TWI740209B - Quantum dot light-emitting diode and manufacturing method thereof - Google Patents

Quantum dot light-emitting diode and manufacturing method thereof Download PDF

Info

Publication number
TWI740209B
TWI740209B TW108133641A TW108133641A TWI740209B TW I740209 B TWI740209 B TW I740209B TW 108133641 A TW108133641 A TW 108133641A TW 108133641 A TW108133641 A TW 108133641A TW I740209 B TWI740209 B TW I740209B
Authority
TW
Taiwan
Prior art keywords
quantum dot
layer
dot light
transport layer
electrode
Prior art date
Application number
TW108133641A
Other languages
Chinese (zh)
Other versions
TW202113029A (en
Inventor
蘇炎坤
楊智強
李佳珍
陳冠宇
Original Assignee
崑山科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崑山科技大學 filed Critical 崑山科技大學
Priority to TW108133641A priority Critical patent/TWI740209B/en
Publication of TW202113029A publication Critical patent/TW202113029A/en
Application granted granted Critical
Publication of TWI740209B publication Critical patent/TWI740209B/en

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

The present invention discloses a quantum dot light-emitting diode (QLED) and a manufacturing method thereof. The QLED comprises a first electrode to be sequentially provided with an electron hole injection layer, an electron hole transporting layer, a quantum dot emissive layer, an electron transporting layer and a second electrode, wherein the electron hole transporting layer comprises a main material and a thermally activated delayed fluorescence material. The manufacturing method comprises the steps of sequentially coating the electron hole injection layer, the electron hole transporting layer, the quantum dot emissive layer and the electron transporting layer on the first electrode, and disposing the second electrode on the electron transporting layer. The electron hole transporting layer of the QLED comprises the thermally activated delayed fluorescence material which reduces driving voltage and improves brightness and luminous efficiency of the QLED.

Description

量子點發光二極體及其製造方法Quantum dot light-emitting diode and manufacturing method thereof

本發明係關於一種量子點發光二極體及其製造方法,係將熱活化延遲螢光材料添加於電洞傳輸層中,可降低量子點發光二極體的驅動電壓並提升量子點發光二極體的亮度以及發光效率。The present invention relates to a quantum dot light-emitting diode and a manufacturing method thereof. The thermally activated delayed fluorescent material is added to the hole transport layer, which can reduce the driving voltage of the quantum dot light-emitting diode and increase the quantum dot light-emitting diode Body brightness and luminous efficiency.

量子點(Quantum dot)為一種由數十個原子構成的奈米微晶體半導體材料,其放光波長的譜帶比傳統有機染料窄,且不同組成與大小的量子點可被相同的激發光原激發,以放出不同波長的光。目前量子點已應用於製備螢幕顯示器,例如將光致發光量子點設置於液晶顯示器(LCD)的背光模組,以得到更佳的背光利用率,又例如使用電致發光量子點製備量子點發光二極體(QLED);由於量子點的放光波長譜帶較窄,可以得到純正高素質的紅色或綠色單色光,進而提高了顯示效率。Quantum dot (Quantum dot) is a nanocrystalline semiconductor material composed of dozens of atoms. Its emission wavelength band is narrower than that of traditional organic dyes, and quantum dots of different compositions and sizes can be excited by the same light. Original excitation to emit light of different wavelengths. At present, quantum dots have been used in the preparation of screen displays. For example, photoluminescence quantum dots are installed in the backlight module of liquid crystal display (LCD) to obtain better backlight utilization. For example, electroluminescence quantum dots are used to prepare quantum dots to emit light. Diode (QLED); due to the narrow emission wavelength band of quantum dots, pure and high-quality red or green monochromatic light can be obtained, thereby improving the display efficiency.

中華民國專利第TW I661031(B)號專利,揭露一種有機電致發光裝置及其製備方法,此有機電致發光裝置包含基板,並在基板上依序製備陽極、電洞傳輸層、發光層、電子傳輸層與陰極,發光層中包含主體材料、輔助材料與螢光染料,主體材料為電子供應材料和電子受體材料的混合物,輔助材料為熱活化延遲螢光材料;又,中華明國專利第TW I666299(B)號專利之發光元件,亦將熱活化延遲螢光材料摻入發光層中。一般作為聚合物發光材料或螢光材料之內部量子效率理論值為25%,因此其能量轉換效率有限,因此如何提高量子點發光元件的發光亮度以及發光效率,一直為此技術領域中的重要研發目標。The Republic of China Patent No. TW I661031(B) discloses an organic electroluminescence device and a preparation method thereof. The organic electroluminescence device includes a substrate, and an anode, a hole transport layer, a light-emitting layer, and a light-emitting layer are sequentially prepared on the substrate. The electron transport layer and the cathode, the light-emitting layer contains host materials, auxiliary materials and fluorescent dyes, the host material is a mixture of electron supply materials and electron acceptor materials, and the auxiliary material is a thermally activated delayed fluorescent material; also, Zhonghua Mingguo Patent In the light-emitting device of Patent No. TW I666299(B), a thermally activated delayed fluorescent material is also incorporated into the light-emitting layer. Generally, as a polymer luminescent material or fluorescent material, the internal quantum efficiency of the theoretical value is 25%, so its energy conversion efficiency is limited. Therefore, how to improve the luminous brightness and luminous efficiency of quantum dot light-emitting devices has always been an important research and development in this technical field. Target.

今,發明人有鑑於現有量子點發光二極體仍有不足之處,於是乃一本孜孜不倦之精神,並藉由其豐富專業知識及多年之實務經驗所輔佐,而加以改善,並據此研創出本發明。Nowadays, in view of the shortcomings of the existing quantum dot light-emitting diodes, the inventor is based on the tireless spirit, and with the help of his rich professional knowledge and years of practical experience, he has made improvements and researched accordingly. Created the present invention.

本發明係關於一種量子點發光二極體及其製造方法,係將熱活化延遲螢光材料(thermally activated delayed fluorescence)添加於電洞傳輸層中,可有效提升量子點發光二極體的亮度以及發光效率。The present invention relates to a quantum dot light-emitting diode and a manufacturing method thereof. A thermally activated delayed fluorescence material (thermally activated delayed fluorescence) is added to a hole transport layer, which can effectively improve the brightness of the quantum dot light-emitting diode and Luminous efficiency.

本發明之量子點發光二極體包含一第一電極,並在第一電極上依序設置,一電洞注入層,一電洞傳輸層,一量子點發光層,一電子傳輸層以及一第二電極,其中該電洞傳輸層係包含一主體材料與10~40 wt%之一熱活化延遲螢光材料。The quantum dot light-emitting diode of the present invention includes a first electrode, which is sequentially arranged on the first electrode, a hole injection layer, a hole transport layer, a quantum dot light emitting layer, an electron transport layer, and a first electrode. Two electrodes, wherein the hole transport layer contains a host material and a thermally activated delayed fluorescent material of 10-40 wt%.

本發明之量子點發光二極體的製造方法包含:步驟一,取一玻璃基板,並於該玻璃基板上設置一透明導電薄膜,以獲得第一電極,再於第一電極的透明導電薄膜上塗佈一電洞注入層;步驟二,於電洞注入層上塗佈一電洞傳輸層,其中電洞傳輸層包含一主體材料以及10~40 wt%之一熱活化延遲螢光材料;以及步驟三,於電洞傳輸層上塗佈一量子點發光層,再於量子點發光層上塗佈一電子傳輸層,再於電子傳輸層上鍍製一第二電極。The manufacturing method of the quantum dot light-emitting diode of the present invention includes: step one, taking a glass substrate, and arranging a transparent conductive film on the glass substrate to obtain a first electrode, and then placing it on the transparent conductive film of the first electrode Coating a hole injection layer; step two, coating a hole transport layer on the hole injection layer, wherein the hole transport layer includes a host material and a thermally activated delayed fluorescent material of 10-40 wt%; and Step 3: Coating a quantum dot light emitting layer on the hole transport layer, and then coating an electron transport layer on the quantum dot light emitting layer, and then plating a second electrode on the electron transport layer.

