TWI740457B - Semiconductor structure and semiconductor device - Google Patents

Semiconductor structure and semiconductor device Download PDF

Info

Publication number
TWI740457B
TWI740457B TW109112754A TW109112754A TWI740457B TW I740457 B TWI740457 B TW I740457B TW 109112754 A TW109112754 A TW 109112754A TW 109112754 A TW109112754 A TW 109112754A TW I740457 B TWI740457 B TW I740457B
Authority
TW
Taiwan
Prior art keywords
layer
barrier layer
semiconductor structure
back barrier
channel
Prior art date
Application number
TW109112754A
Other languages
Chinese (zh)
Other versions
TW202141787A (en
Inventor
陳志諺
釩達 盧
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW109112754A priority Critical patent/TWI740457B/en
Application granted granted Critical
Publication of TWI740457B publication Critical patent/TWI740457B/en
Publication of TW202141787A publication Critical patent/TW202141787A/en

Links

Images

Abstract

A semiconductor structure and a semiconductor device are provided in the present disclosure, including a substrate, a seed layer on the substrate, a buffer layer on the seed layer, a back barrier layer on the seed layer, a channel layer on the back layer, and a front barrier layer on the channel layer. The back barrier layer has polarity of V group element.

Description

半導體結構以及半導體裝置Semiconductor structure and semiconductor device

本揭露係有關於一種半導體結構,且特別係有關於具有背阻障層的半導體結構。The present disclosure relates to a semiconductor structure, and particularly relates to a semiconductor structure with a back barrier layer.

氮化鎵系(GaN-based)半導體材料具有許多優秀的材料特性,例如高抗熱性、寬能隙(band-gap)、高電子飽和速率。因此,氮化鎵系半導體材料適合應用於高速與高溫的操作環境。近年來,氮化鎵系半導體材料已廣泛地應用於發光二極體(light emitting diode,LED)元件、高頻率元件,例如具有異質界面結構的高電子遷移率電晶體(high electron mobility transistor,HEMT)。GaN-based semiconductor materials have many excellent material properties, such as high heat resistance, wide band-gap, and high electron saturation rate. Therefore, GaN-based semiconductor materials are suitable for high-speed and high-temperature operating environments. In recent years, GaN-based semiconductor materials have been widely used in light emitting diode (LED) devices and high-frequency devices, such as high electron mobility transistors (HEMTs) with heterogeneous interface structures. ).

雖然現有技術所製造的高電子遷移率電晶體封裝結構可大致滿足它們原先預定的用途,但其仍未在各個方面皆徹底地符合需求。例如,目前的結構在元件操作時容易造成表面極化,而產生表面通道,進而發生電流崩潰等問題並影響元件的運作。因此,發展出可進一步改善高電子遷移率電晶體元件的效能及可靠度的結構及製造方法仍為目前業界致力研究的課題之一。Although the high electron mobility transistor package structures manufactured in the prior art can roughly meet their original intended use, they still do not fully meet the requirements in all aspects. For example, the current structure is prone to cause surface polarization during the operation of the device, resulting in surface channels, which in turn causes problems such as current collapse and affects the operation of the device. Therefore, the development of structures and manufacturing methods that can further improve the performance and reliability of high electron mobility transistor devices is still one of the current research topics in the industry.

本發明實施例提供一種半導體結構,包含基板、於基板上的晶種層、於晶種層上的緩衝層、於緩衝層上的背阻障層、於背阻障層上的通道層與於通道層上的前阻障層。背阻障層具有V族元素極性。The embodiment of the present invention provides a semiconductor structure including a substrate, a seed layer on the substrate, a buffer layer on the seed layer, a back barrier layer on the buffer layer, a channel layer on the back barrier layer, and a The front barrier layer on the channel layer. The back barrier layer has group V element polarity.

本發明實施例亦提供一種半導體裝置,包含前述之半導體結構、於半導體結構上的閘極電極、於閘極電極相對兩側的源極電極和汲極電極。The embodiment of the present invention also provides a semiconductor device including the aforementioned semiconductor structure, a gate electrode on the semiconductor structure, a source electrode and a drain electrode on opposite sides of the gate electrode.

為讓本揭露之特徵明顯易懂,下文特舉出實施例,並配合所附圖式,作詳細說明如下,其他注意事項,請參照技術領域。In order to make the features of the present disclosure obvious and easy to understand, the following examples are specially cited, in conjunction with the accompanying drawings, and detailed descriptions are as follows. For other precautions, please refer to the technical field.

以下提供了各種不同的實施例或範例,用於實施所提供的半導體結構之不同元件。敘述中若提及第一部件形成於第二部件之上,可能包含形成第一和第二部件直接接觸的實施例,也可能包含額外的部件形成於第一和第二部件之間,使得第一和第二部件不直接接觸的實施例。另外,本發明實施例可能在許多範例中使用重複的元件符號。這些重複僅是為了簡化和清楚的目的,而非代表所討論各種實施例及/或配置之間有特定的關係。Various embodiments or examples are provided below for implementing different elements of the provided semiconductor structure. If it is mentioned in the description that the first part is formed on the second part, it may include an embodiment in which the first and second parts are in direct contact, or may include additional parts formed between the first and second parts, so that the first An embodiment in which the second component is not in direct contact. In addition, the embodiments of the present invention may use repeated component symbols in many examples. These repetitions are only for the purpose of simplification and clarity, and do not represent a specific relationship between the various embodiments and/or configurations discussed.

再者,空間上的相關用語,例如「前」、「背」、「上方的」、「下方的」、「在……上方」、「在……下方」及類似的用詞,除了包含圖式繪示的方位外,也包含使用或操作中的裝置的不同方位。當裝置被轉向至其他方位時(旋轉90度或其他方位),則在此所使用的空間相對描述可同樣依旋轉後的方位來解讀。Furthermore, related terms in space, such as "front", "back", "above", "below", "above...", "below" and similar terms, except for including pictures In addition to the orientation shown in the formula, it also includes the different orientations of the device in use or operation. When the device is turned to other orientations (rotated by 90 degrees or other orientations), the relative description of the space used here can also be interpreted according to the rotated orientation.

在此,「約」、「大約」、「大抵」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,仍可隱含「約」、「大約」、「大抵」之含義。Here, the terms "about", "approximately", and "approximately" usually mean within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or 3 Within %, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantity provided in the manual is an approximate quantity, that is, without specifying "about", "approximately", "approximately", "about", "approximately" and "approximately" can still be implied. The meaning of "probably".

除非另外定義,在此使用的全部用語(包含技術及科學用語)具有與本揭露所屬技術領域的技術人員通常理解的相同涵義。能理解的是,這些用語例如在通常使用的字典中定義用語,應被解讀成具有與相關技術及本揭露的背景或上下文一致的意思,而不應以一理想化或過度正式的方式解讀,除非在本揭露實施例有特別定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by those skilled in the art to which this disclosure belongs. It is understandable that these terms, such as those defined in commonly used dictionaries, should be interpreted as having meaning consistent with the relevant technology and the background or context of this disclosure, and should not be interpreted in an idealized or excessively formal way. Unless there is a special definition in the embodiment of the present disclosure.

本發明實施例所提供具有背阻障層之半導體結構,可防止表面極化效應而發生電流崩潰(current collapse)。此外,藉由於通道層的上下表面上皆設置阻障層並使之具有極性,使靠近兩阻障層的通道層處產生兩處電位井而具有兩處導電通道,可侷限並控制載子於兩處導電通道處,以提升半導體裝置之穩定性與可靠度。The semiconductor structure with the back barrier layer provided by the embodiment of the present invention can prevent current collapse due to the surface polarization effect. In addition, by providing barrier layers on the upper and lower surfaces of the channel layer and making them polarized, two potential wells are generated in the channel layer close to the two barrier layers and there are two conductive channels, which can confine and control the carrier in There are two conductive channels to improve the stability and reliability of the semiconductor device.

請先參照第1圖。第1圖是根據本發明的一些實施例,繪示出例示性半導體結構的剖面示意圖。在一些實施例中,半導體結構包含基板102。基板102例如可包含陶瓷基材102C以及分別設於陶瓷基材102C的上下表面的一對阻隔層102B。基板102例如可以為絕緣上覆矽基板(Silicon on Insulator,SOI)。Please refer to Figure 1 first. FIG. 1 is a schematic cross-sectional view of an exemplary semiconductor structure according to some embodiments of the present invention. In some embodiments, the semiconductor structure includes the substrate 102. The substrate 102 may include, for example, a ceramic substrate 102C and a pair of barrier layers 102B respectively provided on the upper and lower surfaces of the ceramic substrate 102C. The substrate 102 may be, for example, a silicon on insulator (SOI) substrate.

