TWI739922B - Hard coat laminate having high hardness and manufacturing method for the same - Google Patents

Hard coat laminate having high hardness and manufacturing method for the same Download PDF

Info

Publication number
TWI739922B
TWI739922B TW106134882A TW106134882A TWI739922B TW I739922 B TWI739922 B TW I739922B TW 106134882 A TW106134882 A TW 106134882A TW 106134882 A TW106134882 A TW 106134882A TW I739922 B TWI739922 B TW I739922B
Authority
TW
Taiwan
Prior art keywords
active energy
group
mass
parts
meth
Prior art date
Application number
TW106134882A
Other languages
Chinese (zh)
Other versions
TW201832936A (en
Inventor
松山元信
辻本晴希
Original Assignee
日商日產化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日產化學工業股份有限公司 filed Critical 日商日產化學工業股份有限公司
Publication of TW201832936A publication Critical patent/TW201832936A/en
Application granted granted Critical
Publication of TWI739922B publication Critical patent/TWI739922B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

本發明提供一種具備可產生高耐擦傷性與硬 度的硬塗覆層之層合體。 The present invention provides a high scratch resistance and hard A layered body of a high-degree hard coating layer.

一種高硬度硬塗覆層合體,其為由基 材,與該基材上方的底漆層,與該底漆層之上方的硬塗覆層所形成的高硬度硬塗覆層合體,其中,前述底漆層為,由含有(A)由活性能量線硬化性多官能單體及聚合物所成之群所選出之多官能化合物、(B)無機微粒子及(C)經由活性能量線產生自由基之聚合起始劑的底漆層形成用組成物之硬化物所形成,前述硬塗覆層為,由含有(a)活性能量線硬化性多官能單體、(b)兩末端介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結活性能量線聚合性基之全氟聚醚及(c)經由活性能量線產生自由基之聚合起始劑的硬化性組成物之硬化物所形成,及其製造方法。 A high-hardness hard-coated laminate, which is made of base Material, a high-hardness hard coating laminate formed with a primer layer above the substrate, and a hard coating layer above the primer layer, wherein the primer layer is composed of (A) active A composition for forming a primer layer of a polyfunctional compound selected from the group of energy-ray curable polyfunctional monomers and polymers, (B) inorganic fine particles, and (C) a polymerization initiator that generates free radicals through active energy rays The hard coating layer is composed of (a) active energy ray-curable polyfunctional monomer, (b) poly(oxyalkylene) groups interposed at both ends, or in sequence interposed by poly(oxyalkylene) groups. (Oxyalkylene) group and 1 urethane bond group, perfluoropolyether bonded with active energy ray polymerizable group and (c) curing of polymerization initiator that generates free radicals through active energy ray The formation of the hardened substance of the sexual composition and its manufacturing method.

Description

高硬度硬塗覆層合體及其製造方法 High-hardness hard-coated laminate and manufacturing method thereof

本發明為有關具備有優良耐擦傷性的硬塗覆層之高硬度硬塗覆層合體及其製造方法。 The present invention relates to a high-hardness hard-coated laminate having a hard-coated layer with excellent scratch resistance and a method of manufacturing the same.

以往,於個人電腦、攜帶式電話、攜帶式遊戲機、ATM等的平版顯示器上,搭載觸控平板的製品已有非常多數商品化。特別是,經由智慧型手機或平板電腦PC之上市,而使得具有多點觸控機能的靜電容量式觸控平板一口氣擴大其搭載數。 In the past, a large number of products equipped with touch panels have been commercialized on flat-panel displays such as personal computers, portable phones, portable game consoles, and ATMs. In particular, with the launch of smartphones or tablet PCs, the number of capacitive touch panels with multi-touch functions has been expanded at one go.

該些觸控平板顯示器表面為使用薄化的強化玻璃,故為防止該玻璃飛散,多於顯示器表面貼附保護薄膜。保護薄膜,因使用塑膠薄膜,故容易產生因玻璃所造成的傷痕,故於該表面,必須設有優良耐擦傷性的硬塗覆層。對塑膠薄膜表面賦予耐擦傷性之方法,例如可使用形成高度的交聯結構,即形成分子運動性較低的交聯結構以提高表面硬度、對外力賦予抵抗性之方法等。 The surface of these touch panel displays uses thinned strengthened glass, so in order to prevent the glass from scattering, more protective films are attached to the surface of the display. The protective film, because of the use of plastic film, is prone to scratches caused by glass. Therefore, a hard coating layer with excellent scratch resistance must be provided on the surface. The method of imparting scratch resistance to the surface of the plastic film, for example, can be used to form a highly cross-linked structure, that is, to form a cross-linked structure with low molecular mobility to increase the surface hardness and impart resistance to external forces.

該些之硬塗覆層形成材料中,現在最常使用的多官能丙烯酸酯系材料中,大部份於常溫下為液狀之單體,於受到光聚合起始劑產生之自由基而進行立體交聯。丙烯酸酯系具有,可經由紫外線(UV)而硬化,照射UV的時間非常短而節省能量、高生產性等之特徴。於塑膠薄膜表面形成硬塗覆層之手段,例如,多採用將多官能丙烯酸酯、光聚合起始劑及含有有機溶劑的溶液,經由凹版塗佈等塗覆於塑膠薄膜上,於使有機溶劑乾燥後,經由紫外線而硬化,形成硬塗覆層之手段。於所形成的硬塗覆層中,就使硬度、耐擦傷性等之機能,於實用上不會產生問題的程度之目的,通常為使硬塗覆層之厚度形成1~15μm。 Among these hard coat layer forming materials, most of the most commonly used multifunctional acrylate-based materials are monomers that are liquid at room temperature, and are subjected to free radicals generated by a photopolymerization initiator. Three-dimensional crosslinking. Acrylic esters can be cured by ultraviolet (UV), and the UV irradiation time is very short, which saves energy and has high productivity. The method of forming a hard coating layer on the surface of a plastic film, for example, usually uses polyfunctional acrylate, a photopolymerization initiator, and a solution containing an organic solvent to coat the plastic film through gravure coating, etc., to make the organic solvent After drying, it is cured by ultraviolet rays to form a hard coating layer. In the formed hard coating layer, the purpose of making the functions such as hardness, scratch resistance, etc., cause no problems in practical use, is usually to make the thickness of the hard coating layer 1~15μm.

又,亦有揭示特別是於作為顯示器保護用途的硬塗覆層上,尋求更高之硬度時,而於多官能丙烯酸酯樹脂中添加反應性二氧化矽微粒子作為賦予高硬度之成份的技術(專利文獻1、專利文獻2)。 In addition, it has also been disclosed that especially when higher hardness is sought for hard coatings for display protection purposes, the technique of adding reactive silica particles to multifunctional acrylate resins as a component for imparting high hardness ( Patent Document 1, Patent Document 2).

但,靜電容量式觸控平板為使用人們的手指,以接觸方式進行操作。因此,進行操作時,常於觸控平板表面上附著指紋,而產生顯著地損害顯示器的圖像辨識性,或造成顯示器外觀污損等問題。指紋上因含有由汗產生的水份及皮脂產生的油分,為使該些中任一者皆不易附著之觀點,即強烈期待於顯示器表面的硬塗覆層上,可賦予撥水性及撥油性。 However, the capacitive touch panel uses people's fingers to operate in touch. Therefore, during operation, fingerprints are often attached to the surface of the touch panel, which causes problems such as significantly impairing the image recognition of the display or causing the appearance of the display to be defaced. Fingerprints contain moisture produced by sweat and oil produced by sebum. In order to make any of them difficult to adhere to, it is strongly expected to be applied to the hard coating layer on the surface of the display to impart water repellency and oil repellency. .

基於該些觀點,於觸控平板顯示器表面,極期待可對指紋等具有防污性。但,靜電容量式觸控平板,因人們每天都使用手指接觸,故即使初期可達到相當程度的防污性,但於使用中,其機能大多會有降低之情形。因此,於使用過程的防污性之耐久性多會成為問題。   [0005] 以往,賦予硬塗覆層表面防污性之方法,例如,於形成硬塗覆層的塗佈液中,少量添加氟系表面改質劑之方法。所添加的氟系化合物,基於其低表面能量而會偏存於硬塗覆層之表面,因而可賦予撥水性及撥油性。氟系化合物,例如,就撥水性、撥油性之觀點,一般多使用具有聚(氧代全氟伸烷)鏈的稱為全氟聚醚之具有數平均分子量1,000~5,000左右的低聚物。但是,因全氟聚醚具有高氟濃度,故通常難以溶解於形成硬塗覆層的塗佈液所使用的有機溶劑。又,於所形成的硬塗覆層中,也會引起凝聚現象。   該些全氟聚醚中,就對有機溶劑賦予溶解性及於硬塗覆層中之分散性等觀點,多使用於全氟聚醚中附加有機部位之方法。此外,就賦予耐擦傷性之觀點,則多使用鍵結(甲基)丙烯酸酯基所代表的活性能量線硬化性部位之方法。   目前為止,於具有耐擦傷性的防污性硬塗覆層中,對硬塗覆層表面賦予防污性之成份,已有揭示為使用於聚(氧代全氟伸烷)鏈的兩末端,具有介由具有異佛爾酮骨架之複數的胺基甲酸酯鍵結基鍵結的(甲基)丙烯醯基之化合物作為表面改質劑使用之技術(專利文獻3)。 [先前技術文獻] [專利文獻]   [0006]   [專利文獻1] 特開2010-82864號公報   [專利文獻2] 特開2009-84398號公報   [專利文獻3] 特開2013-76029號公報Based on these viewpoints, the surface of the touch panel display is highly expected to have anti-fouling properties against fingerprints and the like. However, since people use their fingers to touch the capacitive touch panel every day, even if a considerable degree of anti-fouling performance can be achieved in the initial stage, most of its performance will be reduced during use. Therefore, the durability of antifouling properties during use often becomes a problem.  [0005] Conventionally, the method of imparting antifouling properties to the surface of the hard coating layer, for example, a method of adding a small amount of a fluorine-based surface modifier to the coating solution for forming the hard coating layer. The added fluorine-based compound will be concentrated on the surface of the hard coating layer due to its low surface energy, so it can impart water repellency and oil repellency. For the fluorine-based compound, for example, in terms of water repellency and oil repellency, oligomers having a number average molecular weight of 1,000 to 5,000, which are called perfluoropolyethers, having a poly(oxoperfluoroalkylene) chain are generally used. However, since perfluoropolyether has a high fluorine concentration, it is generally difficult to dissolve in the organic solvent used in the coating liquid for forming the hard coat layer. In addition, in the formed hard coating layer, agglomeration phenomenon may also occur.   Among these perfluoropolyethers, from the viewpoints of imparting solubility to organic solvents and dispersibility in the hard coating layer, the method of adding organic parts to the perfluoropolyether is mostly used. In addition, from the viewpoint of imparting scratch resistance, a method of bonding active energy ray-curable sites represented by (meth)acrylate groups is often used. So far, in anti-fouling hard coatings with scratch resistance, components that impart anti-fouling properties to the surface of the hard coating have been disclosed to be used at both ends of the poly(oxyperfluoroalkylene) chain , A technique for using a compound having a (meth)acryloyl group bonded via a plurality of urethane bonding groups having an isophorone skeleton as a surface modifier (Patent Document 3). [Prior Art Literature] [Patent Literature]   [0006]   [Patent Literature 1] JP 2010-82864 A    [Patent Literature 2] JP 2009-84398 A    [Patent Literature 3] JP 2013-76029 A

