SP and the DC AC converter 110. The control unit 120 is coupled to the bypass switch circuit 140. In operation, when the detection mode is operating, the control unit 120 is used to control the bypass switch circuit 140 to turn on, so that the detection power is transmitted from the DC-to-AC converter 110 to the solar panel SP via the bypass switch circuit 140. As shown in FIG. 2B, in some embodiments, the bypass switch circuit 140 includes a bypass switch element 141 and a unidirectional conducting element 142 (such as a diode). The bypass switch element 141 is coupled to the control unit 120 and is controlled by the control unit 120 to be turned on or off, thereby controlling the on or off of the entire bypass switch circuit 140. The unidirectional conduction element 142 is used to prevent Only when the DC-AC converter 110 is in the power generation mode, the bypass switch circuit 140 is turned on by mistake.

在部份實施例中,直流轉換器130為單向直流轉換器,用以接收太陽能板SP產生的第一直流電壓,以產生第二直流電壓,並輸出第二直流電壓至直交流轉換器110。如第2A圖所示,在部份實施例中,直流轉換器130包含二極體131以及電感132,且旁路開關電路140與直流轉換器130的二極體131及電感132並聯。通過二極體131的電流方向係由太陽能板SP往直交流轉換器110。雖然第2B圖所示實施例中的直流轉換器130其電路結構與第2A圖所示不同,但於本領域人士均能理解直流轉換器130的運作方式,在此不另贅述。 In some embodiments, the DC converter 130 is a unidirectional DC converter for receiving the first DC voltage generated by the solar panel SP to generate a second DC voltage, and outputting the second DC voltage to the DC/AC converter 110 . As shown in FIG. 2A, in some embodiments, the DC converter 130 includes a diode 131 and an inductor 132, and the bypass switch circuit 140 is connected in parallel with the diode 131 and the inductor 132 of the DC converter 130. The direction of the current passing through the diode 131 is from the solar panel SP to the DC-AC converter 110. Although the circuit structure of the DC converter 130 in the embodiment shown in FIG. 2B is different from that shown in FIG. 2A, those skilled in the art can understand the operation of the DC converter 130, and will not be repeated here.

第3A~3E圖係依據本揭示內容之部份實施例所繪示的直交流轉換器110A~110E的示意圖,直交流轉換器110也可為雙向直交流轉換器。第3A圖中直交流轉換器110A至少包含二電晶體開關T1、T2。前述的控制單元120可分別控制電晶體開關T1、T2的導通與關閉,以切換直交流轉換器110的輸入、輸出方向。雖然第3B~3E圖所示實施例中的直交流轉換器110B~110E其電路結構與第3A圖所示不同,但於本領域人士均能理解第3A~3E圖之電路結構及其操作,在此亦不再贅述。 Figures 3A to 3E are schematic diagrams of the DC-AC converters 110A-110E according to some embodiments of the present disclosure. The DC-AC converter 110 may also be a bidirectional DC-AC converter. In Figure 3A, the DC-to-AC converter 110A includes at least two transistor switches T1 and T2. The aforementioned control unit 120 can respectively control the on and off of the transistor switches T1 and T2 to switch the input and output directions of the DC-AC converter 110. Although the circuit structure of the DC-AC converters 110B to 110E in the embodiment shown in Figs. 3B to 3E is different from that shown in Fig. 3A, anyone in the art can understand the circuit structure and operation of Figs. 3A to 3E. I will not repeat them here.

以下將以第4圖搭配前述第2A及2B圖所示的太陽能發電系統100來說明太陽能發電系統100處於不同運作模式時的步驟流程。如第4圖所示,在步驟S401中, 控制單元120判斷要將直交流轉換器110選擇性地控制於「發電模式」或「檢測模式」。若控制單元120要將直交流轉換器110控制於「發電模式」,則進行步驟S402。在步驟S402中,控制單元120關斷旁路開關電路140。接著,在步驟S403中,直流轉換器130將太陽能板SP產生的第一直流電壓轉換為第二直流電壓。在步驟S404中,直交流轉換器110接收第二直流電壓,並將第二直流電壓轉換為交流電壓輸出至外部電網E。 Hereinafter, FIG. 4 is used in conjunction with the solar power generation system 100 shown in FIGS. 2A and 2B to illustrate the steps of the solar power generation system 100 in different operation modes. As shown in Figure 4, in step S401, The control unit 120 determines that the DC-AC converter 110 is to be selectively controlled in the "generation mode" or the "detection mode". If the control unit 120 wants to control the DC/AC converter 110 in the "generation mode", step S402 is performed. In step S402, the control unit 120 turns off the bypass switch circuit 140. Next, in step S403, the DC converter 130 converts the first DC voltage generated by the solar panel SP into a second DC voltage. In step S404, the DC-AC converter 110 receives the second DC voltage, converts the second DC voltage into an AC voltage, and outputs it to the external power grid E.

若控制單元120要將直交流轉換器110控制於「檢測模式」,則進行步驟S405。在步驟S405中,控制單元120導通旁路開關電路140。接著,在步驟S406中,控制單元120控制直交流轉換器110由外部電網E汲取電能,以產生檢測電能。然後,在步驟S407中,直交流轉換器110透過旁路開關電路140將檢測電能傳送至太陽能板SP。在步驟S408中,檢測儀器D偵測太陽能板SP的電氣特性或物理狀態,以取得檢測結果(如:檢測影像),並分析太陽能板SP為正常或損壞。 If the control unit 120 wants to control the DC/AC converter 110 in the "detection mode", step S405 is performed. In step S405, the control unit 120 turns on the bypass switch circuit 140. Next, in step S406, the control unit 120 controls the DC-to-AC converter 110 to draw power from the external power grid E to generate detected power. Then, in step S407, the DC-to-AC converter 110 transmits the detected electric energy to the solar panel SP through the bypass switch circuit 140. In step S408, the detection instrument D detects the electrical characteristics or physical state of the solar panel SP to obtain a detection result (such as a detection image), and analyzes whether the solar panel SP is normal or damaged.

