TW201832936A - Hard coat laminate having high hardness - Google Patents

Hard coat laminate having high hardness Download PDF

Info

Publication number
TW201832936A
TW201832936A TW106134882A TW106134882A TW201832936A TW 201832936 A TW201832936 A TW 201832936A TW 106134882 A TW106134882 A TW 106134882A TW 106134882 A TW106134882 A TW 106134882A TW 201832936 A TW201832936 A TW 201832936A
Authority
TW
Taiwan
Prior art keywords
group
active energy
energy ray
mass
hard coat
Prior art date
Application number
TW106134882A
Other languages
Chinese (zh)
Other versions
TWI739922B (en
Inventor
松山元信
辻本晴希
Original Assignee
日商日產化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日產化學工業股份有限公司 filed Critical 日商日產化學工業股份有限公司
Publication of TW201832936A publication Critical patent/TW201832936A/en
Application granted granted Critical
Publication of TWI739922B publication Critical patent/TWI739922B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness

Abstract

To provide a laminate provided with a hard coat layer that has high scratch resistance and hardness. A high-hardness hard coat laminate that comprises a substrate, a primer layer above the substrate, and a hard coat layer above the primer layer. The primer layer comprises a cured product of a primer layer-forming composition containing (A) a polyfunctional compound selected from the group consisting of active energy ray-curable polyfunctional monomers and polymers, (B) inorganic fine particles, and (C) a polymerization initiator that generates radicals by means of active energy rays. The hard coat layer comprises a cured product of a curable composition containing (a) an active energy ray-curable polyfunctional monomer, (b) a perfluoropolyether in which an active energy ray-polymerizable group is bonded to both ends thereof via a poly(oxyalkylene) group or via a poly(oxyalkylene) group and one urethane bonding group in this order, and (c) a polymerization initiator that generates radicals by means of active energy rays. Also provided is a method for producing the high-hardness hard coat laminate.

Description

高硬度硬塗覆層合體High hardness hard coating laminate

[0001] 本發明為有關具備有優良耐擦傷性的硬塗覆層之高硬度硬塗覆層合體及其製造方法。[0001] The present invention relates to a high hardness hard coat layer having a hard coat layer having excellent scratch resistance and a method for producing the same.