[發明所欲解決之問題]   [0007] 專利文獻1及專利文獻2所揭示之方法中,雖可使反應性二氧化矽微粒子於高濃度下複合,而得到更高之硬度,但因二氧化矽微粒子之緣故故會於表面形成微細之凹凸,而會有無法得到充份的耐擦傷性之問題。   又,專利文獻3所具體記載的方法中,為以尋求對硬塗覆層表面賦予耐擦傷性及防污性為目的者,故目前為止對於如何產生高硬度之方法,仍未有具體之研究。 [解決問題之方法]   [0008] 本發明者們,為解決上述問題經過重複深入研究結果,得知於基材與硬塗覆層之間設置含有無機微粒子的底漆層時,可賦予硬塗覆層更高之硬度。即,使用將含有於聚(氧代全氟伸烷)基的分子鏈之兩末端介由聚(伸氧烷)基,或聚(伸氧烷)基及1個的胺基甲酸酯鍵結基鍵結活性能量線聚合性基的全氟聚醚,作為氟系表面改質劑的硬化性組成物,作為硬塗覆層之形成材料時,發現具有優良的耐擦傷性,而可形成具有具備高硬度的硬塗覆層之層合體,因而完成本發明。   [0009] 即本發明之第1觀點為有關,一種高硬度硬塗覆層合體,其為由基材,與該基材上方的底漆層,與該底漆層上方之硬塗覆層所形成的高硬度硬塗覆層合體,其特徵為,   前述底漆層為由含有   (A)由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物100質量份、   (B)無機微粒子100~1,000質量份,及   (C)經由活性能量線產生自由基之聚合起始劑相對於成份(A)及成份(B)之合計100質量份,為1~20質量份;   又,前述成份(B)之無機微粒子,為具有活性能量線聚合性基之粒子, 的底漆層形成用組成物之硬化物所形成;   前述硬塗覆層為由含有   (a)活性能量線硬化性多官能單體100質量份、   (b)含有聚(氧代全氟伸烷)基的分子鏈之兩末端介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結活性能量線聚合性基之全氟聚醚0.1~10質量份,及   (c)經由活性能量線產生自由基之聚合起始劑1~20質量份 的硬化性組成物之硬化物所形成。   第2觀點為有關,第1觀點記載之高硬度硬塗覆層合體,其中,前述成份(B)之無機微粒子為具有10~100nm的平均粒徑之粒子。   第3觀點為有關,第1觀點或第2觀點記載之高硬度硬塗覆層合體,其中,前述成份(B)之無機微粒子為二氧化矽微粒子。   第4觀點為有關,第1觀點至第3觀點中之任一項記載之高硬度硬塗覆層合體,其中,前述成份(b)的全氟聚醚之聚(氧代全氟伸烷)基,為具有以-[OCF2 ]-及-[OCF2 CF2 ]-作為重複單位之基。   第5觀點為有關,第1觀點至第4觀點中之任一項記載之高硬度硬塗覆層合體,其中,前述成份(b)的全氟聚醚之聚(伸氧烷)基為聚(伸氧乙烯)基。   第6觀點為有關,第1觀點至第5觀點中之任一項記載之高硬度硬塗覆層合體,其中,前述成份(A)的多官能單體,為由多官能(甲基)丙烯酸酯化合物及多官能胺基甲酸酯(甲基)丙烯酸酯化合物所成之群所選出之至少1種。   第7觀點為有關,第1觀點至第6觀點中之任一項記載之高硬度硬塗覆層合體,其中,前述成份(a)的多官能單體,為由多官能(甲基)丙烯酸酯化合物及多官能胺基甲酸酯(甲基)丙烯酸酯化合物所成之群所選出之至少1種。   第8觀點為有關,第1觀點至第7觀點中之任一項記載之高硬度硬塗覆層合體,其中,前述成份(C)之經由活性能量線產生自由基之聚合起始劑,為烷基苯酮類聚合起始劑。   第9觀點為有關,第1觀點至第8觀點中之任一項記載之高硬度硬塗覆層合體,其中,前述成份(c)之經由活性能量線產生自由基之聚合起始劑,為烷基苯酮類聚合起始劑。   第10觀點為有關,一種高硬度硬塗覆層合體的製造方法,其為於基材之至少一者之面上具備底漆層,與該底漆層之上方的硬塗覆層之高硬度硬塗覆層合體的製造方法,其特徵為包含   於基材上塗佈底漆層形成用組成物而形成塗膜之步驟、   使用活性能量線照射該底漆層形成用組成物之塗膜,使該塗膜硬化,而形成底漆層之步驟、   於前述底漆層上塗佈硬化性組成物,而形成塗膜之步驟,及   使用活性能量線照射該硬化性組成物之塗膜,使該塗膜硬化,而形成硬塗覆層之步驟;   前述底漆層形成用組成物為含有   (A)由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物100質量份、   (B)無機微粒子100~1,000質量份,及   (C)經由活性能量線產生自由基之聚合起始劑相對於成份(A)及成份(B)之合計100質量份,為1~20質量份   又,前述成份(B)之無機微粒子,為具有活性能量線聚合性基之粒子,   前述硬化性組成物為含有   (a)活性能量線硬化性多官能單體100質量份、   (b)含有聚(氧代全氟伸烷)基的分子鏈之兩末端介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結活性能量線聚合性基之全氟聚醚0.1~10質量份,及   (c)經由活性能量線產生自由基之聚合起始劑1~20質量份。 [發明之效果]   [0010] 依本發明之說明,可提供一種於厚度1~15μm左右的薄膜,也可具有優良的耐擦傷性,且具備高硬度的硬塗覆層之層合體。 [實施發明之形態]   [0011] 本發明之高硬度硬塗覆層合體,為由基材,與該基材上方的底漆層,與該底漆層之上方之硬塗覆層所形成的。   又,本發明之高硬度硬塗覆層合體中,前述底漆層為由底漆層形成用組成物之硬化物所形成;前述硬塗覆層為由硬化性組成物之硬化物所形成。   以下,將詳細敘述構成本發明之高硬度硬塗覆層合體的各層內容。   [0012] 《基材》   本發明之高硬度硬塗覆層合體中之基材並未有特別之限定,例如,塑膠(聚碳酸酯、聚丙烯酸甲酯、聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯、聚酯、PET(聚乙烯對苯二甲酸酯)、聚烯烴、環氧樹脂、三聚氰胺樹脂、三乙醯基纖維素、ABS(丙烯腈-丁二烯-苯乙烯共聚物)、AS(丙烯腈-苯乙烯共聚物)、降莰烯系樹脂等)、金屬、木材、紙、玻璃、二氧化矽、板岩等。該些基材之形狀可為板狀、薄膜狀或立體成形體。   其中,本發明中,基材又以使用PET或PMMA為佳。   上述基材之厚度並未有特別之限定,例如可為10~1,000μm等。   [0013] 《底漆層》 <底漆層形成用組成物>   本發明之高硬度硬塗覆層合體中之底漆層,為由含有下述(A)~(C)之底漆層形成用組成物的硬化物所形成:   (A)由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物100質量份、   (B)無機微粒子100~1,000質量份,及   (C)經由活性能量線產生自由基之聚合起始劑相對於成份(A)及成份(B)之合計100質量份,為1~20質量份。   以下,將對上述(A)~(C)等各成份進行說明。   [0014] [(A)由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物]   活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物,係指可經由紫外線等的活性能量線照射而進行聚合、硬化之單體及聚合物。   又,後述硬化性組成物中之(a)活性能量線硬化性多官能單體,可使用與(A)多官能化合物中之以下〈活性能量線硬化性多官能單體〉中所列舉之化合物為相同內容的化合物。   [0015] 〈活性能量線硬化性多官能單體〉   本發明之硬化性組成物中,較佳的活性能量線硬化性多官能單體,例如,由多官能(甲基)丙烯酸酯化合物及多官能胺基甲酸酯(甲基)丙烯酸酯化合物所成之群所選出之單體。   又,本發明中,(甲基)丙烯酸酯化合物,係指丙烯酸酯化合物與丙烯酸甲酯化合物等二者。例如(甲基)丙烯酸,係指丙烯酸與甲基丙烯酸之意。   [0016] 上述多官能(甲基)丙烯酸酯化合物,例如,三羥甲基丙烷三(甲基)丙烯酸酯、二-三羥甲基丙烷四(甲基)丙烯酸酯、季戊四醇二(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、季戊四醇二(甲基)丙烯酸酯單硬脂酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、丙三醇三(甲基)丙烯酸酯、丙氧化丙三醇三(甲基)丙烯酸酯、乙氧化三羥甲基丙烷三(甲基)丙烯酸酯、丙氧化三羥甲基丙烷三(甲基)丙烯酸酯、乙氧化季戊四醇四(甲基)丙烯酸酯、乙氧化二季戊四醇六(甲基)丙烯酸酯、乙氧化丙三醇三(甲基)丙烯酸酯、乙氧化雙酚A二(甲基)丙烯酸酯、乙氧化雙酚F二(甲基)丙烯酸酯、1,3-丙烷二醇二(甲基)丙烯酸酯、1,3-丁烷二醇二(甲基)丙烯酸酯、1,4-丁烷二醇二(甲基)丙烯酸酯、1,6-己烷二醇二(甲基)丙烯酸酯、2-甲基-1,8-辛烷二醇二(甲基)丙烯酸酯、1,9-壬二醇二(甲基)丙烯酸酯、1,10-癸烷二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、乙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸酯、四乙二醇二(甲基)丙烯酸酯、丙二醇二(甲基)丙烯酸酯、二丙二醇二(甲基)丙烯酸酯、雙(2-羥乙基)異三聚氰酸酯二(甲基)丙烯酸酯、三(2-羥乙基)異三聚氰酸酯二(甲基)丙烯酸酯、三(2-羥乙基)異三聚氰酸酯三(甲基)丙烯酸酯、三環[5.2.1.02,6 ]癸烷二甲醇二(甲基)丙烯酸酯、二噁烷二醇二(甲基)丙烯酸酯、2-羥基-1-丙烯醯氧基-3-甲基丙烯醯氧基丙烷、2-羥基-1,3-二(甲基)丙烯醯氧基丙烷、9,9-雙[4-(2-(甲基)丙烯醯氧基代乙氧基)苯基]茀、雙[4-(甲基)丙烯醯基硫苯基]硫醚、雙[2-(甲基)丙烯醯基硫乙基]硫醚、1,3-金剛烷二醇二(甲基)丙烯酸酯、1,3-金剛烷二甲醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、三(2-(甲基)丙烯醯氧基乙基)磷酸鹽、ε-己內酯變性三(2-羥乙基)異三聚氰酸酯三(甲基)丙烯酸酯等。   其中,較佳者,可列舉如,季戊四醇三(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯等。   [0017] 上述多官能胺基甲酸酯(甲基)丙烯酸酯化合物為,1分子內具有多數個丙烯醯基或甲基丙烯醯基,且具有1個以上的胺基甲酸酯鍵結(-NHCOO-)之化合物。   例如上述多官能胺基甲酸酯(甲基)丙烯酸酯化合物,例如,由多官能異氰酸酯與具有羥基之(甲基)丙烯酸酯進行反應而製得者、由多官能異氰酸酯與具有羥基之(甲基)丙烯酸酯與聚醇進行反應而製得者等,其並不限定於本發明所可使用的官能胺基甲酸酯(甲基)丙烯酸酯化合物所列舉之例示。   [0018] 又,上述多官能異氰酸酯,例如,伸甲苯基二異氰酸酯、異佛爾酮二異氰酸酯、二甲苯二異氰酸酯、伸六甲基二異氰酸酯等。   又,具有上述羥基之(甲基)丙烯酸酯,例如,(甲基)丙烯酸2-羥乙基、(甲基)丙烯酸2-羥丙基、季戊四醇三(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、三季戊四醇七(甲基)丙烯酸酯等。   又,上述聚醇,例如,乙二醇、丙二醇、新戊二醇、1,4-丁烷二醇、1,6-己烷二醇、二乙二醇、二丙二醇等的二醇類;該些二醇類與琥珀酸、馬來酸、己二酸等的脂肪族二羧酸類或二羧酸酐類的反應生成物之聚酯聚醇;聚醚聚醇;聚碳酸酯二醇等。   [0019] 〈活性能量線硬化性多官能聚合物〉   上述活性能量線硬化性多官能聚合物,為聚合物側鏈具有多數個丙烯醯基或甲基丙烯醯基,且重量平均分子量(Mw)為1萬以上之化合物。   例如上述活性能量線硬化性多官能聚合物,例如,具有縮水甘油基之(甲基)丙烯酸酯(共)聚合物與(甲基)丙烯酸進行反應之聚合物、具有羥基之(甲基)丙烯酸酯(共)聚合物與具有異氰酸酯基之(甲基)丙烯酸酯進行反應之聚合物、具有異氰酸酯基之(甲基)丙烯酸酯(共)聚合物與具有羥基之(甲基)丙烯酸酯進行反應之聚合物、僅使用同時具有乙烯醚基與(甲基)丙烯醯基之單體的乙烯醚基進行選擇性聚合之聚合物等,但,本發明所可使用的活性能量線硬化性多官能聚合物,並不受該些例示所限定。   [0020] 上述活性能量線硬化性多官能聚合物之市售品,例如,DAICEL-ALLNEX(股)製、聚合物系丙烯酸酯:ACA Z200M、同Z230AA、同Z250、同Z251、同Z300、同Z320、同Z254F;DIC(股)製、聚合物型丙烯酸酯:UNIDIC(登記商標)V-6840、同V-6841、同WHV-649、同EKS-675;大成精密化學(股)製、UV硬化型聚合物:8KX-012C、8KX-014C、8KX-018C、8KX-052C、8KX-056C、8KX-058、8KX-077、8KX-078、8KX-089;日立化成(股)製、聚合物型丙烯酸酯:HIDEROIDE(登記商標)7975、同7975D、同7988;亞細亞工業(股)製、聚合物型丙烯酸酯:RUA-049,RUA-054、KX50-200等。   [0021] 本發明中,上述(A)多官能化合物,可使用由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之單獨一種,或二種以上之組合。又,活性能量線硬化性多官能單體,可使用由上述多官能(甲基)丙烯酸酯化合物及上述多官能胺基甲酸酯(甲基)丙烯酸酯化合物所成之群所選出之單獨一種,或二種以上之組合。   就提高所得硬化物之硬度的觀點,(A)多官能化合物,以至少使用活性能量線硬化性多官能聚合物者為佳,特別以合併使用活性能量線硬化性多官能聚合物與活性能量線硬化性多官能單體者為佳。此時,活性能量線硬化性多官能單體,以合併使用多官能(甲基)丙烯酸酯化合物與上述多官能胺基甲酸酯(甲基)丙烯酸酯化合物者為佳。又,上述多官能(甲基)丙烯酸酯化合物,以合併使用5官能以上的多官能(甲基)丙烯酸酯化合物及4官能以下的多官能(甲基)丙烯酸酯化合物者為佳。   上述(A)多官能化合物中,活性能量線硬化性多官能聚合物與活性能量線硬化性多官能單體,以使用100:0~25:75之質量比例者為佳。   [0022] 上述活性能量線硬化性多官能單體中,將多官能(甲基)丙烯酸酯化合物與上述多官能胺基甲酸酯(甲基)丙烯酸酯化合物組合使用時,相對於多官能(甲基)丙烯酸酯化合物100質量份,以使用20~100質量份之多官能胺基甲酸酯(甲基)丙烯酸酯化合物,以使用30~70質量份為較佳。   又,上述多官能(甲基)丙烯酸酯化合物中,上述5官能以上的多官能(甲基)丙烯酸酯化合物與上述4官能以下的多官能(甲基)丙烯酸酯化合物組合使用時,相對於5官能以上的多官能(甲基)丙烯酸酯化合物100質量份,以使用10~100質量份之4官能以下的多官能(甲基)丙烯酸酯化合物為佳,以使用20~60質量份為較佳。   [0023] 其中,又以使用活性能量線硬化性多官能聚合物與活性能量線硬化性多官能單體為95:5~25:75之質量比例,且相對於多官能(甲基)丙烯酸酯化合物100質量份,使用多官能胺基甲酸酯(甲基)丙烯酸酯化合物20~100質量份,及相對於5官能以上的多官能(甲基)丙烯酸酯化合物100質量份,使用4官能以下的多官能(甲基)丙烯酸酯化合物10~100質量份,較佳為20~60質量份者為佳,   特別是使用活性能量線硬化性多官能聚合物與活性能量線硬化性多官能單體為95:5~25:75之質量比例,且相對於多官能(甲基)丙烯酸酯化合物100質量份,使用多官能胺基甲酸酯(甲基)丙烯酸酯化合物30~70質量份,及相對於5官能以上的多官能(甲基)丙烯酸酯化合物100質量份,使用4官能以下的多官能(甲基)丙烯酸酯化合物10~100質量份,較佳為20~60質量份者為佳。   [0024] [(B)無機微粒子]   本發明所使用之(B)無機微粒子,例如,只要為具有後述活性能量線聚合性基之粒子時,並未有特別之限定,例如,二氧化矽(silica);氧化鋁、氧化鋯、氧化鈦、氧化鋅、氧化鍺、氧化銦、氧化錫、銦錫氧化物、氧化銻、氧化鈰等的金屬氧化物微粒子;氟化鎂、氟化鈉等的金屬氟化物微粒子;金屬硫化物微粒子;金屬氮化物微粒子;金屬微粒子等。   [0025] 上述(B)無機微粒子,就提高底漆層形成用組成物中分散性之目的,或提高與基材或硬塗覆層之密著性、形成均勻的底漆層之目的時,或就形成可得到更高硬度的硬塗覆層的底漆層之目的時,亦可對該微粒子進行表面處理。   該表面處理,例如,可使用乙烯基矽烷、胺基矽烷等的矽烷系耦合劑;鈦酸酯系耦合劑;鋁酸酯系耦合劑;具有(甲基)丙烯醯基、乙烯基等的活性能量線聚合性基或環氧基等反應性官能基之有機化合物;脂肪酸、脂肪酸金屬鹽等之表面處理劑等進行表面處理。   其中,本發明所使用的上述(B)無機微粒子,於使用經具有活性能量線聚合性基的表面處理劑進行表面處理後的具有活性能量線聚合性基的無機微粒子時,可經由構成底漆層的成份(A)之由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物,與該無機微粒子而形成交聯結構,而提升底漆層及硬塗覆層之層合結構之硬度。   [0026] 上述成份(B)無機微粒子的平均粒徑,就可得到硬度改良效果之觀點,及可保持底漆層之透明性的觀點,以300nm以下,例如1~200nm,特別是以5~100nm為佳。   又,此處所稱之平均粒徑,係指經由氮吸附法(BET法)所測定之比表面積(m2 ),依平均粒徑=(2720/比表面積)之計算式計算而得之值。   又,前述無機微粒子之形狀並未有特別之限定,例如,可為顆粒狀的略球形亦可、粉末等的不定形者亦可,又以略球形者為佳,更佳為長徑比為1.5以下之略球形粒子,最佳為正球狀粒子。   [0027] 本發明所使用的(B)無機微粒子中,就可形成具有更高硬度的硬塗覆層之底漆層的觀點,以使用莫氏硬度6以上的無機氧化物粒子為佳,例如,以二氧化矽微粒子、氧化鈦微粒子、氧化鋯微粒子、氧化鋁微粒子等為佳。   [0028] 上述無機微粒子,可使用膠體粒子狀的無機微粒子。例如二氧化矽微粒子,可適當地使用經分散介質所分散的二氧化矽凝膠,或市售的膠體二氧化矽。   該二氧化矽凝膠,例如,將矽酸鈉水溶液作為原料,依公知之方法製得的水性二氧化矽凝膠,及將作為該水性二氧化矽凝膠的分散介質的水,使用有機溶劑取代而得的有機二氧化矽凝膠等。   上述有機二氧化矽凝膠中之有機溶劑(分散介質)之例,例如,甲醇、乙醇、異丙醇、丁醇等的低級醇類;乙二醇、乙基溶纖劑(cellosolve)、丙基溶纖劑、丙二醇單甲醚(PGME)、丙二醇單甲醚乙酸酯(PGMEA)等的二醇類;甲基乙酮(MEK)、甲基異丁酮(MIBK)等的酮類;甲苯、二甲苯等的芳香族烴類;N,N-二甲基甲醯胺(DMF)、N,N-二甲基乙醯胺(DMAc)、N-甲基-2-吡咯啶酮(NMP)等之醯胺類;乙酸乙酯、乙酸丁酯、γ-丁內酯等的酯類;四氫呋喃、1,4-二噁烷等的醚類等。   [0029] 上述無機微粒子中,較佳的二氧化矽微粒子(二氧化矽凝膠)之市售品,例如,日產化學工業(股)製:有機二氧化矽凝膠(登記商標)MEK-AC-2140Z、同MEK-AC-4130Y、同MEK-AC-5140Z、同PGM-AC-2140Y、同PGM-AC-4130Y、同MIBK-AC-2140Y、同MIBK-SD、同MIBK-SD-L等。該些之二氧化矽微粒子,為具有活性能量線聚合性基者。   [0030] 上述成份(B)無機微粒子之添加量,相對於上述成份(A)100質量份,就表面硬度之觀點,為100質量份以上,較佳為200質量份以上,更佳為400質量份以上。另一方面,就耐龜裂性之觀點,較佳為1,000質量份以下,更佳為900質量份以下,特佳為800質量份以下。   又,(B)無機微粒子之添加量,以使(B)無機微粒子的體積分率佔底漆層全體積為50~90體積%之方式添加為佳。   [0031] [(C)經由活性能量線產生自由基之聚合起始劑]   本發明所使用之底漆層形成用組成物中,經由活性能量線產生自由基之聚合起始劑(以下,亦僅稱為「(C)聚合起始劑」),例如,可經由電子線、紫外線、X線等的活性能量線,特別是可經由紫外線照射而產生自由基的聚合起始劑。   又,後述的硬化性組成物中之(c)經由活性能量線產生自由基之聚合起始劑,可使用與(C)聚合起始劑中所列舉的化合物為相同內容之聚合起始劑。   [0032] 上述(C)聚合起始劑,例如,苯醯類、烷基苯酮類、9-氧硫