另一方面,在部份實施例中,如第2A及2B圖所示,控制單元120會檢測直交流轉換器110與與太陽能板SP之間的電壓差,再根據檢測結果,控制旁路開關電路140的導通或關斷狀態。在一實施例中,控制單元120用以檢測直交流轉換器110與直流轉換器130之間的匯流排電壓Vc是否歸零(即,檢測儲能電容C的跨壓是否歸零),以防止殘餘的電壓對太陽能發電系統100的內部電路造成 損害。在另一實施例中,控制單元120檢測匯流排電壓Vc與太陽能板SP之連接節點Vs的電壓是否為等電位,以確認太陽能發電系統100中是否還有殘餘電壓。 On the other hand, in some embodiments, as shown in Figures 2A and 2B, the control unit 120 detects the voltage difference between the DC-AC converter 110 and the solar panel SP, and then controls the bypass switch according to the detection result. The on or off state of the circuit 140. In one embodiment, the control unit 120 is used to detect whether the bus voltage Vc between the DC-AC converter 110 and the DC converter 130 has returned to zero (that is, whether the cross-voltage of the energy storage capacitor C has returned to zero), so as to prevent The residual voltage causes the internal circuit of the solar power generation system 100 damage. In another embodiment, the control unit 120 detects whether the busbar voltage Vc and the voltage of the connection node Vs of the solar panel SP are equipotential to confirm whether there is a residual voltage in the solar power generation system 100.

舉例而言,在操作中,若在完成檢測後要重新進入發電模式,則控制單元120會控制直交流轉換器110停止產生檢測電能。接著,控制單元120偵測直交流轉換器110與直流轉換器130之間的匯流排電壓Vc是否歸零,或者偵測匯流排電壓Vc與太陽能板SP之連接節點Vs的電壓是否為等電位。若匯流排電壓Vc為零,或者匯流排電壓Vc與連接節點Vs的電壓等電位,則控制單元120控制旁路開關電路140由導通狀態切換至關斷狀態。同理,若處於發電模式一段時間後,要進入檢測模式,控制單元120會控制旁路開關電路140由關斷狀態切換至導通狀態。接著,控制單元120控制直交流轉換器110由外部電網E汲取電能,以產生檢測電能。 For example, in operation, if the power generation mode is to be re-entered after the detection is completed, the control unit 120 will control the DC-to-AC converter 110 to stop generating the detected power. Next, the control unit 120 detects whether the bus voltage Vc between the DC-AC converter 110 and the DC converter 130 has returned to zero, or detects whether the bus voltage Vc and the voltage of the connection node Vs of the solar panel SP are equipotential. If the bus voltage Vc is zero, or the bus voltage Vc and the voltage of the connection node Vs are at the same potential, the control unit 120 controls the bypass switch circuit 140 to switch from the on state to the off state. Similarly, if it enters the detection mode after being in the power generation mode for a period of time, the control unit 120 controls the bypass switch circuit 140 to switch from the off state to the on state. Then, the control unit 120 controls the DC-AC converter 110 to draw power from the external power grid E to generate detected power.

在檢測模式時,控制單元120可調整檢測電能的電壓準位或電流大小。請參閱第2A圖所示,在部份實施例中,太陽能發電系統100還包含電流感測器121。電流感測器121耦接於控制單元120,用以偵測流入太陽能板SP的電流大小,並回傳給控制單元120,使控制單元120能依據所偵測的電流大小調整流入太陽能板SP的電流。 In the detection mode, the control unit 120 can adjust the voltage level or current level of the detected electric energy. Please refer to FIG. 2A. In some embodiments, the solar power generation system 100 further includes a current sensor 121. The current sensor 121 is coupled to the control unit 120 to detect the current flowing into the solar panel SP, and return it to the control unit 120, so that the control unit 120 can adjust the current flowing into the solar panel SP according to the detected current. Current.

在部份實施例中,太陽能發電系統100包括設定電流值。透過設定該設定電流值,可讓流入太陽能板SP的電流不會過高而導致太陽能板SP損壞。設定電流值可為 預設、亦可由使用者自行輸入設定或對隨時調整。控制單元120接收到電流感測器121回傳的檢測電流值後,控制單元120會將檢測電流值與設定電流值進行比對,並根據比對結果控制直交流轉換器110,使得直交流轉換器110改變輸出的檢測電能之大小。舉例而言,當檢測電流值大於設定電流值時,降低檢測電能的電壓準位或電流大小;當檢測電流值小於設定電流值時,則提高檢測電能的電壓準位或電流大小。在部份實施例中,設定電流值為直交流轉換器110於「檢測模式」時的一個理想電流範圍。設定電流值之數值或範圍可由使用者設定。 In some embodiments, the solar power generation system 100 includes a set current value. By setting the set current value, the current flowing into the solar panel SP will not be too high and cause damage to the solar panel SP. The set current value can be It is preset, and can also be input by the user or adjusted at any time. After the control unit 120 receives the detected current value returned by the current sensor 121, the control unit 120 compares the detected current value with the set current value, and controls the DC-AC converter 110 according to the comparison result, so that the DC-AC conversion The device 110 changes the magnitude of the detected power output. For example, when the detected current value is greater than the set current value, the voltage level or current level of the detected electrical energy is reduced; when the detected current value is less than the set current value, the voltage level or current level of the detected electrical energy is increased. In some embodiments, the set current value is an ideal current range when the DC-AC converter 110 is in the "detection mode". The value or range of the set current value can be set by the user.