於本發明之一實施例中,第一電極係包含一玻璃基板與一透明導電薄膜,且該電洞注入層係設置於該透明導電薄膜上。In an embodiment of the present invention, the first electrode includes a glass substrate and a transparent conductive film, and the hole injection layer is disposed on the transparent conductive film.

於本發明之一實施例中,電洞傳輸層之主體材料為聚[雙(4-苯基)(4-丁基苯基)胺 (Poly(4-butylphenyldiphenylamine),簡稱Poly-TPD);且熱活化延遲螢光材料為DDCzTrz (9,9',9'',9'''-((6-phenyl-1,3,5-triazine-2,4- diyl)bis(benzene-5,3,1- triyl))tetrakis(9H-carbazole))。In an embodiment of the present invention, the host material of the hole transport layer is poly(4-butylphenyldiphenylamine) (Poly-TPD); and The thermally activated delayed fluorescent material is DDCzTrz (9,9',9``,9'''-((6-phenyl-1,3,5-triazine-2,4-diyl)bis(benzene-5,3 ,1-triyl))tetrakis(9H-carbazole)).

於本發明之一實施例中,電洞注入層之厚度介於10~50 nm,電洞傳輸層之厚度介於10~50 nm,量子點發光層之厚度為10~30 nm,電子傳輸層之厚度介於30~80 nm,且第二電極之厚度介於100~300 nm。In an embodiment of the present invention, the thickness of the hole injection layer is 10-50 nm, the thickness of the hole transport layer is 10-50 nm, the thickness of the quantum dot light-emitting layer is 10-30 nm, and the electron transport layer The thickness of the second electrode is between 30 and 80 nm, and the thickness of the second electrode is between 100 and 300 nm.

於本發明之一實施例中,透明導電薄膜為氧化銦錫(ITO)薄膜,電洞注入層係以3,4-乙烯二氧噻吩/聚苯乙烯磺酸鹽(PEDOT:PSS)製成,且量子點發光層係以硒化鎘/硫化鋅(CdSe/Zns)材料製備。In an embodiment of the present invention, the transparent conductive film is an indium tin oxide (ITO) film, and the hole injection layer is made of 3,4-ethylenedioxythiophene/polystyrene sulfonate (PEDOT:PSS), And the quantum dot light-emitting layer is made of cadmium selenide/zinc sulfide (CdSe/Zns) material.

藉此,本發明量子點發光二極體及其製造方法,藉由於電洞傳輸層內添加熱活化延遲螢光材料,可有效提升量子點發光二極體的亮度以及發光效率,並且能保持色純度。Thereby, the quantum dot light-emitting diode and the manufacturing method thereof of the present invention can effectively improve the brightness and luminous efficiency of the quantum dot light-emitting diode by adding a thermally activated delayed fluorescent material in the hole transport layer, and can maintain color purity.

本發明之目的及其結構功能上的優點,將依據以下圖面所示,配合具體實施例予以說明,俾使審查委員能對本發明有更深入且具體之瞭解。The purpose of the present invention and its structural and functional advantages will be described in conjunction with specific embodiments as shown in the following figures, so that the examiner can have a deeper and specific understanding of the present invention.

本發明係關於一種量子點發光二極體及其製造方法,主要係利用熱活化延遲螢光材料當輔助材料摻雜於電洞傳輸層(electron hole transport layer)的主體材料,以提升Förster能量轉移,促使輔助材料單線態激子反隙間竄越至主體材料單線態激子,以提升量子點發光二極體的亮度以及發光效率,並且保持色純度。The present invention relates to a quantum dot light-emitting diode and a manufacturing method thereof. It mainly uses a thermally activated delayed fluorescent material as an auxiliary material doped into the host material of the electron hole transport layer to enhance Förster energy transfer , To promote the singlet excitons of the auxiliary material to cross the back gap to the singlet excitons of the host material, so as to improve the brightness and luminous efficiency of the quantum dot light-emitting diode and maintain the color purity.

請參見第一圖,本發明之量子點發光二極體包含一第一電極(1)、一電洞注入層(2)、一電洞傳輸層(3)、一量子點發光層(4)、一電子傳輸層(5)以及一第二電極(6);其中第一電極(1)包含一玻璃基板與一透明導電薄膜,且電洞傳輸層(3)包含一主體材料與一熱活化延遲材料。Please refer to the first figure. The quantum dot light-emitting diode of the present invention includes a first electrode (1), a hole injection layer (2), a hole transport layer (3), and a quantum dot light-emitting layer (4) , An electron transport layer (5) and a second electrode (6); wherein the first electrode (1) includes a glass substrate and a transparent conductive film, and the hole transport layer (3) includes a host material and a thermal activation Delay material.

本發明量子點發光二極體的製造方法包含:步驟一,取一玻璃基板,並於基板上設置一透明導電層,以獲得第一電極(1),再於第一電極(1)上塗佈一電洞注入層(2);步驟二,於電洞注入層(2)上塗佈電洞傳輸層(3),其中電洞傳輸層(3)包含一主體材料與一熱活化延遲螢光材料;以及步驟三,於電洞傳輸層(3)上塗佈量子點發光層(4),再於量子點發光層(4)上塗佈電子傳輸層(5),再於電子傳輸層(5)上鍍製第二電極(6)。The manufacturing method of the quantum dot light-emitting diode of the present invention includes: step one, taking a glass substrate, and arranging a transparent conductive layer on the substrate to obtain the first electrode (1), and then coating the first electrode (1) Place a hole injection layer (2); step two, coat a hole transport layer (3) on the hole injection layer (2), wherein the hole transport layer (3) includes a host material and a thermally activated delayed phosphor Optical material; and step three, coating the quantum dot light-emitting layer (4) on the hole transport layer (3), and then coating the electron transport layer (5) on the quantum dot light-emitting layer (4), and then on the electron transport layer (5) The second electrode (6) is plated on.

其中,電洞注入層(2)的製備材料可為但不限於PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate)、HATNA-F6 (CAS號為872140-95-9)、DNTPD (CAS編號為199121-98-7)、MeO-TPD (CAS編號為122738-21-0)、2T-NATA (CAS編號為185690-41-9)、m-MTDATA (CAS編號為124729-98-2)、NATA (CAS編號為105389-36-4)、1T-NATA (CAS編號為185690-39-5)、2T-NATA (CAS編號為185690-41-9)、m-MTDATA (CAS編號為124729-98-2)、F4-TCNQ (CAS編號為29261-33-4)、PPDN (CAS編號為215611-93-1)、MeO-TPD (CAS編號為122738-21-0)、MeO-Spiro-TPD (CAS編號為1138220-69-5)、NTNPB (CAS編號為1394130-64-3)、TPT1 (CAS編號為167218-46-4)、HATNA (CAS編號為214-83-5)、HATNA-Cl6(CAS編號為389121-44-2)、HATNA-F6(CAS編號為872140-95-9)、3FTPD-C8、MeOPBI、TNAP(CAS編號為6251-01-0)、Di-NPB(CAS編號為292827-46-4)、3DMFL-BPA(CAS編號為354987-71-6)以及NPB-DPA(CAS編號為910058-11-6)其中至少之一。Wherein, the preparation material of the hole injection layer (2) can be but not limited to PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), HATNA-F6 (CAS No. 872140-95-9), DNTPD (CAS The number is 199121-98-7), MeO-TPD (CAS number is 122738-21-0), 2T-NATA (CAS number is 185690-41-9), m-MTDATA (CAS number is 124729-98-2) , NATA (CAS No. 105389-36-4), 1T-NATA (CAS No. 185690-39-5), 2T-NATA (CAS No. 185690-41-9), m-MTDATA (CAS No. 124729- 98-2), F4-TCNQ (CAS number 29261-33-4), PPDN (CAS number 215611-93-1), MeO-TPD (CAS number 122738-21-0), MeO-Spiro-TPD (CAS number is 1138220-69-5), NTNPB (CAS number is 1394130-64-3), TPT1 (CAS number is 167218-46-4), HATNA (CAS number is 214-83-5), HATNA-Cl6 (CAS number is 389121-44-2), HATNA-F6 (CAS number is 872140-95-9), 3FTPD-C8, MeOPBI, TNAP (CAS number is 6251-01-0), Di-NPB (CAS number is 292827-46-4), 3DMFL-BPA (CAS number 354987-71-6) and NPB-DPA (CAS number 910058-11-6) at least one of them.