Figure 106134882-A0304-12-01
Figure 106134882-A0304-12-02
類、偶氮類、疊氮類、重氮類、o-醌二疊氮類、醯基次膦(phosphine)氧化物類、肟酯類、有機過氧化物、二苯甲酮類、雙香豆素類、雙咪唑類、二茂鈦類、硫醚類、鹵化烴類、三氯甲基三
Figure 106134882-A0304-12-03
類、錪鹽、鋶鹽等之鎓鹽類等。該些可單獨使用一種,或將二種以上混合使用皆可。   其中,本發明中,就透明性、表面硬化性、薄膜硬化性之觀點,以使用(C)作為聚合起始劑之烷基苯酮類聚合起始劑為佳。使用烷基苯酮類聚合起始劑時,可製得耐擦傷性更為優良的硬化膜。   [0033] 上述烷基苯酮類聚合起始劑,例如,1-羥基環己基=苯基=酮、2-羥基-2-甲基-1-苯基丙烷-1-酮、2-羥基-1-(4-(2-羥基乙氧基)苯基)-2-甲基丙烷-1-酮、2-羥基-1-(4-(4-(2-羥基-2-甲基丙醯基)苄基)苯基)-2-甲基丙烷-1-酮等的α-羥烷基苯酮類;2-甲基-1-(4-(甲基硫)苯基)-2-嗎啉基丙烷-1-酮、2-苄基-2-二甲胺基-1-(4-嗎啉基苯基)丁烷-1-酮等的α-胺烷基苯酮類;2,2-二甲氧基-1,2-二苯基乙烷-1-酮;苯基乙醛酸甲基等。   [0034] 本發明中之(C)聚合起始劑,相對於前述(A)由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物,及(B)無機微粒子的合計100質量份,以使用1~20質量份,較佳為2~10質量份之比例為宜。   [0035] [(D)溶劑]   本發明所使用之底漆層形成用組成物,可為含有(D)溶劑之塗料(膜形成材料)形態。   [0036] 上述溶劑,例如,可於考慮使前述(A)~(C)成份溶解,與後述形成硬化物(底漆層)時所進行的塗佈時之作業性或硬化前後之乾燥性等,作適當之選擇即可,例如,可使用苯、甲苯、二甲苯、乙基苯、四氫萘等的芳香族烴類;n-己烷、n-庚烷、礦油精、環己烷等的脂肪族或脂環式烴類;氯化甲酯、溴化甲酯、碘化甲酯、二氯甲烷、氯仿、四氯化碳、三氯乙烯、過氯乙烯、o-二氯苯等的鹵化烴類;乙酸乙酯、乙酸丁酯、甲氧基丁基乙酸酯、甲基溶纖劑乙酸酯、乙基溶纖劑乙酸酯、丙二醇單甲醚乙酸酯等的酯類或酯醚類;二乙醚、四氫呋喃、1,4-二噁烷、甲基溶纖劑、乙基溶纖劑、丁基溶纖劑、丙二醇單甲醚、丙二醇單乙醚、丙二醇單-n-丙醚、丙二醇單異丙醚、丙二醇單-n-丁醚等的醚類;丙酮、甲基乙酮、甲基異丁酮、二-n-丁酮、環己酮等的酮類;甲醇、乙醇、n-丙醇、異丙醇、n-丁醇、異丁醇、tert-丁醇、2-乙基己醇、苄醇、乙二醇等的醇類;N,N-二甲基甲醯胺、N,N-二甲基乙醯胺等之醯胺類;二甲基亞碸等的亞碸類;N-甲基-2-吡咯啶酮等的雜環式化合物類,及該些之2種以上之混合溶劑等。   該些(D)溶劑的使用量並未有特別之限定,例如,可使本發明所使用之底漆層形成用組成物中之固形成份濃度達1~70質量%,較佳為10~60質量%之濃度的方式使用。其中,固形成份濃度(亦稱為不揮發成份濃度),係指相對於本發明所使用之底漆層形成用組成物的前述(A)~(D)成份(及所期待之其他添加劑)的總質量(合計質量),該固形成份(由全成份去除溶劑成份之後)的含量之意。   [0037] [其他添加物]   又,本發明所使用之底漆層形成用組成物中,於無損及本發明效果之範圍,必要時,可適當添加一般所添加的添加劑,例如,聚合促進劑、聚合阻礙劑、光增感劑、均染劑、界面活性劑、密著性賦予劑、可塑劑、紫外線吸收劑、抗氧化劑、儲存安定劑、抗靜電劑、無機填充劑、顏料、染料等。   [0038] 特別是本發明所使用的底漆層形成用組成物中,因添加有無機微粒子,故就使形成底漆層時的塗膜表面平滑化,以可防止損害塗佈外觀或透明性之缺陷發生等觀點,又以添加均染劑為佳。   該均染劑,可使用公知的聚矽氧系、氟系、丙烯酸系、乙烯系等。   上述均染劑,例如,丙烯酸系均染劑、聚矽氧系均染劑、氟系均染劑、聚矽氧・丙烯酸基共聚物系均染劑、氟變性丙烯酸系均染劑、氟變性聚矽氧系均染劑,及於該些均染劑中導入甲氧基、乙氧基等之烷氧基、醯基氧基、鹵素基、胺基、乙烯基、環氧基、甲基丙烯醯氧基、丙烯醯氧基、異氰酸酯基等的官能基的均染劑等。   添加均染劑之情形,相對於前述(A)由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物及(B)無機微粒子之合計100質量份時,就透明性、塗佈外觀、密著性、硬度等觀點,以5質量份以下為佳,以0.001~2質量份為較佳,以0.01~1質量份為更佳。   [0039] 《硬塗覆層》 <硬化性組成物>   本發明之高硬度硬塗覆層合體中之硬塗覆層,為由含有下述(a)~(c)之硬化性組成物所得之硬化物(即硬化膜)所形成。   (a)活性能量線硬化性多官能單體100質量份、   (b)含有聚(氧代全氟伸烷)基的分子鏈之兩末端介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基之具有活性能量線聚合性基之全氟聚醚0.1~10質量份,及   (c)經由活性能量線產生自由基之聚合起始劑1~20質量份。   以下,將對上述(a)~(c)各成份進行說明。   [0040] [(a)活性能量線硬化性多官能單體]   本發明所使用的硬化性組成物所使用的(a)活性能量線硬化性多官能單體,係指經由紫外線等的活性能量線照射,而進行聚合反應而硬化之單體之意,其為與前述底漆層形成組成物中所添加的(A)多官能化合物中,〈活性能量線硬化性多官能單體〉為相同內容的化合物,即,為由前述的多官能(甲基)丙烯酸酯化合物及多官能胺基甲酸酯(甲基)丙烯酸酯化合物所成之群所選出之單體。   [0041] 硬化性組成物中,上述(a)活性能量線硬化性多官能單體,可單獨使用由上述多官能(甲基)丙烯酸酯化合物及上述多官能胺基甲酸酯(甲基)丙烯酸酯化合物所成之群所選出之一種,或將二種以上組合使用皆可。就所得硬化物之耐擦傷性之觀點,以合併使用多官能(甲基)丙烯酸酯化合物及多官能胺基甲酸酯(甲基)丙烯酸酯化合物者為佳。又,上述多官能(甲基)丙烯酸酯化合物,又以合併使用5官能以上的多官能(甲基)丙烯酸酯化合物及4官能以下的多官能(甲基)丙烯酸酯化合物為佳。   又,上述多官能(甲基)丙烯酸酯化合物與上述多官能胺基甲酸酯(甲基)丙烯酸酯化合物組合使用之情形,相對於多官能(甲基)丙烯酸酯化合物100質量份,以使用多官能胺基甲酸酯(甲基)丙烯酸酯化合物20~100質量份為佳,以使用30~70質量份為較佳。   又,於上述多官能(甲基)丙烯酸酯化合物中,將上述5官能以上的多官能(甲基)丙烯酸酯化合物與上述4官能以下的多官能(甲基)丙烯酸酯化合物組合使用之情形,相對於5官能以上的多官能(甲基)丙烯酸酯化合物100質量份,以使用4官能以下的多官能(甲基)丙烯酸酯化合物10~100質量份為佳,以使用20~60質量份為較佳。   又,以相對於多官能(甲基)丙烯酸酯化合物100質量份,使用多官能胺基甲酸酯(甲基)丙烯酸酯化合物20~100質量份,且相對於相對於5官能以上的多官能(甲基)丙烯酸酯化合物100質量份,使用4官能以下的多官能(甲基)丙烯酸酯化合物10~100質量份、   相對於多官能(甲基)丙烯酸酯化合物100質量份,使用多官能胺基甲酸酯(甲基)丙烯酸酯化合物20~100質量份,且相對於相對於5官能以上的多官能(甲基)丙烯酸酯化合物100質量份,使用4官能以下的多官能(甲基)丙烯酸酯化合物20~60質量份、   相對於多官能(甲基)丙烯酸酯化合物100質量份,使用多官能胺基甲酸酯(甲基)丙烯酸酯化合物30~70質量份,且相對於相對於5官能以上的多官能(甲基)丙烯酸酯化合物100質量份,使用4官能以下的多官能(甲基)丙烯酸酯化合物10~100質量份、   相對於多官能(甲基)丙烯酸酯化合物100質量份,使用多官能胺基甲酸酯(甲基)丙烯酸酯化合物30~70質量份,且相對於相對於5官能以上的多官能(甲基)丙烯酸酯化合物100質量份,使用4官能以下的多官能(甲基)丙烯酸酯化合物20~60質量份者為佳。   [0042] [(b)含有聚(氧代全氟伸烷)基的分子鏈之兩末端介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結活性能量線聚合性基之全氟聚醚]   本發明中,(b)成份,為使用於含有聚(氧代全氟伸烷)基的分子鏈之兩末端,介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結活性能量線聚合性基之全氟聚醚(以下,亦僅稱為「(b)兩末端具有聚合性基之全氟聚醚」)。(b)成份,於使用本發明所使用之硬化性組成物的硬塗覆層中,具有作為表面改質劑之機能。   [0043] 上述聚(氧代全氟伸烷)基中之伸烷基的碳原子數並未有特別之限定,較佳以碳原子數1~4為宜。即,上述聚(氧代全氟伸烷)基,係指碳原子數1~4的2價氟化碳基與氧原子具有呈交互連結的結構之基,氧代全氟伸烷基係指碳原子數1~4的2價氟化碳基與氧原子具有呈連結的結構之基。具體而言,例如,-[OCF2 ]-(氧代全氟伸甲基)、-[OCF2 CF2 ]-(氧代全氟伸乙基)、-[OCF2 CF2 CF2 ]-(氧代全氟丙烷-1,3-二基-基)、-[OCF2 C(CF3 )F]-(氧代全氟丙烷-1,2-二基-基)等的基等。   上述氧代全氟伸烷基,可單獨使用一種亦可,或將二種以上組合使用亦可,該情形中,複數種的氧代全氟伸烷基之鍵結,可為嵌段鍵結或無規鍵結中之任一種皆可。   [0044] 該些之中,就可製得具有良好耐擦傷性的硬化膜之觀點,該聚(氧代全氟伸烷)基,以使用具有 -[OCF2 ]-(氧代全氟伸甲基)與-[OCF2 CF2 ]-(氧代全氟伸乙基)二者作為重複單位之基為佳。   其中,上述聚(氧代全氟伸烷)基,又以含有莫耳比例為[重複單位:-[OCF2 ]-]:[重複單位:-[OCF2 CF2 ]-]=2:1~1:2之比例的重複單位:-[OCF2 ]-與-[OCF2 CF2 ]-之基為佳,以含有大致為1:1之比例之基為較佳。該些重複單位之鍵結,可為嵌段鍵結及無規鍵結中之任一者。   上述氧代全氟伸烷基的重複單位數,其重複單位數之總計以5~30的範圍為佳,以7~21之範圍為較佳。   又,上述聚(氧代全氟伸烷)基的凝膠滲透層析儀的聚苯乙烯換算所測定之重量平均分子量(Mw)為1,000~5,000,較佳為1,500~2,000。   [0045] 上述聚(伸氧烷)基中之伸烷基的碳原子數並未有特別之限定,較佳為碳原子數1~4為宜。即,上述聚(伸氧烷)基,係指碳原子數1~4之伸烷基與氧原子具有呈交互連結的結構之基,氧烷基係指碳原子數1~4的2價伸烷基與氧原子具有呈連結的結構之基。上述伸烷基,例如,伸乙基、1-甲基伸乙基、伸三甲基、伸四甲基等。   上述氧烷基,可單獨使用一種亦可,或將二種以上組合使用亦可,該情形中,複數種之氧烷基的鍵結可為嵌段鍵結或無規鍵結之任一者皆可。   其中,上述聚(伸氧烷)基又以聚(伸氧乙烯)基為佳。   上述聚(伸氧烷)基中之氧烷基的重複單位數,例如可為1~15之範圍,例如可為5~12之範圍,又例如以7~12之範圍為較佳。   [0046] 介由上述聚(伸氧烷)基或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基鍵結之活性能量線聚合性基,例如,(甲基)丙烯醯基、胺基甲酸酯(甲基)丙烯醯基、乙烯基等。   [0047] 上述活性能量線聚合性基,並不僅限定於具有1個(甲基)丙烯醯基部份等的活性能量線聚合性部份者,其亦可具有2個以上的活性能量線聚合性部份者,例如,以下所示之A1~A5之結構,及該些之結構中的丙烯醯基被甲基丙烯醯基所取代之結構等。   [0048]
Figure 02_image001
[0049] 該些(b)兩末端具有聚合性基之全氟聚醚,就工業上容易製造等觀點,以下示之化合物及該些之化合物中的丙烯醯基被甲基丙烯醯基所取代之化合物為較佳之例示。又,結構式中,A表示前述式[A1]~式[A5]所表示之結構中之1個,PFPE表示前述聚(氧代全氟伸烷)基,n各別獨立表示氧乙烯基的重複單位數,較佳為表示1~15之數,更佳為表示5~12之數,特佳為表示7~12之數。
Figure 02_image003
[0050] 其中,本發明之(b)兩末端具有聚合性基之全氟聚醚,又以於含有聚(氧代全氟伸烷)基的分子鏈之兩末端,依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,即,於含有聚(氧代全氟伸烷)基的分子鏈之兩末端分別鍵結聚(伸氧烷)基,並於該兩端的各聚(伸氧烷)基上分別鍵結1個胺基甲酸酯鍵結基,並於該兩端的各胺基甲酸酯鍵結上,分別鍵結活性能量線聚合性基而得的全氟聚醚為佳。又,於前述全氟聚醚中,以具有至少2個以上的活性能量線聚合性基之活性能量線聚合性部份之基的全氟聚醚為佳。   [0051] 本發明中,(b)兩末端具有聚合性基之全氟聚醚,相對於前述(a)活性能量線硬化性多官能單體100質量份,為使用0.1~10質量份,較佳為0.2~5質量份之比例。   [0052] 上述(b)兩末端具有聚合性基之全氟聚醚,例如,可使用於聚(氧代全氟伸烷)基的兩末端具有介由聚(伸氧烷)基之羥基的化合物中,對該兩端的羥基,使用2-(甲基)丙烯醯氧基異氰酸乙酯或1,1-雙((甲基)丙烯醯氧基甲基)異氰酸乙酯等之具有聚合性基的異氰酸酯化合物進行胺基甲酸酯化反應之方法、使(甲基)丙烯酸氯化物或氯甲基苯乙烯進行脫鹽酸反應之方法、使(甲基)丙烯酸進行脫水反應之方法、使依康酸酐進行酯化反應之方法等而製得。   其中,又以於聚(氧代全氟伸烷)基的兩末端具有介由聚(伸氧烷)基之羥基的化合物中,對該兩端的羥基,使用2-(甲基)丙烯醯氧基異氰酸乙酯或1,1-雙((甲基)丙烯醯氧基甲基)異氰酸乙酯等之具有聚合性基的異氰酸酯化合物進行胺基甲酸酯化反應之方法,或對該羥基使用(甲基)丙烯酸氯化物或氯甲基苯乙烯進行脫鹽酸反應之方法,就容易進行反應之觀點,而為特佳。   [0053] 又,本發明所使用之硬化性組成物中,除(b)含有聚(氧代全氟伸烷)基的分子鏈之兩末端介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結活性能量線聚合性基之全氟聚醚以外,可再包含於含有聚(氧代全氟伸烷)基的分子鏈之一端介由聚(伸氧烷)基或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,而具有活性能量線聚合性基,且其他端介由聚(伸氧烷)基而具有羥基之全氟聚醚,或,於含有聚(氧代全氟伸烷)基的分子鏈之兩端介由聚(伸氧烷)基而具有羥基之全氟聚醚[未鍵結活性能量線聚合性基之化合物]。   [0054] [(c)經由活性能量線產生自由基之聚合起始劑]   本發明所使用之硬化性組成物中,較佳之經由活性能量線產生自由基之聚合起始劑(以下,亦僅稱為「(c)聚合起始劑」),例如,經由電子線、紫外線、X線等的活性能量線,特別是經紫外線照射而產生自由基之聚合起始劑,其可使用與添加於前述底漆層形成組成物之(C)聚合起始劑為相同內容之起始劑。   其中,本發明就透明性、表面硬化性、薄膜硬化性之觀點,以使用(c)作為聚合起始劑之烷基苯酮類為佳。使用烷基苯酮類聚合起始劑時,可製得使耐擦傷性更為提升之硬化膜。   本發明中,(c)聚合起始劑,相對於前述(a)活性能量線硬化性多官能單體100質量份,為使用1~20質量份,較佳為使用2~10質量份之比例為宜。   [0055] [(d)溶劑]   本發明所使用之硬化性組成物中,可再含有(d)溶劑,即形成塗料(膜形成材料)形態者亦可。   上述溶劑,例如,可於考慮可溶解前述(a)~(c)成份,且於後述形成硬化膜(硬塗覆層)時的塗佈時之作業性或硬化前後之乾燥性等,作適當之選擇即可,例如,苯、甲苯、二甲苯、乙基苯、四氫萘等的芳香族烴類;n-己烷、n-庚烷、礦油精、環己烷等的脂肪族或脂環式烴類;氯化甲酯、溴化甲酯、碘化甲酯、二氯甲烷、氯仿、四氯化碳、三氯乙烯、過氯乙烯、o-二氯苯等的鹵化烴類;乙酸乙酯、乙酸丁酯、甲氧基丁基乙酸酯、甲基溶纖劑乙酸酯、乙基溶纖劑乙酸酯、丙二醇單甲醚乙酸酯等的酯類或酯醚類;二乙醚、四氫呋喃、1,4-二噁烷、甲基溶纖劑、乙基溶纖劑、丁基溶纖劑、丙二醇單甲醚、丙二醇單乙醚、丙二醇單-n-丙醚、丙二醇單異丙醚、丙二醇單-n-丁醚等的醚類;丙酮、甲基乙酮、甲基異丁酮、二-n-丁酮、環己酮等的酮類;甲醇、乙醇、n-丙醇、異丙醇、n-丁醇、異丁醇、tert-丁醇、2-乙基己醇、苄醇、乙二醇等的醇類;N,N-二甲基甲醯胺、N,N-二甲基乙醯胺等之醯胺類;二甲基亞碸等的亞碸類;N-甲基-2-吡咯啶酮等的雜環式化合物類,及該些之2種以上之混合溶劑等。   該些(d)溶劑之使用量並未有特別之限定,例如可使用使本發明所使用之硬化性組成物中之固形成份濃度為1~70質量%,較佳為5~50質量%之濃度。其中,固形成份濃度(亦稱為不揮發成份濃度),係指相對於本發明所使用之硬化性組成物的前述(a)~(d)成份(及所期待之其他添加劑)的總質量(合計質量),固形成份(由全成份去除溶劑成份者)之含量之意。   [0056] [其他添加物]   又,本發明所使用之硬化性組成物中,於無損及本發明效果之範圍,必要時,可適當添加一般的添加劑,例如,聚合促進劑、聚合阻礙劑、光增感劑、均染劑、界面活性劑、密著性賦予劑、可塑劑、紫外線吸收劑、抗氧化劑、儲存安定劑、抗靜電劑、無機填充劑、顏料、染料等。   [0057] 《高硬度硬塗覆層合體》   如前所述,本發明之高硬度硬塗覆層合體為由基材,與該基材上方之底漆層,與該底漆層更上方的硬塗覆層所形成的3層之層合體。   本發明之高硬度硬塗覆層合體為包含:   (i)於基材上塗佈底漆層形成用組成物而形成塗膜之步驟、   (ii)使用活性能量線照射該底漆層形成用組成物之塗膜,使該塗膜硬化,而形成底漆層之步驟、   (iii)於前述底漆層上塗佈硬化性組成物,而形成塗膜之步驟,及   (iv)使用活性能量線照射該硬化性組成物之塗膜,使其硬化而形成硬塗覆層之步驟 而製得者。   其中,底漆層形成用組成物及硬化性組成物,為可使用上述各組成物。   [0058] 上述(i)及(iii)步驟中之底漆層形成用組成物及硬化性組成物的塗覆方法,可適當地選擇鑄模塗佈法、旋轉塗佈法、平板塗佈法、浸潤塗佈(dipcoat)法、滾筒塗佈法、條狀塗佈法、模具(die)塗佈法、噴灑塗佈法、淋幕式塗佈法、噴墨法、印刷法(凸版、凹版、平版、網版印刷等)等,其又可使用捲對捲(roll-to-roll)法,又,就薄膜塗佈性之觀點,以使用凸版印刷法,特別是凹版塗佈法為佳。其中所使用的底漆層形成用組成物及硬化性組成物,只要為前述塗料形態者,皆可適當使用。又,以於事前使用孔徑2μm左右的過濾器,將底漆層形成用組成物及硬化性組成物過濾之後,再予塗覆為佳。   [0059] 於上述(i)步驟之塗覆底漆層形成用組成物之後,及,(iii)步驟塗覆硬化性組成物後,較佳為繼續使用加熱板或烘箱等,經由預乾燥而去除溶劑(溶劑去除步驟)。此時加熱乾燥之條件,例如,40~120℃、30秒~10分左右者為佳。   乾燥後,於(ii)或(iv)步驟為使用紫外線等的活性能量線照射,進行光硬化而形成底漆層及硬塗覆層。活性能量線,例如,紫外線、電子線、X線等。紫外線照射所使用的光源,例如,可使用太陽光線、化學燈、低壓水銀燈、高壓水銀燈、金屬鹵素燈、氙氣燈、UV-LED等。   隨後,經進行後燒焙,具體而言,為使用加熱板、烘箱等進行加熱,而完成聚合及聚縮合反應。   [0060] 依此方式所得之本發明之層合體中,上述底漆層之厚度並未有特別之限定,例如可為0.1~1,000μm,較佳為1~100μm之範圍。   又,硬塗覆層之厚度並未有特別之限定,例如為1~30μm之範圍,較佳為1~20μm,更佳為3~10μm。[Problems to be Solved by the Invention] [0007] In the methods disclosed in Patent Document 1 and Patent Document 2, although reactive silica particles can be recombined at a high concentration to obtain higher hardness, due to the Because of the silicon particles, fine irregularities are formed on the surface, and there is a problem that sufficient scratch resistance cannot be obtained. In addition, the method specifically described in Patent Document 3 aims to provide scratch resistance and antifouling properties to the surface of the hard coating layer. Therefore, there has been no specific study on how to produce high hardness so far. . [Methods to Solve the Problem] [0008] In order to solve the above-mentioned problems, the inventors of the present invention have conducted repeated and in-depth studies and found that when a primer layer containing inorganic fine particles is provided between the substrate and the hard coating layer, a hard coating can be provided. Higher hardness of the coating. That is, using a poly(oxyalkylene) group or a poly(oxyalkylene) group and a urethane bond between both ends of the molecular chain containing the poly(oxyperfluoroalkylene) group The perfluoropolyether with the active energy ray polymerizable group bonded to the base is used as a curable composition of a fluorine-based surface modifier. When used as a material for forming a hard coat layer, it has been found to have excellent scratch resistance and can be formed The laminate has a hard coating layer with high hardness, thus completing the present invention. [0009] That is, the first aspect of the present invention relates to a high-hardness hard-coating laminate composed of a substrate, a primer layer above the substrate, and a hard coating layer above the primer layer. The formed high-hardness hard coat laminate is characterized in that the primer layer is selected from the group consisting of (A) an active energy ray-curable multifunctional monomer and an active energy ray-curable multifunctional polymer 100 parts by mass of multifunctional compound, (B) 100~1,000 parts by mass of inorganic fine particles, and (C) polymerization initiator that generates free radicals through active energy rays relative to the total of 100 parts of component (A) and component (B) Parts, 1-20 parts by mass; In addition, the inorganic fine particles of the aforementioned component (B) are particles with active energy ray polymerizable groups, formed by the cured product of the primer layer forming composition; the aforementioned hard coating layer It consists of (a) 100 parts by mass of active energy ray-curable multifunctional monomer, (b) poly(oxyperfluoroalkylene) group-containing molecular chain between both ends of poly(oxyalkylene) group, or 0.1-10 parts by mass of perfluoropolyether which is bonded with active energy ray polymerizable group via poly(oxyalkylene) group and 1 urethane bonding group in sequence, and (c) through active energy It is formed from a hardened product of a curable composition containing 1-20 parts by mass of a polymerization initiator that generates free radicals. The second viewpoint relates to the high-hardness hard coat laminate described in the first viewpoint, wherein the inorganic fine particles of the component (B) are particles having an average particle diameter of 10 to 100 nm. The third aspect relates to the high-hardness hard coat laminate described in the first aspect or the second aspect, wherein the inorganic fine particles of the aforementioned component (B) are silica fine particles. The fourth viewpoint is related to the high-hardness hard coating laminate described in any one of the first to third viewpoints, wherein the poly(oxoperfluoroethylene) of the perfluoropolyether of the aforementioned component (b) The base is a base having -[OCF 2 ]- and -[OCF 2 CF 2 ]- as repeating units. The fifth point of view relates to the high-hardness hard coat laminate described in any one of the first to fourth points of view, wherein the poly(oxyalkylene) group of the perfluoropolyether of the aforementioned component (b) is a poly(oxyalkylene) group. (Ethylene oxide) group. The sixth point of view relates to the high-hardness hard coat laminate described in any one of the first to fifth points of view, wherein the polyfunctional monomer of the aforementioned component (A) is made of polyfunctional (meth)acrylic acid At least one selected from the group consisting of an ester compound and a polyfunctional urethane (meth)acrylate compound. The seventh point of view relates to the high-hardness hard coat laminate described in any one of the first to sixth points of view, wherein the polyfunctional monomer of the aforementioned component (a) is made of polyfunctional (meth)acrylic acid At least one selected from the group consisting of an ester compound and a polyfunctional urethane (meth)acrylate compound. The eighth point of view relates to the high-hardness hard coat laminate described in any one of the first to seventh points of view, wherein the aforementioned component (C) is a polymerization initiator that generates radicals via active energy rays Alkyl phenone polymerization initiator. The ninth point of view relates to the high-hardness hard coat laminate described in any one of the first to eighth points of view, wherein the aforementioned component (c) generates radicals via active energy rays as a polymerization initiator Alkyl phenone polymerization initiator. The tenth point of view is related to a method for manufacturing a high-hardness hard-coating laminate, which is provided with a primer layer on at least one of the substrates, and the high hardness of the hard-coating layer above the primer layer The method for producing a hard coat laminate is characterized by including a step of coating a primer layer forming composition on a substrate to form a coating film, irradiating the coating film of the primer layer forming composition with active energy rays, The step of curing the coating film to form a primer layer, the step of coating the curable composition on the primer layer to form a coating film, and the step of irradiating the coating film of the curable composition with active energy rays to make The step of curing the coating film to form a hard coating layer; The composition for forming the primer layer contains (A) composed of an active energy ray curable polyfunctional monomer and an active energy ray curable polyfunctional polymer 100 parts by mass of multifunctional compound selected from the group, (B) 100 to 1,000 parts by mass of inorganic fine particles, and (C) polymerization initiator that generates free radicals through active energy rays relative to component (A) and component (B) A total of 100 parts by mass is 1-20 parts by mass. In addition, the inorganic fine particles of the aforementioned component (B) are particles having active energy ray polymerizable groups, and the aforementioned curable composition contains (a) active energy ray curable polyfunctional 100 parts by mass of the monomer, (b) a poly(oxyalkylene) group is interposed at both ends of the molecular chain containing a poly(oxyperfluoroalkylene) group, or a poly(oxyalkylene) group and 1 One urethane bonding group, 0.1-10 parts by mass of perfluoropolyether bonded with active energy ray polymerizable group, and (c) 1-20 mass parts of polymerization initiator that generates free radicals through active energy ray share. [Effects of the Invention] [0010] According to the description of the present invention, it is possible to provide a film with a thickness of about 1-15 μm, which also has excellent scratch resistance and a laminate of a hard coating layer with high hardness. [Modes of Implementing the Invention] [0011] The high-hardness hard coating laminate of the present invention is formed by a substrate, a primer layer above the substrate, and a hard coating layer above the primer layer . Furthermore, in the high-hardness hard coat laminate of the present invention, the primer layer is formed of a cured product of the primer layer forming composition; and the hard coat layer is formed of a cured product of the curable composition. Hereinafter, the content of each layer constituting the high-hardness hard coat laminate of the present invention will be described in detail. [0012] "Substrate" The substrate in the high hardness hard coating laminate of the present invention is not particularly limited, for example, plastics (polycarbonate, polymethyl acrylate, polymethyl methacrylate (PMMA)) , Polystyrene, polyester, PET (polyethylene terephthalate), polyolefin, epoxy resin, melamine resin, triacetyl cellulose, ABS (acrylonitrile-butadiene-styrene copolymer) ), AS (acrylonitrile-styrene copolymer), norbornene resins, etc.), metal, wood, paper, glass, silica, slate, etc. The shape of these substrates can be plate, film or three-dimensional formed body. Among them, in the present invention, it is better to use PET or PMMA as the substrate. The thickness of the aforementioned substrate is not particularly limited, and may be, for example, 10 to 1,000 μm. [0013] "Primer layer"<Composition for forming a primer layer> The primer layer in the high-hardness hard coat laminate of the present invention is formed of a primer layer containing the following (A) to (C) It is formed with a cured product of the composition: (A) 100 parts by mass of a polyfunctional compound selected from the group of active energy ray curable polyfunctional monomers and active energy ray curable polyfunctional polymers, (B) inorganic 100 to 1,000 parts by mass of fine particles, and (C) a polymerization initiator that generates radicals via active energy rays, is 1 to 20 parts by mass relative to the total of 100 parts by mass of component (A) and component (B). Hereinafter, each component such as the above-mentioned (A) to (C) will be explained. [0014] [(A) Multifunctional compound selected from the group of active energy ray curable multifunctional monomer and active energy ray curable multifunctional polymer] Active energy ray curable multifunctional monomer and active energy Linear-curable polyfunctional polymers refer to monomers and polymers that can be polymerized and cured by irradiation with active energy rays such as ultraviolet rays. In addition, the (a) active energy ray curable polyfunctional monomer in the curable composition described later can be used with the compounds listed in the following "active energy ray curable multifunctional monomer" in (A) polyfunctional compound It is a compound of the same content. [0015] <Active energy ray curable polyfunctional monomer> In the curable composition of the present invention, a preferable active energy ray curable polyfunctional monomer is composed of, for example, a polyfunctional (meth)acrylate compound and a polyfunctional (meth)acrylate compound. A monomer selected from the group of functional urethane (meth)acrylate compounds. In addition, in the present invention, the (meth)acrylate compound refers to both the acrylate compound and the methyl acrylate compound. For example, (meth)acrylic acid means acrylic acid and methacrylic acid. [0016] The above-mentioned polyfunctional (meth)acrylate compound, for example, trimethylolpropane tri(meth)acrylate, di-trimethylolpropane tetra(meth)acrylate, pentaerythritol bis(meth) Acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol di(meth)acrylate monostearate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate Base) acrylate, glycerol tri(meth)acrylate, propoxyglycerol tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, propoxytrimethylol Propane tri(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, ethoxylated dipentaerythritol hexa(meth)acrylate, ethoxylated glycerol tri(meth)acrylate, ethoxylated bisphenol A Di(meth)acrylate, ethoxylated bisphenol F di(meth)acrylate, 1,3-propanediol di(meth)acrylate, 1,3-butanediol di(meth)acrylic acid Ester, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 2-methyl-1,8-octanediol di(meth)acrylate Base) acrylate, 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, ethylene diacrylate Alcohol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate )Acrylate, dipropylene glycol di(meth)acrylate, bis(2-hydroxyethyl) isocyanurate di(meth)acrylate, tris(2-hydroxyethyl) isocyanurate Di(meth)acrylate, tris(2-hydroxyethyl)isocyanurate tri(meth)acrylate, tricyclo[5.2.1.0 2,6 ]decane dimethanol di(meth)acrylic acid Ester, dioxanediol di(meth)acrylate, 2-hydroxy-1-propenoxy-3-methacryloxypropane, 2-hydroxy-1,3-bis(meth)propene Glyoxypropane, 9,9-bis[4-(2-(meth)propenyloxyethoxy)phenyl]sulfur, bis[4-(meth)propenylthiophenyl]sulfur Ether, bis[2-(meth)acryloylthioethyl]sulfide, 1,3-adamantanediol di(meth)acrylate, 1,3-adamantane dimethanol di(meth)acrylic acid Ester, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, tris(2-(meth)acryloyloxyethyl) phosphate, ε-caprolactone modified tris( 2-hydroxyethyl) isocyanurate tri(meth)acrylate and the like. Among them, preferred ones include, for example, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexa(meth)acrylate. [0017] The above-mentioned polyfunctional urethane (meth)acrylate compound has a plurality of acrylic or methacrylic groups in one molecule, and has one or more urethane linkages ( -NHCOO-) compound. For example, the above-mentioned polyfunctional urethane (meth)acrylate compound, for example, is prepared by reacting a polyfunctional isocyanate with a (meth)acrylate having a hydroxyl group, and is prepared from a polyfunctional isocyanate and a (meth)acrylate having a hydroxyl group. It is not limited to the examples of the functional urethane (meth)acrylate compound that can be used in the present invention, and the like. [0018] In addition, the above-mentioned multifunctional isocyanate includes, for example, tolylene diisocyanate, isophorone diisocyanate, xylene diisocyanate, hexamethyl diisocyanate, and the like. In addition, (meth)acrylates having the above-mentioned hydroxyl groups, for example, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta( Meth) acrylate, tripentaerythritol hepta (meth)acrylate and the like. In addition, the above-mentioned polyols are, for example, glycols such as ethylene glycol, propylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, and dipropylene glycol; Polyester polyols, polyether polyols, polycarbonate diols, etc., as reaction products of these diols and aliphatic dicarboxylic acids such as succinic acid, maleic acid, and adipic acid or dicarboxylic anhydrides. [0019] <Active energy ray-curable polyfunctional polymer> The above-mentioned active energy ray-curable polyfunctional polymer has a plurality of acryloyl or methacryloyl groups in the side chain of the polymer, and has a weight average molecular weight (Mw) It is a compound of more than 10,000. For example, the above-mentioned active energy ray-curable multifunctional polymer, for example, (meth)acrylate (co)polymer with glycidyl group reacted with (meth)acrylic acid, (meth)acrylic acid with hydroxyl group Ester (co)polymers react with (meth)acrylates having isocyanate groups, (meth)acrylates (co)polymers with isocyanate groups react with (meth)acrylates having hydroxyl groups The polymer, the polymer selectively polymerized using only the vinyl ether group of the monomer having both vinyl ether group and (meth)acrylic acid group, etc. However, the active energy ray curable multifunctional polymer that can be used in the present invention The polymer is not limited by these examples. [0020] Commercial products of the above-mentioned active energy ray curable multifunctional polymer, for example, DAICEL-ALLNEX (stock) system, polymer-based acrylate: ACA Z200M, the same as Z230AA, the same as Z250, the same as Z251, the same as Z300, the same Z320, same as Z254F; DIC (stock) system, polymer acrylic: UNIDIC (registered trademark) V-6840, same as V-6841, same as WHV-649, same as EKS-675; Dacheng Fine Chemicals (share) system, UV Hardening polymer: 8KX-012C, 8KX-014C, 8KX-018C, 8KX-052C, 8KX-056C, 8KX-058, 8KX-077, 8KX-078, 8KX-089; Hitachi Chemical Co., Ltd., polymer Type acrylate: HIDEROIDE (registered trademark) 7975, same as 7975D, same as 7988; manufactured by Asia Industrial Co., Ltd., polymer acrylate: RUA-049, RUA-054, KX50-200, etc. [0021] In the present invention, the above-mentioned (A) polyfunctional compound may be selected from the group consisting of active energy ray curable polyfunctional monomers and active energy ray curable polyfunctional polymers, or two A combination of the above. In addition, the active energy ray-curable multifunctional monomer may be a single selected from the group consisting of the above-mentioned multifunctional (meth)acrylate compound and the above-mentioned multifunctional urethane (meth)acrylate compound , Or a combination of two or more. From the viewpoint of increasing the hardness of the cured product obtained, (A) the polyfunctional compound is preferably one that uses at least an active energy ray-curable polyfunctional polymer, and especially the combination of an active energy ray-curable polyfunctional polymer and an active energy ray The curable polyfunctional monomer is preferred. In this case, the active energy ray-curable polyfunctional monomer is preferably one that uses a polyfunctional (meth)acrylate compound and the above-mentioned polyfunctional urethane (meth)acrylate compound in combination. In addition, the above-mentioned polyfunctional (meth)acrylate compound is preferably one that uses a combination of a polyfunctional (meth)acrylate compound having five or more functions and a multifunctional (meth)acrylate compound having four or less functions in combination. Among the above-mentioned (A) polyfunctional compounds, the active energy ray-curable polyfunctional polymer and the active energy ray-curable polyfunctional monomer are preferably used in a mass ratio of 100:0 to 25:75. [0022] In the active energy ray-curable multifunctional monomer, when a multifunctional (meth)acrylate compound is used in combination with the above multifunctional urethane (meth)acrylate compound, it is relative to the multifunctional ( For 100 parts by mass of the meth)acrylate compound, 20 to 100 parts by mass of the polyfunctional urethane (meth)acrylate compound is used, preferably 30 to 70 parts by mass. In addition, in the above-mentioned polyfunctional (meth)acrylate compound, when the above-mentioned polyfunctional (meth)acrylate compound having five or more functions is used in combination with the above-mentioned polyfunctional (meth)acrylate compound having four or less functions, the ratio is relative to 5 100 parts by mass of polyfunctional (meth)acrylate compounds having more than functionality, preferably 10-100 parts by mass of polyfunctional (meth)acrylate compounds less than tetrafunctional, and more preferably 20-60 parts by mass . [0023] Among them, the active energy ray-curable multifunctional polymer and the active energy ray-curable multifunctional monomer are used in a mass ratio of 95:5 to 25:75, and relative to the multifunctional (meth)acrylate 100 parts by mass of the compound, 20-100 parts by mass of the polyfunctional urethane (meth)acrylate compound, and less than tetrafunctional relative to 100 parts by mass of the polyfunctional (meth)acrylate compound with more than 5 functions 10-100 parts by mass of the polyfunctional (meth)acrylate compound, preferably 20-60 parts by mass, especially active energy ray curable polyfunctional polymer and active energy ray curable polyfunctional monomer It is a mass ratio of 95:5 to 25:75, and 30 to 70 parts by mass of the polyfunctional urethane (meth)acrylate compound is used relative to 100 parts by mass of the polyfunctional (meth)acrylate compound, and It is preferable to use 10-100 parts by mass, preferably 20-60 parts by mass, of polyfunctional (meth)acrylate compounds with tetrafunctional or less than 100 parts by mass of polyfunctional (meth)acrylate compounds having pentafunctional or higher . [0024] [(B) Inorganic fine particles] The (B) inorganic fine particles used in the present invention are not particularly limited as long as they are particles having an active energy ray polymerizable group described later, for example, silicon dioxide ( silica); aluminum oxide, zirconium oxide, titanium oxide, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide, antimony oxide, cerium oxide and other metal oxide particles; magnesium fluoride, sodium fluoride, etc. Metal fluoride particles; metal sulfide particles; metal nitride particles; metal particles, etc. [0025] The above (B) inorganic fine particles are used for the purpose of improving the dispersibility in the primer layer forming composition, or improving the adhesion to the substrate or the hard coating layer, and forming a uniform primer layer, Or for the purpose of forming a primer layer that can obtain a hard coat layer with higher hardness, the fine particles may be surface-treated. For this surface treatment, for example, silane coupling agents such as vinyl silane and amino silane can be used; titanate coupling agents; aluminate coupling agents; it has the activity of (meth)acryloyl, vinyl, etc. Organic compounds with reactive functional groups such as energy ray polymerizable groups or epoxy groups; surface treatment agents for fatty acids, fatty acid metal salts, etc. Among them, the above-mentioned (B) inorganic fine particles used in the present invention, when surface-treated with a surface treatment agent having active energy ray polymerizable groups, can be formed through a primer The component (A) of the layer is a multifunctional compound selected from the group consisting of an active energy ray curable multifunctional monomer and an active energy ray curable multifunctional polymer, and the inorganic fine particles form a cross-linked structure to improve The hardness of the laminated structure of the primer layer and the hard coating layer. [0026] The average particle size of the above-mentioned component (B) inorganic fine particles, from the viewpoint that the hardness improvement effect can be obtained, and the viewpoint that the transparency of the primer layer can be maintained, is 300 nm or less, for example, 1 to 200 nm, especially 5 to 100nm is better. In addition, the average particle diameter referred to here refers to the specific surface area (m 2 ) measured by the nitrogen adsorption method (BET method), and the value calculated according to the calculation formula of average particle diameter=(2720/specific surface area). In addition, the shape of the aforementioned inorganic fine particles is not particularly limited. For example, they may be granular or slightly spherical, powder and other amorphous ones, preferably slightly spherical, and more preferably the aspect ratio is Slightly spherical particles below 1.5, the best spherical particles. [0027] In the (B) inorganic fine particles used in the present invention, it is preferable to use inorganic oxide particles with a Mohs hardness of 6 or more from the viewpoint that the primer layer of the hard coating layer with higher hardness can be formed, for example , Preferably silica microparticles, titanium oxide microparticles, zirconia microparticles, alumina microparticles, etc. [0028] As the above-mentioned inorganic fine particles, colloidal particle-like inorganic fine particles can be used. For example, silica gel dispersed in a dispersion medium or commercially available colloidal silica can be suitably used for silica microparticles. For the silica gel, for example, an aqueous silica gel prepared by a known method using an aqueous sodium silicate solution as a raw material, and water as a dispersion medium for the aqueous silica gel, using an organic solvent Substituted organic silica gel, etc. Examples of the organic solvent (dispersion medium) in the above-mentioned organic silica gel, for example, lower alcohols such as methanol, ethanol, isopropanol, butanol; ethylene glycol, cellosolve, propylene Base cellosolve, glycols such as propylene glycol monomethyl ether (PGME) and propylene glycol monomethyl ether acetate (PGMEA); ketones such as methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK); Aromatic hydrocarbons such as toluene and xylene; N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone ( NMP) and other amides; esters such as ethyl acetate, butyl acetate, and γ-butyrolactone; ethers such as tetrahydrofuran, 1,4-dioxane, etc. [0029] Among the above-mentioned inorganic microparticles, a commercially available product of silica microparticles (silica gel) is preferable, for example, manufactured by Nissan Chemical Industry Co., Ltd.: Organic silica gel (registered trademark) MEK-AC -2140Z, same MEK-AC-4130Y, same MEK-AC-5140Z, same PGM-AC-2140Y, same PGM-AC-4130Y, same MIBK-AC-2140Y, same MIBK-SD, same MIBK-SD-L, etc. . These silica microparticles have active energy ray polymerizable bases. [0030] The addition amount of the above-mentioned component (B) inorganic fine particles relative to 100 parts by mass of the above-mentioned component (A), from the viewpoint of surface hardness, is 100 parts by mass or more, preferably 200 parts by mass or more, more preferably 400 parts by mass Copies or more. On the other hand, from the viewpoint of crack resistance, it is preferably 1,000 parts by mass or less, more preferably 900 parts by mass or less, and particularly preferably 800 parts by mass or less. In addition, the amount of (B) inorganic fine particles to be added is preferably added so that the volume fraction of (B) inorganic fine particles occupies 50 to 90% by volume of the total volume of the primer layer. [0031] [(C) Polymerization initiator that generates radicals via active energy rays] In the primer layer forming composition used in the present invention, a polymerization initiator that generates radicals via active energy rays (hereinafter, also Only referred to as "(C) polymerization initiator"), for example, a polymerization initiator capable of generating free radicals by irradiation with active energy rays such as electron rays, ultraviolet rays, and X-rays, and in particular, irradiation with ultraviolet rays. In addition, in the curable composition described later, (c) a polymerization initiator that generates radicals via active energy rays, and a polymerization initiator having the same content as the compounds listed in the (C) polymerization initiator can be used. [0032] The above-mentioned (C) polymerization initiator, for example, benzophenones, alkyl phenones, 9-oxysulfur