在一些實施例中,陶瓷基材102C包含陶瓷材料。陶瓷材料包含金屬無機材料。在一些實施例中,陶瓷基材102C可以包含碳化矽、氮化鋁(AlN)、藍寶石基材或其他適合的材料。上述藍寶石基材可以是氧化鋁。In some embodiments, the ceramic substrate 102C includes a ceramic material. Ceramic materials include metallic inorganic materials. In some embodiments, the ceramic substrate 102C may include silicon carbide, aluminum nitride (AlN), sapphire substrate, or other suitable materials. The above-mentioned sapphire substrate may be alumina.

在一些實施例中,位於陶瓷基材102C上下表面的阻隔層102B可包含單一或多層的絕緣材料層以及/或其他合適的材料層,例如半導體層。絕緣材料層可以是氧化物、氮化物、氮氧化物、或其他合適的絕緣材料。半導體層可以為多晶矽。阻隔層102B可防止陶瓷基材102C的擴散,並且也可阻隔陶瓷基材102C與其他膜層或製程機台相互作用。在一些實施例中,阻隔層102B也可密封(encapsulate)陶瓷基材102C。此時,阻隔層102B不僅覆蓋102C的上下表面,更覆蓋102C的兩側表面。In some embodiments, the barrier layer 102B on the upper and lower surfaces of the ceramic substrate 102C may include a single or multiple layers of insulating material and/or other suitable material layers, such as semiconductor layers. The insulating material layer may be oxide, nitride, oxynitride, or other suitable insulating materials. The semiconductor layer may be polysilicon. The barrier layer 102B can prevent the diffusion of the ceramic substrate 102C, and can also prevent the ceramic substrate 102C from interacting with other membrane layers or process tools. In some embodiments, the barrier layer 102B may also encapsulate the ceramic substrate 102C. At this time, the barrier layer 102B not only covers the upper and lower surfaces of 102C, but also covers both sides of 102C.

接著,繼續參照第1圖,在基板102上形成晶種層104。在一些實施例中,晶種層104可由矽(Si)、氮化鋁(AlN)或其他合適之材料所形成。在一些實施例中,晶種層104可包含一或多層合適的材料層。例如,晶種層104可包含在基板102上低溫成長的一氮化鋁層以及高溫成長的另一氮化鋁層。在一些實施例中,低溫成長的氮化鋁層具有約0.5~2奈米(nm)的厚度,接著高溫成長的另一氮化鋁層具有約100~300奈米(nm)的厚度。在此示例的相關圖式中,僅繪示單層的晶種層104,以利清楚說明半導體結構之形成方法。Next, continuing to refer to FIG. 1, a seed layer 104 is formed on the substrate 102. In some embodiments, the seed layer 104 may be formed of silicon (Si), aluminum nitride (AlN), or other suitable materials. In some embodiments, the seed layer 104 may include one or more layers of suitable materials. For example, the seed layer 104 may include an aluminum nitride layer grown at a low temperature and another aluminum nitride layer grown at a high temperature on the substrate 102. In some embodiments, the aluminum nitride layer grown at a low temperature has a thickness of about 0.5-2 nanometers (nm), and then another aluminum nitride layer grown at a high temperature has a thickness of about 100-300 nanometers (nm). In the related drawings of this example, only a single layer of the seed layer 104 is shown in order to clearly illustrate the formation method of the semiconductor structure.

在一些實施例中,晶種層104的形成方法可包含選擇性磊晶成長(selective epitaxy growth, SEG)製程、化學氣相沉積(chemical vapor deposition, CVD)製程、分子束磊晶製程(molecular-beam epitaxy, MBE)、沉積經摻雜的非晶半導體(如Si)之後固相磊晶再結晶(solid-phase epitaxial recrystallization,SPER)步驟、藉由直接轉貼晶種的方式、或其他合適的製程。化學氣相沉積製程例如是氣相磊晶(vapor-phase epitaxy,VPE)製程、低壓化學氣相沉積(low pressure chemical vapor deposition,LPCVD)製程、超高真空化學氣相沉積(ultra-high vacuum chemical vapor deposition,UHV-CVD)製程、或其他合適的製程。In some embodiments, the method for forming the seed layer 104 may include a selective epitaxy growth (SEG) process, a chemical vapor deposition (CVD) process, and a molecular-beam epitaxy process (molecular-beam epitaxy). beam epitaxy (MBE), solid-phase epitaxial recrystallization (SPER) step after deposition of doped amorphous semiconductor (such as Si), by direct seed transfer, or other suitable manufacturing processes . The chemical vapor deposition process is, for example, a vapor-phase epitaxy (VPE) process, a low pressure chemical vapor deposition (LPCVD) process, and an ultra-high vacuum chemical vapor deposition (ultra-high vacuum chemical vapor deposition) process. vapor deposition (UHV-CVD) process, or other suitable processes.

接著,繼續參照第1圖,在基板102上形成緩衝層110。在一些實施例中,緩衝層110包含超晶格層106與位於超晶格層106上的阻抗層108。Next, continuing to refer to FIG. 1, the buffer layer 110 is formed on the substrate 102. In some embodiments, the buffer layer 110 includes a superlattice layer 106 and a resistance layer 108 on the superlattice layer 106.

在一些實施例中,超晶格層106可提供應力緩衝並大幅降低晶圓的翹曲度。In some embodiments, the superlattice layer 106 can provide stress buffer and greatly reduce the warpage of the wafer.

在一些實施例中,超晶格層106可由兩種III-V族化合物所組成之重複單元堆疊而成。例如,重複單元可為二元與三元III-V族化合物所組成。In some embodiments, the superlattice layer 106 may be formed by stacking repeating units composed of two III-V group compounds. For example, the repeating unit can be composed of binary and ternary III-V compounds.

在一些實施例中,超晶格層106可為僅包含一種重複單元所形成的材料層。具體而言,重複單元可為氮化鋁(AlN)與氮化鎵鋁(AlGaN)所組成。在一些實施例中,超晶格層106也可為包含多種重複單元所形成的材料層。例如,其中一種重複單位可為氮化鋁(AlN)與氮化鎵鋁(Al xGa 1-xN)所組成,而另一種重複單元可為氮化鋁(AlN)與氮化鎵鋁(Al yGa 1-yN)所組成,其中x與y並不相同。在一些實施例中,超晶格層106中遠離基板102的重複單元具有較高的鋁莫耳分率,而靠近基板102的重複單元具有較低的鋁莫耳分率。在一些實施例中,超晶格層106中遠離基板102的重複單元的總厚度為約1~5微米(μm),而靠近基板102的重複單元的總厚度為約0.4~1.5微米(μm)。在此示例的相關圖式中,僅繪示單層超晶格層106以示例其中之重複單元,而利清楚說明半導體結構之形成方法。 In some embodiments, the superlattice layer 106 may be a material layer formed of only one type of repeating unit. Specifically, the repeating unit may be composed of aluminum nitride (AlN) and aluminum gallium nitride (AlGaN). In some embodiments, the superlattice layer 106 may also be a material layer formed of multiple repeating units. For example, one of the repeating units may be composed of aluminum nitride (AlN) and aluminum gallium nitride (Al x Ga 1-x N), and the other repeating unit may be aluminum nitride (AlN) and aluminum gallium nitride (AlN) and aluminum gallium nitride (Al x Ga 1-x N). Al y Ga 1-y N), where x and y are not the same. In some embodiments, the repeating unit far from the substrate 102 in the superlattice layer 106 has a higher aluminum mol fraction, while the repeating unit close to the substrate 102 has a lower aluminum mol fraction. In some embodiments, the total thickness of the repeating units far from the substrate 102 in the superlattice layer 106 is about 1 to 5 microns (μm), and the total thickness of the repeating units near the substrate 102 is about 0.4 to 1.5 microns (μm). . In the related drawings of this example, only the single-layer superlattice layer 106 is shown to illustrate the repeating unit therein, and the method for forming the semiconductor structure is clearly illustrated.

在一些實施例中,超晶格層106的形成方法可包含氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、有機金屬化學氣相沉積法(MOCVD)、前述方法之組合或類似方法。In some embodiments, the method for forming the superlattice layer 106 may include hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), metal organic chemical vapor deposition (MOCVD), one of the foregoing methods Combination or similar methods.

在一些實施例中,超晶格層106可更具有摻質,以利於產生電洞並提高阻值而防止漏電流。摻質可為p型摻質,例如鐵(Fe)或碳(C)。In some embodiments, the superlattice layer 106 may be more doped to facilitate the generation of holes and increase the resistance to prevent leakage current. The dopant may be a p-type dopant, such as iron (Fe) or carbon (C).