[0002] 以往,於個人電腦、攜帶式電話、攜帶式遊戲機、ATM等的平版顯示器上,搭載觸控平板的製品已有非常多數商品化。特別是,經由智慧型手機或平板電腦PC之上市,而使得具有多點觸控機能的靜電容量式觸控平板一口氣擴大其搭載數。   [0003] 該些觸控平板顯示器表面為使用薄化的強化玻璃,故為防止該玻璃飛散,多於顯示器表面貼附保護薄膜。保護薄膜,因使用塑膠薄膜,故容易產生因玻璃所造成的傷痕,故於該表面,必須設有優良耐擦傷性的硬塗覆層。對塑膠薄膜表面賦予耐擦傷性之方法,例如可使用形成高度的交聯結構,即形成分子運動性較低的交聯結構以提高表面硬度、對外力賦予抵抗性之方法等。   該些之硬塗覆層形成材料中,現在最常使用的多官能丙烯酸酯系材料中,大部份於常溫下為液狀之單體,於受到光聚合起始劑產生之自由基而進行立體交聯。丙烯酸酯系具有,可經由紫外線(UV)而硬化,照射UV的時間非常短而節省能量、高生產性等之特徴。於塑膠薄膜表面形成硬塗覆層之手段,例如,多採用將多官能丙烯酸酯、光聚合起始劑及含有有機溶劑的溶液,經由凹版塗佈等塗覆於塑膠薄膜上,於使有機溶劑乾燥後,經由紫外線而硬化,形成硬塗覆層之手段。於所形成的硬塗覆層中,就使硬度、耐擦傷性等之機能,於實用上不會產生問題的程度之目的,通常為使硬塗覆層之厚度形成1~15μm。   又,亦有揭示特別是於作為顯示器保護用途的硬塗覆層上,尋求更高之硬度時,而於多官能丙烯酸酯樹脂中添加反應性二氧化矽微粒子作為賦予高硬度之成份的技術(專利文獻1、專利文獻2)。   [0004] 但,靜電容量式觸控平板為使用人們的手指,以接觸方式進行操作。因此,進行操作時,常於觸控平板表面上附著指紋,而產生顯著地損害顯示器的圖像辨識性,或造成顯示器外觀污損等問題。指紋上因含有由汗產生的水份及皮脂產生的油分,為使該些中任一者皆不易附著之觀點,即強烈期待於顯示器表面的硬塗覆層上,可賦予撥水性及撥油性。   基於該些觀點,於觸控平板顯示器表面,極期待可對指紋等具有防污性。但,靜電容量式觸控平板,因人們每天都使用手指接觸,故即使初期可達到相當程度的防污性,但於使用中,其機能大多會有降低之情形。因此,於使用過程的防污性之耐久性多會成為問題。   [0005] 以往,賦予硬塗覆層表面防污性之方法,例如,於形成硬塗覆層的塗佈液中,少量添加氟系表面改質劑之方法。所添加的氟系化合物,基於其低表面能量而會偏存於硬塗覆層之表面,因而可賦予撥水性及撥油性。氟系化合物,例如,就撥水性、撥油性之觀點,一般多使用具有聚(氧代全氟伸烷)鏈的稱為全氟聚醚之具有數平均分子量1,000~5,000左右的低聚物。但是,因全氟聚醚具有高氟濃度,故通常難以溶解於形成硬塗覆層的塗佈液所使用的有機溶劑。又,於所形成的硬塗覆層中,也會引起凝聚現象。   該些全氟聚醚中,就對有機溶劑賦予溶解性及於硬塗覆層中之分散性等觀點,多使用於全氟聚醚中附加有機部位之方法。此外,就賦予耐擦傷性之觀點,則多使用鍵結(甲基)丙烯酸酯基所代表的活性能量線硬化性部位之方法。   目前為止,於具有耐擦傷性的防污性硬塗覆層中,對硬塗覆層表面賦予防污性之成份,已有揭示為使用於聚(氧代全氟伸烷)鏈的兩末端,具有介由具有異佛爾酮骨架之複數的胺基甲酸酯鍵結基鍵結的(甲基)丙烯醯基之化合物作為表面改質劑使用之技術(專利文獻3)。 [先前技術文獻] [專利文獻]   [0006]   [專利文獻1] 特開2010-82864號公報   [專利文獻2] 特開2009-84398號公報   [專利文獻3] 特開2013-76029號公報[0002] In the past, on a lithographic display such as a personal computer, a portable telephone, a portable game machine, or an ATM, a product equipped with a touch panel has been commercialized. In particular, the introduction of a smart phone or tablet PC has enabled the electrostatic capacitive touch panel with multi-touch capability to expand its number of mounts. [0003] The surface of the touch panel display is thinned tempered glass, so that the glass is scattered and the protective film is attached to the surface of the display. Since the protective film is likely to cause scratches due to the glass due to the use of the plastic film, it is necessary to provide a hard coating layer excellent in scratch resistance on the surface. A method of imparting scratch resistance to the surface of a plastic film, for example, a method of forming a highly crosslinked structure, that is, a crosslinked structure having a low molecular mobility to increase surface hardness and impart resistance to external force, or the like can be used. Among the hard coating layer forming materials, most of the polyfunctional acrylate materials which are currently used most are liquid monomers which are liquid