檢測方法亦可應用於同時檢測多組太陽能板。於第5A及5B圖中,與第1圖之實施例有關的相似元件與原理已於先前說明,不再贅述。如第5A圖所示,太陽能發電系統500包含多個開關元件W51~W55。旁路開關電路140係透過開關元件W51、W52、W53耦接於太陽能板SP1,且透過開關元件W51、W54、W55耦接於另一個太陽能板SP2。兩個太陽能板SP1、SP2係相互並聯耦接。在檢測模式中,若開關元件W51~W55皆導通,則太陽能發電系統500將能同時提供檢測電能至太陽能板SP1、SP2。檢測儀器D(如:熱顯像儀或光譜分析儀)則可同時檢測太陽能板SP1、SP2的電氣特性或物理狀態。 The detection method can also be applied to simultaneously detect multiple sets of solar panels. In FIGS. 5A and 5B, similar elements and principles related to the embodiment in FIG. 1 have been described previously, and will not be repeated. As shown in FIG. 5A, the solar power generation system 500 includes a plurality of switching elements W51 to W55. The bypass switch circuit 140 is coupled to the solar panel SP1 through the switching elements W51, W52, W53, and is coupled to the other solar panel SP2 through the switching elements W51, W54, W55. The two solar panels SP1 and SP2 are coupled in parallel with each other. In the detection mode, if the switching elements W51 to W55 are all turned on, the solar power generation system 500 will be able to provide detection power to the solar panels SP1 and SP2 at the same time. Detection instrument D (such as: thermal imager or spectrum analyzer) can simultaneously detect the electrical characteristics or physical state of the solar panels SP1 and SP2.

承上,若開關元件W51、W52、W53導通,且開關元件W54、W55關斷,則太陽能發電系統500將僅提供檢測電能至太陽能板SP1。同理,若開關元件W51、 W54、W55導通,且開關元件W52、W53關斷,則太陽能發電系統500將僅提供檢測電能至太陽能板SP2。控制單元120可於直交流轉換器110與太陽能板SP之間的電壓差為零時,再控制旁路開關電路140而進行模式的切換。在其他實施例中,如第5B圖所示,太陽能發電系統500可透過開關元件W51、W52、W54與太陽能板SP1、SP2耦接(即,無須設置開關元件W53、W55),亦可選擇性地對不同太陽能板SP1、SP2進行檢測。開關元件W51、W52、W54的操作類似上述。在部份實施例中,第5A及5B圖所示的旁路開關電路140可包含雙向開關元件,例如,絕緣閘雙極電晶體切換開關541(Insulated Gate Bipolar Transistor,IGBT)或繼電器542,但並不以上述為限。 In summary, if the switching elements W51, W52, and W53 are turned on, and the switching elements W54, W55 are turned off, the solar power generation system 500 will only provide detection power to the solar panel SP1. Similarly, if the switching element W51, When W54 and W55 are turned on, and the switching elements W52 and W53 are turned off, the solar power generation system 500 will only provide detection power to the solar panel SP2. The control unit 120 may control the bypass switch circuit 140 to switch the mode when the voltage difference between the DC-AC converter 110 and the solar panel SP is zero. In other embodiments, as shown in FIG. 5B, the solar power generation system 500 can be coupled to the solar panels SP1, SP2 through the switching elements W51, W52, W54 (ie, no switching elements W53, W55 are required), or alternatively Ground detection of different solar panels SP1 and SP2. The operation of the switching elements W51, W52, and W54 is similar to the above. In some embodiments, the bypass switch circuit 140 shown in FIGS. 5A and 5B may include a bidirectional switch element, for example, an insulated gate bipolar transistor switch 541 (IGBT) or a relay 542, but It is not limited to the above.

在一實施例中,如第5A圖所示,太陽能發電系統500透過電流感測器521a、521b,分別檢測流經開關元件W52、W54的電流大小,且能計算出流經開關元件W51的電流大小。電流感測器521a、521b之運作方式與第2A圖所述之實施例相同,係電性連接於控制單元120,以能將檢測到的數據回傳給控制單元120。在一實施例中,如第5B圖所示,太陽能發電系統500透過電流感測器521c、521d,分別檢測流經開關元件W51、W54的電流大小,再據以計算出流經開關元件W52之電流大小。 In one embodiment, as shown in Figure 5A, the solar power generation system 500 detects the current flowing through the switching elements W52 and W54 through the current sensors 521a and 521b, and can calculate the current flowing through the switching element W51. size. The operation of the current sensors 521a and 521b is the same as that of the embodiment described in FIG. 2A, and is electrically connected to the control unit 120 so as to return the detected data to the control unit 120. In one embodiment, as shown in Figure 5B, the solar power generation system 500 detects the magnitude of the current flowing through the switching elements W51 and W54 through the current sensors 521c and 521d, and then calculates the amount of current flowing through the switching element W52. The magnitude of the current.

在部份實施例中,控制單元120同樣能接收所有電流感測器521a、521b回傳的檢測電流值。控制單元120 會將所有的檢測電流值與設定電流值進行比對,並根據比對結果控制直交流轉換器110,使得直交流轉換器110改變輸出的檢測電能的電壓準位或電流大小。在部份實施例中,只要有其中一個檢測電流值大於設定電流值(或者控制單元120將最大的檢測電流值與設定電流值進行比對),控制單元120即會控制直交流轉換器110降低檢測電能。 In some embodiments, the control unit 120 can also receive the detected current values returned by all the current sensors 521a and 521b. Control unit 120 All the detected current values are compared with the set current values, and the DC-AC converter 110 is controlled according to the comparison result, so that the DC-AC converter 110 changes the voltage level or the current magnitude of the detected electric energy output. In some embodiments, as long as one of the detected current values is greater than the set current value (or the control unit 120 compares the maximum detected current value with the set current value), the control unit 120 will control the DC-AC converter 110 to decrease Detect electrical energy.