在一些實施例中,阻抗層108可作為電性阻抗層,以降低元件漏電流。在一些實施例中,阻抗層108可包含III-V族化合物。在一些實施例中,阻抗層108可為二元或三元III-V族化合物,例如氮化鎵(GaN)。In some embodiments, the resistance layer 108 can be used as an electrical resistance layer to reduce the leakage current of the device. In some embodiments, the resistance layer 108 may include a group III-V compound. In some embodiments, the resistance layer 108 may be a binary or ternary III-V compound, such as gallium nitride (GaN).

在一些實施例中,阻抗層108的材料具有比阻抗層108上的背阻障層112的材料低的能隙,以提升阻抗層的磊晶品質,降低磊晶缺陷進而抑制漏電流。例如,背阻障層112可為包含鋁(Al)而阻抗層108不包含鋁(Al)的III-V族化合物。或者,背阻障層112與阻抗層108皆為包含鋁(Al)的III-V族化合物,但阻抗層108具有較低的鋁(Al)莫耳分率,可列舉背阻障層112為Al z1Ga 1-z1N,阻抗層108為Al z2Ga 1-z2N,而z1>z2。背阻障層112的詳細說明可參照後文所示。 In some embodiments, the material of the resistance layer 108 has a lower energy gap than the material of the back barrier layer 112 on the resistance layer 108, so as to improve the epitaxial quality of the resistance layer, reduce epitaxial defects and suppress leakage current. For example, the back barrier layer 112 may be a III-V compound containing aluminum (Al) while the resistance layer 108 does not contain aluminum (Al). Alternatively, the back barrier layer 112 and the resistance layer 108 are both III-V compounds containing aluminum (Al), but the resistance layer 108 has a lower aluminum (Al) molar fraction. The back barrier layer 112 may be listed as Al z1 Ga 1-z1 N, the resistance layer 108 is Al z2 Ga 1-z2 N, and z1>z2. The detailed description of the back barrier layer 112 can be referred to later.

在一些實施例中,阻抗層108具有約0.5-5微米(μm)的厚度。In some embodiments, the resistance layer 108 has a thickness of about 0.5-5 micrometers (μm).

在一些實施例中,阻抗層108的形成方法可包含氫化物氣相磊晶法(HVPE)、分子束磊晶法(MBE)、有機金屬化學氣相沉積法(MOCVD)、前述方法之組合或類似方法。In some embodiments, the method for forming the resistance layer 108 may include hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), metal organic chemical vapor deposition (MOCVD), a combination of the foregoing methods, or Similar method.

在一些實施例中,阻抗層108可更具有摻質,以避免導電通道120中的載子被阻抗層108捕捉。摻質可為p型摻質,例如鐵(Fe)或碳(C),並具有1x10 19cm -3至約5x10 20cm -3的摻雜濃度。 In some embodiments, the resistance layer 108 may be more doped to prevent the carriers in the conductive channel 120 from being trapped by the resistance layer 108. The dopant may be a p-type dopant, such as iron (Fe) or carbon (C), and has a doping concentration of 1×10 19 cm −3 to about 5× 10 20 cm −3.

接著,繼續參照第1圖,在緩衝層110上依序形成背阻障層112、通道層114以及前阻障層116。Next, continuing to refer to FIG. 1, a back barrier layer 112, a channel layer 114 and a front barrier layer 116 are sequentially formed on the buffer layer 110.

在一些實施例中,背阻障層112具有III或V族元素極性。在一些實施例中,前阻障層116具有III族元素極性。In some embodiments, the back barrier layer 112 has III or V group element polarity. In some embodiments, the front barrier layer 116 has a group III element polarity.

在一些實施例中,V族元素包含非金屬元素,例如氮(N)、磷(P)、砷(As)等等,而V族元素極性包含非金屬元素極性,例如氮極性(N-polar)、磷極性(P-polar)、砷極性(As-polar)。In some embodiments, group V elements include non-metallic elements, such as nitrogen (N), phosphorus (P), arsenic (As), etc., and the polarity of group V elements includes the polarity of non-metal elements, such as nitrogen polarity (N-polar ), phosphorus polarity (P-polar), arsenic polarity (As-polar).

在一些實施例中,III族元素包含金屬元素,例如鋁(Al)、鎵(Ga)、銦(In)、鉈(Tl)等等,而III族元素極性金屬元素極性,例如鋁極性(Al-polar)、鎵(Ga-polar)、銦(In-polar)、鉈(Tl-polar)。In some embodiments, group III elements include metal elements, such as aluminum (Al), gallium (Ga), indium (In), thallium (Tl), etc., while group III elements have polar metal elements, such as aluminum polarity (Al -polar), gallium (Ga-polar), indium (In-polar), thallium (Tl-polar).

一般而言,III-V族化合物中可具有III族元素極性或者V族元素極性。可一併參照第2圖,第2圖以氮化鎵(GaN)為例,繪示出氮化鎵(GaN)為鎵極性與氮極性的晶格排列的示意圖。Generally speaking, the III-V group compound may have the polarity of the group III element or the polarity of the group V element. Refer to FIG. 2 together. FIG. 2 takes gallium nitride (GaN) as an example, and illustrates a schematic diagram of a lattice arrangement of gallium nitride (GaN) with gallium polarity and nitrogen polarity.

由於氮原子與鎵原子的電負度(electronegativity)差異很大,加上氮化鎵是六方最密堆積,使得氮化鎵鍵(Ga-N bond)具有偶極矩(dipole moment)而產生內建極化場(build-in polarization)。因此,具有極性的III-V族化合物會使得其位能傾斜,較容易控制載子的形成位置。Since the electronegativity of nitrogen atoms and gallium atoms is very different, and gallium nitride is the most densely packed hexagonal, the gallium nitride bond (Ga-N bond) has a dipole moment, resulting in internal Build-in polarization. Therefore, the III-V group compound with polarity will tilt its potential energy, and it is easier to control the formation position of the carrier.

在本領域中,一般將沿著[000

Figure 02_image001
]方向成長的氮化鎵(GaN)的極性稱之為鎵面(Ga-face)或鎵極性,如第2圖左側所示。而將沿著[000
Figure 02_image003
]方向成長的氮化鎵(GaN)的極性稱之為氮面(N-face)或氮極性,如第2圖右側所示。 In this field, generally along [000
Figure 02_image001
The polarity of gallium nitride (GaN) grown in the] direction is called Ga-face or gallium polarity, as shown on the left side of Figure 2. And will go along [000
Figure 02_image003
The polarity of gallium nitride (GaN) grown in the] direction is called N-face or nitrogen polarity, as shown on the right side of Figure 2.

簡單來說,氮極性與鎵極性的差異來自於不同的形成方式而產生不同的晶格排列,且兩者會產生相反的極性性質。Simply put, the difference between the polarity of nitrogen and gallium comes from different formation methods that produce different lattice arrangements, and the two will have opposite polar properties.

在一些實施例中,氮極性之III-V族化合物與鎵極性之III-V族化合物可藉由電漿感應分子束磊晶法(Plasma Induced Molecular Beam Epitaxy,PIMBE)或金屬化學氣相沉積法(metalorganic chemical vapor deposition,MOCVD)形成。 In some embodiments, the group III-V compound of nitrogen polarity and the group III-V compound of gallium polarity can be obtained by Plasma Induced Molecular Beam Epitaxy (PIMBE) or metal chemical vapor deposition method. (metalorganic chemical vapor deposition, MOCVD) formation.

應注意的是,背阻障層112之下方膜層(例如阻抗層108)也可具有極性,例如III族元素極性,可依實際需求任意調整。 It should be noted that the film layer under the back barrier layer 112 (for example, the resistance layer 108) may also have a polarity, such as the polarity of group III elements, which can be arbitrarily adjusted according to actual requirements.

可接著參照第3圖,第3圖為繪示第1圖中的背阻障層112、通道層114與前阻障層116隨著深度變化之位能關係圖。 Next, referring to FIG. 3, FIG. 3 is a graph showing the potential energy relationship of the back barrier layer 112, the channel layer 114, and the front barrier layer 116 in FIG. 1 as the depth changes.

由於通道層114與前阻障層116以及背阻障層112包含相異的材料,使得在通道層114與前阻障層116以及背阻障層112之間產生異質介面。具體而言,通道層114與前阻障層116以及背阻障層112具有不同能隙(band)的材料,因此在通道層114與前阻障層116以及背阻障層112之介面處的傳導帶(conductive band)彎曲,而於接面處產生位能井。 Since the channel layer 114 and the front barrier layer 116 and the back barrier layer 112 contain different materials, a heterogeneous interface is generated between the channel layer 114 and the front barrier layer 116 and the back barrier layer 112. Specifically, the channel layer 114 and the front barrier layer 116 and the back barrier layer 112 have materials with different bands, so the interface between the channel layer 114 and the front barrier layer 116 and the back barrier layer 112 The conductive band is bent, and a potential energy well is generated at the junction.