電洞傳輸層(3)的主體材料可為但不限於PVK (CAS編號為25067-59-8)、CBP (CAS編號為58328-31-7)、Poly-TPD (CAS編號為472960-35-3)、氧化鎳(NiO)、HAT-CN (CAS編號為105598-27-4)、OTPD (CAS編號為746636-00-4)、HMTPD (CAS編號為105465-14-3)、TAPC (CAS編號為58473-78-2),spirro-TPD (CAS編號為1033035-83-4)、DOFL-NPB (CAS編號為870197-09-4)、DOFL-TPD (CAS編號為439942-97-9)、VNPB (CAS編號為1010396-31-2)、ONPB (CAS編號為1431521-16-2) 、OTPD (CAS編號為746634-00-4)、QUPD (CAS編號為864130-79-0)、VB-FNPD (CAS編號為1173170-48-3)、X-F6-TAPC、PFNIBT以及3FTPD-C8其中至少之一。The host material of the hole transport layer (3) can be but not limited to PVK (CAS number 25067-59-8), CBP (CAS number 58328-31-7), Poly-TPD (CAS number 472960-35- 3) Nickel oxide (NiO), HAT-CN (CAS number 105598-27-4), OTPD (CAS number 746636-00-4), HMTPD (CAS number 105465-14-3), TAPC (CAS The number is 58473-78-2), spirro-TPD (CAS number is 1033035-83-4), DOFL-NPB (CAS number is 870197-09-4), DOFL-TPD (CAS number is 439942-97-9) , VNPB (CAS No. 1010396-31-2), ONPB (CAS No. 1431521-16-2), OTPD (CAS No. 746634-00-4), QUPD (CAS No. 864130-79-0), VB -At least one of FNPD (CAS No. 1173170-48-3), X-F6-TAPC, PFNIBT, and 3FTPD-C8.

電洞傳輸層(3)的熱活化延遲螢光材料係可為但不限於mPTC (CAS編號為194824774-74-2)、TZ-SBA (CAS編號為2107977-57-9)、Cz-TRZ4 (CAS編號為2061376-84-7)、Cz-TRZ3 (CAS編號為2061376-83-6)、DMTDAc (CAS編號為1877288-52-2)、MFAc-PPM (10-(4-(4,6-diphenylpyrimidin-2-yl)phenyl)-2,7- dimethyl-10H-spiro[acridine-9,9’-fluorene])、SiMCP2 (CAS編號為944465-42-3)、TBPe (CAS編號為80663-92-9)、TPXZPO (CAS編號為2001115-35-9)、DMAC-TRZ (CAS編號為1628752-98-6)、ACRSA (CAS編號為1206626-95-0)、Cz-VPN (CAS編號為1883400-30-3)、TCzTrz (CAS編號為180815-40-8)、CPC (CAS編號為1803330-63-3)、CZ-PS (CAS編號為1396165-20-0)、2PXZ-TAZ (CAS編號為1447998-15-3)、CC2BP (CAS編號為1233215-35-4)、DMAC-DPS (CAS編號為1477512-32-5)、BDPCC-TPTA (CAS編號為1620808-43-6)、BCC-TPTA (CAS編號為1361093-61-9)、 DCzTrz (CAS編號為1106730-48-6)、DDCzTrz (CAS編號為1106730-48-6)、DMOC-DPS (CAS編號為1477507-77-9)、DPCC-TPTA (CAS編號為1620808-42-5)、Phen-TRZ (CAS編號為1357066-21-7)、Cab-Ph-TRZ (CAS編號為440354-93-8)、以及4CZFCN (CAS編號為1819362-10-1)其中至少之一。The thermally activated delayed fluorescent material of the hole transport layer (3) can be but not limited to mPTC (CAS number 194824774-74-2), TZ-SBA (CAS number 2107977-57-9), Cz-TRZ4 ( CAS number is 2061376-84-7), Cz-TRZ3 (CAS number is 2061376-83-6), DMTDAc (CAS number is 1877288-52-2), MFAc-PPM (10-(4-(4,6- diphenylpyrimidin-2-yl)phenyl)-2,7-dimethyl-10H-spiro[acridine-9,9'-fluorene]), SiMCP2 (CAS number 944465-42-3), TBPe (CAS number 80663-92 -9), TPXZPO (CAS number is 2001115-35-9), DMAC-TRZ (CAS number is 1628752-98-6), ACRSA (CAS number is 1206626-95-0), Cz-VPN (CAS number is 1883400 -30-3), TCzTrz (CAS number 180815-40-8), CPC (CAS number 1803330-63-3), CZ-PS (CAS number 1396165-20-0), 2PXZ-TAZ (CAS number 1447998-15-3), CC2BP (CAS No. 1233215-35-4), DMAC-DPS (CAS No. 1477512-32-5), BDPCC-TPTA (CAS No. 1620808-43-6), BCC- TPTA (CAS No. 1361093-61-9), DCzTrz (CAS No. 1106730-48-6), DDCzTrz (CAS No. 1106730-48-6), DMOC-DPS (CAS No. 1477507-77-9), DPCC-TPTA (CAS No. 1620808-42-5), Phen-TRZ (CAS No. 1357066-21-7), Cab-Ph-TRZ (CAS No. 440354-93-8), and 4CZFCN (CAS No. 1819362-10-1) at least one of them.