Figure 106134882-A0304-12-01
Figure 106134882-A0304-12-02
Type, azo type, azide type, diazo type, o-quinonediazide type, phosphine oxide type, oxime ester type, organic peroxide type, benzophenone type, double fragrance Legumes, bisimidazoles, titanocene, thioethers, halogenated hydrocarbons, trichloromethyl
Figure 106134882-A0304-12-03
Onium salts such as sulphate, sulphur salt, sulphur salt, etc. These can be used alone or in combination of two or more. Among them, in the present invention, from the viewpoints of transparency, surface curability, and film curability, it is preferable to use (C) an alkylphenone-based polymerization initiator as a polymerization initiator. When the alkyl phenone type polymerization initiator is used, a cured film with better scratch resistance can be obtained. [0033] The above-mentioned alkylphenone polymerization initiator, for example, 1-hydroxycyclohexyl=phenyl=ketone, 2-hydroxy-2-methyl-1-phenylpropane-1-one, 2-hydroxy- 1-(4-(2-Hydroxyethoxy)phenyl)-2-methylpropane-1-one, 2-hydroxy-1-(4-(4-(2-hydroxy-2-methylpropane (Methyl)benzyl)phenyl)-2-methylpropane-1-one and other α-hydroxyalkylphenones; 2-methyl-1-(4-(methylthio)phenyl)-2- Α-Aminoalkylphenones such as morpholinopropane-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinylphenyl)butan-1-one; 2 , 2-Dimethoxy-1,2-diphenylethane-1-one; phenylglyoxylic acid methyl and so on. [0034] The (C) polymerization initiator in the present invention is in contrast to the aforementioned (A) polyfunctional selected from the group consisting of an active energy ray curable polyfunctional monomer and an active energy ray curable polyfunctional polymer The total 100 parts by mass of the compound and (B) inorganic fine particles is preferably used in a ratio of 1-20 parts by mass, preferably 2-10 parts by mass. [(D) Solvent] The composition for forming a primer layer used in the present invention may be in the form of a paint (film forming material) containing (D) a solvent. [0036] The above-mentioned solvent, for example, can be considered to dissolve the aforementioned components (A) to (C) to form a cured product (primer layer) described later, the workability at the time of coating, the dryness before and after curing, etc. , Just make an appropriate choice, for example, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, tetralin, etc. can be used; n-hexane, n-heptane, mineral spirits, cyclohexane Aliphatic or alicyclic hydrocarbons; methyl chloride, methyl bromide, methyl iodide, dichloromethane, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, o-dichlorobenzene Halogenated hydrocarbons such as ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol monomethyl ether acetate, etc. Esters or ester ethers; diethyl ether, tetrahydrofuran, 1,4-dioxane, methyl cellosolve, ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n- Ethers such as propyl ether, propylene glycol monoisopropyl ether, and propylene glycol mono-n-butyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, di-n-butanone, cyclohexanone, etc.; methanol , Ethanol, n-propanol, isopropanol, n-butanol, isobutanol, tert-butanol, 2-ethylhexanol, benzyl alcohol, ethylene glycol and other alcohols; N,N-dimethyl Amines such as methyl methamide and N,N-dimethyl acetamide; sulfenites such as dimethyl sulfide; heterocyclic compounds such as N-methyl-2-pyrrolidone, And these two or more mixed solvents, etc. The amount of (D) solvent used is not particularly limited. For example, the solid content concentration in the primer layer forming composition used in the present invention can be 1 to 70% by mass, preferably 10 to 60 It is used as the concentration of mass%. Among them, the solid content concentration (also referred to as the non-volatile component concentration) refers to the aforementioned (A) to (D) components (and other expected additives) of the primer layer forming composition used in the present invention The total mass (total mass) means the content of the solid component (after removing the solvent component from the total component). [Other additives] In addition, in the primer layer forming composition used in the present invention, in a range that does not impair the effects of the present invention, if necessary, additives commonly added, such as polymerization accelerators, can be appropriately added. , Polymerization inhibitors, photosensitizers, leveling agents, surfactants, adhesion imparting agents, plasticizers, ultraviolet absorbers, antioxidants, storage stabilizers, antistatic agents, inorganic fillers, pigments, dyes, etc. . [0038] In particular, in the primer layer forming composition used in the present invention, inorganic fine particles are added, so that the surface of the coating film when the primer layer is formed is smoothed to prevent damage to the coating appearance or transparency. It is better to add a leveling agent for defects such as occurrence of defects. As the leveling agent, a known silicone-based, fluorine-based, acrylic-based, vinyl-based, etc. can be used. The above-mentioned leveling agent, for example, acrylic leveling agent, silicone leveling agent, fluorine leveling agent, polysiloxane/acrylic copolymer leveling agent, fluorine-denatured acrylic leveling agent, fluorine-denatured Polysiloxane leveling agents, and introducing methoxy, ethoxy and other alkoxy groups, acyloxy groups, halogen groups, amino groups, vinyl groups, epoxy groups, and methyl groups into these leveling agents Leveling agent for functional groups such as acryloxy, acryloxy, isocyanate, etc. In the case of adding a leveling agent, compared to the aforementioned (A) polyfunctional compound selected from the group of active energy ray curable polyfunctional monomers and active energy ray curable polyfunctional polymers, and (B) inorganic fine particles When the total amount is 100 parts by mass, from the viewpoints of transparency, coating appearance, adhesion, hardness, etc., 5 parts by mass or less is preferable, 0.001 to 2 parts by mass is more preferable, and 0.01 to 1 part by mass is more preferable. [0039] "Hard Coating Layer"<Curingcomposition> The hard coating layer in the high hardness hard coating laminate of the present invention is obtained from the curable composition containing the following (a) to (c) The hardened material (ie hardened film) is formed. (a) 100 parts by mass of active energy ray-curable multifunctional monomer, (b) poly(oxyperfluoroalkylene) group-containing molecular chains are interposed with poly(oxyalkylene) groups at both ends, or sequentially 0.1-10 parts by mass of a perfluoropolyether having an active energy ray polymerizable group consisting of a poly(oxyalkylene) group and a urethane bond group, and (c) generating free radicals via the active energy ray The polymerization initiator is 1-20 parts by mass. Hereinafter, each component (a) to (c) above will be described. [0040] [(a) Active energy ray curable polyfunctional monomer] The (a) active energy ray curable polyfunctional monomer used in the curable composition used in the present invention refers to active energy through ultraviolet rays or the like The meaning of a monomer that undergoes polymerization reaction to cure by irradiation with radiation is the same as the (A) polyfunctional compound added to the primer layer forming composition, the "active energy ray curable polyfunctional monomer" The compound of the content is a monomer selected from the group of the aforementioned polyfunctional (meth)acrylate compound and polyfunctional urethane (meth)acrylate compound. [0041] In the curable composition, the (a) active energy ray-curable polyfunctional monomer may be used alone from the polyfunctional (meth)acrylate compound and the polyfunctional urethane (meth) One selected from the group of acrylate compounds, or two or more of them can be used in combination. From the viewpoint of the scratch resistance of the obtained cured product, it is preferable to use a combination of a polyfunctional (meth)acrylate compound and a polyfunctional urethane (meth)acrylate compound. In addition, the above-mentioned polyfunctional (meth)acrylate compound is preferably used in combination with a polyfunctional (meth)acrylate compound having five or more functions and a multifunctional (meth)acrylate compound having four or less functions in combination. In addition, when the above-mentioned polyfunctional (meth)acrylate compound is used in combination with the above-mentioned polyfunctional urethane (meth)acrylate compound, it is used relative to 100 parts by mass of the polyfunctional (meth)acrylate compound The multifunctional urethane (meth)acrylate compound is preferably 20-100 parts by mass, and more preferably 30-70 parts by mass. In addition, among the above-mentioned polyfunctional (meth)acrylate compounds, when the above-mentioned polyfunctional (meth)acrylate compound having five or more functions and the above-mentioned polyfunctional (meth)acrylate compound having four or less functions are used in combination, With respect to 100 parts by mass of the polyfunctional (meth)acrylate compound having more than pentafunctionality, 10-100 parts by mass of the polyfunctional (meth)acrylate compound having less than tetrafunctional is preferably used, and 20-60 parts by mass are used. Better. In addition, 20 to 100 parts by mass of the polyfunctional urethane (meth)acrylate compound is used relative to 100 parts by mass of the polyfunctional (meth)acrylate compound, and the ratio is relative to the polyfunctional 100 parts by mass of (meth)acrylate compounds, 10-100 parts by mass of polyfunctional (meth)acrylate compounds of less than 4 functions, and polyfunctional amine with respect to 100 parts by mass of polyfunctional (meth)acrylate compounds 20-100 parts by mass of the carbamic acid ester (meth)acrylate compound, and a polyfunctional (meth) of tetrafunctional or less with respect to 100 parts by mass of a polyfunctional (meth)acrylate compound of pentafunctional or higher 20-60 parts by mass of the acrylate compound, 30 to 70 parts by mass of the polyfunctional urethane (meth)acrylate compound relative to 100 parts by mass of the polyfunctional (meth)acrylate compound, and relative to 100 parts by mass of a polyfunctional (meth)acrylate compound with more than 5 functions, 10-100 parts by mass of a polyfunctional (meth)acrylate compound with less than 4 functions, relative to 100 parts by mass of a polyfunctional (meth)acrylate compound Parts, 30 to 70 parts by mass of a polyfunctional urethane (meth)acrylate compound are used, and a polyfunctional (meth)acrylate compound with a tetrafunctional or less than 100 parts by mass is used relative to 100 parts by mass of a polyfunctional urethane (meth)acrylate compound The polyfunctional (meth)acrylate compound is preferably 20 to 60 parts by mass. [0042] [(b) Both ends of the molecular chain containing a poly(oxoperfluoroalkylene) group are interposed with a poly(oxyalkylene) group, or a poly(oxyalkylene) group and one in sequence are interposed Perfluoropolyether with urethane bond group and active energy ray polymerizable group] In the present invention, component (b) is used for the molecular chain containing poly(oxoperfluoroalkylene) group A perfluoropolyether with a poly(oxyalkylene) group at both ends, or a poly(oxyalkylene) group and a urethane bonding group in sequence, which is bonded to an active energy ray polymerizable group Ether (hereinafter also referred to simply as "(b) perfluoropolyether having polymerizable groups at both ends"). The component (b) has a function as a surface modifier in the hard coating layer using the curable composition used in the present invention. [0043] The number of carbon atoms of the alkylene group in the poly(oxoperfluoroalkylene) group is not particularly limited, and the number of carbon atoms is preferably 1 to 4. That is, the above-mentioned poly(oxyperfluoroalkylene) group refers to a group in which a divalent fluorocarbon group having 1 to 4 carbon atoms and an oxygen atom have an interlinked structure, and the oxoperfluoroalkylene group refers to The divalent carbon fluoride group having 1 to 4 carbon atoms and the oxygen atom have a group having a structure that is connected. Specifically, for example, -[OCF 2 ]-(oxoperfluoroethylene), -[OCF 2 CF 2 ]-(oxoperfluoroethylene), -[OCF 2 CF 2 CF 2 ]- (Oxoperfluoropropane-1,3-diyl-yl), -[OCF 2 C(CF 3 )F]-(oxoperfluoropropane-1,2-diyl-yl) and the like. The above-mentioned oxyperfluoroalkylene groups may be used alone or in combination of two or more. In this case, the bonding of plural kinds of oxyperfluoroalkylene groups may be block bonding Or random bonding can be any of them. [0044] Among these, it is possible to obtain a cured film with good scratch resistance. The poly(oxoperfluoroalkylene) group can be used with -[OCF 2 ]-(oxoperfluoroethylene). Both methyl) and -[OCF 2 CF 2 ]-(oxoperfluoroethylene) are preferred as the base of the repeating unit. Among them, the above-mentioned poly(oxoperfluoroalkylene) group contains molar ratio as [repeat unit:-[OCF 2 ]-]:[repeat unit:-[OCF 2 CF 2 ]-]=2:1 Repeating units with a ratio of ~1:2: the base of -[OCF 2 ]- and -[OCF 2 CF 2 ]- is preferred, and the base containing approximately 1:1 is preferred. The bonding of these repeating units may be any of block bonding and random bonding. The number of repeating units of the above-mentioned oxoperfluoroalkylene group, the total number of repeating units is preferably in the range of 5-30, and more preferably in the range of 7-21. In addition, the weight average molecular weight (Mw) measured by the poly(oxyperfluoroalkylene)-based gel permeation chromatograph in terms of polystyrene is 1,000 to 5,000, preferably 1,500 to 2,000. [0045] The number of carbon atoms of the alkylene group in the poly(oxyalkylene) group is not particularly limited, and the number of carbon atoms is preferably 1 to 4. That is, the above-mentioned poly(oxyalkylene) group refers to a group in which an alkylene group having 1 to 4 carbon atoms and an oxygen atom have an alternate structure, and an oxyalkyl group refers to a divalent extension having 1 to 4 carbon atoms. The alkyl group and the oxygen atom have a group having a linked structure. The above-mentioned alkylene group includes, for example, ethylene group, 1-methyl ethylene group, trimethyl group, tetramethyl group, and the like. The above-mentioned oxyalkyl groups may be used alone or in combination of two or more. In this case, the bonding of plural kinds of oxyalkyl groups may be either block bonding or random bonding. Either way. Among them, the above-mentioned poly(oxyethylene) group is preferably a poly(oxyethylene) group. The number of repeating units of the oxyalkyl group in the poly(oxyalkylene) group may be, for example, in the range of 1-15, for example, in the range of 5-12, and preferably in the range of 7-12, for example. [0046] The active energy ray polymerizable group bonded via the above-mentioned poly(oxyalkylene) group or sequentially via the poly(oxyalkylene) group and one urethane bonding group, for example, ( Meth)acrylic acid group, urethane (meth)acrylic acid group, vinyl group, etc. [0047] The above-mentioned active energy ray polymerizable groups are not limited to those having an active energy ray polymerizable moiety such as one (meth)acrylic moiety, and it may have two or more active energy ray polymerizable groups. The sexual part, for example, the structure of A1 to A5 shown below, and the structure in which the acrylic group is substituted by the methacrylic group. [0048]
Figure 02_image001
[0049] These (b) perfluoropolyethers having polymerizable groups at both ends, from the viewpoint of ease of industrial production, etc., the acryloyl groups in the compounds shown below and these compounds are substituted with methacryloyl groups The compound is a preferred example. In addition, in the structural formula, A represents one of the structures represented by the aforementioned formulas [A1] to [A5], PFPE represents the aforementioned poly(oxyperfluoroalkylene) group, and n each independently represents an oxyethylene group The number of repeating units preferably represents a number from 1 to 15, more preferably represents a number from 5 to 12, and particularly preferably represents a number from 7 to 12.
Figure 02_image003
[0050] Among them, the (b) perfluoropolyether having polymerizable groups at both ends of the present invention is in turn interposed by poly( An oxyalkylene group and a urethane bonding group, that is, a poly(oxyalkylene) group is respectively bonded to both ends of the molecular chain containing a poly(oxoperfluoroalkylene) group, and One urethane linkage group is respectively bonded to each poly(oxyalkylene) group at the two ends, and to each urethane linkage at the two ends, the active energy rays are respectively bonded. Perfluoropolyether derived from the base is preferred. In addition, among the aforementioned perfluoropolyethers, perfluoropolyethers having at least two active energy ray polymerizable groups based on the active energy ray polymerizable portion are preferred. [0051] In the present invention, (b) perfluoropolyether having polymerizable groups at both ends is used in an amount of 0.1-10 parts by mass relative to 100 parts by mass of the active energy ray curable polyfunctional monomer (a) mentioned above. It is preferably a ratio of 0.2 to 5 parts by mass. [0052] The aforementioned (b) perfluoropolyether having polymerizable groups at both ends, for example, can be used for poly(oxyperfluoroalkylene) groups having hydroxyl groups at both ends of poly(oxyalkylene) groups. In the compound, for the hydroxyl groups at both ends, 2-(meth)acryloxy ethyl isocyanate or 1,1-bis((meth)acryloxymethyl) isocyanate, etc. are used. Method of urethane reaction of isocyanate compound having polymerizable group, method of dehydrochloric acid reaction of (meth)acrylic acid chloride or chloromethyl styrene, method of dehydration reaction of (meth)acrylic acid , It is prepared by esterification reaction of itaconic anhydride. Among them, in a compound having a poly(oxyperfluoroalkylene) group at both ends of a poly(oxyalkylene) group, 2-(meth)acrylic acid is used for the hydroxyl groups at both ends. A method of urethane reaction of isocyanate compounds with polymerizable groups such as ethyl isocyanate or ethyl 1,1-bis((meth)acryloxymethyl) isocyanate, or The method of dehydrochloric acid reaction using (meth)acrylic acid chloride or chloromethyl styrene for this hydroxyl group is particularly preferred from the viewpoint of easy reaction. [0053] In addition, in the curable composition used in the present invention, in addition to (b) the poly(oxyperfluoroalkylene) group-containing molecular chain is interposed at both ends of the poly(oxyalkylene) group, or sequentially A poly(oxyalkylene) group and a urethane bond group can be included in addition to the perfluoropolyether which is bonded to an active energy ray polymerizable group. The molecular chain of the) group has a poly(oxyalkylene) group or a poly(oxyalkylene) group and a urethane bonding group at one end of the molecular chain, and has an active energy ray polymerizable group, And the other end of the perfluoropolyether with a poly(oxyalkylene) group and having a hydroxyl group, or a poly(oxyalkylene) group at both ends of the molecular chain containing a poly(oxyperfluoroalkylene) group And perfluoropolyethers with hydroxyl groups [compounds not bonded with active energy ray polymerizable groups]. [0054] [(c) Polymerization initiator that generates radicals via active energy rays] Among the curable composition used in the present invention, a polymerization initiator that generates radicals via active energy rays is preferred (hereinafter, also only It is called "(c) polymerization initiator"), for example, a polymerization initiator that generates free radicals through electron rays, ultraviolet rays, X-rays, etc., especially when irradiated with ultraviolet rays, can be used and added to The (C) polymerization initiator of the aforementioned primer layer forming composition is an initiator of the same content. Among them, in the present invention, from the viewpoints of transparency, surface curability, and film curability, it is preferable to use (c) alkyl phenones as a polymerization initiator. When the alkyl phenone polymerization initiator is used, a cured film with improved scratch resistance can be obtained. In the present invention, the (c) polymerization initiator is used in a ratio of 1 to 20 parts by mass, preferably 2 to 10 parts by mass, relative to 100 parts by mass of the active energy ray curable polyfunctional monomer mentioned above. Appropriate. [0055] [(d) Solvent] The curable composition used in the present invention may further contain (d) a solvent, that is, one that forms a coating material (film forming material). The above-mentioned solvents, for example, may be appropriate in consideration of the ability to dissolve the aforementioned components (a) to (c), and the workability at the time of coating when forming a cured film (hard coat layer) as described later, or the dryness before and after curing, etc. You can choose, for example, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, tetralin; aliphatic or aliphatic hydrocarbons such as n-hexane, n-heptane, mineral spirits, and cyclohexane Alicyclic hydrocarbons; halogenated hydrocarbons such as methyl chloride, methyl bromide, methyl iodide, methylene chloride, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, o-dichlorobenzene, etc. ; Ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol monomethyl ether acetate and other esters or ester ethers Class; Diethyl ether, tetrahydrofuran, 1,4-dioxane, methyl cellosolve, ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono Ethers such as isopropyl ether and propylene glycol mono-n-butyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, di-n-butanone, and cyclohexanone; methanol, ethanol, n- Alcohols such as propanol, isopropanol, n-butanol, isobutanol, tert-butanol, 2-ethylhexanol, benzyl alcohol, and ethylene glycol; N,N-dimethylformamide, N,N-dimethylacetamide and other amides; dimethylsulfide and other arsenites; N-methyl-2-pyrrolidone and other heterocyclic compounds, and 2 of these Mixed solvents of more than one kind, etc. The amount of (d) solvent used is not particularly limited. For example, it can be used such that the solid content concentration in the curable composition used in the present invention is 1 to 70% by mass, preferably 5 to 50% by mass. concentration. Among them, the solid content concentration (also referred to as the non-volatile component concentration) refers to the total mass of the aforementioned (a) to (d) components (and other expected additives) of the curable composition used in the present invention ( Total mass) means the content of solid content (the solvent component is removed from all the components). [Other additives] In addition, in the curable composition used in the present invention, in a range that does not impair the effects of the present invention, if necessary, general additives such as polymerization accelerators, polymerization inhibitors, Light sensitizers, leveling agents, surfactants, adhesion imparting agents, plasticizers, ultraviolet absorbers, antioxidants, storage stabilizers, antistatic agents, inorganic fillers, pigments, dyes, etc. [0057] "High Hardness Hard Coating Laminate" As mentioned above, the high hardness hard coating laminate of the present invention consists of a substrate, a primer layer above the substrate, and a primer layer above the primer layer. A three-layer laminate formed by the hard coat layer. The high-hardness hard coat laminate of the present invention comprises: (i) a step of coating a primer layer forming composition on a substrate to form a coating film; (ii) irradiating the primer layer with active energy rays The coating film of the composition, the step of hardening the coating film to form a primer layer, (iii) the step of coating the curable composition on the primer layer to form a coating film, and (iv) using active energy It is produced by the step of irradiating the coating film of the curable composition to harden it to form a hard coating layer. Among them, the composition for forming a primer layer and the curable composition can be each of the above-mentioned compositions. [0058] The composition for forming the primer layer and the coating method of the curable composition in the steps (i) and (iii) above can be appropriately selected from a mold coating method, a spin coating method, a plate coating method, Dip coating method, roller coating method, strip coating method, die coating method, spray coating method, curtain coating method, inkjet method, printing method (relief, gravure, For lithography, screen printing, etc., roll-to-roll methods can be used, and from the viewpoint of film coatability, relief printing methods, particularly gravure coating methods, are preferred. The primer layer forming composition and the curable composition used therein can be suitably used as long as they are in the form of the aforementioned paint. In addition, it is better to pre-coat the primer layer forming composition and curable composition using a filter with a pore diameter of about 2 μm beforehand. [0059] After the composition for forming a primer layer in step (i) above, and after coating the curable composition in step (iii), it is preferable to continue to use a hot plate or an oven, etc., to dry Remove the solvent (solvent removal step). The conditions for heating and drying at this time are, for example, 40 to 120° C., 30 seconds to 10 minutes or so. After drying, step (ii) or (iv) is irradiated with active energy rays such as ultraviolet rays to perform photocuring to form a primer layer and a hard coating layer. Active energy rays, for example, ultraviolet rays, electron rays, X-rays, etc. As the light source used for ultraviolet irradiation, for example, sunlight, chemical lamps, low-pressure mercury lamps, high-pressure mercury lamps, metal halide lamps, xenon lamps, UV-LEDs, etc. can be used. Subsequently, post-baking, specifically, heating using a hot plate, oven, etc., completes the polymerization and polycondensation reaction. [0060] In the laminate of the present invention obtained in this way, the thickness of the primer layer is not particularly limited, and may be, for example, 0.1 to 1,000 μm, preferably in the range of 1 to 100 μm. In addition, the thickness of the hard coating layer is not particularly limited. For example, it is in the range of 1 to 30 μm, preferably 1 to 20 μm, and more preferably 3 to 10 μm.