由於位能井之位能較低,因此游離於通道層114中的載子容易往位能井處聚集,而產生導電通道120,例如二維電子氣(two-dimensional electron gas,2DEG)。 Since the potential energy of the potential energy well is relatively low, the carriers free in the channel layer 114 tend to accumulate to the potential energy well to generate a conductive channel 120, such as two-dimensional electron gas (2DEG).

可同時參照第1圖與第3圖。在一些實施例中,前阻障層116、通道層114與背阻障層112被配置(configured to)以形成第一位能井以及第二位能井。詳細而言,第一位能井位於通道層114與前阻障層116之介面處,且第二位能井位於通道層114與背阻障層112之介面處。 Refer to Figure 1 and Figure 3 at the same time. In some embodiments, the front barrier layer 116, the channel layer 114, and the back barrier layer 112 are configured to form a first energy well and a second energy well. In detail, the first energy well is located at the interface between the channel layer 114 and the front barrier layer 116, and the second energy well is located at the interface between the channel layer 114 and the back barrier layer 112.

繼續參照第1圖與第3圖。在一些實施例中,導電通道120設於位能井處。詳細而言,第一導電通道1201與第二導電通道1202分別位於通道層114與前阻障層116之介面處與通道層114與背阻障層112之介面處。也可以說,導電通道的位置與位能井大致重疊。因此,第一位能井可對應於第一導電通道1201而第二位能井可對應於第二導電通道1202。Continue to refer to Figures 1 and 3. In some embodiments, the conductive channel 120 is provided at the potential energy well. In detail, the first conductive channel 1201 and the second conductive channel 1202 are respectively located at the interface between the channel layer 114 and the front barrier layer 116 and the interface between the channel layer 114 and the back barrier layer 112. It can also be said that the position of the conductive channel roughly overlaps the potential energy well. Therefore, the first potential energy well may correspond to the first conductive channel 1201 and the second potential energy well may correspond to the second conductive channel 1202.

在第3圖的實施例中,具有V族元素極性(例如氮極性)的背阻障層112之位能與具有III族元素極性(例如鎵極性)的前阻障層116隨著靠近通道層114而下降。藉此可促使游離的載子朝位能下降處集中。這主要是背阻障層112的能隙比通道層114高而造成的能帶拉抬效果。In the embodiment of FIG. 3, the potential energy of the back barrier layer 112 with the polarity of the group V element (for example, the nitrogen polarity) and the front barrier layer 116 with the polarity of the group III element (for example, the gallium polarity) are closer to the channel layer. 114 and dropped. This can encourage free carriers to concentrate toward the place where the potential energy drops. This is mainly because the energy gap of the back barrier layer 112 is higher than that of the channel layer 114 and the energy band lifting effect is caused.

此外,由於V族元素極性與III族元素極性的極化程度並不相同,因此兩者所產生的位能深度並不相同。在第3圖的實施例中,具有III族元素極性的前阻障層116的位能深度比具有V族元素極性的背阻障層112大,也因此產生第一位能井之位能低於第二位能井之位能的結果。藉此可於操作時侷限相對大量的載子於對應於第一位能井的導電通道1201內。In addition, since the polarization degree of the polarity of the group V element and the polarity of the group III element is not the same, the potential energy depth generated by the two is not the same. In the embodiment of FIG. 3, the potential energy depth of the front barrier layer 116 with the polarity of the group III element is greater than that of the back barrier layer 112 with the polarity of the group V element, and therefore the potential energy of the first potential well is lower. The result of the potential energy in the second energy well. In this way, a relatively large number of carriers can be restricted to the conductive channel 1201 corresponding to the first energy well during operation.

相較於僅有於前阻障層116與通道層114之介面處的第一位能井,本發明實施例提供了於通道層114與背阻障層112的介面處的第二位能井,其可以將通道層114中剩餘的載子集中在此,並降低轟擊電離(impact ionization),進而提升元件的崩潰電壓和可靠度。Compared with the first potential energy well only at the interface between the front barrier layer 116 and the channel layer 114, the embodiment of the present invention provides a second potential energy well at the interface between the channel layer 114 and the back barrier layer 112 It can concentrate the remaining carriers in the channel layer 114 here, and reduce impact ionization, thereby improving the breakdown voltage and reliability of the device.

也就是說,第一導電通道1201與導電通道1202分別具有不同作用,前者可使載子流動並導通,而後者可使載子集中而不導通。In other words, the first conductive channel 1201 and the conductive channel 1202 respectively have different functions. The former allows carriers to flow and conduct, while the latter allows carriers to concentrate and not conduct.

在一些實施例中,具有極性的前阻障層116以及背阻障層112可控制導電通道120的位置。具體而言,具有III族元素極性(例如鎵極性)的前阻障層116可使第一導電通道1201位於靠近前阻障層的通道層114中,而具有V族元素極性(例如氮極性)的背阻障層112可使第二導電通道1202位於靠近背阻障層112的通道層114中。In some embodiments, the front barrier layer 116 and the back barrier layer 112 with polarity can control the position of the conductive channel 120. Specifically, the front barrier layer 116 having the polarity of the group III element (for example, gallium polarity) can make the first conductive channel 1201 be located in the channel layer 114 close to the front barrier layer, and have the polarity of the group V element (for example, the nitrogen polarity) The back barrier layer 112 can make the second conductive channel 1202 be located in the channel layer 114 close to the back barrier layer 112.

以下,將繼續說明背阻障層112、通道層114以及前阻障層116之材料及其形成方法。Hereinafter, the materials of the back barrier layer 112, the channel layer 114, and the front barrier layer 116 and the forming method thereof will be explained.

在一些實施例中,背阻障層112為包含鋁(Al)之III-V族化合物,例如氮化鋁鎵(AlGaN)、氮化鋁(AlN)、氮化鋁銦(AllnN)、氮化鋁鎵銦(AlGaInN)或其組合等等。In some embodiments, the back barrier layer 112 is a III-V compound containing aluminum (Al), such as aluminum gallium nitride (AlGaN), aluminum nitride (AlN), aluminum indium nitride (AllnN), nitride Aluminum gallium indium (AlGaInN) or a combination thereof, etc.

在一些實施例中,通道層114為不包含鋁(Al)之III-V族化合物,例如氮化鎵(GaN)、氮化銦鎵(InGaN) 或其組合等等。在一些實施例中,前阻障層116為包含鋁(Al)之III-V族化合物,其可選自與背阻障層112類似或相同的材料,在此不再贅述。In some embodiments, the channel layer 114 is a III-V compound that does not contain aluminum (Al), such as gallium nitride (GaN), indium gallium nitride (InGaN), or a combination thereof, and so on. In some embodiments, the front barrier layer 116 is a III-V compound containing aluminum (Al), which can be selected from materials similar to or the same as the back barrier layer 112, and will not be repeated here.

在一些實施例中,前阻障層116與背阻障層112具有相同的材料,以確保磊晶一致性及電性均勻性。In some embodiments, the front barrier layer 116 and the back barrier layer 112 have the same material to ensure epitaxial uniformity and electrical uniformity.

藉由使通道層114不包含鋁(Al)而使前阻障層116與背阻障層112包含鋁(Al),使得前阻障層116與背阻障層112的材料具有比通道層114的材料高的能隙(band gap)。舉例來說,氮化鎵(GaN)的能隙為3.4eV、氮化鋁(AlN)的能隙為6.2eV,而氮化鋁鎵(AlGaN)之能隙為依據鋁的含量而應介於兩者之間,例如4.35eV。藉此,可於通道層114與前阻障層116以及背阻障層112之間產生異質介面而產生第一導電通道1201以及第二導電通道1202。The channel layer 114 does not contain aluminum (Al) and the front barrier layer 116 and the back barrier layer 112 contain aluminum (Al), so that the material of the front barrier layer 116 and the back barrier layer 112 is more than that of the channel layer 114 The material has a high band gap. For example, the energy gap of gallium nitride (GaN) is 3.4eV, the energy gap of aluminum nitride (AlN) is 6.2eV, and the energy gap of aluminum gallium nitride (AlGaN) should be between Between the two, for example 4.35eV. Thereby, a heterogeneous interface can be generated between the channel layer 114 and the front barrier layer 116 and the back barrier layer 112 to generate the first conductive channel 1201 and the second conductive channel 1202.