at normal temperature, and are subjected to radicals generated by a photopolymerization initiator. Three-dimensional cross-linking. The acrylate type has a characteristic that it can be cured by ultraviolet rays (UV), and the time for irradiating UV is extremely short, thereby saving energy and high productivity. A method of forming a hard coat layer on a surface of a plastic film, for example, applying a polyfunctional acrylate, a photopolymerization initiator, and a solution containing an organic solvent to a plastic film via gravure coating or the like to cause an organic solvent After drying, it is cured by ultraviolet rays to form a hard coat layer. In the hard coating layer to be formed, the function of hardness, scratch resistance, and the like is practically not problematic, and the thickness of the hard coat layer is usually 1 to 15 μm. Further, there has been disclosed a technique of adding reactive cerium oxide microparticles as a component imparting high hardness to a polyfunctional acrylate resin, particularly when a higher hardness is sought for a hard coating layer for display protection use. Patent Document 1 and Patent Document 2). [0004] However, the electrostatic capacity type touch panel operates in a contact manner using people's fingers. Therefore, when the operation is performed, the fingerprint is often attached to the surface of the touch panel, which causes a problem that the image recognition of the display is significantly impaired or the appearance of the display is defaced. The fingerprint contains oil derived from moisture and sebum produced by sweat, so that it is hard to adhere to any of these, that is, it is strongly expected to be provided on the hard coating layer on the surface of the display to impart water repellency and oil repellency. . Based on these points of view, it is highly desirable to have antifouling properties for fingerprints and the like on the surface of a touch panel display. However, since the electrostatic capacitive touch panel is in contact with a finger every day, even if a certain degree of antifouling property can be achieved at an early stage, in use, the function is often lowered. Therefore, durability against the antifouling property during use is a problem. [0005] Conventionally, a method of imparting antifouling properties to the surface of a hard coat layer, for example, a method of adding a fluorine-based surface modifier to a coating liquid for forming a hard coat layer. The fluorine-based compound to be added is