[實施例]   [0061] 以下,將列舉實施例,對本發明作更具體的說明,但本發明並不受下述實施例所限定。   又,實施例中,樣品之製造及物性分析所使用的裝置及條件,係如以下所示。   [0062] (1)條狀塗佈塗佈   裝置:(股)S.M.T.製 PM-9050MC   塗佈速度:4m/分鐘   刮棒1(bar1):OSG系統製造(股)製 A-Bar OSP-25、最大濕膜厚25μm(刮棒#10相當)   刮棒2(bar2):OSG系統製造(股)製 A-Bar OSP-30、最大濕膜厚30μm(刮棒#12相當)   刮棒3(bar3):OSG系統製造(股)製 A-Bar OSP-52、最大濕膜厚52μm(刮棒#20相當)   刮棒4(bar4):OSG系統製造(股)製 A-Bar OSP-100、最大濕膜厚100μm(刮棒#37相當) (2)烘箱   裝置:ADVANTEC東洋(股)製 無塵乾燥器 DRC433FA (3)UV照射   裝置:HERAEUS(股)製 CV-110QC-G   燈:HERAEUS(股)製 高壓水銀燈H-bulb (4)擦傷試驗   裝置:新東科學(股)製 往返摩耗試驗機 TRIBOGEAR TYPE:30S   荷重:1kg/cm2 掃瞄速度:3m/分鐘 (5)鉛筆硬度   裝置:(股)安田精機製作所製 電動鉛筆拉刻硬度試驗機 No.553-M   荷重:750g   鉛筆:三菱鉛筆(股)製 UNI(登記商標)   測定溫度:20℃ (6)凝膠滲透層析儀(GPC)   裝置:東曹(股)製 HLC-8220GPC   管柱:昭和電工(股)製 Shodex(登記商標)GPC KF-804L、GPC KF-805L   管柱溫度:40℃   溶離液:四氫呋喃   檢出器:RI (7)膜厚   裝置:(股)尼康製 數位測長機 DEGIMICRO MH-15M+計測器TC-101A (8)全光線穿透率、霧值   裝置:日本電色工業(股)製 霧值測試表 NDH5000 (9)接觸角   裝置:協和界面科學(股)製 DropMaster DM-501   測定溫度:20℃   [0063] 又,縮寫表示以下之意義。   PFPE1:兩末端介由聚(伸氧烷)基(重複單位數8~9)而具有羥基之全氟聚醚[Solvay Specialty Polymers公司製 Fluorolink 5147X]   BEI:1,1-雙(丙烯醯氧基甲基)異氰酸乙酯[昭和電工(股)製 Karenz(登記商標)BEI]   DBTDL:月桂酸二丁基錫[東京化成工業(股)製]   4ELA:四乙二醇單月桂醚丙烯酸酯[日油(股)製 PLUMER (登記商標)ALE-200]   HDDA:1,6-己烷二醇二丙烯酸酯[新中村化學工業(股)製 NK酯A-HD-N]   LA:丙烯酸月桂基[日油(股)製 PLUMER (登記商標)LA]   ADVN:2,2’-偶氮雙(2,4-二甲基戊腈)[和光純藥工業(股)製 V-65]   C6FA:丙烯酸2-(全氟己基)乙酯[UNIMATEC(股)製 FAAC-6]   EGDMA:乙二醇二丙烯酸甲酯[新中村化學工業(股)製 1G]   VEEA:丙烯酸2-(2-乙烯基氧代乙氧基)乙酯[(股)日本觸媒製 VEEA]   MAIB:二甲基2,2’-偶氮雙異丁酯[大塚化學(股)製 MAIB]   AA1:聚丙烯酸基丙烯酸酯[DIC(股)製 UNIDIC(登記商標)V-6840、有效成份50質量%MIBK溶液]   AA2:聚丙烯酸基丙烯酸酯[DAICEL-ALLNEX(股)製 ACA Z200M、有效成份50質量%PGME溶液]   AA3:聚丙烯酸基丙烯酸酯[DAICEL-ALLNEX(股)製 ACA Z230AA、有效成份50質量%PGME溶液]   DPHA:二季戊四醇五丙烯酸酯/二季戊四醇六丙烯酸酯混合物[日本化藥(股)製 KAYALAD DN-0075]   PETA:季戊四醇三丙烯酸酯/季戊四醇四丙烯酸酯混合物[新中村化學工業(股)製 NK酯 A-TMM-3LM-N]   UA:6官能 脂肪族胺基甲酸酯丙烯酸酯低聚物[DAICEL-ALLNEX(股)製 EBECRYL(登記商標)5129]   IP1:含活性能量線聚合性基之二氧化矽凝膠[日產化學工業(股)製 PGM-AC-2140Y、40質量%PGME分散液、1次平均粒徑10~15nm、二氧化矽比重1.24]   IP2:含活性能量線聚合性基之二氧化矽凝膠[日產化學工業(股)製 MIBK-SD、33質量%MIBK分散液、1次平均粒徑10~15nm、二氧化矽比重0.99~1.03]   IP3:二氧化矽凝膠[日產化學工業(股)製 PGM-ST、33質量%PGME分散液、1次平均粒徑10~15nm、二氧化矽比重1.11~1.15]   LA1:非氟系整平劑[共榮社化學(股)製 回焊No.77]   SM2:具有全氟聚醚結構之UV反應型氟系表面改質劑[DIC(股)製 美格氟(登記商標)RS-75、有效成份40質量%MEK/MIBK溶液]   I184:1-羥基環己基=苯基=酮[BASF日本(股)製 IRGACURE(登記商標)184]   I2959:2-羥基-1-(4-(2-羥基乙氧基)苯基)-2-甲基丙烷-1-酮[BASF日本(股)製 IRGACURE(登記商標)2959]   EPA:p-二甲胺基安息香酸乙基[日本化藥(股)製 KAYACURE EPA]   PET:一側面經易接著處理聚乙烯對苯二甲酸酯(PET)薄膜[東洋紡績(股)製 COSMOSHINE(登記商標)A4100、厚度125μm]   PMMA:聚甲基丙烯酸甲酯(PMMA)薄膜[住友丙烯酸販賣(股)製 TECKNOROI薄膜S000、厚度125μm]   MEK:甲基乙酮   MIBK:甲基異丁酮   PGME:丙二醇單甲醚   [0064] [製造例1]兩末端介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結之具有丙烯醯基的全氟聚醚SM1之製造   於螺旋管中,置入PFPE1 1.05g(0.5mmol)、BEI 0.26g (1.0mmol)、DBTDL 10mg(0.016mmol),及MEK 1.30g。使用攪拌子於室溫(約23℃)下攪拌該混合物24小時。使用MEK 3.93g稀釋該反應混合物,而製得目的化合物之SM1的20質量%MEK溶液。   使用GPC之依聚苯乙烯換算所測定的所得SM1的重量平均分子量Mw為3,400、分散度:Mw(重量平均分子量)/Mn(數平均分子量)為1.2。   [0065] [製造例2]具有長鏈烷基之高分支聚合物LA2之製造   於200mL反應燒瓶中,置入MIBK54g,於攪拌中流入5分鐘氮氣,加熱至內液迴流為止(溫度約莫116℃)。   於另一100mL反應燒瓶中,置入HDDA 6.7g (30mmol)、LA 3.6g(15mmol)、4ELA 18.6g(45mmol)、ADVN 6.0g (24mmol),及MIBK 54g,於攪拌中流入5分鐘氮氣進行氮取代,於氷浴中冷卻至0℃為止。   使用滴入幫浦,將置入有HDDA、LA、4ELA、ADVN的前述100mL反應燒瓶,以30分鐘時間將內容物滴入於前述200mL反應燒瓶中迴流的MIBK中。滴入結束後、再攪拌1小時。   將該反應混合物冷卻至室溫(約莫23℃),製得目的高分支聚合物(LA2)之聚合物濃度為25質量%的MIBK溶液143.0g。   所得的高分支聚合物LA2之依GPC測定的聚苯乙烯換算之重量平均分子量:Mw為7,300、分散度:Mw/Mn為4.6。   [0066] [製造例3]具有氟烷基之高分支聚合物LA3之製造   於200mL反應燒瓶中,置入甲苯59g,於攪拌中流入5分鐘氮氣,加熱至內液迴流為止(約莫110℃)。   於另一100mL反應燒瓶中,置入EGDMA 4.0g (20 mmol)、C6FA 5.2g(12.5mmol)、VEEA 1.9g(10mmol)、MAIB 2.8g(12mmol),及甲苯59g,於攪拌中流入5分鐘氮氣進行氮取代,於氷浴中冷卻至0℃為止。   使用滴入幫浦,將置入EGDMA、C6FA、VEEA、MAIB的前述100mL反應燒瓶,以30分鐘時間將內容物滴入於前述200mL反應燒瓶中迴流的甲苯中。滴入結束後、再攪拌1小時。   該反應混合物添加於己烷277g中,使聚合物以淤漿狀態沈澱。將該淤漿減壓過濾、真空乾燥後,製得目的高分支聚合物(LA3)之白色粉末6.6g。   所得的高分支聚合物LA3之依GPC測定的聚苯乙烯換算之重量平均分子量:Mw為8,400、分散度:Mw/Mn為2.5。   [0067] [製造例4-1~4-8]底漆組成物(底漆層形成用組成物)之製造   依表1之記載,將以下各成份混合,而製得表1記載之固形成份濃度的底漆組成物(PR1~PR8)。又,其中之固形成份係指溶劑以外的成份。又,表中,[份]為表示[質量份]、[%]為表示[質量%]。   (1)多官能化合物:表1記載之多官能聚合物及/或單體依表1記載之量(有效成份換算)   (2)無機微粒子:表1記載之無機微粒子依表1記載之量(固形成份換算)   (3)聚合起始劑:表1記載之聚合起始劑5質量份   (4)聚合促進劑:EPA依表1記載之量(表中,“-”表示未添加)。   (5)均染劑:表1記載之均染劑依表1記載之量(固形成份或有效成份換算)   (6)溶劑:PGME表1記載之量(表中,負的數值為表示經蒸發器餾除溶劑者)。   [0068]