在一些實施例中,前阻障層116與背阻障層112可包含氮化鋁(AlN)。由於氮化鋁(AlN)可提供較高的能隙,以提供較深的位能井。在一實施例中,以氮化鋁作為背阻障層112,以從通道層提供足夠的載子,進一步避免產生表面通道。In some embodiments, the front barrier layer 116 and the back barrier layer 112 may include aluminum nitride (AlN). Because aluminum nitride (AlN) can provide a higher energy gap to provide a deeper potential energy well. In one embodiment, aluminum nitride is used as the back barrier layer 112 to provide sufficient carriers from the channel layer to further avoid surface channels.

此外,於通道層114與緩衝層110之間設置較高能隙的背阻障層112,可改變通道層114下方的位能變化情形(可參考第3圖),例如拉抬位能,以侷限載子於通道層114中。In addition, providing a higher energy gap back barrier layer 112 between the channel layer 114 and the buffer layer 110 can change the potential energy changes under the channel layer 114 (refer to Figure 3), such as raising the potential energy to limit The carriers are in the channel layer 114.

應注意的是,在此所列舉的材料與其能隙僅作為示例性說明,本領域之技術人員仍可依此原理應用其他材料。It should be noted that the materials and their energy gaps listed here are only illustrative, and those skilled in the art can still apply other materials based on this principle.

在一些實施例中,背阻障層112具有約5-25奈米(nm)的厚度,通道層114具有約200-500奈米(nm)的厚度,前阻障層116具有約5-25奈米(nm)的厚度。In some embodiments, the back barrier layer 112 has a thickness of about 5-25 nanometers (nm), the channel layer 114 has a thickness of about 200-500 nanometers (nm), and the front barrier layer 116 has a thickness of about 5-25 nanometers (nm). Nanometer (nm) thickness.

在一些實施例中,背阻障層112可以或可以不具有摻質。在具有摻質的情況下,更有利於提升半導體結構的崩潰電壓。摻質可為p型摻質,例如碳(C)或鐵(Fe),並具有1x10 19cm -3至約5x10 20cm -3的摻雜濃度。在一些實施例中,通道層114為非刻意摻雜(Unintentionally Doped,UID),因而具有游離的載子在其中。在一些實施例中,前阻障層116為非刻意摻雜(UID)。 In some embodiments, the back barrier layer 112 may or may not have dopants. In the case of dopants, it is more conducive to increase the breakdown voltage of the semiconductor structure. The dopant may be a p-type dopant, such as carbon (C) or iron (Fe), and has a doping concentration of 1×10 19 cm −3 to about 5× 10 20 cm −3. In some embodiments, the channel layer 114 is unintentionally doped (UID), and thus has free carriers therein. In some embodiments, the front barrier layer 116 is unintentionally doped (UID).

由於在磊晶過程中會產生磊晶缺陷,進而形成電子陷阱(donor trap)貢獻N型雜質,在本文中的「非刻意摻雜」應理解為磊晶缺陷所造成的摻質。一般而言,非刻意摻雜大約等同於具有小於約5x10 19cm -3的摻雜濃度,例如約1x10 19cm -3Since epitaxial defects are generated during the epitaxial process, electron traps (donor traps) are formed to contribute to N-type impurities. In this article, "unintentional doping" should be understood as dopants caused by epitaxial defects. Generally, about equivalent to the unintentionally doped with a doping concentration of less than about 5x10 19 cm -3, for example about 1x10 19 cm -3.

在一些實施例中,背阻障層112與其下方膜層(例如緩衝層)皆可具有p型摻質(如碳(C)),且摻雜濃度可隨著靠近基板而漸減,可防止下方膜層產生漏電途徑。In some embodiments, both the back barrier layer 112 and the underlying film layer (such as the buffer layer) can have p-type dopants (such as carbon (C)), and the doping concentration can gradually decrease as it approaches the substrate to prevent the underlying The film has a leakage path.

在一些實施例中,前阻障層116、通道層114與背阻障層112之形成可包含分子束磊晶法(MBE)、有機金屬化學氣相沉積法(MOCVD)、氫化物氣相磊晶法(HVPE)、其他適當之方法或上述方法之組合。In some embodiments, the formation of the front barrier layer 116, the channel layer 114, and the back barrier layer 112 may include molecular beam epitaxy (MBE), metal organic chemical vapor deposition (MOCVD), and hydride vapor phase epitaxy. Crystal method (HVPE), other appropriate methods, or a combination of the above methods.

相較於僅有前阻障層116的情況,本發明實施例更提供背阻障層112,其可於通道層與下方膜層之間提高位能,不但防止通道層114中的游離載子往下方膜層移動,更可防止在操作時表面極化而捕捉電子形成表面通道,進而發生電流崩潰的問題。Compared with the case where there is only the front barrier layer 116, the embodiment of the present invention further provides a back barrier layer 112, which can increase the potential energy between the channel layer and the underlying film layer, and not only prevents free carriers in the channel layer 114 Moving to the lower film layer can also prevent the surface polarization during operation and capture electrons to form surface channels, and then the problem of current collapse.

也就是說,本發明實施例藉由於通道層114下方設置背阻障層112,可降低表面極化,進而降低表面電場(reduced surface field,RESURF),達到抑制電流崩潰及提升崩潰電壓的效果。That is to say, in the embodiment of the present invention, the back barrier layer 112 is disposed under the channel layer 114 to reduce the surface polarization, thereby reducing the surface field (reduced surface field, RESURF), and achieve the effects of suppressing current collapse and increasing the collapse voltage.

此外,將本發明實施例中的背阻障層設置於具有阻隔層與陶瓷基材的基板上,可降低翹曲度,以利於提高半導體效能。In addition, disposing the back barrier layer in the embodiment of the present invention on the substrate having the barrier layer and the ceramic base material can reduce the warpage and improve the semiconductor performance.

第4圖是根據本發明的其他實施例,繪示出例示性半導體結構的剖面示意圖。第4圖與第1圖的差異在於:在緩衝層108上更額外設置一對背阻障層112與阻抗層108。具體而言,在超晶格層106上以阻抗層108/背阻障層112/阻抗層108/背阻障層112的方式交替堆疊設置。在此實施例中,可進一步防止漏電流以提升崩潰電壓。FIG. 4 is a schematic cross-sectional view of an exemplary semiconductor structure according to other embodiments of the present invention. The difference between FIG. 4 and FIG. 1 is that a pair of back barrier layer 112 and resistance layer 108 are additionally provided on the buffer layer 108. Specifically, the resistance layer 108/back barrier layer 112/resistance layer 108/back barrier layer 112 are alternately stacked on the superlattice layer 106. In this embodiment, leakage current can be further prevented to increase the breakdown voltage.

此外,兩個背阻障層112可選用相同或類似的材料,而兩個阻抗層108亦可選用相同或類似的材料,並具有相同或類似的摻質。摻質可為p型摻質,例如碳(C)或鐵(Fe),以提高阻值,進而防止漏電流。In addition, the two back barrier layers 112 can be made of the same or similar materials, and the two resistance layers 108 can also be made of the same or similar materials and have the same or similar dopants. The dopant can be a p-type dopant, such as carbon (C) or iron (Fe), to increase resistance and prevent leakage current.

在第4圖的實施例中,在兩個阻抗層108之間插入有較高能隙材料的背阻障層112,不但可進一步防止載子向基板處洩漏,更有利於調整應力,並使基板不易翹曲。In the embodiment of Figure 4, the back barrier layer 112 of higher energy gap material is inserted between the two resistance layers 108, which not only can further prevent the leakage of carriers to the substrate, but also help adjust the stress and make the substrate Not easy to warp.

第5圖是根據本發明的其他實施例,繪示出例示性半導體結構的剖面示意圖。第5圖與第1圖的差異在於:背阻障層112為包括第一背阻障層112a與第二背阻障層112b之複合層。具體而言,第一背阻障層112a靠近通道層114而第二背阻障層112b遠離通道層114。第一背阻障層112a與第二背阻障層112b可分別為包括鋁(Al)之III-V族化合物中任意兩種,例如第一背阻障層112a可為但化鋁(AlN)而第二背阻障層112b為氮化鋁鎵(AlGaN)。藉由形成作為背阻障層112的複合層,可抑制背阻障層112與下方膜層產生寄生二維電洞氣(two dimensional hole gas,2DHG)而影響半導體效能,更可防止基板102發生彎曲的問題。FIG. 5 is a schematic cross-sectional view of an exemplary semiconductor structure according to other embodiments of the present invention. The difference between FIG. 5 and FIG. 1 is that the back barrier layer 112 is a composite layer including a first back barrier layer 112a and a second back barrier layer 112b. Specifically, the first back barrier layer 112 a is close to the channel layer 114 and the second back barrier layer 112 b is far away from the channel layer 114. The first back barrier layer 112a and the second back barrier layer 112b may be any two of III-V compounds including aluminum (Al), for example, the first back barrier layer 112a may be aluminum butide (AlN) The second back barrier layer 112b is aluminum gallium nitride (AlGaN). By forming the composite layer as the back barrier layer 112, the back barrier layer 112 and the underlying film layer can be prevented from generating parasitic two-dimensional hole gas (two dimensional hole gas, 2DHG) and affecting the semiconductor performance, and the substrate 102 can be prevented from occurring. The problem of bending.