量子點發光層(4)的材料量子點發光層可為但不限於甲基氨基溴化鉛(MaPbBr3 )、tBuCzDBA (CAS編號為2171334-46-4)、Ir(dmppy-pro)2tmd (CAS編號為2050041-60-4)、CzDBA (CAS編號為2171334-43-1)、BPTAPA DMQA (CAS編號為1848973-32-9)、C545T (CAS編號為155306-71-1)、Coumarin 6 (CAS編號為38215-36-0)、Px-VPN (CAS編號為1784766-39-7)、TmCzTrz (CAS編號為1808158-41-9)、Zn(BTZ)2 (CAS編號為58280-31-2)、BA-TTB (CAS編號為223735-62-4)、BA-TAD (CAS編號為220721-68-6)、BA-NPB (CAS編號為885502-26-1)、2PXZ-OXD (CAS編號為1447998-13-1)、Ir(npy)2acac (CAS編號為878393-09-0)、Ir(3mppy)3 (CAS編號為639006-72-7)、OP-09、DPASP (CAS編號為2005434-89-7)、BDAVBi (CAS編號為523977-57-3)、DPAVBi (CAS編號為119586-44-6)、TBPe (CAS編號為80663-92-9)、Perylene (CAS編號為198-55-0)、BCzVBi (CAS編號為1475480-90-1)、Spiro-BDAVBi (CAS編號為436798-89-9)、BNP3FL (CAS編號為669016-17-5)、MDP3FL (CAS編號為239476-24-5)、N-BDAVBi (CAS編號為1032556-63-0)、fac-Ir(Pmb)3、Ac-CNP (CAS編號為1883400-34-7)、DCJTB (CAS編號為200052-70-6)、DCM (CAS編號為51325-91-8)、DCJT (CAS編號為159788-00-8)、Eu(dbm)3(Phen) (CAS編號為17904-83-5)、Ir(btp)2(acac) (CAS編號為343978-19-0)、Ir(fliq)2(acac) (CAS編號為1617506-77-0)、TBRb (CAS編號為682806-51-5)、Hex-Ir(phq)2(acac) (CAS編號為1404197-18-7)或硒化鎘/硫化鋅(CdSe/ZnS)其中至少之一 The material of the quantum dot light-emitting layer (4) The quantum dot light-emitting layer can be, but is not limited to, methylamino lead bromide (MaPbBr 3 ), tBuCzDBA (CAS number 2171334-46-4), Ir(dmppy-pro) 2tmd (CAS No. 2050041-60-4), CzDBA (CAS No. 2171334-43-1), BPTPA DMQA (CAS No. 188973-32-9), C545T (CAS No. 155306-71-1), Coumarin 6 (CAS The number is 38215-36-0), Px-VPN (CAS number is 1784766-39-7), TmCzTrz (CAS number is 1808158-41-9), Zn(BTZ)2 (CAS number is 58280-31-2) , BA-TTB (CAS No. 223735-62-4), BA-TAD (CAS No. 220721-68-6), BA-NPB (CAS No. 885502-26-1), 2PXZ-OXD (CAS No. 1447998-13-1), Ir(npy)2acac (CAS number 878393-09-0), Ir(3mppy)3 (CAS number 639006-72-7), OP-09, DPASP (CAS number 2005434- 89-7), BDAVBi (CAS number 523977-57-3), DPAVBi (CAS number 119586-44-6), TBPe (CAS number 80663-92-9), Perylene (CAS number 198-55- 0), BCzVBi (CAS number 1475480-90-1), Spiro-BDAVBi (CAS number 436798-89-9), BNP3FL (CAS number 669016-17-5), MDP3FL (CAS number 239476-24- 5), N-BDAVBi (CAS number 1032556-63-0), fac-Ir(Pmb)3, Ac-CNP (CAS number 1883400-34-7), DCJTB (CAS number 200052-70-6) , DCM (CAS number 51325-91-8), DCJT (CAS number 159788-00-8), Eu(dbm)3(Phen) (CAS number 17904-83-5), Ir(btp)2( acac) (CAS number 343978-19-0), Ir(fliq)2(acac) (CAS number 1617506-77-0), TBRb (CAS The serial number is 682806-51-5), Hex-Ir(phq)2(acac) (CAS No. 1404197-18-7) or at least one of cadmium selenide/zinc sulfide (CdSe/ZnS) .

電子傳輸層(5)可為但不限於TPBi(CAS編號為192198-85-9)、氧化鋅 (ZnO)、奈米氧化鋅 (ZnO nanoparticle)、TPM-TAZ (CAS編號為1874199-82-2)、Liq(CAS編號為25387-93-3)、BAlq (CAS編號為146162-54-1)、Bpy-OXD (CAS編號為866117-19-3)、BP-OXD-Bpy(CAS編號為1219827-28-7)、NTAZ (CAS編號為16152-10-6)、NBphen (CAS編號為1174006-43-9)、Bpy-FOXD (CAS編號為1174006-45-1)、2-NPIP (CAS編號為1234997-42-2)、HNBphen (CAS編號為923972-84-3)、POPy2 (CAS編號為721969-93-3)、BTB (CAS編號為266349-83-1)、BmPyPhB (CAS編號為1030380-38-1)、DPPS (CAS編號為115216-74-7)、PY1 (CAS編號為1246467-58-2)、Bepq2 (CAS編號為148896-39-3)、TpPyPB (CAS編號為921205-02-9)、TmPPPyTz (CAS編號為939430-31-6)、B3PYMPM (CAS編號為925425-96-3)、TPyQB (CAS編號為1350742-68-5)、B4PYMPM (CAS編號為1030380-51-8)、BPy-TP2 (CAS編號為139481-58-1)、BIPO (CAS編號為1426143-77-2)、Libpp (CAS編號為1049805-81-3)、B4PYPPM (CAS編號為1097652-83-9)、Tm3PyP26PyB (CAS編號為1492917-78-8)、B3PYPPM (CAS編號為1382639-67-9)、B4PYPPyPM (CAS編號為1382639-70-4)、TP3PO (CAS編號為1311378-95-6)、FPQ-Br、NaQ (CAS編號為2872-54-0)、DBimiBphen (CAS編號為1447848-17-0)、PO-T2T (CAS編號為1646906-26-4)。The electron transport layer (5) can be, but is not limited to, TPBi (CAS number 192198-85-9), zinc oxide (ZnO), nano-zinc oxide (ZnO nanoparticle), TPM-TAZ (CAS number 1874199-82-2 ), Liq (CAS number 25387-93-3), BAlq (CAS number 146162-54-1), Bpy-OXD (CAS number 866117-19-3), BP-OXD-Bpy (CAS number 1219827 -28-7), NTAZ (CAS No. 16152-10-6), NBphen (CAS No. 1174006-43-9), Bpy-FOXD (CAS No. 1174006-45-1), 2-NPIP (CAS No. 1234997-42-2), HNBphen (CAS number 923972-84-3), POPy2 (CAS number 721969-93-3), BTB (CAS number 266349-83-1), BmPyPhB (CAS number 1030380 -38-1), DPPS (CAS number 115216-74-7), PY1 (CAS number 1246467-58-2), Bepq2 (CAS number 148896-39-3), TpPyPB (CAS number 921205-02 -9), TmPPPyTz (CAS number 939430-31-6), B3PYMPM (CAS number 925425-96-3), TPyQB (CAS number 1350742-68-5), B4PYMPM (CAS number 1030380-51-8 ), BPy-TP2 (CAS number is 139481-58-1), BIPO (CAS number is 1426143-77-2), Libpp (CAS number is 10498805-81-3), B4PYPPM (CAS number is 1097652-83-9 ), Tm3PyP26PyB (CAS number 1492917-78-8), B3PYPPM (CAS number 1382639-67-9), B4PYPPyPM (CAS number 1382639-70-4), TP3PO (CAS number 1311378-95-6), FPQ-Br, NaQ (CAS No. 2872-54-0), DBimiBphen (CAS No. 1447848-17-0), PO-T2T (CAS No. 1646906-26-4).

以外,藉由下述具體實施例,可進一步證明本發明可實際應用之範圍,但不意欲以任何形式限制本發明之範圍。In addition, the following specific examples can further prove the scope of practical application of the present invention, but it is not intended to limit the scope of the present invention in any form.

一、本發明量子點發光二極體之製備1. Preparation of the quantum dot light-emitting diode of the present invention

(一)、製備流程(1) Preparation process

本實施例中,係使用玻璃基板作為本發明量子點發光二極體的第一電極(1)的基板,並於將玻璃基板切割成1.5 cm Í 2 cm Í 0.7 mm大小,以進行後續的量子點發光二極體製備。In this embodiment, a glass substrate is used as the substrate of the first electrode (1) of the quantum dot light-emitting diode of the present invention, and the glass substrate is cut into a size of 1.5 cm Í 2 cm Í 0.7 mm for subsequent quantum dots. Preparation of point-emitting diodes.