Figure 02_image005
[0069] [製造例5-1~5-2]硬塗覆組成物(硬化性組成物)之製造   依表2之記載將以下各成份混合,製得固形成份濃度40質量%之硬塗覆組成物(HC1~HC2)。又,其中之固形成份係指溶劑以外之成份。又,表中,[份]為表示[質量份]、[%]為表示[質量%]。   (1)多官能單體:DPHA 50質量份、UA 30質量份,及PETA 20質量份   (2)表面改質劑:表2記載之表面改質劑 1質量份(固形成份或有效成份換算)   (3)聚合起始劑:I2959 5質量份   (4)聚合促進劑:EPA 0.1質量份   (5)溶劑:PGME 依表2記載之量   [0070]
Figure 02_image007
[0071] [實施例1~6、比較例1~5]   將表3記載之底漆組成物,使用表3記載之刮棒於表3記載之基材上(PET為使用易接著處理面)進行條狀塗佈,而製得塗膜。將該塗膜於表3記載之乾燥溫度的烘箱內,乾燥1分鐘,以去除溶劑。將所得之膜,於大氣氛圍下,照射曝光量100mJ/cm2 的UV光,進行曝光處理後,形成表3所示厚度的底漆層(硬化膜)。又,比較例1,因底漆層龜裂,故將隨後之操作中斷。   將表3記載之硬塗覆組成物,使用表3記載之刮棒於該底漆層上進行條狀塗佈,而製得塗膜。將該該塗膜於表3記載之乾燥溫度的烘箱內,乾燥3分鐘,以去除溶劑。將所得之膜,於氮氣氛圍下,照射曝光量300mJ/cm2 之UV光,進行曝光處理後,而製得具有表3所示厚度的硬塗覆層(硬化膜)之硬塗覆層合體。又,比較例3,未形成底漆層,而直接於基材上形成硬塗覆層。又,比較例5,未形成硬塗覆層,而形成僅具有底漆層之硬塗覆層合體。   [0072] 將所得硬塗覆層合體進行耐擦傷性、鉛筆硬度、全光線穿透率、霧值,及水的接觸角之評估。耐擦傷性、鉛筆硬度,及接觸角之評估順序係如以下所示。又,結果併記如表4所示。   [0073] [耐擦傷性]   使用裝設有鋼絲棉[BONSTAR販賣(股)製 BONSTAR(登記商標)#0000(超極細)]之往返摩耗試驗機,以1kg/cm2 荷重,對硬塗覆層表面進行1,000次往返摩擦,於該摩擦部份使用油性麥克筆[ZEBRA(股)製 Mackey極細(藍)、使用細側之邊]描繪線路。隨後,使用不織布刮片[旭化成(股)製 BEMCOT(登記商標)M-1]擦拭該描繪線條,並依以下之基準以目視方式確認傷痕程度以進行評估。又,硬塗覆層合體於設定可實際使用之情形,其至少需為B之等級,又以A之等級為佳。   A:未具有傷痕,可乾淨地去除油性麥克筆所描繪之線條   B:僅有少許傷痕,但可乾淨地去除油性麥克筆所描繪之線條   C:油性麥克筆之油墨深入傷痕中,無法擦拭乾淨   [0074] [鉛筆硬度]   依JIS 5600-5-4為基準,測定鉛筆硬度(刮傷硬度)。又,硬塗覆層合體於設定可實際使用之情形,至少需為5H以上之等級,又以7H以上者為佳。   [0075] [接觸角]   使水1μL附著於硬塗覆層表面,於5秒後測定5處之接觸角θ,並以其平均值作為接觸角值。   [0076]
Figure 02_image009
[0077]
Figure 02_image011
[0078] 如表1至表4所示般,使用作為表面改質劑之於兩末端介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結丙烯醯基之全氟聚醚SM1,形成硬塗覆層之情形,於設置含有無機微粒子的底漆層之實施例1至實施例6的層合體1至層合體6中,具有優良耐擦傷性,且鉛筆硬度亦達可滿足實際使用上之品質,且為具有優良透明性之層合體。   另一方面,底漆層使用不具有活性能量線聚合性基的無機微粒子之情形(比較例1),於形成底漆層時發生龜裂,而無法形成層合體。   又,底漆層中,無機微粒子之含量未達規定量之情形(比較例2),及,未設置底漆層之情形(比較例3),雖顯示出與本發明之層合體具有同等的耐擦傷性,但其鉛筆硬度較低,而無法得到所期待的硬度。   又,硬塗覆層中,表面改質劑使用具有全氟聚醚結構之UV反應型氟系表面改質劑SM2之情形(比較例4),雖鉛筆硬度可達到良好的效果,但無法得到所期待的耐擦傷性。   又,未設置硬塗覆層,而僅將硬塗覆層之表面改質劑SM1添加於底漆層之情形(比較例5),雖可得到較添加無機微粒子時為更高硬度之層,但無法得到具有耐擦傷性之層。   [0079] 以上,如實施例之結果所示般,具有表面改質劑使用特定全氟聚醚之硬塗覆層的層合體中,經設置含有無機微粒子的底漆層時,即可製得具有優良耐擦傷性、高硬度的層合體。[Examples] [0061] Hereinafter, examples will be cited to illustrate the present invention in more detail, but the present invention is not limited by the following examples. In addition, in the examples, the equipment and conditions used for sample production and physical property analysis are as follows. [0062] (1) Bar-shaped coating and coating device: PM-9050MC manufactured by SMT Coating speed: 4m/min Bar 1 (bar1): A-Bar OSP-25 manufactured by OSG System Manufacturing (Stock), Maximum wet film thickness 25μm (scraper #10 equivalent) Scraper 2 (bar2): OSG system manufacturing (stock) A-Bar OSP-30, maximum wet film thickness 30μm (scraper #12 equivalent) Scraper 3 (bar3) ): OSG System Manufacturing (Stock) A-Bar OSP-52, maximum wet film thickness 52μm (scraper #20 equivalent) Scraper 4 (bar4): OSG System Manufacturing (Stock) A-Bar OSP-100, the largest Wet film thickness 100μm (scraper #37 equivalent) (2) Oven device: DRC433FA dust-free dryer manufactured by ADVANTEC Toyo Co., Ltd. (3) UV irradiation device: CV-110QC-G manufactured by HERAEUS Co., Ltd. Lamp: HERAEUS Co., Ltd. ) High-pressure mercury lamp H-bulb (4) Scratch test device: Shinto Science Co., Ltd. TRIBOGEAR TYPE: 30S Load: 1kg/cm 2 Scanning speed: 3m/min (5) Pencil hardness device: ( Stock) Electric pencil drawing hardness tester No.553-M manufactured by Yasuda Seiki Co., Ltd. Load: 750g Pencil: UNI (registered trademark) manufactured by Mitsubishi Pencil Co., Ltd. Measuring temperature: 20°C (6) Gel permeation chromatography (GPC) ) Device: HLC-8220GPC manufactured by Tosoh Co., Ltd. Column: Shodex (registered trademark) GPC KF-804L, GPC KF-805L manufactured by Showa Denko Co., Ltd. Column temperature: 40℃ Eluent: Tetrahydrofuran Detector: RI (7) Film thickness device: (stock) Nikon’s digital length measuring machine DEGIMICRO MH-15M+ measuring device TC-101A (8) Total light transmittance and fog value device: Japan Denshoku Industries Co., Ltd. fog value test table NDH5000 (9) Contact angle device: DropMaster DM-501 manufactured by Kyowa Interface Science Co., Ltd. Measuring temperature: 20°C [0063] In addition, the abbreviations indicate the following meanings. PFPE1: Perfluoropolyether having hydroxyl groups via poly(oxyalkylene) groups (number of repeating units 8-9) at both ends [Fluorolink 5147X manufactured by Solvay Specialty Polymers] BEI: 1,1-bis(acryloyloxy) Methyl) ethyl isocyanate [Karenz (registered trademark) BEI manufactured by Showa Denko Corporation] DBTDL: Dibutyltin Laurate [manufactured by Tokyo Chemical Industry Co., Ltd.] 4ELA: Tetraethylene glycol monolauryl ether acrylate [日PLUMER (registered trademark) ALE-200 made by Oil Co., Ltd.] HDDA: 1,6-hexanediol diacrylate [NK ester A-HD-N made by Shinnakamura Chemical Industry Co., Ltd.] LA: Lauryl Acrylate [ PLUMER (registered trademark) LA] manufactured by NOF Corporation ADVN: 2,2'-azobis(2,4-dimethylvaleronitrile) [V-65 manufactured by Wako Pure Chemical Industries, Ltd.] C6FA: acrylic acid 2-(Perfluorohexyl) ethyl ester [FAAC-6 manufactured by UNIMATEC Co., Ltd.] EGDMA: Ethylene glycol methyl diacrylate [manufactured by Shinnakamura Chemical Industry Co., Ltd. 1G] VEEA: Acrylic acid 2-(2-vinyloxy) Ethoxyl ethyl ester [VEEA manufactured by Nippon Shokubai Co., Ltd.] MAIB: Dimethyl 2,2'-azobisisobutyl ester [MAIB manufactured by Otsuka Chemical Co., Ltd.] AA1: Polyacrylic acrylate [ UNIDIC (registered trademark) V-6840 manufactured by DIC (Stock), active ingredient 50% by mass MIBK solution] AA2: Polyacrylate [DAICEL-ALLNEX (stock) ACA Z200M, active ingredient 50% by mass PGME solution] AA3: Polyacrylate acrylate [DAICEL-ALLNEX Co., Ltd. ACA Z230AA, active ingredient 50% by mass PGME solution] DPHA: dipentaerythritol pentaacrylate/dipentaerythritol hexaacrylate mixture [Nippon Kayaku Co., Ltd. KAYALAD DN-0075 ] PETA: pentaerythritol triacrylate/pentaerythritol tetraacrylate mixture [NK ester A-TMM-3LM-N manufactured by Shinnakamura Chemical Industry Co., Ltd.] UA: 6-functional aliphatic urethane acrylate oligomer [DAICEL -EBECRYL (registered trademark) 5129 manufactured by ALLNEX Co., Ltd.] IP1: Silica gel containing active energy ray polymerizable group [PGM-AC-2140Y manufactured by Nissan Chemical Industry Co., Ltd., 40% by mass PGME dispersion, 1 Secondary average particle size 10-15nm, silica specific gravity 1.24] IP2: Silica gel containing active energy ray polymerizable group [MIBK-SD manufactured by Nissan Chemical Industry Co., Ltd., 33% by mass MIBK dispersion, 1 time The average particle size is 10~15nm, the specific gravity of silica is 0 .99~1.03] IP3: Silica gel [PGM-ST manufactured by Nissan Chemical Industry Co., Ltd., 33% by mass PGME dispersion, primary average particle size 10-15nm, specific gravity of silica 1.11~1.15] LA1: Non-fluorine-based leveling agent [Reflow No. 77 made by Kyoeisha Chemical Co., Ltd.] SM2: UV-reactive fluorine-based surface modifier with perfluoropolyether structure [DIC (Stock) Co. Trademark) RS-75, active ingredient 40% by mass MEK/MIBK solution] I184: 1-hydroxycyclohexyl = phenyl = ketone [BASF Japan Co., Ltd. IRGACURE (registered trademark) 184] I2959: 2-hydroxy-1- (4-(2-Hydroxyethoxy)phenyl)-2-methylpropane-1-one [IRGACURE (registered trademark) 2959 manufactured by BASF Japan Co., Ltd.] EPA: p-dimethylaminobenzoic acid ethyl [KAYACURE EPA, manufactured by Nippon Kayaku Co., Ltd.] PET: Polyethylene terephthalate (PET) film with easy adhesion on one side [COSMOSHINE (registered trademark) A4100 manufactured by Toyobo Co., Ltd., thickness 125μm] PMMA: Polymethyl methacrylate (PMMA) film [TECKNOROI film S000 manufactured by Sumitomo Acrylic Co., Ltd., thickness 125μm] MEK: methyl ethyl ketone MIBK: methyl isobutyl ketone PGME: propylene glycol monomethyl ether [0064] [Manufacturing example 1] A perfluoropolyether SM1 with an acryl group bonded by a poly(oxyalkylene) group and a urethane at both ends is manufactured in a spiral tube, and PFPE1 1.05g (0.5mmol ), BEI 0.26g (1.0mmol), DBTDL 10mg (0.016mmol), and MEK 1.30g. The mixture was stirred at room temperature (about 23°C) for 24 hours using a stirring bar. The reaction mixture was diluted with 3.93 g of MEK to prepare a 20% by mass MEK solution of SM1 of the target compound. The weight average molecular weight Mw of the obtained SM1 measured in terms of polystyrene using GPC was 3,400, and the degree of dispersion: Mw (weight average molecular weight)/Mn (number average molecular weight) was 1.2. [Production Example 2] The production of a high-branched polymer LA2 with a long-chain alkyl group was placed in a 200mL reaction flask, MIBK54g was placed, nitrogen was poured in for 5 minutes while stirring, and the inner liquid was heated until the internal liquid refluxed (temperature about 116°C ). In another 100 mL reaction flask, put HDDA 6.7g (30mmol), LA 3.6g (15mmol), 4ELA 18.6g (45mmol), ADVN 6.0g (24mmol), and MIBK 54g, and flow nitrogen gas for 5 minutes while stirring. Replace with nitrogen and cool to 0°C in an ice bath. Using a dripping pump, place the aforementioned 100 mL reaction flask containing HDDA, LA, 4ELA, and ADVN into the MIBK refluxed in the aforementioned 200 mL reaction flask over 30 minutes. After the dripping is completed, stirring is continued for 1 hour. The reaction mixture was cooled to room temperature (approximately 23° C.) to obtain 143.0 g of a MIBK solution with a polymer concentration of 25% by mass of the target hyperbranched polymer (LA2). The weight average molecular weight of the obtained hyperbranched polymer LA2 measured by GPC in terms of polystyrene: Mw was 7,300, and the degree of dispersion: Mw/Mn was 4.6. [Production Example 3] The production of the hyperbranched polymer LA3 with a fluoroalkyl group was placed in a 200 mL reaction flask, 59 g of toluene was placed, and nitrogen was poured in for 5 minutes while stirring, and heated until the inner liquid refluxed (about 110°C) . In another 100mL reaction flask, put EGDMA 4.0g (20 mmol), C6FA 5.2g (12.5mmol), VEEA 1.9g (10mmol), MAIB 2.8g (12mmol), and 59g of toluene, and flow in for 5 minutes while stirring Nitrogen is replaced by nitrogen, and it is cooled to 0°C in an ice bath. Using a dripping pump, the aforementioned 100 mL reaction flask containing EGDMA, C6FA, VEEA, and MAIB was dropped into the refluxing toluene in the aforementioned 200 mL reaction flask over 30 minutes. After the dripping is completed, stirring is continued for 1 hour. This reaction mixture was added to 277 g of hexane to precipitate the polymer in a slurry state. After the slurry was filtered under reduced pressure and dried under vacuum, 6.6 g of white powder of the target hyperbranched polymer (LA3) was obtained. The weight average molecular weight of the obtained hyperbranched polymer LA3 measured by GPC in terms of polystyrene: Mw was 8,400, and the degree of dispersion: Mw/Mn was 2.5. [0067] [Production Examples 4-1 to 4-8] The preparation of primer composition (primer layer forming composition) was as described in Table 1, and the following components were mixed to obtain the solid content described in Table 1 Concentration primer composition (PR1~PR8). In addition, the solid content refers to components other than the solvent. In addition, in the table, [parts] means [mass parts], and [%] means [mass%]. (1) Multifunctional compound: the amount of the multifunctional polymer and/or monomer listed in Table 1 (converted for effective ingredients) (2) Inorganic particles: the amount of inorganic particles listed in Table 1 in accordance with Table 1 ( Solid content conversion) (3) Polymerization initiator: 5 parts by mass of the polymerization initiator described in Table 1 (4) Polymerization accelerator: EPA in the amount described in Table 1 (in the table, "-" means not added). (5) Levelling agent: the amount of the leveling agent listed in Table 1 (converted into solid content or effective ingredient) (6) Solvent: the amount of PGME listed in Table 1 (in the table, the negative value means the amount of evaporation The solvent is removed by distillation). [0068]
Figure 02_image005
[0069] [Production Examples 5-1 to 5-2] Production of hard coating composition (curable composition) according to the description in Table 2. The following components were mixed to obtain a hard coating with a solid content of 40% by mass Composition (HC1 to HC2). In addition, the solid content refers to the components other than the solvent. In addition, in the table, [parts] means [mass parts], and [%] means [mass%]. (1) Multifunctional monomer: 50 parts by mass of DPHA, 30 parts by mass of UA, and 20 parts by mass of PETA. (3) Polymerization initiator: I2959 5 parts by mass (4) Polymerization accelerator: EPA 0.1 parts by mass (5) Solvent: PGME The amount according to Table 2 [0070]
Figure 02_image007
[Examples 1 to 6, Comparative Examples 1 to 5] The primer composition described in Table 3 was used on the base material described in Table 3 using the scraper described in Table 3 (PET is the easy-adhesion treatment surface used) Carry out strip coating, and make a coating film. The coating film was dried in an oven at the drying temperature described in Table 3 for 1 minute to remove the solvent. The resultant film was irradiated with UV light with an exposure amount of 100 mJ/cm 2 in an atmospheric atmosphere, and after exposure treatment, a primer layer (cured film) of the thickness shown in Table 3 was formed. In addition, in Comparative Example 1, the subsequent operations were interrupted due to cracks in the primer layer. The hard coating composition described in Table 3 was coated on the primer layer in strips using the doctor bar described in Table 3 to prepare a coating film. The coating film was dried in an oven at the drying temperature described in Table 3 for 3 minutes to remove the solvent. The resulting film was irradiated with UV light with an exposure amount of 300mJ/cm 2 under a nitrogen atmosphere, and then subjected to exposure treatment to obtain a hard coating laminate having a hard coating layer (cured film) of the thickness shown in Table 3 . In addition, in Comparative Example 3, the primer layer was not formed, and the hard coating layer was directly formed on the substrate. In addition, in Comparative Example 5, a hard coating layer was not formed, but a hard coating laminate having only a primer layer was formed. [0072] The obtained hard coating laminate was evaluated for scratch resistance, pencil hardness, total light transmittance, haze value, and water contact angle. The evaluation order of scratch resistance, pencil hardness, and contact angle is as follows. In addition, the results are shown in Table 4. [0073] [Scratch resistance] A reciprocating abrasion tester equipped with steel wool [BONSTAR (registered trademark) #0000 (super ultrafine) manufactured by BONSTAR Sales (Stock)] was used, and the hard coating was applied with a load of 1 kg/cm 2 The surface of the layer is rubbed back and forth 1,000 times, and the rubbing part is drawn with an oily marker [Mackey made of ZEBRA (strand) very fine (blue), with fine side edges]). Subsequently, a non-woven wiper [BEMCOT (registered trademark) M-1, manufactured by Asahi Kasei Co., Ltd.] was used to wipe the drawn lines, and the degree of scars was visually confirmed for evaluation based on the following criteria. In addition, when the hard-coated laminate is set to be practically used, it must be at least B grade, and A grade is better. A: There are no scars, and the lines drawn by the oily marker can be cleanly removed. B: There are only a few scratches, but the lines drawn by the oily marker can be cleanly removed. C: The ink of the oily marker goes deep into the scar and cannot be wiped clean. [Pencil hardness] The pencil hardness (scratch hardness) was measured based on JIS 5600-5-4. In addition, the hard-coated laminate must be at least 5H or higher, and preferably 7H or higher. [Contact angle] 1 μL of water was attached to the surface of the hard coating layer, the contact angle θ at 5 locations was measured after 5 seconds, and the average value was used as the contact angle value. [0076]
Figure 02_image009
[0077]
Figure 02_image011
[0078] As shown in Tables 1 to 4, as a surface modifier, a poly(oxyalkylene) group and a urethane bonding group at both ends were used to bond an acryl group. The perfluoropolyether SM1, in the case of forming a hard coating layer, has excellent scratch resistance and pencil The hardness is also high enough to meet the quality in actual use, and it is a laminated body with excellent transparency. On the other hand, when the primer layer uses inorganic fine particles that do not have an active energy ray polymerizable group (Comparative Example 1), cracks occur when the primer layer is formed, and a laminate cannot be formed. In addition, the case where the content of the inorganic fine particles in the primer layer did not reach the prescribed amount (Comparative Example 2) and the case where the primer layer was not provided (Comparative Example 3) showed that it was equivalent to the laminate of the present invention. Scratch resistance, but its pencil hardness is low, and the expected hardness cannot be obtained. In addition, in the case of using a UV-reactive fluorine-based surface modifier SM2 with a perfluoropolyether structure as the surface modifier in the hard coat layer (Comparative Example 4), although the pencil hardness can achieve good results, it cannot be obtained. The expected scratch resistance. In addition, when the hard coating layer is not provided and only the surface modifier SM1 of the hard coating layer is added to the primer layer (Comparative Example 5), a layer with higher hardness can be obtained than when inorganic fine particles are added. However, a layer with scratch resistance cannot be obtained. [0079] Above, as shown in the results of the examples, a laminate with a hard coat layer of a specific perfluoropolyether used as a surface modifier can be obtained when a primer layer containing inorganic fine particles is provided Laminated body with excellent scratch resistance and high hardness.