在一些實施例中,第一背阻障層112a的材料之能隙比第二背阻障層112b的材料之能隙高。藉由較高能隙的第一背阻障層112a,可防止通道層114中的載子遷移至通道層114(例如背阻障層112中),並藉由較低能隙的第二背阻障層112b,能夠減少背阻障層112與下方膜層(例如緩衝層110)的能隙差,以減少寄生二維電洞氣(2DHG)的產生。In some embodiments, the energy gap of the material of the first back barrier layer 112a is higher than the energy gap of the material of the second back barrier layer 112b. By the first back barrier layer 112a with a higher energy gap, the carriers in the channel layer 114 can be prevented from migrating to the channel layer 114 (for example, in the back barrier layer 112), and by the second back barrier with a lower energy gap The barrier layer 112b can reduce the energy gap difference between the back barrier layer 112 and the underlying film layer (for example, the buffer layer 110), so as to reduce the generation of parasitic two-dimensional hole gas (2DHG).

第6圖是根據本發明的其他實施例,繪示出例示性半導體裝置的剖面示意圖。在一些實施例中,半導體裝置為高電子遷移率電晶體(high electron mobility transistor,HEMT)。第6圖與第1圖的差異在於:於前阻障層116上更設置於前阻障層116上的閘極電極G與分別位於閘極電極G相對兩側的源極電極S和汲極電極D,並設置摻雜的化合物半導體層GP於閘極電極G下。FIG. 6 is a schematic cross-sectional view of an exemplary semiconductor device according to other embodiments of the present invention. In some embodiments, the semiconductor device is a high electron mobility transistor (HEMT). The difference between FIG. 6 and FIG. 1 is that the gate electrode G on the front barrier layer 116 is further provided on the front barrier layer 116, and the source electrode S and the drain electrode are located on opposite sides of the gate electrode G. Electrode D, and a doped compound semiconductor layer GP is disposed under the gate electrode G.

在一些實施例中,閘極電極G的材料可為導電材料,例如金屬、金屬氮化物或半導體材料。在一些實施例中,金屬可為金(Au)、鎳(Ni)、鉑(Pt)、鈀(Pd)、銥(Ir)、鈦(Ti)、鉻(Cr)、鎢(W)、鋁(Al)、銅(Cu)、類似材料、前述之組合或前述之多層。半導體材料可為多晶矽或多晶鍺。上述的導電材料可藉由例如化學氣相沉積法(chemical vapor deposition,CVD)、原子層沉積(atomic layer deposition,ALD)、物理氣相沉積(physical vapor deposition,PVD)(例如濺鍍(sputtering))、電阻加熱蒸鍍法、電子束蒸鍍法、或其它合適的沉積方式形成於前阻障層116上,再經由圖案化製程來形成閘極電極G。In some embodiments, the material of the gate electrode G may be a conductive material, such as a metal, a metal nitride, or a semiconductor material. In some embodiments, the metal may be gold (Au), nickel (Ni), platinum (Pt), palladium (Pd), iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W), aluminum (Al), copper (Cu), similar materials, a combination of the foregoing, or multiple layers of the foregoing. The semiconductor material can be polycrystalline silicon or polycrystalline germanium. The above-mentioned conductive material can be formed by, for example, chemical vapor deposition (CVD), atomic layer deposition (ALD), physical vapor deposition (PVD) (for example, sputtering) ), resistance heating evaporation method, electron beam evaporation method, or other suitable deposition methods are formed on the front barrier layer 116, and then the gate electrode G is formed through a patterning process.

在一些實施例中,在形成閘極電極G之前,可先形成摻雜的化合物半導體層GP於前阻障層116上,才接續將閘極電極G形成在摻雜的化合物半導體層GP上。藉由形成摻雜的化合物半導體層GP於閘極電極G與前阻障層116之間,可抑制閘極電極G下方的二維電子氣(2DEG)之產生,以達成半導體結構之常關狀態。In some embodiments, before forming the gate electrode G, a doped compound semiconductor layer GP may be formed on the front barrier layer 116 first, and then the gate electrode G may be successively formed on the doped compound semiconductor layer GP. By forming a doped compound semiconductor layer GP between the gate electrode G and the front barrier layer 116, the generation of two-dimensional electron gas (2DEG) under the gate electrode G can be suppressed, so as to achieve the normally-off state of the semiconductor structure .

在一些實施例中,摻雜的化合物半導體層GP的材料可以是具有p型摻質或n型摻質的III-V族化合物,例如氮化鎵(GaN)。在一些實施例中,p型摻質可包含鎂(Mg)、碳(C)等等,並具有約1x10 17cm -3至約1x10 21cm -3的摻雜濃度。 In some embodiments, the material of the doped compound semiconductor layer GP may be a III-V group compound with p-type dopants or n-type dopants, such as gallium nitride (GaN). In some embodiments, the p-type dopant may include magnesium (Mg), carbon (C), etc., and have a doping concentration of about 1×10 17 cm −3 to about 1×10 21 cm −3.

在一些實施例中,摻雜的化合物半導體層GP具有約50-200奈米(nm)的厚度。In some embodiments, the doped compound semiconductor layer GP has a thickness of about 50-200 nanometers (nm).

形成摻雜的化合物半導體層GP的步驟可包含藉由磊晶成長製程在前阻障層116上沉積摻雜的化合物半導體層(未繪示)並對其執行圖案化製程,以形成摻雜的化合物半導體層GP對應於預定形成閘極電極G的位置。The step of forming the doped compound semiconductor layer GP may include depositing a doped compound semiconductor layer (not shown) on the front barrier layer 116 by an epitaxial growth process and performing a patterning process on it to form a doped compound semiconductor layer. The compound semiconductor layer GP corresponds to a position where the gate electrode G is scheduled to be formed.

在一些實施例中,閘極電極G連接摻雜的化合物半導體層GP。閘極電極G與摻雜的化合物半導體層GP之間形成蕭特基接觸(Schottky contact)。In some embodiments, the gate electrode G is connected to the doped compound semiconductor layer GP. A Schottky contact is formed between the gate electrode G and the doped compound semiconductor layer GP.

在一些實施例中,分別形成於閘極電極G的相對兩側的源極電極S和汲極電極D可包含相同或類似於閘極電極G的材料並可於同一沉積製程中形成,故此處不再贅述。In some embodiments, the source electrode S and the drain electrode D formed on opposite sides of the gate electrode G may include the same or similar materials to the gate electrode G and may be formed in the same deposition process. No longer.

第7圖是根據本發明的其他實施例,繪示出例示性半導體裝置的剖面示意圖。第7圖與第6圖的差異在於:源極電極S和汲極電極D穿過前阻障層116與通道層114接觸。詳細而言,源極電極S和汲極電極D之底面與通道層114之頂面齊平。藉此,可增加接觸面積,並減少接觸電阻。FIG. 7 is a schematic cross-sectional view of an exemplary semiconductor device according to other embodiments of the present invention. The difference between FIG. 7 and FIG. 6 is that the source electrode S and the drain electrode D pass through the front barrier layer 116 and contact the channel layer 114. In detail, the bottom surfaces of the source electrode S and the drain electrode D are flush with the top surface of the channel layer 114. In this way, the contact area can be increased and the contact resistance can be reduced.

第8圖是根據本發明的其他實施例,繪示出例示性半導體裝置的剖面示意圖。第8圖與第7圖的差異在於:源極電極S和汲極電極更穿過部分通道層114但不與背阻障層112接觸。詳細而言,源極電極S和汲極D電極僅穿過第一導電通道1201但不接觸第二導電通道1202,以防止第二導電通道1202的載子流動而產生漏電流。FIG. 8 is a schematic cross-sectional view of an exemplary semiconductor device according to other embodiments of the present invention. The difference between FIG. 8 and FIG. 7 is that the source electrode S and the drain electrode pass through a part of the channel layer 114 but do not contact the back barrier layer 112. In detail, the source electrode S and the drain D electrode only pass through the first conductive channel 1201 but do not contact the second conductive channel 1202, so as to prevent the carriers of the second conductive channel 1202 from flowing and generating leakage current.