將玻璃基板依序以丙酮、異丙醇以及去離子水以超音波震盪15分鐘,最後再使用氮氣槍吹乾玻璃基板;利用黃光微影技術,在玻璃基板的表面形成一透明導電薄膜,以製得第一電極(1),此實施例中第一電極(1)為指叉狀透明電極,透明導電薄膜為氧化銦錫(ITO)薄膜,片電阻值為11 Ω/sq,以作為陽極。The glass substrate was oscillated with acetone, isopropanol, and deionized water for 15 minutes in order, and finally the glass substrate was blown dry with a nitrogen gun; a transparent conductive film was formed on the surface of the glass substrate by using yellow light lithography technology to make The first electrode (1) is obtained. In this embodiment, the first electrode (1) is a interdigitated transparent electrode, the transparent conductive film is an indium tin oxide (ITO) film, and the sheet resistance value is 11 Ω/sq, which is used as an anode.

接著,於透明導電薄膜上以旋轉塗佈法,塗佈厚度為10~50 nm之的聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸鹽(PEDOT:PSS),再以烘箱烘烤,於120℃烘烤15分鐘,以形成電洞注入層(2),又電洞注入層(2)的較佳厚度為17-32nm;Next, spin coating on the transparent conductive film to coat poly 3,4-ethylenedioxythiophene/polystyrene sulfonate (PEDOT:PSS) with a thickness of 10-50 nm, and then bake in an oven , Bake at 120°C for 15 minutes to form the hole injection layer (2), and the preferred thickness of the hole injection layer (2) is 17-32nm;

再於電洞注入層(2)上,以旋轉塗佈法,塗佈厚度為10-50 nm之一混合材料,再以電熱板加熱,於110℃作用30分鐘,以形成電洞傳輸層(3),電洞傳輸層(3) 的較佳厚度為12-18 nm;混合材料中含有10 wt%~40 wt%之熱活化延遲螢光材料DDCzTrz以及剩餘重量百分比之主體材料Poly-TPD;Then, spin coating on the hole injection layer (2) to coat a mixed material with a thickness of 10-50 nm, then heat it with an electric hot plate, and act on it at 110°C for 30 minutes to form a hole transport layer ( 3) The preferred thickness of the hole transport layer (3) is 12-18 nm; the mixed material contains 10 wt%-40 wt% of the thermally activated delayed fluorescent material DDCzTrz and the remaining weight percentage of the host material Poly-TPD;

接著,再於電洞傳輸層(3)上,以旋轉塗佈法,塗佈厚度為10-30 nm之硒化鎘/硫化鋅(CdSe/ZnS),再以電熱板加熱,於90℃作用30分鐘,以形成量子點發光層(4),量子點發光層(4)的較佳厚度為12-18 nm;Then, spin coating on the hole transport layer (3) to coat cadmium selenide/zinc sulfide (CdSe/ZnS) with a thickness of 10-30 nm, and then heat it with an electric hot plate at 90°C 30 minutes to form the quantum dot light-emitting layer (4), the preferred thickness of the quantum dot light-emitting layer (4) is 12-18 nm;

再於量子點發光層(4)上以旋轉塗佈法塗佈厚度為30-80 nm之奈米氧化鋅(ZnO nanoparticle) ,再以電熱板加熱,於90℃作用30分鐘,以形成電子傳輸層(5),且電子傳輸層(5)的厚度較佳為40-60 nm;Then at the quantum dot light emitting layer (4) applied to a thickness of 30-80 nm for the spin coating of nano-zinc oxide (ZnO nanoparticle), then to a hot plate heated at 90 deg.] C for 30 minutes to form an electron transporting Layer (5), and the thickness of the electron transport layer (5) is preferably 40-60 nm;

最後,再以熱蒸鍍的方式,於電子傳輸層(5)上沉積厚度為150 nm±2 nm之鋁(Al)金屬,以形成第二電極(6),本實施例中第二電極作為陰極;熱蒸鍍步驟所使用的工作壓力係小於1×10-6 torr。Finally, by means of thermal evaporation, aluminum (Al) metal with a thickness of 150 nm ± 2 nm is deposited on the electron transport layer (5) to form the second electrode (6). In this embodiment, the second electrode is used as Cathode; the working pressure used in the thermal evaporation step is less than 1×10 -6 torr.

本實施例所製得的量子點發光二極體,電洞注入層(2)的厚度為25 nm、電洞傳輸層(3)的厚度為25 nm、量子點發光層(4)的厚度為16 nm、電子傳輸層(5)的厚度為55 nm、且第二電極(6)的厚度為150nm,且發光面積為1×1 mm2In the quantum dot light-emitting diode prepared in this embodiment, the thickness of the hole injection layer (2) is 25 nm, the thickness of the hole transport layer (3) is 25 nm, and the thickness of the quantum dot light-emitting layer (4) is 16 nm, the thickness of the electron transport layer (5) is 55 nm, the thickness of the second electrode (6) is 150 nm, and the light-emitting area is 1×1 mm 2 .

本發明之量子點發光二極體屬於電致發光元件,於導入電流之後,量子點發光二極體便會發光,所發光的波長則與所使用的發光材料有關。The quantum dot light-emitting diode of the present invention is an electroluminescence element. After the current is introduced, the quantum dot light-emitting diode will emit light, and the wavelength of the light emitted is related to the luminescent material used.

(二)、電致發光光譜分析(2) Electroluminescence spectrum analysis

本實施例中所使用的量子點發光二極體,其電洞傳輸層(3)所使用的材料包含了0 wt%~60 wt%之熱活化延遲螢光材料DDCzTrz以及剩餘重量百分比之主體材料Poly-TPD,其中,熱活化延遲螢光材料DDCzTrz分別以0 wt%、20 wt%、40 wt%、50 wt%與60 wt%的佔比作為本發明的實施例說明。In the quantum dot light-emitting diode used in this embodiment, the material used for the hole transport layer (3) includes 0 wt% to 60 wt% of thermally activated delayed fluorescent material DDCzTrz and the remaining weight percentage of the host material Poly-TPD, in which the thermally activated delayed fluorescent material DDCzTrz takes the proportions of 0 wt%, 20 wt%, 40 wt%, 50 wt%, and 60 wt%, respectively, as an example of the present invention.

DDCzTrz為一種熱活化延遲螢光材料,化學式為C69 H43 N7 ,其最高佔據分子軌域(highest occupied molecular orbital,HOMO)為-6.1 eV,且最低佔據分子軌域(lowest occupied molecular orbital,LUMO)為-2.9 eV,單重態和三重態能量差(ΔEST )為0.27 eV,二數值相差為小於3 eV,表示其能量帶隙小,分子容易被激發,根據先前研究,DDCzTrz的光致發光光譜圖,其發光波長係介於400 nm~600 nm之間,且波鋒落於約455 nm的位置。又,請參見第二圖,本案所使用的量子點材料(QDs)硒化鎘/硫化鋅(CdSe/ZnS)的吸收光譜,與熱活化延遲螢光材料DDCzTrz的光致發光螢光光譜有明顯的重疊部分(請參見第二圖的橫線區域),代表二材料間可以發生螢光共振能量轉移,即DDCzTrz所發出的螢光可以激發量子點材料(QDs),並使量子點材料(QDs)發出波長約介於600~650 nm的可見光。DDCzTrz is a thermally activated delayed fluorescent material with a chemical formula of C 69 H 43 N 7. Its highest occupied molecular orbital (HOMO) is -6.1 eV and the lowest occupied molecular orbital (HOMO) is -6.1 eV. LUMO) is -2.9 eV, the singlet and triplet energy difference (ΔE ST ) is 0.27 eV, and the binary value difference is less than 3 eV, which means that the energy band gap is small and the molecules are easily excited. According to previous studies, the light induced by DDCzTrz The luminescence spectrum, the luminescence wavelength is between 400 nm and 600 nm, and the wave front falls at about 455 nm. Also, please refer to the second figure. The absorption spectrum of the quantum dot material (QDs) cadmium selenide/zinc sulfide (CdSe/ZnS) used in this case is clearly compared with the photoluminescence fluorescence spectrum of the thermally activated delay fluorescent material DDCzTrz The overlapped part (please refer to the horizontal line area in the second figure) represents that fluorescence resonance energy transfer can occur between the two materials, that is, the fluorescence emitted by DDCzTrz can excite quantum dot materials (QDs) and make quantum dot materials (QDs) ) It emits visible light with a wavelength of about 600~650 nm.