Claims (10)

一種高硬度硬塗覆層合體,其為由基材,與該基材上方的底漆層,與該底漆層之上方的硬塗覆層所形成的高硬度硬塗覆層合體,其特徵為,前述底漆層為由含有(A)由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物100質量份、(B)無機微粒子100~1,000質量份,及(C)經由活性能量線產生自由基之聚合起始劑相對於成份(A)及成份(B)之合計100質量份,為1~20質量份;又,前述成份(B)之無機微粒子,為具有活性能量線聚合性基之粒子,的底漆層形成用組成物之硬化物所形成;前述硬塗覆層為由含有(a)活性能量線硬化性多官能單體100質量份、(b)含有聚(氧代全氟伸烷)基的分子鏈之兩末端介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結活性能量線聚合性基之全氟聚醚0.1~10質量份,及(c)經由活性能量線產生自由基之聚合起始劑1~20質量份的硬化性組成物之硬化物所形成。 A high-hardness hard-coating laminate, which is a high-hardness hard-coating laminate formed by a substrate, a primer layer above the substrate, and a hard coating layer above the primer layer, and its characteristics Therefore, the aforementioned primer layer contains 100 parts by mass of a polyfunctional compound selected from the group consisting of (A) an active energy ray-curable polyfunctional monomer and an active energy ray-curable polyfunctional polymer, and (B) an inorganic 100~1,000 parts by mass of fine particles, and (C) 1~20 parts by mass of the polymerization initiator that generates free radicals via active energy rays relative to the total of 100 parts by mass of component (A) and component (B); and, the aforementioned The inorganic fine particles of component (B) are particles with active energy ray polymerizable bases, which are formed by the hardened product of the primer layer forming composition; the aforementioned hard coating layer is composed of (a) active energy ray with high curability 100 parts by mass of functional monomer, (b) poly(oxyperfluoroalkylene) group-containing molecular chains are interposed between poly(oxyalkylene) groups at both ends, or in sequence via poly(oxyalkylene) groups, and 1 urethane bonding group, 0.1-10 parts by mass of perfluoropolyether which is bonded to the active energy ray polymerizable group, and (c) polymerization initiator 1-20 that generates free radicals through the active energy ray It is formed by the cured product of the curable composition of parts by mass. 如請求項1之高硬度硬塗覆層合體,其中,前述成份(B)之無機微粒子為具有10~100nm的平均粒徑之粒子。 The high-hardness hard coating laminate of claim 1, wherein the inorganic fine particles of the aforementioned component (B) are particles having an average particle diameter of 10-100 nm. 如請求項1或請求項2之高硬度硬塗覆層合體,其中,前述成份(B)之無機微粒子為二氧化矽微粒子。 Such as the high-hardness hard-coated laminate of claim 1 or claim 2, wherein the inorganic fine particles of the aforementioned component (B) are silica fine particles. 如請求項1或請求項2之高硬度硬塗覆層合體,其中,前述成份(b)的全氟聚醚之聚(氧代全氟伸烷)基,為具有以-[OCF2]-及-[OCF2CF2]-作為重複單位之基。 Such as the high-hardness hard-coated laminate of claim 1 or claim 2, wherein the poly(oxoperfluoroalkylene) group of the perfluoropolyether of the aforementioned component (b) has a -[OCF 2 ]- And -[OCF 2 CF 2 ]- is used as the base of the repeating unit. 如請求項1或請求項2之高硬度硬塗覆層合體,其中,前述成份(b)的全氟聚醚之聚(伸氧烷)基,為聚(伸氧乙烯)基。 The high-hardness hard-coated laminate of claim 1 or claim 2, wherein the poly(oxyethylene) group of the perfluoropolyether of the aforementioned component (b) is a poly(oxyethylene) group. 如請求項1或請求項2之高硬度硬塗覆層合體,其中,前述成份(A)的多官能單體,為由多官能(甲基)丙烯酸酯化合物及多官能胺基甲酸酯(甲基)丙烯酸酯化合物所成之群所選出之至少1種。 Such as the high hardness hard coating laminate of claim 1 or claim 2, wherein the multifunctional monomer of the aforementioned component (A) is composed of a multifunctional (meth)acrylate compound and a multifunctional urethane ( At least one selected from the group of meth)acrylate compounds. 如請求項1或請求項2之高硬度硬塗覆層合體,其中,前述成份(a)的多官能單體,為由多官能(甲基)丙烯酸酯化合物及多官能胺基甲酸酯(甲基)丙烯酸酯化合物所成之群所選出之至少1種。 Such as the high hardness hard coating laminate of claim 1 or claim 2, wherein the multifunctional monomer of the aforementioned component (a) is composed of a multifunctional (meth)acrylate compound and a multifunctional urethane ( At least one selected from the group of meth)acrylate compounds. 如請求項1或請求項2之高硬度硬塗覆層合體,其中,前述成份(C)之經由活性能量線產生自由基之聚合起始劑,為烷基苯酮類聚合起始劑。 The high-hardness hard-coated laminate of claim 1 or claim 2, wherein the polymerization initiator of the aforementioned component (C) that generates radicals through active energy rays is an alkylphenone-based polymerization initiator. 如請求項1或請求項2之高硬度硬塗覆層合體,其中,前述成份(c)之經由活性能量線產生自由基之聚合起始劑,為烷基苯酮類聚合起始劑。 The high-hardness hard-coated laminate of claim 1 or claim 2, wherein the polymerization initiator that generates radicals through active energy rays of the aforementioned component (c) is an alkylphenone-based polymerization initiator. 一種高硬度硬塗覆層合體的製造方法,其為於基材之至少一者之面上具備底漆層,與該底漆層之上方的硬塗覆層之高硬度硬塗覆層合體的製造方法,其特徵為包含:於基材上塗佈底漆層形成用組成物而形成塗膜之步驟、使用活性能量線照射該底漆層形成用組成物之塗膜,使該塗膜硬化,而形成底漆層之步驟、於前述底漆層上塗佈硬化性組成物,而形成塗膜之步驟,及使用活性能量線照射該硬化性組成物之塗膜,使該塗膜硬化,而形成硬塗覆層之步驟;前述底漆層形成用組成物為含有:(A)由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物100質量份、 (B)無機微粒子100~1,000質量份,及(C)經由活性能量線產生自由基之聚合起始劑相對於成份(A)及成份(B)之合計100質量份,為1~20質量份又,前述成份(B)之無機微粒子,為具有活性能量線聚合性基之粒子;前述硬化性組成物為含有(a)活性能量線硬化性多官能單體100質量份、(b)含有聚(氧代全氟伸烷)基的分子鏈之兩末端介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結活性能量線聚合性基之全氟聚醚0.1~10質量份,及(c)經由活性能量線產生自由基之聚合起始劑1~20質量份。A method for manufacturing a high-hardness hard-coating laminate, which is a high-hardness hard-coating laminate having a primer layer on at least one surface of a substrate and a hard-coating layer above the primer layer The manufacturing method is characterized by comprising: coating a primer layer forming composition on a substrate to form a coating film, and irradiating the coating film of the primer layer forming composition with active energy rays to harden the coating film , And the step of forming a primer layer, the step of coating a curable composition on the primer layer to form a coating film, and the step of irradiating the coating film of the curable composition with active energy rays to harden the coating film, The step of forming a hard coating layer; the aforementioned primer layer forming composition contains: (A) selected from the group consisting of active energy ray-curable polyfunctional monomers and active energy ray-curable polyfunctional polymers 100 parts by mass of polyfunctional compound, (B) 100~1,000 parts by mass of inorganic fine particles, and (C) 1~20 parts by mass of the polymerization initiator that generates free radicals through active energy rays relative to the total of 100 parts by mass of component (A) and component (B) In addition, the inorganic fine particles of the aforementioned component (B) are particles having active energy ray polymerizable groups; the aforementioned curable composition contains (a) 100 parts by mass of active energy ray curable polyfunctional monomers, and (b) contains polyfunctional monomers. The (oxoperfluoroalkylene) group has a poly(oxyalkylene) group at both ends of the molecular chain, or a poly(oxyalkylene) group and a urethane bonding group in sequence, 0.1-10 parts by mass of perfluoropolyether bonded with polymerizable groups of active energy rays, and (c) 1-20 parts by mass of polymerization initiator that generates free radicals through active energy rays.
TW106134882A 2016-10-12 2017-10-12 Hard coat laminate having high hardness and manufacturing method for the same TWI739922B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016201362 2016-10-12
JP2016-201362 2016-10-12