在檢測數量龐大的太陽能板時,太陽能發電系統之直交流轉換器能與多組直流轉換器並聯,再透過多組直流轉換器與多組太陽能板並聯,以提昇直交流轉換器於發電模式時的效率。於第6A及6B圖中,與第1圖之實施例有關的相似元件與原理已於先前說明,不再贅述。 When detecting a large number of solar panels, the DC/AC converter of the solar power generation system can be connected in parallel with multiple sets of DC converters, and then through multiple sets of DC converters in parallel with multiple sets of solar panels to improve the DC/AC converter in power generation mode s efficiency. In FIGS. 6A and 6B, similar elements and principles related to the embodiment in FIG. 1 have been described previously, and will not be repeated.

如第6A圖所示,直交流轉換器110耦接兩組直流轉換器130A、130B。旁路開關電路140分別透過兩條路徑連接至開關元件WA1、WB1。開關元件WA1又透過開關元件WA2、WA4分別連接至太陽能板SP1、SP2,並與開關元件WA3、WA5連接。開關元件WB1則透過開關元件WB2、WA4分別連接至太陽能板SP3、SP4,並與開關元件WB3、WB5連接。旁路開關電路140包含旁路開關元件641(如:絕緣閘雙極電晶體切換開關)及二單向導通元件142。當旁路開關元件641被控制單元120控制而導通時,即可類似前述對太陽能板SP1~SP4進行檢測。相似地,第6B圖的旁路開關電路140包含二個相互耦接的旁路開關元件641、642(如:IGBT)及單向導通元件142。當旁路開關元件641及對應的開關元件 WA1~WA5導通時,太陽能發電系統600對太陽能板SP1~SP2進行檢測。反之,當旁路開關元件642及對應的開關元件WB1~WB5導通時,太陽能發電系統600對太陽能板SP3~SP4進行檢測。在其他部份實施例中,太陽能發電系統600可針對每一個太陽能板SP1、SP2,分別設置獨立的一組旁路開關元件641、642,以切換檢測模式與發電模式。 As shown in FIG. 6A, the DC to AC converter 110 is coupled to two sets of DC converters 130A and 130B. The bypass switch circuit 140 is connected to the switching elements WA1 and WB1 through two paths, respectively. The switching element WA1 is connected to the solar panels SP1 and SP2 through the switching elements WA2 and WA4, respectively, and connected to the switching elements WA3 and WA5. The switching element WB1 is connected to the solar panels SP3 and SP4 through the switching elements WB2 and WA4, respectively, and connected to the switching elements WB3 and WB5. The bypass switch circuit 140 includes a bypass switch element 641 (such as an insulated gate bipolar transistor switch) and two unidirectional conduction elements 142. When the bypass switch element 641 is controlled and turned on by the control unit 120, the solar panels SP1 to SP4 can be detected similarly to the foregoing. Similarly, the bypass switch circuit 140 in FIG. 6B includes two bypass switch elements 641 and 642 (such as IGBT) and a unidirectional conduction element 142 coupled to each other. When bypassing the switching element 641 and the corresponding switching element When WA1~WA5 are turned on, the solar power generation system 600 detects the solar panels SP1~SP2. Conversely, when the bypass switching element 642 and the corresponding switching elements WB1 to WB5 are turned on, the solar power generation system 600 detects the solar panels SP3 to SP4. In other embodiments, the solar power generation system 600 may be provided with an independent set of bypass switch elements 641 and 642 for each solar panel SP1 and SP2 to switch between the detection mode and the power generation mode.

在一實施例中,如第6A及6B圖所示,太陽能發電系統100透過電流感測器621a、621b,分別檢測流經連接於太陽能板SP2之開關元件WA2、WA4的電流大小,並據以能計算出流經開關元件WA1的電流大小。同理,太陽能發電系統100透過電流感測器621c、621d,分別檢測流經連接於太陽能板SP4之開關元件WB2、WB4的電流大小,並據以能計算出流經開關元件WB1的電流大小。此外,電流感測器亦可裝設於開關元件WA1、WA4之間,在據以計算流經開關元件WA2之電流。 In one embodiment, as shown in FIGS. 6A and 6B, the solar power generation system 100 detects the currents flowing through the switching elements WA2 and WA4 connected to the solar panel SP2 through the current sensors 621a and 621b, and accordingly The magnitude of the current flowing through the switching element WA1 can be calculated. Similarly, the solar power generation system 100 detects the currents flowing through the switching elements WB2 and WB4 connected to the solar panel SP4 through the current sensors 621c and 621d, respectively, and can calculate the currents flowing through the switching element WB1 accordingly. In addition, a current sensor can also be installed between the switching elements WA1 and WA4 to calculate the current flowing through the switching element WA2.