biased on the surface of the hard coat layer based on its low surface energy, so that water repellency and oil repellency can be imparted. For the fluorine-based compound, for example, in view of water repellency and oil repellency, an oligomer having a number average molecular weight of about 1,000 to 5,000, which is a perfluoropolyether having a poly(oxoperfluoroalkylene) chain, is generally used. However, since the perfluoropolyether has a high fluorine concentration, it is usually difficult to dissolve in the organic solvent used for the coating liquid which forms the hard coat layer. Moreover, in the hard coating layer formed, agglomeration also occurs. Among these perfluoropolyethers, a method of adding an organic moiety to a perfluoropolyether is often used from the viewpoint of imparting solubility to an organic solvent and dispersibility in a hard coat layer. Further, from the viewpoint of imparting scratch resistance, a method of bonding an active energy ray-curable portion represented by a (meth) acrylate group is often used. Heretofore, in the antifouling hard coat layer having scratch resistance, the component which imparts antifouling property to the surface of the hard coat layer has been disclosed as being used at both ends of the poly(oxoperfluorocyclohexane) chain. A technique of using a compound having a (meth)acryloyl group bonded to a plurality of urethane bond groups having a heterophorone skeleton as a surface modifier (Patent Document 3). [PRIOR ART DOCUMENT] [Patent Document 1] JP-A-2010- 828

[發明所欲解決之問題]   [0007] 專利文獻1及專利文獻2所揭示之方法中,雖可使反應性二氧化矽微粒子於高濃度下複合,而得到更高之硬度,但因二氧化矽微粒子之緣故故會於表面形成微細之凹凸,而會有無法得到充份的耐擦傷性之問題。   又,專利文獻3所具體記載的方法中,為以尋求對硬塗覆層表面賦予耐擦傷性及防污性為目的者,故目前為止對於如何產生高硬度之方法,仍未有具體之研究。 [解決問題之方法]   [0008] 本發明者們,為解決上述問題經過重複深入研究結果,得知於基材與硬塗覆層之間設置含有無機微粒子的底漆層時,可賦予硬塗覆層更高之硬度。即,使用將含有於聚(氧代全氟伸烷)基的分子鏈之兩末端介由聚(伸氧烷)基,或聚(伸氧烷)基及1個的胺基甲酸酯鍵結基鍵結活性能量線聚合性基的全氟聚醚,作為氟系表面改質劑的硬化性組成物,作為硬塗覆層之形成材料時,發現具有優良的耐擦傷性,而可形成具有具備高硬度的硬塗覆層之層合體,因而完成本發明。   [0009] 即本發明之第1觀點為有關,一種高硬度硬塗覆層合體,其為由基材,與該基材上方的底漆層,與該底漆層上方之硬塗覆層所形成的高硬度硬塗覆層合體,其特徵為,   前述底漆層為由含有   (A)由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物100質量份、   (B)無機微粒子100~1,000質量份,及   (C)經由活性能量線產生自由基之聚合起始劑相對於成份(A)及成份(B)之合計100質量份,為1~20質量份;   又,前述成份(B)之無機微粒子,為具有活性能量線聚合性基之粒子, 的底漆層形成用組成物之硬化物所形成;   前述硬塗覆層為由含有   (a)活性能量線硬化性多官能單體100質量份、   (b)含有聚(氧代全氟伸烷)基的分子鏈之兩末端介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結活性能量線聚合性基之全氟聚醚0.1~10質量份,及   (c)經由活性能量線產生自由基之聚合起始劑1~20質量份 的硬化性組成物之硬化物所形成。   第2觀點為有關,第1觀點記載之高硬度硬塗覆層合體,其中,前述成份(B)之無機微粒子為具有10~100nm的平均粒徑之粒子。   