Publications (2)

Publication Number Publication Date
TW201832936A TW201832936A (en) 2018-09-16
TWI739922B true TWI739922B (en) 2021-09-21

Family

ID=61905605

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106134882A TWI739922B (en) 2016-10-12 2017-10-12 Hard coat laminate having high hardness and manufacturing method for the same

Country Status (5)

Country Link
JP (1) JP6982280B2 (en)
KR (1) KR102399829B1 (en)
CN (1) CN109715399B (en)
TW (1) TWI739922B (en)
WO (1) WO2018070446A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019045096A1 (en) * 2017-09-01 2019-03-07 日産化学株式会社 Curable composition for extensible, scratch-resistant coating
KR20210123324A (en) * 2019-02-06 2021-10-13 닛산 가가쿠 가부시키가이샤 Curable composition for flexible hard coat
KR20210150198A (en) 2020-06-03 2021-12-10 동우 화인켐 주식회사 Primer Composition and Hard Coating Film Using the Same
KR102664602B1 (en) * 2023-08-14 2024-05-10 광주과학기술원 Polycarbonate Based Optical Laminate, Preparation thereof and Coverwindow Using the Same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103102793A (en) * 2011-09-30 2013-05-15 Tdk株式会社 Hard coat agent composition and hard coat film using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779293B2 (en) * 2003-10-21 2011-09-28 Tdk株式会社 Hard coating agent composition and optical information medium using the same
JP5483810B2 (en) 2007-09-28 2014-05-07 株式会社ニデック Resin composition
JP5104698B2 (en) 2008-09-30 2012-12-19 大日本印刷株式会社 Hard coat film, method for producing hard coat film, and curable resin composition for hard coat layer
JP2010237572A (en) * 2009-03-31 2010-10-21 Dainippon Printing Co Ltd Optical sheet
JP6045096B2 (en) * 2011-07-13 2016-12-14 関西ペイント株式会社 Laminate and method for producing laminate
JPWO2015060458A1 (en) 2013-10-25 2017-03-09 日産化学工業株式会社 Polymerizable composition containing perfluoropolyether having hydroxy groups
JP6340210B2 (en) * 2014-02-27 2018-06-06 デクセリアルズ株式会社 Surface conditioner and article using the same
JP6402643B2 (en) * 2014-03-31 2018-10-10 信越化学工業株式会社 Fluorine-containing acrylic compound, method for producing the same, curable composition, and substrate
JP6574608B2 (en) 2014-12-26 2019-09-11 中国塗料株式会社 Photocurable resin composition, cured film formed from the composition and substrate with film, and method for producing cured film and substrate with film
JP2016145304A (en) 2015-02-09 2016-08-12 ユニマテック株式会社 Fluorine-containing 2-block copolymer having polymerizable unsaturated group

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103102793A (en) * 2011-09-30 2013-05-15 Tdk株式会社 Hard coat agent composition and hard coat film using the same

Also Published As

Publication number Publication date
JP6982280B2 (en) 2021-12-17
JPWO2018070446A1 (en) 2019-07-25
KR20190060978A (en) 2019-06-04
CN109715399A (en) 2019-05-03
CN109715399B (en) 2021-08-20
TW201832936A (en) 2018-09-16
KR102399829B1 (en) 2022-05-19
WO2018070446A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
TWI736530B (en) Coating curable composition having marring resistance
TWI735678B (en) Anti-glare hard coat laminate
TWI541301B (en) Curable composition for coating comprising fluorine-containing highly branched polymer
TWI695866B (en) Anti-glare coating curable composition
TWI739922B (en) Hard coat laminate having high hardness and manufacturing method for the same
TWI791603B (en) Curable composition for extensible and scratch-resistant coating
CN109715685B (en) Scratch-resistant hard coating material
JP5979423B2 (en) Antireflection coating composition and antireflection film
TWI828853B (en) Curable composition for hard coating, cured film, hardcoat film and method for producing hardcoat film
JP7332989B2 (en) Curable composition for antiglare hard coat
TW202244122A (en) Curable composition for hard coat
WO2022203060A1 (en) Curable composition containing two perfluoropolyethers