本揭示內容中之「旁路開關電路」及其「旁路開關元件」並不以第1~6B圖所示者為限,能在檢測模式時於直交流轉換器及太陽能板之間形成傳輸檢測電能路徑的電路,皆可作為「旁路開關電路」及其「旁路開關元件」。於第7A圖中,與第5A圖之實施例有關的相似元件與原理已於先前說明,不再贅述。如圖所示,在部份實施例中,旁路開關電路740可包含絕緣閘雙極電晶體切換開關,或以絕緣閘雙極電晶體切換開關。在檢測模式中,控制單元 120控制絕緣閘雙極電晶體切換開關導通,使檢測電能通過旁路開關電路740傳送至太陽能板SP1或SP2。在部份實施例中,太陽能發電系統700中的直流轉換器130包含二極體131。在此情況下,絕緣閘雙極電晶體切換開關內的寄生二極體可作為二極體。舉例來說,直流轉換器130包含二極體131,而二極體131可由旁路開關電路740中的絕緣閘雙極電晶體切換開關的寄生二極體實現。二極體131與絕緣閘雙極電晶體切換開關亦形成並聯耦接(與第5A圖之電路類似)。第7B圖為依據本揭示內容之不同實施例所繪示的太陽能發電系統700的示意圖,與第6B圖之實施例有關的相似元件與原理已於先前說明,不再贅述。圖中旁路開關電路包含旁路開關元件741、742,元件中之寄生二極體可分別作為直流轉換器130A、130B中的二極體131A、131B。 The "bypass switch circuit" and its "bypass switch element" in this disclosure are not limited to those shown in Figures 1 to 6B, and can form a transmission between the DC-AC converter and the solar panel in the detection mode. The circuit that detects the electrical energy path can be used as a "bypass switch circuit" and its "bypass switch element". In FIG. 7A, the similar elements and principles related to the embodiment in FIG. 5A have been described previously, and will not be repeated. As shown in the figure, in some embodiments, the bypass switch circuit 740 may include an insulated gate bipolar transistor switch, or an insulated gate bipolar transistor switch. In the detection mode, the control unit 120 controls the isolation gate bipolar transistor switch to turn on, so that the detected electrical energy is transmitted to the solar panel SP1 or SP2 through the bypass switch circuit 740. In some embodiments, the DC converter 130 in the solar power generation system 700 includes a diode 131. In this case, the parasitic diode in the insulated gate bipolar transistor switch can be used as a diode. For example, the DC converter 130 includes a diode 131, and the diode 131 can be realized by a parasitic diode of an insulated gate bipolar transistor switch in the bypass switch circuit 740. The diode 131 and the insulated gate bipolar transistor switch are also coupled in parallel (similar to the circuit in Figure 5A). FIG. 7B is a schematic diagram of a solar power generation system 700 according to different embodiments of the present disclosure. Similar components and principles related to the embodiment in FIG. 6B have been described previously, and will not be repeated. The bypass switch circuit in the figure includes bypass switch elements 741 and 742, and the parasitic diodes in the elements can be used as the diodes 131A and 131B in the DC converters 130A and 130B, respectively.

如第8圖所示,在此實施例中,太陽能發電系800的旁路開關電路840及直流轉換器130耦接於受控開關850、開關元件WA、WB、WC。此外,直流轉換器130還包含二切換開關Ta、Tb。切換開關Ta、Tb之控制端係耦接於控制單元120,可被控制單元120控制而導通或關斷。在發電模式下,開關元件WA~WC、切換開關Ta~Tb被控制而導通,旁路開關電路840及受控開關850則被關斷。此時,旁路開關電路840中的寄生二極體將作為直流轉換器130內的二極體131。太陽能板SP1、SP2產生的光電電能將可透過受控開關850的寄生二極體,經 由直流轉換器130及直交流轉換器110的處理,而輸出至外部電網E。另一方面,在偵測模式下,旁路開關電路840、受控開關850、開關元件WA、WB、WC被導通,切換開關Ta、Tb則被關斷,使得直流轉換器130被關斷。此時,直交流轉換器110將能由外部電網E汲取電能,以透過旁路開關電路840及導通之受控開關850,將檢測電能傳輸至太陽能板SP1、SP2。 As shown in FIG. 8, in this embodiment, the bypass switch circuit 840 and the DC converter 130 of the solar power generation system 800 are coupled to the controlled switch 850 and the switching elements WA, WB, and WC. In addition, the DC converter 130 also includes two switching switches Ta and Tb. The control terminals of the switches Ta and Tb are coupled to the control unit 120 and can be controlled by the control unit 120 to be turned on or off. In the power generation mode, the switching elements WA~WC and the transfer switches Ta~Tb are controlled to be turned on, and the bypass switch circuit 840 and the controlled switch 850 are turned off. At this time, the parasitic diode in the bypass switch circuit 840 will serve as the diode 131 in the DC converter 130. The photovoltaic energy generated by the solar panels SP1 and SP2 will pass through the parasitic diodes of the controlled switch 850, It is processed by the DC converter 130 and the DC AC converter 110 and output to the external power grid E. On the other hand, in the detection mode, the bypass switch circuit 840, the controlled switch 850, the switching elements WA, WB, and WC are turned on, and the changeover switches Ta, Tb are turned off, so that the DC converter 130 is turned off. At this time, the DC-AC converter 110 can draw power from the external power grid E to transmit the detected power to the solar panels SP1 and SP2 through the bypass switch circuit 840 and the controlled switch 850 that is turned on.

與前述實施例類似,在一實施例中,如第8圖所示,太陽能發電系統100透過電流感測器821a、821b,分別檢測流經連接於太陽能板SP2之開關元件WA、WB的電流大小,並據以能計算出流經開關元件WC的電流大小。 Similar to the previous embodiment, in one embodiment, as shown in Fig. 8, the solar power generation system 100 detects the magnitude of the current flowing through the switching elements WA, WB connected to the solar panel SP2 through the current sensors 821a, 821b, respectively , And can calculate the size of the current flowing through the switching element WC.