請參見第三圖,本實施例中的量子點發光二極體,其電洞傳輸層(3)係分別包含有0 wt%~40 wt%之熱活化延遲螢光材料DDCzTrz以及剩餘重量百分比之主體材料Poly-TPD;根據第三圖(A),四種量子點發光二極體的發光波長皆介於600 nm~700 nm之間,且波形並沒有顯著差異;請再參見第三圖(B),為針對在440 nm~460 nm發光波長範圍放大的光譜圖,可知在導電的狀況下,四組量子點發光二極體所發出的光並非由熱活化延遲螢光材料DDCzTrz所發出,因此於電洞傳輸層(3)中添加DDCzTrz不會影響到量子點發光二極體的色純度。Please refer to the third figure. In the quantum dot light-emitting diode of this embodiment, the hole transport layer (3) contains 0 wt%-40 wt% thermally activated delayed fluorescent material DDCzTrz and the remaining weight percentage. The host material Poly-TPD; according to the third figure (A), the emission wavelengths of the four quantum dot light-emitting diodes are all between 600 nm and 700 nm, and there is no significant difference in the waveforms; please refer to the third figure ( B) is an enlarged spectrogram for the emission wavelength range of 440 nm to 460 nm. It can be seen that the light emitted by the four sets of quantum dot light-emitting diodes is not emitted by the thermally activated delayed fluorescent material DDCzTrz under the condition of electrical conductivity. Therefore, adding DDCzTrz to the hole transport layer (3) will not affect the color purity of the quantum dot light-emitting diode.

(三)、驅動電壓分析(3) Analysis of driving voltage

本實施例中的量子點發光二極體,其電洞傳輸層(3)係分別包含有0 wt%~60 wt%之熱活化延遲螢光材料DDCzTrz以及剩餘重量百分比之主體材料Poly-TPD,並測試各量子點發光二極體的驅動電壓,本試驗中定義驅動電壓為每平方公尺電流密度為100毫安培時的電壓;請參見第四圖與表一,當DDCzTrZ的添加比例增加時,可降低量子點發光二極體的驅動電壓。In the quantum dot light-emitting diode of this embodiment, the hole transport layer (3) contains 0 wt% to 60 wt% of the thermally activated delayed fluorescent material DDCzTrz and the remaining weight percentage of the host material Poly-TPD, respectively. And test the driving voltage of each quantum dot light-emitting diode. In this experiment, the driving voltage is defined as the voltage when the current density is 100 milliamperes per square meter; please refer to the fourth figure and table 1, when the addition ratio of DDCzTrZ increases , Can reduce the driving voltage of quantum dot light-emitting diodes.

表一。 電洞傳輸層 Poly-TPD 100 wt% 80 wt% 60 wt% 50 wt% 40 wt% DDCzTrZ 0 wt% 20 wt% 40 wt% 50 wt% 60 wt% 驅動電壓(V) 3.8 3.5 3.3 3.2 3.1 Table I. Hole transport layer Poly-TPD 100 wt% 80 wt% 60 wt% 50 wt% 40 wt% DDCzTrZ 0 wt% 20 wt% 40 wt% 50 wt% 60 wt% Drive voltage (V) 3.8 3.5 3.3 3.2 3.1

(四)、發光亮度分析。(4) Analysis of luminous brightness.

本實施例中的量子點發光二極體,其電洞傳輸層(3)係分別包含有0 wt%~60 wt%之熱活化延遲螢光材料DDCzTrz以及剩餘重量百分比之主體材料Poly-TPD,並測試各發光二極體的最大發光亮度(Luminance,Lmax ),測量單位為每平方公尺之燭光(cd/m2 )。請參見表二與第五圖,添加20 wt%與40 wt% DDCzTrz的量子點發光二極體,其發光亮度會高於無添加DDCzTrz的量子點發光二極體,但是當DDCzTrz的添加比例高於40 wt%時,量子點發光二極體的發光亮度便會明顯的下降。In the quantum dot light-emitting diode of this embodiment, the hole transport layer (3) contains 0 wt% to 60 wt% of the thermally activated delayed fluorescent material DDCzTrz and the remaining weight percentage of the host material Poly-TPD, respectively. And test the maximum luminous brightness (Luminance, L max ) of each light-emitting diode, the measurement unit is candles per square meter (cd/m 2 ). Please refer to Table 2 and Figure 5. The brightness of quantum dot light-emitting diodes with 20 wt% and 40 wt% DDCzTrz added will be higher than that of quantum dot light-emitting diodes without DDCzTrz, but when the proportion of DDCzTrz is high At 40 wt%, the luminous brightness of quantum dot light-emitting diodes will decrease significantly.

表二 電洞傳輸層 Poly-TPD 100 wt% 80 wt% 60 wt% 50 wt% 40 wt% DDCzTrZ 0 wt% 20 wt% 40 wt% 50 wt% 60 wt% Lmax (cd/m2 ) 68496 80889 109046 31070 21486 Table II Hole transport layer Poly-TPD 100 wt% 80 wt% 60 wt% 50 wt% 40 wt% DDCzTrZ 0 wt% 20 wt% 40 wt% 50 wt% 60 wt% L max (cd/m 2 ) 68496 80889 109046 31070 21486

(五)、電流效率分析(5) Analysis of current efficiency

本實施例中的量子點發光二極體,其電洞傳輸層(3)係分別包含有0 wt%~60 wt%之熱活化延遲螢光材料DDCzTrz以及剩餘重量百分比之主體材料Poly-TPD,並測試各發光二極體的電流效率(current efficiency,CEmax )。請參見表三與第六圖,添加20 wt%與40 wt% DDCzTrz的量子點發光二極體,其電流效率與無添加的組別相比明顯上升,但是當DDCzTrz的添加比例高於40 wt%時,量子點發光二極體的電流效率便會明顯的下降。In the quantum dot light-emitting diode of this embodiment, the hole transport layer (3) contains 0 wt% to 60 wt% of the thermally activated delayed fluorescent material DDCzTrz and the remaining weight percentage of the host material Poly-TPD, respectively. And test the current efficiency (CE max ) of each light-emitting diode. Please refer to Table 3 and Figure 6, the current efficiency of quantum dot light-emitting diodes with 20 wt% and 40 wt% DDCzTrz added is significantly higher than that of the non-additive group, but when the addition ratio of DDCzTrz is higher than 40 wt %, the current efficiency of the quantum dot light-emitting diode will be significantly reduced.

表三 電洞傳輸層 Poly-TPD 100 wt% 80 wt% 60 wt% 50 wt% 40 wt% DDCzTrZ 0 wt% 20 wt% 40 wt% 50 wt% 60 wt% CEmax (cd/A) 3.4 4.7 5.2 0.7 0.2 Table Three Hole transport layer Poly-TPD 100 wt% 80 wt% 60 wt% 50 wt% 40 wt% DDCzTrZ 0 wt% 20 wt% 40 wt% 50 wt% 60 wt% CE max (cd/A) 3.4 4.7 5.2 0.7 0.2

根據以上的實施例,可知在量子點發光二極體的電洞傳輸層內添加適當比例的熱活化延遲螢光材料,例如本案實施例所使用之DDCzTrz,會降低量子點發光二極體的驅動電壓、提高量子點發光二極體的亮度以及電流效率;以本案的實際實施例為例,於電洞傳輸層內添加10 wt~40 wt%之DDCzTrz能明顯降低驅動電壓、提高量子點發光二極體的亮度以及電流效率,但並不會影響到量子點發光二極體的發光光譜波型。According to the above examples, it can be seen that adding an appropriate proportion of thermally activated delayed fluorescent material in the hole transport layer of the quantum dot light-emitting diode, such as the DDCzTrz used in the example of this case, will reduce the drive of the quantum dot light-emitting diode Voltage, improve the brightness and current efficiency of the quantum dot light-emitting diode; taking the actual embodiment of this case as an example, adding 10 wt to 40 wt% of DDCzTrz in the hole transport layer can significantly reduce the driving voltage and increase the light emission of the quantum dot. The brightness and current efficiency of the polar body will not affect the emission spectrum of the quantum dot light-emitting diode.