第3觀點為有關,第1觀點或第2觀點記載之高硬度硬塗覆層合體,其中,前述成份(B)之無機微粒子為二氧化矽微粒子。   第4觀點為有關,第1觀點至第3觀點中之任一項記載之高硬度硬塗覆層合體,其中,前述成份(b)的全氟聚醚之聚(氧代全氟伸烷)基,為具有以-[OCF2 ]-及-[OCF2 CF2 ]-作為重複單位之基。   第5觀點為有關,第1觀點至第4觀點中之任一項記載之高硬度硬塗覆層合體,其中,前述成份(b)的全氟聚醚之聚(伸氧烷)基為聚(伸氧乙烯)基。   第6觀點為有關,第1觀點至第5觀點中之任一項記載之高硬度硬塗覆層合體,其中,前述成份(A)的多官能單體,為由多官能(甲基)丙烯酸酯化合物及多官能胺基甲酸酯(甲基)丙烯酸酯化合物所成之群所選出之至少1種。   第7觀點為有關,第1觀點至第6觀點中之任一項記載之高硬度硬塗覆層合體,其中,前述成份(a)的多官能單體,為由多官能(甲基)丙烯酸酯化合物及多官能胺基甲酸酯(甲基)丙烯酸酯化合物所成之群所選出之至少1種。   第8觀點為有關,第1觀點至第7觀點中之任一項記載之高硬度硬塗覆層合體,其中,前述成份(C)之經由活性能量線產生自由基之聚合起始劑,為烷基苯酮類聚合起始劑。   第9觀點為有關,第1觀點至第8觀點中之任一項記載之高硬度硬塗覆層合體,其中,前述成份(c)之經由活性能量線產生自由基之聚合起始劑,為烷基苯酮類聚合起始劑。   第10觀點為有關,一種高硬度硬塗覆層合體的製造方法,其為於基材之至少一者之面上具備底漆層,與該底漆層之上方的硬塗覆層之高硬度硬塗覆層合體的製造方法,其特徵為包含   於基材上塗佈底漆層形成用組成物而形成塗膜之步驟、   使用活性能量線照射該底漆層形成用組成物之塗膜,使該塗膜硬化,而形成底漆層之步驟、   於前述底漆層上塗佈硬化性組成物,而形成塗膜之步驟,及   使用活性能量線照射該硬化性組成物之塗膜,使該塗膜硬化,而形成硬塗覆層之步驟;   前述底漆層形成用組成物為含有   (A)由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物100質量份、   (B)無機微粒子100~1,000質量份,及   (C)經由活性能量線產生自由基之聚合起始劑相對於成份(A)及成份(B)之合計100質量份,為1~20質量份   又,前述成份(B)之無機微粒子,為具有活性能量線聚合性基之粒子,   前述硬化性組成物為含有   (a)活性能量線硬化性多官能單體100質量份、   (b)含有聚(氧代全氟伸烷)基的分子鏈之兩末端介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結活性能量線聚合性基之全氟聚醚0.1~10質量份,及   (c)經由活性能量線產生自由基之聚合起始劑1~20質量份。 [發明之效果]   [0010] 依本發明之說明,可提供一種於厚度1~15μm左右的薄膜,也可具有優良的耐擦傷性,且具備高硬度的硬塗覆層之層合體。 [實施發明之形態]   [0011] 本發明之高硬度硬塗覆層合體,為由基材,與該基材上方的底漆層,與該底漆層之上方之硬塗覆層所形成的。   又,本發明之高硬度硬塗覆層合體中,前述底漆層為由底漆層形成用組成物之硬化物所形成;前述硬塗覆層為由硬化性組成物之硬化物所形成。   以下,將詳細敘述構成本發明之高硬度硬塗覆層合體的各層內容。   [0012] 《基材》   本發明之高硬度硬塗覆層合體中之基材並未有特別之限定,例如,塑膠(聚碳酸酯、聚丙烯酸甲酯、聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯、聚酯、PET(聚乙烯對苯二甲酸酯)、聚烯烴、環氧樹脂、三聚氰胺樹脂、三乙醯基纖維素、ABS(丙烯腈-丁二烯-苯乙烯共聚物)、AS(丙烯腈-苯乙烯共聚物)、降莰烯系樹脂等)、金屬、木材、紙、玻璃、二氧化矽、板岩等。該些基材之形狀可為板狀、薄膜狀或立體成形體。   其中,本發明中,基材又以使用PET或PMMA為佳。   上述基材之厚度並未有特別之限定,例如可為10~1,000μm等。   [0013] 《底漆層》 <底漆層形成用組成物>   本發明之高硬度硬塗覆層合體中之底漆層,為由含有下述(A)~(C)之底漆層形成用組成物的硬化物所形成:   (A)由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物100質量份、   (B)無機微粒子100~1,000質量份,及   (C)經由活性能量線產生自由基之聚合起始劑相對於成份(A)及成份(B)之合計100質量份,為1~20質量份。   以下,將對上述(A)~(C)等各成份進行說明。   [0014] [(A)由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物]   活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物,係指可經由紫外線等的活性能量線照射而進行聚合、硬化之單體及聚合物。   又,後述硬化性組成物中之(a)活性能量線硬化性多官能單體,可使用與(A)多官能化合物中之以下〈活性能量線硬化性多官能單體〉中所列舉之化合物為相同內容的化合物。   [0015] 〈活性能量線硬化性多官能單體〉   本發明之硬化性組成物中,較佳的活性能量線硬化性多官能單體,例如,由多官能(甲基)丙烯酸酯化合物及多官能胺基甲酸酯(甲基)丙烯酸酯化合物所成之群所選出之單體。   又,本發明中,(甲基)丙烯酸酯化合物,係指丙烯酸酯化合物與丙烯酸甲酯化合物等二者。例如(甲基)丙烯酸,係指丙烯酸與甲基丙烯酸之意。   [0016] 上述多官能(甲基)丙烯酸酯化合物,例如,三羥甲基丙烷三(甲基)丙烯酸酯、二-三羥甲基丙烷四(甲基)丙烯酸酯、季戊四醇二(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、季戊四醇二(甲基)丙烯酸酯單硬脂酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、丙三醇三(甲基)丙烯酸酯、丙氧化丙三醇三(甲基)丙烯酸酯、乙氧化三羥甲基丙烷三(甲基)丙烯酸酯、丙氧化三羥甲基丙烷三(甲基)丙烯酸酯、乙氧化季戊四醇四(甲基)丙烯酸酯、乙氧化二季戊四醇六(甲基)丙烯酸酯、乙氧化丙三醇三(甲基)丙烯酸酯、乙氧化雙酚A二(甲基)丙烯酸酯、乙氧化雙酚F二(甲基)丙烯酸酯、1,3-丙烷二醇二(甲基)丙烯酸酯、1,3-丁烷二醇二(甲基)丙烯酸酯、1,4-丁烷二醇二(甲基)丙烯酸酯、1,6-己烷二醇二(甲基)丙烯酸酯、2-甲基-1,8-辛烷二醇二(甲基)丙烯酸酯、1,9-壬二醇二(甲基)丙烯酸酯、1,10-癸烷二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、乙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸酯、四乙二醇二(甲基)丙烯酸酯、丙二醇二(甲基)丙烯酸酯、二丙二醇二(甲基)丙烯酸酯、雙(2-羥乙基)異三聚氰酸酯二(甲基)丙烯酸酯、三(2-羥乙基)異三聚氰酸酯二(甲基)丙烯酸酯、三(2-羥乙基)異三聚氰酸酯三(甲基)丙烯酸酯、三環[5.2.1.02,6 ]癸烷二甲醇二(甲基)丙烯酸酯、二噁烷二醇二(甲基)丙烯酸酯、2-羥基-1-丙烯醯氧基-3-甲基丙烯醯氧基丙烷、2-羥基-1,3-二(甲基)丙烯醯氧基丙烷、9,9-雙[4-(2-(甲基)丙烯醯氧基代乙氧基)苯基]茀、雙[4-(甲基)丙烯醯基硫苯基]硫醚、雙[2-(甲基)丙烯醯基硫乙基]硫醚、1,3-金剛烷二醇二(甲基)丙烯酸酯、1,3-金剛烷二甲醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、三(2-(甲基)丙烯醯氧基乙基)磷酸鹽、ε-己內酯變性三(2-羥乙基)異三聚氰酸酯三(甲基)丙烯酸酯等。   其中,較佳者,可列舉如,季戊四醇三(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯等。   [0017] 上述多官能胺基甲酸酯(甲基)丙烯酸酯化合物為,1分子內具有多數個丙烯醯基或甲基丙烯醯基,且具有1個以上的胺基甲酸酯鍵結(-NHCOO-)之化合物。   例如上述多官能胺基甲酸酯(甲基)丙烯酸酯化合物,例如,由多官能異氰酸酯與具有羥基之(甲基)丙烯酸酯進行反應而製得者、由多官能異氰酸酯與具有羥基之(甲基)丙烯酸酯與聚醇進行反應而製得者等,其並不限定於本發明所可使用的官能胺基甲酸酯(甲基)丙烯酸酯化合物所列舉之例示。   [0018] 又,上述多官能異氰酸酯,例如,伸甲苯基二異氰酸酯、異佛爾酮二異氰酸酯、二甲苯二異氰酸酯、伸六甲基二異氰酸酯等。   又,具有上述羥基之(甲基)丙烯酸酯,例如,(甲基)丙烯酸2-羥乙基、(甲基)丙烯酸2-羥丙基、季戊四醇三(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、三季戊四醇七(甲基)丙烯酸酯等。   又,上述聚醇,例如,乙二醇、丙二醇、新戊二醇、1,4-丁烷二醇、1,6-己烷二醇、二乙二醇、二丙二醇等的二醇類;該些二醇類與琥珀酸、馬來酸、己二酸等的脂肪族二羧酸類或二羧酸酐類的反應生成物之聚酯聚醇;聚醚聚醇;聚碳酸酯二醇等。   [0019] 〈活性能量線硬化性多官能聚合物〉   上述活性能量線硬化性多官能聚合物,為聚合物側鏈具有多數個丙烯醯基或甲基丙烯醯基,且重量平均分子量(Mw)為1萬以上之化合物。   例如上述活性能量線硬化性多官能聚合物,例如,具有縮水甘油基之(甲基)丙烯酸酯(共)聚合物與(甲基)丙烯酸進行反應之聚合物、具有羥基之(甲基)丙烯酸酯(共)聚合物與具有異氰酸酯基之(甲基)丙烯酸酯進行反應之聚合物、具有異氰酸酯基之(甲基)丙烯酸酯(共)聚合物與具有羥基之(甲基)丙烯酸酯進行反應之聚合物、僅使用同時具有乙烯醚基與(甲基)丙烯醯基之單體的乙烯醚基進行選擇性聚合之聚合物等,但,本發明所可使用的活性能量線硬化性多官能聚合物,並不受該些例示所限定。   [0020] 上述活性能量線硬化性多官能聚合物之市售品,例如,DAICEL-ALLNEX(股)製、聚合物系丙烯酸酯:ACA Z200M、同Z230AA、同Z250、同Z251、同Z300、同Z320、同Z254F;DIC(股)製、聚合物型丙烯酸酯:UNIDIC(登記商標)V-6840、同V-6841、同WHV-649、同EKS-675;大成精密化學(股)製、UV硬化型聚合物:8KX-012C、8KX-014C、8KX-018C、8KX-052C、8KX-056C、8KX-058、8KX-077、8KX-078、8KX-089;日立化成(股)製、聚合物型丙烯酸酯:HIDEROIDE(登記商標)7975、同7975D、同7988;亞細亞工業(股)製、聚合物型丙烯酸酯:RUA-049,RUA-054、KX50-200等。   [0021] 本發明中,上述(A)多官能化合物,可使用由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之單獨一種,或二種以上之組合。又,活性能量線硬化性多官能單體,可使用由上述多官能(甲基)丙烯酸酯化合物及上述多官能胺基甲酸酯(甲基)丙烯酸酯化合物所成之群所選出之單獨一種,或二種以上之組合。   就提高所得硬化物之硬度的觀點,(A)多官能化合物,以至少使用活性能量線硬化性多官能聚合物者為佳,特別以合併使用活性能量線硬化性多官能聚合物與活性能量線硬化性多官能單體者為佳。此時,活性能量線硬化性多官能單體,以合併使用多官能(甲基)丙烯酸酯化合物與上述多官能胺基甲酸酯(甲基)丙烯酸酯化合物者為佳。又,上述多官能(甲基)丙烯酸酯化合物,以合併使用5官能以上的多官能(甲基)丙烯酸酯化合物及4官能以下的多官能(甲基)丙烯酸酯化合物者為佳。   