100:太陽能發電系統 100: Solar power system

110:直交流轉換器 110: Direct AC converter

120:控制單元 120: control unit

121:電流感測器 121: current sensor

130:直流轉換器 130: DC converter

131:二極體 131: Diode

132:電感 132: Inductance

140:旁路開關電路 140: Bypass switch circuit

Vc:匯流排電壓 Vc: bus voltage

Vs:連接節點 Vs: Connect node

C:儲能電容 C: Energy storage capacitor

E:外部電網 E: External grid

SP:太陽能板 SP: Solar Panel

Claims (20)

一種檢測方法,用以對一太陽能發電系統進行檢測,該太陽能發電系統包含一太陽能板以及一直交流轉換器,當該直交流轉換器處於一發電模式時,該太陽能板產生之一光電電能經過該直交流轉換器傳送至一外部電網,該檢測方法包含:當該直交流轉換器進入與該發電模式相異的一檢測模式時,控制該直交流轉換器由該外部電網汲取電能,產生一檢測電能傳送至該太陽能板,使該太陽能板在該檢測電能通過的情況下由一檢測儀器得到該太陽能板的檢測結果。 A detection method is used to detect a solar power generation system. The solar power generation system includes a solar panel and a DC AC converter. When the DC AC converter is in a power generation mode, a photovoltaic power generated by the solar panel passes through the solar panel. The DC-AC converter is transmitted to an external power grid, and the detection method includes: when the DC-AC converter enters a detection mode different from the power generation mode, controlling the DC-AC converter to draw power from the external power grid to generate a detection The electric energy is transmitted to the solar panel, so that the solar panel obtains the detection result of the solar panel by a detection instrument when the detected electric power passes. 如請求項1所述之檢測方法,其中該太陽能發電系統更包含一直流轉換器以及一旁路開關電路,該直流轉換器耦接於該太陽能板以及該直交流轉換器之間,於該發電模式下該太陽能板產生一第一直流電壓,該第一直流電壓經過該直流轉換器轉換為一第二直流電壓,該第二直流電壓經過該直交流轉換器轉換為一輸出交流電壓並傳送至該外部電網,該旁路開關電路與該直流轉換器並聯且耦接於該太陽能板以及該直交流轉換器之間,該檢測方法包含:於該檢測模式下,控制該旁路開關電路導通,使該檢測電能由該直交流轉換器經過該旁路開關電路而傳送至該太陽能板。 The detection method according to claim 1, wherein the solar power generation system further includes a DC converter and a bypass switch circuit, the DC converter is coupled between the solar panel and the DC AC converter, and is in the power generation mode The solar panel generates a first DC voltage, the first DC voltage is converted into a second DC voltage by the DC converter, and the second DC voltage is converted into an output AC voltage by the DC converter and transmitted to the External power grid, the bypass switch circuit is connected in parallel with the DC converter and is coupled between the solar panel and the DC AC converter, and the detection method includes: in the detection mode, controlling the bypass switch circuit to be turned on to make The detected electric energy is transmitted to the solar panel by the DC-AC converter through the bypass switch circuit. 如請求項2所述之檢測方法,其中該太陽能發電系統由該發電模式進入該檢測模式時,該檢測方法包含:控制該旁路開關電路由關斷狀態切換至導通狀態;以及控制該直交流轉換器由該外部電網汲取電能而產生該檢測電能。 The detection method according to claim 2, wherein when the solar power generation system enters the detection mode from the power generation mode, the detection method includes: controlling the bypass switch circuit to switch from an off state to an on state; and controlling the direct AC The converter draws electric energy from the external grid to generate the detected electric energy. 如請求項2所述之檢測方法,其中該太陽能發電系統結束該檢測模式並返回該發電模式時,該檢測方法包含:控制該直交流轉換器停止產生該檢測電能;偵測該直交流轉換器與該太陽能板之間的電壓差;以及控制該旁路開關電路由導通狀態切換至關斷狀態。 The detection method according to claim 2, wherein when the solar power generation system ends the detection mode and returns to the power generation mode, the detection method includes: controlling the DC-AC converter to stop generating the detection power; and detecting the DC-AC converter And the voltage difference between the solar panel and the solar panel; and controlling the bypass switch circuit to switch from the on state to the off state. 如請求項1所述之檢測方法,其中該太陽能發電系統更包含一儲能電容,該儲能電容耦接於該太陽能板以及該直交流轉換器之間,於該檢測模式下,該儲能電容與該直交流轉換器協作,提供該檢測電能傳送至該太陽能板。 The detection method according to claim 1, wherein the solar power generation system further includes an energy storage capacitor coupled between the solar panel and the DC-AC converter, and in the detection mode, the energy storage capacitor The capacitor cooperates with the direct-to-ac converter to provide the detected electrical energy to be transmitted to the solar panel. 如請求項1所述之檢測方法,其中該檢測方法更包含:於該檢測模式下,偵測流入該太陽能板之該檢測電能的大小。 The detection method according to claim 1, wherein the detection method further comprises: in the detection mode, detecting the magnitude of the detection electric energy flowing into the solar panel. 如請求項1所述之檢測方法,其中該檢測方法更包含:於該檢測模式下,使用一熱顯像儀或一光譜分析儀拍攝具有該檢測電能流入的該太陽能板之一檢測影像;以及分析該檢測影像以判斷該太陽能板為正常或損壞。 The detection method according to claim 1, wherein the detection method further comprises: in the detection mode, using a thermal imager or a spectrum analyzer to take a detection image of one of the solar panels with the detection electric energy flowing in; and The detection image is analyzed to determine whether the solar panel is normal or damaged. 如請求項1所述之檢測方法,其中該檢測方法更包含:接收一電流感測器回傳之一檢測電流值;比對該檢測電流值與一設定電流值;根據比對結果控制該直交流轉換器,以調整該檢測電能的電壓準位或電流大小。 The detection method according to claim 1, wherein the detection method further comprises: receiving a detection current value returned by a current sensor; comparing the detection current value with a set current value; and controlling the direct current value according to the comparison result AC converter to adjust the voltage level or current magnitude of the detected electrical energy. 一種太陽能發電系統,包含:一直交流轉換器,耦接於一外部電網以及一太陽能板之間;以及一控制單元,耦接該直交流轉換器,該控制單元用以控制該直交流轉換器在一發電模式以及一檢測模式之間切換;其中,當該直交流轉換器處於該發電模式下,該太陽能板產生之一光電電能經過該直交流轉換器轉換傳送至一外部電網;當該直交流轉換器處於該檢測模式下,該控制單元控制 該直交流轉換器由該外部電網汲取電能並產生一檢測電能傳送至該太陽能板,使該太陽能板在該檢測電能通過的情況下由一檢測儀器得到該太陽能板的檢測結果。 