本發明之量子點發光二極體,係將熱活化延遲螢光材料添加於主體材料中,以提升螢光共振能量轉移(Förster resonance energy transfer),相較於習知量子點發光二極體僅利用電荷注入以使發光二極體發光的機制相比,本發明同時使用能量轉換機制和電荷注入機制以同時提升量子點發光二極體的亮度及電流效率,且本案選用高量子效率的熱活化延遲螢光材料作為能量轉換機制中的能量供體,促使輔助材料單線態激子反隙間竄越至主體材料單線態激子,不僅不會影響到量子點發光二極體的發光光譜波型及色純度,並可增加所轉換能量且進一步的提升元件表現。根據第三圖光譜分析圖,本發明量子點發光二極體的發光波段為620 nm,可應用於製造紅光發光二極體。In the quantum dot light-emitting diode of the present invention, a thermally activated delayed fluorescent material is added to the host material to enhance Förster resonance energy transfer. Compared with the conventional quantum dot light-emitting diode, it is only Compared with the mechanism of using charge injection to make light-emitting diodes emit light, the present invention uses both an energy conversion mechanism and a charge injection mechanism to simultaneously improve the brightness and current efficiency of quantum dot light-emitting diodes. In this case, thermal activation with high quantum efficiency is selected. Delayed fluorescent materials are used as energy donors in the energy conversion mechanism to promote the back gap of the auxiliary material singlet excitons to the host material singlet excitons, which not only does not affect the emission spectrum of the quantum dot light-emitting diode. Color purity can increase the converted energy and further improve component performance. According to the spectrum analysis chart of the third figure, the emission band of the quantum dot light-emitting diode of the present invention is 620 nm, which can be applied to manufacture red light-emitting diodes.

綜上所述,本發明之量子點發光二極體及其製造方法,的確能藉由上述所揭露之實施例,達到所預期之使用功效,且本發明亦未曾公開於申請前,誠已完全符合專利法之規定與要求。爰依法提出發明專利之申請,懇請惠予審查,並賜准專利,則實感德便In summary, the quantum dot light-emitting diode and its manufacturing method of the present invention can indeed achieve the expected use effect through the embodiments disclosed above, and the present invention has not been disclosed before the application. Comply with the provisions and requirements of the Patent Law. If you file an application for a patent for invention in accordance with the law, you are kindly requested to review and grant a quasi-patent.

惟,上述所揭之說明,僅為本發明之較佳實施例,非為限定本發明之保護範圍;大凡熟悉該項技藝之人士,其所依本發明之特徵範疇,所作之其它等效變化或修飾,皆應視為不脫離本發明之設計範疇。However, the above-mentioned explanations are only the preferred embodiments of the present invention, and are not intended to limit the scope of protection of the present invention. For those who are familiar with the art, other equivalent changes made according to the characteristics of the present invention are made. Any modification or modification should be regarded as not departing from the design scope of the present invention.

(1):第一電極 (2):電洞注入層(1): The first electrode (2): Hole injection layer

(3):電洞傳輸層 (4):量子點發光層(3): Hole transmission layer (4): Quantum dot light-emitting layer

(5):電子傳輸層 (6):第二電極(5): Electron transport layer (6): Second electrode

第一圖:本發明量子點發光二極體結構示意。Figure 1: Schematic diagram of the structure of the quantum dot light-emitting diode of the present invention.

第二圖:本發明使用之量子點材料與熱活化延遲螢光材料之吸收光譜與螢光光譜圖。Figure 2: Absorption spectrum and fluorescence spectrum of the quantum dot material and thermally activated delay fluorescent material used in the present invention.

第三圖:本發明量子點發光二極體之電致發光光譜分析圖。Figure 3: The electroluminescence spectrum analysis diagram of the quantum dot light-emitting diode of the present invention.

第四圖:本發明量子點發光二極體之驅動電壓分析圖。Figure 4: The driving voltage analysis diagram of the quantum dot light-emitting diode of the present invention.

第五圖:本發明量子點發光二極體之發光亮度分析圖。Figure 5: The luminous brightness analysis diagram of the quantum dot light-emitting diode of the present invention.

第六圖:本發明量子點發光二極體之電流效率分析圖。Figure 6: Current efficiency analysis diagram of the quantum dot light-emitting diode of the present invention.

without

(1):第一電極(1): The first electrode

(2):電洞注入層(2): Hole injection layer

(3):電洞傳輸層(3): Hole transmission layer

(4):量子點發光層(4): Quantum dot light-emitting layer

(5):電子傳輸層(5): Electron transport layer

(6):第二電極(6): Second electrode

Claims (8)