第9圖是根據本發明的其他實施例,繪示出例示性半導體裝置的剖面示意圖。第9圖與第7圖的差異在於:以蓋層118取代摻雜的化合物半導體層GP,並將蓋層118延伸至源極電極S與汲極電極D之下。詳細而言,蓋層118包含III-V族化合物,例如氮化鎵(GaN)。在一些實施例中,蓋層118為非刻意摻雜。FIG. 9 is a schematic cross-sectional view of an exemplary semiconductor device according to other embodiments of the present invention. The difference between FIG. 9 and FIG. 7 is that the cap layer 118 replaces the doped compound semiconductor layer GP, and the cap layer 118 extends below the source electrode S and the drain electrode D. In detail, the cap layer 118 includes a III-V compound, such as gallium nitride (GaN). In some embodiments, the cap layer 118 is non-intentionally doped.

由於在形成閘極電極G與源極電極S及汲極電極D的製程中,通常需要高溫環境與高能量的電漿源。然而,在此高溫與高能量的製程中,下方膜層(例如前阻障層116)的表面容易被破壞,而產生許多帶電的缺陷(trap),進而影響所製得的半導體裝置之性能。因此,蓋層118可保護下方膜層以使之免於受到損害。In the process of forming the gate electrode G, the source electrode S, and the drain electrode D, a high-temperature environment and a high-energy plasma source are usually required. However, in this high-temperature and high-energy process, the surface of the underlying film layer (such as the front barrier layer 116) is easily damaged, and many charged defects (traps) are generated, thereby affecting the performance of the manufactured semiconductor device. Therefore, the cap layer 118 can protect the underlying film layer from damage.

在一些實施例中,蓋層118與摻雜的化合物半導體層GP可同時存在(未繪示),以保護半導體元件並使得半導體元件得以常關。In some embodiments, the cap layer 118 and the doped compound semiconductor layer GP may exist at the same time (not shown) to protect the semiconductor device and make the semiconductor device normally off.

綜上所述,本發明實施例提供背阻障層與前阻障層於通道層的兩側,可於通道層中產生兩個導電通道,不但可降低表面極化作用而產生的表面電場,更可防止下方膜層(例如阻抗層)捕捉電子,而改善崩潰電流。此外,藉由使背阻障層與前阻障層具有不同極性,可將載子侷限於通道層中。再者,藉由使背阻障層具有摻質,可防止電流洩漏至下方膜層,以改善崩潰電壓。藉由使背阻障層設置於具有陶瓷基材與設置於陶瓷基材上與下表面的阻隔層的基板上,可調整基板的翹曲度,更能降低動態導通電阻。也就是說,本發明實施例可藉由上述之特徵提升半導體裝置之操作穩定性與可靠度。In summary, the embodiment of the present invention provides a back barrier layer and a front barrier layer on both sides of the channel layer, which can generate two conductive channels in the channel layer, which not only reduces the surface electric field generated by surface polarization, but also It can also prevent the underlying film layer (such as the resistance layer) from capturing electrons and improve the breakdown current. In addition, by making the back barrier layer and the front barrier layer have different polarities, the carriers can be confined in the channel layer. Furthermore, by making the back barrier layer have dopants, the current can be prevented from leaking to the underlying film layer, so as to improve the breakdown voltage. By disposing the back barrier layer on a substrate having a ceramic substrate and a barrier layer disposed on and on the lower surface of the ceramic substrate, the warpage of the substrate can be adjusted, and the dynamic on-resistance can be further reduced. In other words, the embodiments of the present invention can improve the operation stability and reliability of the semiconductor device by using the above-mentioned features.

以上概述數個實施例,以便在本發明所屬技術領域中具有通常知識者可以更理解本發明實施例的觀點。在本發明所屬技術領域中具有通常知識者應該理解,他們能以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及/或優勢。在本發明所屬技術領域中具有通常知識者也應該理解到,此類等效的製程和結構並無悖離本發明的精神與範圍,且他們能在不違背本發明之精神和範圍之下,做各式各樣的改變、取代和替換。Several embodiments are summarized above so that those with ordinary knowledge in the technical field of the present invention can better understand the viewpoints of the embodiments of the present invention. Those with ordinary knowledge in the technical field of the present invention should understand that they can design or modify other manufacturing processes and structures based on the embodiments of the present invention to achieve the same purposes and/or advantages as the embodiments described herein. Those with ordinary knowledge in the technical field of the present invention should also understand that such equivalent manufacturing processes and structures do not depart from the spirit and scope of the present invention, and they can do so without departing from the spirit and scope of the present invention. Make all kinds of changes, substitutions and replacements.

102:基板 102B:阻隔層 102C:陶瓷基材 104:晶種層 106:超晶格層 108:阻抗層 110:緩衝層 112:背阻障層 112a:第一背阻障層 112b:第二背阻障層 114: 通道層 116:前阻障層 118:蓋層 120:導電通道 1201:第一導電通道 1202:第二導電通道 D:汲極電極 G:閘極電極 GP:摻雜的化合物半導體層 S:源極電極 102: substrate 102B: Barrier layer 102C: Ceramic substrate 104: Seed layer 106: Superlattice layer 108: impedance layer 110: buffer layer 112: Back Barrier 112a: first back barrier layer 112b: second back barrier layer 114: Channel layer 116: front barrier layer 118: cap layer 120: Conductive channel 1201: The first conductive channel 1202: second conductive channel D: Drain electrode G: Gate electrode GP: doped compound semiconductor layer S: source electrode

以下將配合所附圖式詳述本發明實施例。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製且僅用以說明例示。事實上,可能任意地放大或縮小元件的尺寸,以清楚地表現出本發明實施例的特徵。 第1圖是根據本發明的一些實施例,繪示出例示性半導體結構的剖面示意圖。 第2圖是以氮化鎵(GaN)為例,繪示出氮化鎵(GaN)為鎵極性與氮極性的晶格排列的示意圖。 第3圖為繪示第1圖中的背阻障層、通道層與前阻障層隨著深度變化之位能關係圖。 第4-5圖是根據本發明的其他實施例,繪示出例示性半導體結構的剖面示意圖。 第6-9圖是根據本發明的其他實施例,繪示出例示性半導體裝置的剖面示意圖。 The embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. It should be noted that, according to standard practices in the industry, various features are not drawn to scale and are only used for illustration and illustration. In fact, it is possible to arbitrarily enlarge or reduce the size of the element to clearly show the characteristics of the embodiment of the present invention. FIG. 1 is a schematic cross-sectional view of an exemplary semiconductor structure according to some embodiments of the present invention. FIG. 2 is a schematic diagram of gallium nitride (GaN) as an example, showing that the gallium nitride (GaN) is a lattice arrangement of gallium polarity and nitrogen polarity. Figure 3 is a graph showing the potential energy relationship of the back barrier layer, the channel layer and the front barrier layer in Figure 1 as the depth changes. FIGS. 4-5 are schematic cross-sectional diagrams illustrating exemplary semiconductor structures according to other embodiments of the present invention. FIGS. 6-9 are schematic cross-sectional views illustrating exemplary semiconductor devices according to other embodiments of the present invention.

102:基板 102: substrate

102B:阻隔層 102B: Barrier layer

102C:陶瓷基材 102C: Ceramic substrate

104:晶種層 104: Seed layer

106:超晶格層 106: Superlattice layer

108:阻抗層 108: impedance layer

110:緩衝層 110: buffer layer

112:背阻障層 112: Back Barrier

114:通道層 114: Channel layer

116:前阻障層 116: front barrier layer

120:導電通道 120: Conductive channel

1201:第一導電通道 1201: The first conductive channel

1202:第二導電通道 1202: second conductive channel

Claims (19)