A solar power generation system includes: a DC converter, coupled between an external power grid and a solar panel; and a control unit, coupled to the DC converter, the control unit is used to control the DC converter in Switch between a power generation mode and a detection mode; wherein, when the direct-to-ac When the converter is in the detection mode, the control unit controls The direct-to-ac converter draws electric energy from the external power grid and generates a detected electric energy to be transmitted to the solar panel, so that the solar panel obtains the detection result of the solar panel by a detecting instrument when the detected electric energy passes. 如請求項9所述之太陽能發電系統,其中該太陽能發電系統更包含:一直流轉換器,耦接於該太陽能板以及該直交流轉換器之間,於該發電模式下該太陽能板產生一第一直流電壓,該第一直流電壓經過該直流轉換器轉換為一第二直流電壓,該第二直流電壓經過該直交流轉換器轉換為一輸出交流電壓並傳送至該外部電網。 The solar power generation system according to claim 9, wherein the solar power generation system further comprises: a DC converter, coupled between the solar panel and the DC converter, and in the power generation mode, the solar panel generates a first A DC voltage, the first DC voltage is converted into a second DC voltage by the DC converter, and the second DC voltage is converted into an output AC voltage by the DC converter and transmitted to the external power grid. 如請求項10所述之太陽能發電系統,其中該太陽能發電系統更包含:一旁路開關電路,與該直流轉換器並聯且耦接於該太陽能板以及該直交流轉換器之間,該控制單元耦接該旁路開關電路,其中,於該檢測模式下,該控制單元控制該旁路開關電路導通,使該檢測電能由該直交流轉換器經過該旁路開關電路而傳送至該太陽能板。 The solar power generation system of claim 10, wherein the solar power generation system further comprises: a bypass switch circuit connected in parallel with the DC converter and coupled between the solar panel and the DC AC converter, and the control unit is coupled The bypass switch circuit is connected, wherein, in the detection mode, the control unit controls the bypass switch circuit to conduct, so that the detected electric energy is transmitted to the solar panel from the DC-AC converter through the bypass switch circuit. 如請求項11所述之太陽能發電系統,其中該直流轉換器包含一二極體,該二極體與該旁路開關電路相並聯,且通過該二極體的一電流方向係從該太陽能板往 該直交流轉換器。 The solar power generation system according to claim 11, wherein the DC converter includes a diode, the diode is connected in parallel with the bypass switch circuit, and a direction of current passing through the diode is from the solar panel Past The direct-to-ac converter. 如請求項12所述之太陽能發電系統,其中該直流轉換器更包含一電感,該旁路開關電路與該直流轉換器的該二極體及該電感並聯。 The solar power generation system according to claim 12, wherein the DC converter further includes an inductor, and the bypass switch circuit is connected in parallel with the diode and the inductor of the DC converter. 如請求項11所述之太陽能發電系統,其中該太陽能發電系統由該發電模式進入該檢測模式時,該控制單元控制該旁路開關電路由關斷狀態切換至導通狀態;以及該控制單元控制該直交流轉換器由該外部電網汲取電能而產生該檢測電能。 The solar power generation system according to claim 11, wherein when the solar power generation system enters the detection mode from the power generation mode, the control unit controls the bypass switch circuit to switch from the off state to the on state; and the control unit controls the The DC-AC converter draws electric energy from the external power grid to generate the detected electric energy. 如請求項11所述之太陽能發電系統,其中當該太陽能發電系統結束該檢測模式並返回該發電模式時,該控制單元控制該直交流轉換器停止產生該檢測電能;該控制單元偵測該直交流轉換器與該太陽能板之間的電壓差;以及該控制單元控制該旁路開關電路由導通狀態切換至關斷狀態。 The solar power generation system according to claim 11, wherein when the solar power generation system ends the detection mode and returns to the power generation mode, the control unit controls the direct-to-ac converter to stop generating the detection power; the control unit detects the direct current The voltage difference between the AC converter and the solar panel; and the control unit controls the bypass switch circuit to switch from the on state to the off state. 如請求項9所述之之太陽能發電系統,其中該太陽能發電系統更包含一儲能電容,該儲能電容耦接於該太陽能板以及該直交流轉換器之間,於該檢測模式下,該儲能電容與該直交流轉換器協作,提供該檢測電能傳送至該太陽能板。 The solar power generation system according to claim 9, wherein the solar power generation system further comprises an energy storage capacitor, the energy storage capacitor is coupled between the solar panel and the DC-AC converter, and in the detection mode, the The energy storage capacitor cooperates with the direct-to-ac converter to provide the detected electric energy to be transmitted to the solar panel. 如請求項10所述之太陽能發電系統,其中該直流轉換器為一單向直流轉換器,該單向直流轉換器用以根據該太陽能板的該第一直流電壓作為輸入,產生該第二直流電壓作為輸出至該直交流轉換器。 The solar power generation system according to claim 10, wherein the DC converter is a unidirectional DC converter, and the unidirectional DC converter is used for generating the second DC voltage according to the first DC voltage of the solar panel as an input As output to the DC-AC converter. 如請求項9所述之太陽能發電系統,其中該太陽能發電系統更包含:一電流感測器,於該檢測模式下,該電流感測器用以偵測流入該太陽能板之該檢測電能的大小。 The solar power system according to claim 9, wherein the solar power system further comprises: a current sensor, and in the detection mode, the current sensor is used to detect the magnitude of the detected electrical energy flowing into the solar panel. 如請求項9所述之太陽能發電系統,其中於該直交流轉換器為一雙向直交流轉換器。 The solar power generation system according to claim 9, wherein the DC-AC converter is a two-way DC-AC converter. 如請求項9所述之太陽能發電系統,其中該控制單元還用以接收一電流感測器回傳之一檢測電流值,並比對該檢測電流值與一設定電流值;該控制單元用以根據比對結果控制該直交流轉換器,以調整該檢測電能的電壓準位或電流大小。 The solar power generation system according to claim 9, wherein the control unit is further used for receiving a detection current value returned by a current sensor, and comparing the detection current value with a set current value; the control unit is used for The DC-AC converter is controlled according to the comparison result to adjust the voltage level or current of the detected electric energy.
TW109115280A 2020-05-08 2020-05-08 Solar power generation system and test method TWI740490B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109115280A TWI740490B (en) 2020-05-08 2020-05-08 Solar power generation system and test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109115280A TWI740490B (en) 2020-05-08 2020-05-08 Solar power generation system and test method