一種量子點發光二極體,包含一第一電極,該第一電極上係依序設置一電洞注入層,一電洞傳輸層,一量子點發光層,一電子傳輸層以及一第二電極,其中該電洞傳輸層係包含一主體材料與10~40wt%之一熱活化延遲螢光材料,其中該電洞傳輸層之該主體材料為聚[雙(4-苯基)(4-丁基苯基)胺(Poly(4-butylphenyldiphenylamine)),且該熱活化延遲螢光材料係為DDCzTrz(9,9',9",9'''-((6-phenyl-1,3,5-triazine-2,4-diyl)bis(benzene-5,3,1-triyl))tetrakis(9H-carbazole))。 A quantum dot light-emitting diode includes a first electrode on which a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a second electrode are sequentially arranged , Wherein the hole transport layer contains a host material and a thermally activated delayed fluorescent material of 10-40wt%, wherein the host material of the hole transport layer is poly[bis(4-phenyl)(4-butyl) Poly(4-butylphenyldiphenylamine), and the thermally activated delayed fluorescent material is DDCzTrz(9,9',9",9"'-((6-phenyl-1,3,5 -triazine-2,4-diyl)bis(benzene-5,3,1-triyl))tetrakis(9H-carbazole)). 如請求項1所述之量子點發光二極體,其中該第一電極係包含一玻璃基板與一透明導電薄膜,且該電洞注入層係設置於該透明導電薄膜上。 The quantum dot light-emitting diode according to claim 1, wherein the first electrode includes a glass substrate and a transparent conductive film, and the hole injection layer is disposed on the transparent conductive film. 如請求項1所述之量子點發光二極體,中該電洞注入層之厚度介於10~50nm、該電洞傳輸層之厚度介於10~50nm、該量子點發光層之厚度為10~30nm、該電子傳輸層之厚度為30~80nm、且該第二電極之厚度介於100~300nm。 The quantum dot light-emitting diode according to claim 1, wherein the hole injection layer has a thickness of 10-50 nm, the hole transport layer has a thickness of 10-50 nm, and the quantum dot light-emitting layer has a thickness of 10 ~30nm, the thickness of the electron transport layer is 30~80nm, and the thickness of the second electrode is between 100~300nm. 如請求項2所述之量子點發光二極體,其中該透明導電薄膜為氧化銦錫(ITO)薄膜。 The quantum dot light-emitting diode according to claim 2, wherein the transparent conductive film is an indium tin oxide (ITO) film. 如請求項1所述之量子點發光二極體,其中該電洞注入層係以聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸鹽(PEDOT:PSS)製備,且該量子點發光層係以硒化鎘/硫化鋅(CdSe/ZnS)材料製備。 The quantum dot light-emitting diode according to claim 1, wherein the hole injection layer is made of poly 3,4-ethylenedioxythiophene/polystyrene sulfonate (PEDOT: PSS), and the quantum dot emits light The layer system is made of cadmium selenide/zinc sulfide (CdSe/ZnS) material. 一種製備如請求項1所述之量子點發光二極體的方法,包含: 步驟一:取一玻璃基板,並於該玻璃基板上設置一透明導電薄膜以獲得一第一電極,再於該第一電極之該透明導電薄膜上塗佈一電洞注入層;步驟二:於該電洞注入層上塗佈一電洞傳輸層,其中該電洞傳輸層係包含一主體材料與10~40wt%之一熱活化延遲螢光材料,其中該主體材料為聚[雙(4-苯基)(4-丁基苯基)胺(Poly(4-butylphenyldiphenylamine)),該熱活化延遲螢光材料為DDCzTrz(9,9',9",9'''-((6-phenyl-1,3,5-triazine-2,4-diyl)bis(benzene-5,3,1-triyl))tetrakis(9H-carbazole));步驟三:於該電洞傳輸層上塗佈一量子點發光層,再於該量子點發光層上塗佈一電子傳輸層;以及步驟四:於該電子傳輸層上設置一第二電極。 A method for preparing the quantum dot light-emitting diode according to claim 1, comprising: Step 1: Take a glass substrate, set a transparent conductive film on the glass substrate to obtain a first electrode, and then coat a hole injection layer on the transparent conductive film of the first electrode; Step 2: The hole injection layer is coated with a hole transport layer, wherein the hole transport layer contains a host material and a thermally activated delayed fluorescent material of 10-40wt%, wherein the host material is poly[bis(4- Phenyl) (4-butylphenyldiphenylamine), the thermally activated delayed fluorescent material is DDCzTrz(9,9',9",9'''-((6-phenyl- 1,3,5-triazine-2,4-diyl)bis(benzene-5,3,1-triyl))tetrakis(9H-carbazole)); Step 3: Coating a quantum dot on the hole transport layer The light-emitting layer, and then coating an electron transport layer on the quantum dot light-emitting layer; and step 4: disposing a second electrode on the electron transport layer. 如請求項6所述之方法,其中該電洞注入層之厚度介於10~50nm、該電洞傳輸層之厚度介於10~50nm、該量子點發光層之厚度為10~30nm、該電子傳輸層之厚度為30~80nm、且該第二電極之厚度介於100~300nm。 The method according to claim 6, wherein the hole injection layer has a thickness of 10-50 nm, the hole transport layer has a thickness of 10-50 nm, the quantum dot light-emitting layer has a thickness of 10-30 nm, and the electron The thickness of the transmission layer is 30-80 nm, and the thickness of the second electrode is 100-300 nm. 如請求項6所述之方法,其中該透明導電薄膜為氧化銦錫(ITO)薄膜,該電洞注入層係以聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸鹽(PEDOT:PSS)製備,且該量子點發光層係以硒化鎘/硫化鋅(CdSe/ZnS)材料製備。 The method according to claim 6, wherein the transparent conductive film is an indium tin oxide (ITO) film, and the hole injection layer is made of poly 3,4-ethylenedioxythiophene/polystyrene sulfonate (PEDOT: PSS). ), and the quantum dot light-emitting layer is prepared with cadmium selenide/zinc sulfide (CdSe/ZnS) material.
TW108133641A 2019-09-18 2019-09-18 Quantum dot light-emitting diode and manufacturing method thereof TWI740209B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108133641A TWI740209B (en) 2019-09-18 2019-09-18 Quantum dot light-emitting diode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108133641A TWI740209B (en) 2019-09-18 2019-09-18 Quantum dot light-emitting diode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW202113029A TW202113029A (en) 2021-04-01
TWI740209B true TWI740209B (en) 2021-09-21

Family

ID=76604188

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108133641A TWI740209B (en) 2019-09-18 2019-09-18 Quantum dot light-emitting diode and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI740209B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI794978B (en) * 2021-09-15 2023-03-01 崑山科技大學 Quantum dot light-emitting diode and manufacturing method thereof
CN114773322A (en) * 2022-04-13 2022-07-22 吉林奥来德光电材料股份有限公司 An organic electroluminescent material and an organic electroluminescent device comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552245A (en) * 2016-02-18 2016-05-04 京东方科技集团股份有限公司 Electroluminescent device, fabrication method thereof and display device
CN106229423A (en) * 2016-07-01 2016-12-14 京东方科技集团股份有限公司 Quanta point electroluminescent device, its preparation method and display device
TW201820613A (en) * 2016-11-29 2018-06-01 比利時商愛美科公司 Light-emitting device
TW201924088A (en) * 2017-10-27 2019-06-16 日商半導體能源研究所股份有限公司 Light-emitting element, display device, electronic device, and lighting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552245A (en) * 2016-02-18 2016-05-04 京东方科技集团股份有限公司 Electroluminescent device, fabrication method thereof and display device
CN106229423A (en) * 2016-07-01 2016-12-14 京东方科技集团股份有限公司 Quanta point electroluminescent device, its preparation method and display device
TW201820613A (en) * 2016-11-29 2018-06-01 比利時商愛美科公司 Light-emitting device
TW201924088A (en) * 2017-10-27 2019-06-16 日商半導體能源研究所股份有限公司 Light-emitting element, display device, electronic device, and lighting device

Also Published As

Publication number Publication date
TW202113029A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
US10497890B2 (en) Quantum-dot electroluminescent device, method for preparing the same, and display device
CN104835916A (en) Highly-efficient organic electroluminescent device based on fluorescence doped luminescent layer
CN102903854A (en) A kind of white light organic electroluminescence device and its preparation method
CN110335954B (en) Efficient and stable white light organic electroluminescent device and preparation method thereof
CN106373989B (en) An organic light emitting display panel, electronic device and manufacturing method
CN102751449B (en) Organic light emitting diode
CN102723440A (en) ZnCuInS/ZnS quantum dot white light LED (Light Emitting Diode) based on compensation light emitting and manufacturing method thereof
CN111416049B (en) Application of double-exciplex host material in preparation of phosphorescent OLED device
CN106450020A (en) High-efficiency white light OLED device structure based on novel exciplex main body
CN105322099B (en) A kind of full fluorescence white organic LED and preparation method thereof
CN112164754B (en) Organic light-emitting device, display panel and display device
TWI740209B (en) Quantum dot light-emitting diode and manufacturing method thereof
CN107195793A (en) A kind of white light organic electroluminescent device and corresponding display panel
CN113659084A (en) High-efficiency high-color-rendering-index warm white organic electroluminescent device and preparation method thereof
CN111416047B (en) Fluorescence/phosphorescence mixed white light organic light emitting diode and preparation method thereof
CN103219473A (en) White organic light emitting device with single light emitting layer structure
CN1921171A (en) White light organic electroluminescent device
CN108735910B (en) A pure inorganic perovskite light-emitting diode based on a composite exciton recycling layer and its preparation method
US12238951B2 (en) Organic electroluminescent device and array substrate
CN108807710A (en) Undoped organic electroluminescence device and the preparation method of connecting with the complementary white light of doping
CN108682748A (en) A kind of series connection white light organic electroluminescent device
CN107026242B (en) A kind of organic iridium of dark blue light (III) complex OLED device
Chen et al. High-quality all-fluorescent white organic light-emitting diodes obtained by balancing carriers with hole limit layer
CN101593815A (en) White organic electroluminescent devices based on organic-inorganic composite color conversion film
CN207938660U (en) A highly efficient and stable hybrid white organic electroluminescent device