一種半導體結構,包括:一基板;一晶種層,位於該基板上;一緩衝層,位於該晶種層上;一背阻障層(back barrier),位於該緩衝層上,並具有V族元素極性;一通道層,位於該背阻障層上;以及一前阻障層(front barrier),位於該通道層上,其中該前阻障層具有III族元素極性。 A semiconductor structure includes: a substrate; a seed layer located on the substrate; a buffer layer located on the seed layer; a back barrier layer located on the buffer layer and having group V Element polarity; a channel layer located on the back barrier layer; and a front barrier layer (front barrier) located on the channel layer, wherein the front barrier layer has a group III element polarity. 如請求項1之半導體結構,更包括一第一導電通道與一第二導電通道分別位於該通道層與該前阻障層之介面處與該通道層與該背阻障層之介面處。 For example, the semiconductor structure of claim 1, further comprising a first conductive channel and a second conductive channel respectively located at the interface between the channel layer and the front barrier layer and the interface between the channel layer and the back barrier layer. 如請求項1之半導體結構,其中該背阻障層具有摻質,且該摻質為p型摻質。 The semiconductor structure of claim 1, wherein the back barrier layer has a dopant, and the dopant is a p-type dopant. 如請求項1之半導體結構,其中該背阻障層為包括鋁(Al)之III-V族化合物。 The semiconductor structure of claim 1, wherein the back barrier layer is a III-V compound including aluminum (Al). 如請求項1之半導體結構,其中該背阻障層包括氮化鋁鎵(AlGaN)、氮化鋁(AlN)、氮化鋁銦(AllnN)、氮化鋁鎵銦(AlGaInN)或其組合。 The semiconductor structure of claim 1, wherein the back barrier layer includes aluminum gallium nitride (AlGaN), aluminum nitride (AlN), aluminum indium nitride (AllnN), aluminum gallium indium nitride (AlGaInN), or a combination thereof. 如請求項1之半導體結構,其中該前阻障層與該背阻障層具有相同的材料。 The semiconductor structure of claim 1, wherein the front barrier layer and the back barrier layer have the same material. 如請求項1之半導體結構,其中該背阻障層為一氮 極性之氮化鋁鎵(AlGaN)。 Such as the semiconductor structure of claim 1, wherein the back barrier layer is a nitrogen Polar aluminum gallium nitride (AlGaN). 如請求項1之半導體結構,其中該背阻障層包括靠近該通道層的一第一背阻障層與遠離該通道層的一第二背阻障層,其中該第一背阻障層的材料之能隙比該第二背阻障層的材料之能隙高。 The semiconductor structure of claim 1, wherein the back barrier layer includes a first back barrier layer close to the channel layer and a second back barrier layer far from the channel layer, wherein the first back barrier layer The energy gap of the material is higher than the energy gap of the material of the second back barrier layer. 如請求項1之半導體結構,其中該緩衝層包括一阻抗層(resistive layer),位於該背阻障層下。 The semiconductor structure of claim 1, wherein the buffer layer includes a resistive layer under the back barrier layer. 如請求項9之半導體結構,其中該阻抗層具有摻質,且該摻質為碳(C)或鐵(Fe)。 The semiconductor structure of claim 9, wherein the resistance layer has a dopant, and the dopant is carbon (C) or iron (Fe). 如請求項9之半導體結構,其中該背阻障層的材料之能隙比該阻抗層的材料之能隙高。 The semiconductor structure of claim 9, wherein the energy gap of the material of the back barrier layer is higher than the energy gap of the material of the resistance layer. 如請求項9之半導體結構,其中該半導體結構更包括於該阻抗層上的另一背阻障層與於該另一背阻障層上的另一阻抗層。 The semiconductor structure of claim 9, wherein the semiconductor structure further includes another back barrier layer on the resistance layer and another resistance layer on the other back barrier layer. 如請求項12之半導體結構,其中該些阻抗層與該些背阻障層皆具有摻質,且該摻質包括碳(C)或鐵(Fe)。 The semiconductor structure of claim 12, wherein the resistance layers and the back barrier layers all have dopants, and the dopants include carbon (C) or iron (Fe). 如請求項1之半導體結構,其中該前阻障層為一鎵極性之氮化鋁鎵(AlGaN)。 The semiconductor structure of claim 1, wherein the front barrier layer is a gallium-polarized aluminum gallium nitride (AlGaN). 如請求項1之半導體結構,其中該前阻障層與該背阻障層的材料之能隙皆比該通道層的材料之能隙高。 The semiconductor structure of claim 1, wherein the energy gaps of the materials of the front barrier layer and the back barrier layer are both higher than the energy gaps of the material of the channel layer. 如請求項1之半導體結構,其中該通道層為非刻意摻雜(Unintentionally Doped,UID)之III-V族化合物且不包括鋁(Al)。 The semiconductor structure of claim 1, wherein the channel layer is an unintentionally doped (UID) III-V compound and does not include aluminum (Al). 如請求項1之半導體結構,其中該基板包括一陶瓷 基材以及一對阻隔層,該對阻隔層分別設於該陶瓷基材的上下表面。 The semiconductor structure of claim 1, wherein the substrate includes a ceramic A substrate and a pair of barrier layers are respectively provided on the upper and lower surfaces of the ceramic substrate. 如請求項1之半導體結構,其中該緩衝層包括一超晶格層,位於該晶種層上。 The semiconductor structure of claim 1, wherein the buffer layer includes a superlattice layer on the seed layer. 一種半導體裝置,包括:如請求項1-18中任一項之半導體結構;一閘極電極,位於該半導體結構上;以及一源極電極和一汲極電極,分別位於閘極電極相對兩側。 A semiconductor device, comprising: the semiconductor structure according to any one of claims 1-18; a gate electrode located on the semiconductor structure; and a source electrode and a drain electrode located on opposite sides of the gate electrode .
TW109112754A 2020-04-16 2020-04-16 Semiconductor structure and semiconductor device TWI740457B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109112754A TWI740457B (en) 2020-04-16 2020-04-16 Semiconductor structure and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109112754A TWI740457B (en) 2020-04-16 2020-04-16 Semiconductor structure and semiconductor device

Publications (2)

Publication Number Publication Date
TWI740457B true TWI740457B (en) 2021-09-21
TW202141787A TW202141787A (en) 2021-11-01

Family

ID=78777742

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109112754A TWI740457B (en) 2020-04-16 2020-04-16 Semiconductor structure and semiconductor device

Country Status (1)

Country Link
TW (1) TWI740457B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI785864B (en) * 2021-10-27 2022-12-01 財團法人工業技術研究院 Semiconductor substrate and transistor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020036287A1 (en) * 2000-07-28 2002-03-28 The Regents Of The University Of California Gallium nitride-based HFET and a method for fabricating a gallium nitride-based HFET
US20180158909A1 (en) * 2016-05-31 2018-06-07 Transphorm Inc. Iii-nitride devices including a graded depleting layer
TW201839980A (en) * 2017-04-18 2018-11-01 聯穎光電股份有限公司 High electron mobility transistor
TW201906169A (en) * 2017-06-30 2019-02-01 晶元光電股份有限公司 Semiconductor device
TW201916357A (en) * 2017-09-29 2019-04-16 晶元光電股份有限公司 Semiconductor power device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020036287A1 (en) * 2000-07-28 2002-03-28 The Regents Of The University Of California Gallium nitride-based HFET and a method for fabricating a gallium nitride-based HFET
US20180158909A1 (en) * 2016-05-31 2018-06-07 Transphorm Inc. Iii-nitride devices including a graded depleting layer
TW201839980A (en) * 2017-04-18 2018-11-01 聯穎光電股份有限公司 High electron mobility transistor
TW201906169A (en) * 2017-06-30 2019-02-01 晶元光電股份有限公司 Semiconductor device
TW201916357A (en) * 2017-09-29 2019-04-16 晶元光電股份有限公司 Semiconductor power device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI785864B (en) * 2021-10-27 2022-12-01 財團法人工業技術研究院 Semiconductor substrate and transistor
US11742394B2 (en) 2021-10-27 2023-08-29 Industrial Technology Research Institute Semiconductor substrate and transistor

Also Published As

Publication number Publication date
TW202141787A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
US9343542B2 (en) Method for fabricating enhancement mode transistor
US8390091B2 (en) Semiconductor structure, an integrated circuit including a semiconductor structure and a method for manufacturing a semiconductor structure
JP5564842B2 (en) Semiconductor device
KR102573938B1 (en) compound semiconductor substrate
KR102011761B1 (en) GaN-BASED SCHOTTKY DIODE HAVING DUAL METAL, PARTIALLY RECESSED ELECTRODE
JP2013235873A (en) Semiconductor device and method of manufacturing the same
KR101108746B1 (en) Nitride based semiconductor device and method for manufacturing the same
TWI641133B (en) Semiconductor cell
US20220029007A1 (en) Semiconductor structure and semiconductor device
US20120091508A1 (en) Compound semiconductor device
TW202025486A (en) Doped buffer layer for group iii-v devices on silicon
JP2018037435A (en) Semiconductor device
TW201635522A (en) Semiconductor cell
TWI740457B (en) Semiconductor structure and semiconductor device
KR20140112272A (en) High Electron Mobility Transistor and method of manufacturing the same
US8975641B1 (en) Transistor having an ohmic contact by gradient layer and method of making the same
EP2565930B1 (en) III-nitride semiconductor device
WO2012140915A1 (en) Semiconductor device
KR102137743B1 (en) Semiconductor device
KR102029807B1 (en) hetero junction field effect transistor
CN113594242A (en) Semiconductor structure and semiconductor device
JP6096523B2 (en) Semiconductor device and manufacturing method thereof
WO2024026597A1 (en) Nitride-based semiconductordevice and method for manufacturing the same
WO2022201841A1 (en) Nitride semiconductor device
KR102087945B1 (en) Power semiconductor device