Publications (2)

Publication Number Publication Date
TWI740490B true TWI740490B (en) 2021-09-21
TW202143632A TW202143632A (en) 2021-11-16

Family

ID=78778212

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109115280A TWI740490B (en) 2020-05-08 2020-05-08 Solar power generation system and test method

Country Status (1)

Country Link
TW (1) TWI740490B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472791A (en) * 2009-08-04 2012-05-23 国立大学法人奈良先端科学技术大学院大学 Solar cell evaluation method, evaluation device, maintenance method, maintenance system, and method of manufacturing solar cell module
TW201442386A (en) * 2013-04-18 2014-11-01 Univ Cheng Shiu A grid-connected photovoltaic generation method
US20160291060A1 (en) * 2011-09-12 2016-10-06 Analog Devices Global Current measurement
US9973005B2 (en) * 2012-10-26 2018-05-15 Solpad, Inc. Solar power controller and impedance detection
US20190326854A1 (en) * 2007-12-05 2019-10-24 Solaredge Technologies Ltd. Testing of a Photovoltaic Panel
US10615741B2 (en) * 2013-05-27 2020-04-07 Futech Method and apparatus for detecting, regenerating and/or preventing defects in a solar panel installation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190326854A1 (en) * 2007-12-05 2019-10-24 Solaredge Technologies Ltd. Testing of a Photovoltaic Panel
CN102472791A (en) * 2009-08-04 2012-05-23 国立大学法人奈良先端科学技术大学院大学 Solar cell evaluation method, evaluation device, maintenance method, maintenance system, and method of manufacturing solar cell module
US20160291060A1 (en) * 2011-09-12 2016-10-06 Analog Devices Global Current measurement
US9973005B2 (en) * 2012-10-26 2018-05-15 Solpad, Inc. Solar power controller and impedance detection
TW201442386A (en) * 2013-04-18 2014-11-01 Univ Cheng Shiu A grid-connected photovoltaic generation method
US10615741B2 (en) * 2013-05-27 2020-04-07 Futech Method and apparatus for detecting, regenerating and/or preventing defects in a solar panel installation

Also Published As

Publication number Publication date
TW202143632A (en) 2021-11-16

Similar Documents

Publication Publication Date Title
JP5306362B2 (en) Controllable switching device for solar modules
CN110174603A (en) The on-line measurement circuit of power semiconductor conduction voltage drop
CN104702208B (en) Photovoltaic array ground insulation resistance online detecting system for high-power photovoltaic inverter
CN105337523B (en) NPC types three-level inverter reliability on-line monitoring system and method
TWI592671B (en) Insulation detecting circuit, power converting device and insulation impedance value detecting method
CN106301150B (en) Temperature estimate in power drive system in power semiconductor
JP6658582B2 (en) Arc detector
US9231408B2 (en) Matrix connection device for photovoltaic panels and/or wind turbines
WO2017000910A1 (en) Photovoltaic electricity generation system and method of operating same to perform photovoltaic electricity generation
CN105939148B (en) Photovoltaic cell monitoring device
US20120007429A1 (en) Apparatus for providing an input DC voltage for a photovoltaic inverter and photovoltaic system including such apparatus
JP2006238546A (en) Inverter temperature detector
Leite et al. An improved electronic circuit for tracing the IV characteristics of photovoltaic modules and strings
CN210051849U (en) Semiconductor power device dynamic test system based on thermal imaging technology
TWI740490B (en) Solar power generation system and test method
CN115561560A (en) Pure hardware implementation control circuit and control method for power device aging test
Singh et al. An improved hot spot mitigation approach for photovoltaic modules under mismatch conditions
EP3907883B1 (en) Solar power generation system and test method
Dyer et al. Online condition monitoring of SiC devices using intelligent gate drive for converter performance improvement
JP6710583B2 (en) Solar cell inspection device and solar cell inspection method
Maqueda et al. Design and Implementation of a Modular Bidirectional Switch Using SiC‐MOSFET for Power Converter Applications
CN112067967A (en) Device switching loss-based power electronic online reliability state detection device and method
KR102042142B1 (en) Apparatus for detecting ground fault using divided capacitor
CN118112389B (en) On-line junction temperature detection circuit and method for power semiconductor device
US20230076274A1 (en) Short-Circuit Protection Apparatus, Short-Circuit Protection Method for Target Circuit, and Power Conversion Device