上述(A)多官能化合物中,活性能量線硬化性多官能聚合物與活性能量線硬化性多官能單體,以使用100:0~25:75之質量比例者為佳。   [0022] 上述活性能量線硬化性多官能單體中,將多官能(甲基)丙烯酸酯化合物與上述多官能胺基甲酸酯(甲基)丙烯酸酯化合物組合使用時,相對於多官能(甲基)丙烯酸酯化合物100質量份,以使用20~100質量份之多官能胺基甲酸酯(甲基)丙烯酸酯化合物,以使用30~70質量份為較佳。   又,上述多官能(甲基)丙烯酸酯化合物中,上述5官能以上的多官能(甲基)丙烯酸酯化合物與上述4官能以下的多官能(甲基)丙烯酸酯化合物組合使用時,相對於5官能以上的多官能(甲基)丙烯酸酯化合物100質量份,以使用10~100質量份之4官能以下的多官能(甲基)丙烯酸酯化合物為佳,以使用20~60質量份為較佳。   [0023] 其中,又以使用活性能量線硬化性多官能聚合物與活性能量線硬化性多官能單體為95:5~25:75之質量比例,且相對於多官能(甲基)丙烯酸酯化合物100質量份,使用多官能胺基甲酸酯(甲基)丙烯酸酯化合物20~100質量份,及相對於5官能以上的多官能(甲基)丙烯酸酯化合物100質量份,使用4官能以下的多官能(甲基)丙烯酸酯化合物10~100質量份,較佳為20~60質量份者為佳,   特別是使用活性能量線硬化性多官能聚合物與活性能量線硬化性多官能單體為95:5~25:75之質量比例,且相對於多官能(甲基)丙烯酸酯化合物100質量份,使用多官能胺基甲酸酯(甲基)丙烯酸酯化合物30~70質量份,及相對於5官能以上的多官能(甲基)丙烯酸酯化合物100質量份,使用4官能以下的多官能(甲基)丙烯酸酯化合物10~100質量份,較佳為20~60質量份者為佳。   [0024] [(B)無機微粒子]   本發明所使用之(B)無機微粒子,例如,只要為具有後述活性能量線聚合性基之粒子時,並未有特別之限定,例如,二氧化矽(silica);氧化鋁、氧化鋯、氧化鈦、氧化鋅、氧化鍺、氧化銦、氧化錫、銦錫氧化物、氧化銻、氧化鈰等的金屬氧化物微粒子;氟化鎂、氟化鈉等的金屬氟化物微粒子;金屬硫化物微粒子;金屬氮化物微粒子;金屬微粒子等。   [0025] 上述(B)無機微粒子,就提高底漆層形成用組成物中分散性之目的,或提高與基材或硬塗覆層之密著性、形成均勻的底漆層之目的時,或就形成可得到更高硬度的硬塗覆層的底漆層之目的時,亦可對該微粒子進行表面處理。   該表面處理,例如,可使用乙烯基矽烷、胺基矽烷等的矽烷系耦合劑;鈦酸酯系耦合劑;鋁酸酯系耦合劑;具有(甲基)丙烯醯基、乙烯基等的活性能量線聚合性基或環氧基等反應性官能基之有機化合物;脂肪酸、脂肪酸金屬鹽等之表面處理劑等進行表面處理。   其中,本發明所使用的上述(B)無機微粒子,於使用經具有活性能量線聚合性基的表面處理劑進行表面處理後的具有活性能量線聚合性基的無機微粒子時,可經由構成底漆層的成份(A)之由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物,與該無機微粒子而形成交聯結構,而提升底漆層及硬塗覆層之層合結構之硬度。   [0026] 上述成份(B)無機微粒子的平均粒徑,就可得到硬度改良效果之觀點,及可保持底漆層之透明性的觀點,以300nm以下,例如1~200nm,特別是以5~100nm為佳。   又,此處所稱之平均粒徑,係指經由氮吸附法(BET法)所測定之比表面積(m2 ),依平均粒徑=(2720/比表面積)之計算式計算而得之值。   又,前述無機微粒子之形狀並未有特別之限定,例如,可為顆粒狀的略球形亦可、粉末等的不定形者亦可,又以略球形者為佳,更佳為長徑比為1.5以下之略球形粒子,最佳為正球狀粒子。   [0027] 本發明所使用的(B)無機微粒子中,就可形成具有更高硬度的硬塗覆層之底漆層的觀點,以使用莫氏硬度6以上的無機氧化物粒子為佳,例如,以二氧化矽微粒子、氧化鈦微粒子、氧化鋯微粒子、氧化鋁微粒子等為佳。   [0028] 上述無機微粒子,可使用膠體粒子狀的無機微粒子。例如二氧化矽微粒子,可適當地使用經分散介質所分散的二氧化矽凝膠,或市售的膠體二氧化矽。   該二氧化矽凝膠,例如,將矽酸鈉水溶液作為原料,依公知之方法製得的水性二氧化矽凝膠,及將作為該水性二氧化矽凝膠的分散介質的水,使用有機溶劑取代而得的有機二氧化矽凝膠等。   上述有機二氧化矽凝膠中之有機溶劑(分散介質)之例,例如,甲醇、乙醇、異丙醇、丁醇等的低級醇類;乙二醇、乙基溶纖劑(cellosolve)、丙基溶纖劑、丙二醇單甲醚(PGME)、丙二醇單甲醚乙酸酯(PGMEA)等的二醇類;甲基乙酮(MEK)、甲基異丁酮(MIBK)等的酮類;甲苯、二甲苯等的芳香族烴類;N,N-二甲基甲醯胺(DMF)、N,N-二甲基乙醯胺(DMAc)、N-甲基-2-吡咯啶酮(NMP)等之醯胺類;乙酸乙酯、乙酸丁酯、γ-丁內酯等的酯類;四氫呋喃、1,4-二噁烷等的醚類等。   [0029] 上述無機微粒子中,較佳的二氧化矽微粒子(二氧化矽凝膠)之市售品,例如,日產化學工業(股)製:有機二氧化矽凝膠(登記商標)MEK-AC-2140Z、同MEK-AC-4130Y、同MEK-AC-5140Z、同PGM-AC-2140Y、同PGM-AC-4130Y、同MIBK-AC-2140Y、同MIBK-SD、同MIBK-SD-L等。該些之二氧化矽微粒子,為具有活性能量線聚合性基者。   [0030] 上述成份(B)無機微粒子之添加量,相對於上述成份(A)100質量份,就表面硬度之觀點,為100質量份以上,較佳為200質量份以上,更佳為400質量份以上。另一方面,就耐龜裂性之觀點,較佳為1,000質量份以下,更佳為900質量份以下,特佳為800質量份以下。   又,(B)無機微粒子之添加量,以使(B)無機微粒子的體積分率佔底漆層全體積為50~90體積%之方式添加為佳。   [0031] [(C)經由活性能量線產生自由基之聚合起始劑]   本發明所使用之底漆層形成用組成物中,經由活性能量線產生自由基之聚合起始劑(以下,亦僅稱為「(C)聚合起始劑」),例如,可經由電子線、紫外線、X線等的活性能量線,特別是可經由紫外線照射而產生自由基的聚合起始劑。   又,後述的硬化性組成物中之(c)經由活性能量線產生自由基之聚合起始劑,可使用與(C)聚合起始劑中所列舉的化合物為相同內容之聚合起始劑。   [0032] 上述(C)聚合起始劑,例如,苯醯類、烷基苯酮類、9-氧硫 類、偶氮類、疊氮類、重氮類、o-醌二疊氮類、醯基次膦(phosphine)氧化物類、肟酯類、有機過氧化物、二苯甲酮類、雙香豆素類、雙咪唑類、二茂鈦類、硫醚類、鹵化烴類、三氯甲基三類、錪鹽、鋶鹽等之鎓鹽類等。該些可單獨使用一種,或將二種以上混合使用皆可。   其中,本發明中,就透明性、表面硬化性、薄膜硬化性之觀點,以使用(C)作為聚合起始劑之烷基苯酮類聚合起始劑為佳。使用烷基苯酮類聚合起始劑時,可製得耐擦傷性更為優良的硬化膜。   [0033] 上述烷基苯酮類聚合起始劑,例如,1-羥基環己基=苯基=酮、2-羥基-2-甲基-1-苯基丙烷-1-酮、2-羥基-1-(4-(2-羥基乙氧基)苯基)-2-甲基丙烷-1-酮、2-羥基-1-(4-(4-(2-羥基-2-甲基丙醯基)苄基)苯基)-2-甲基丙烷-1-酮等的α-羥烷基苯酮類;2-甲基-1-(4-(甲基硫)苯基)-2-嗎啉基丙烷-1-酮、2-苄基-2-二甲胺基-1-(4-嗎啉基苯基)丁烷-1-酮等的α-胺烷基苯酮類;2,2-二甲氧基-1,2-二苯基乙烷-1-酮;苯基乙醛酸甲基等。   [0034] 本發明中之(C)聚合起始劑,相對於前述(A)由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物,及(B)無機微粒子的合計100質量份,以使用1~20質量份,較佳為2~10質量份之比例為宜。   [0035] [(D)溶劑]   本發明所使用之底漆層形成用組成物,可為含有(D)溶劑之塗料(膜形成材料)形態。   [0036] 上述溶劑,例如,可於考慮使前述(A)~(C)成份溶解,與後述形成硬化物(底漆層)時所進行的塗佈時之作業性或硬化前後之乾燥性等,作適當之選擇即可,例如,可使用苯、甲苯、二甲苯、乙基苯、四氫萘等的芳香族烴類;n-己烷、n-庚烷、礦油精、環己烷等的脂肪族或脂環式烴類;氯化甲酯、溴化甲酯、碘化甲酯、二氯甲烷、氯仿、四氯化碳、三氯乙烯、過氯乙烯、o-二氯苯等的鹵化烴類;乙酸乙酯、乙酸丁酯、甲氧基丁基乙酸酯、甲基溶纖劑乙酸酯、乙基溶纖劑乙酸酯、丙二醇單甲醚乙酸酯等的酯類或酯醚類;二乙醚、四氫呋喃、1,4-二噁烷、甲基溶纖劑、乙基溶纖劑、丁基溶纖劑、丙二醇單甲醚、丙二醇單乙醚、丙二醇單-n-丙醚、丙二醇單異丙醚、丙二醇單-n-丁醚等的醚類;丙酮、甲基乙酮、甲基異丁酮、二-n-丁酮、環己酮等的酮類;甲醇、乙醇、n-丙醇、異丙醇、n-丁醇、異丁醇、tert-丁醇、2-乙基己醇、苄醇、乙二醇等的醇類;N,N-二甲基甲醯胺、N,N-二甲基乙醯胺等之醯胺類;二甲基亞碸等的亞碸類;N-甲基-2-吡咯啶酮等的雜環式化合物類,及該些之2種以上之混合溶劑等。   該些(D)溶劑的使用量並未有特別之限定,例如,可使本發明所使用之底漆層形成用組成物中之固形成份濃度達1~70質量%,較佳為10~60質量%之濃度的方式使用。其中,固形成份濃度(亦稱為不揮發成份濃度),係指相對於本發明所使用之底漆層形成用組成物的前述(A)~(D)成份(及所期待之其他添加劑)的總質量(合計質量),該固形成份(由全成份去除溶劑成份之後)的含量之意。   [0037] [其他添加物]   又,本發明所使用之底漆層形成用組成物中,於無損及本發明效果之範圍,必要時,可適當添加一般所添加的添加劑,例如,聚合促進劑、聚合阻礙劑、光增感劑、均染劑、界面活性劑、密著性賦予劑、可塑劑、紫外線吸收劑、抗氧化劑、儲存安定劑、抗靜電劑、無機填充劑、顏料、染料等。   [0038] 特別是本發明所使用的底漆層形成用組成物中,因添加有無機微粒子,故就使形成底漆層時的塗膜表面平滑化,以可防止損害塗佈外觀或透明性之缺陷發生等觀點,又以添加均染劑為佳。   該均染劑,可使用公知的聚矽氧系、氟系、丙烯酸系、乙烯系等。   上述均染劑,例如,丙烯酸系均染劑、聚矽氧系均染劑、氟系均染劑、聚矽氧・丙烯酸基共聚物系均染劑、氟變性丙烯酸系均染劑、氟變性聚矽氧系均染劑,及於該些均染劑中導入甲氧基、乙氧基等之烷氧基、醯基氧基、鹵素基、胺基、乙烯基、環氧基、甲基丙烯醯氧基、丙烯醯氧基、異氰酸酯基等的官能基的均染劑等。   添加均染劑之情形,相對於前述(A)由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物及(B)無機微粒子之合計100質量份時,就透明性、塗佈外觀、密著性、硬度等觀點,以5質量份以下為佳,以0.001~2質量份為較佳,以0.01~1質量份為更佳。   [0039] 《硬塗覆層》 <硬化性組成物>   本發明之高硬度硬塗覆層合體中之硬塗覆層,為由含有下述(a)~(c)之硬化性組成物所得之硬化物(即硬化膜)所形成。   (a)活性能量線硬化性多官能單體100質量份、   (b)含有聚(氧代全氟伸烷)基的分子鏈之兩末端介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基之具有活性能量線聚合性基之全氟聚醚0.1~10質量份,及   (c)經由活性能量線產生自由基之聚合起始劑1~20質量份。   以下,將對上述(a)~(c)各成份進行說明。   [0040] [(a)活性能量線硬化性多官能單體]   本發明所使用的硬化性組成物所使用的(a)活性能量線硬化性多官能單體,係指經由紫外線等的活性能量線照射,而進行聚合反應而硬化之單體之意,其為與前述底漆層形成組成物中所添加的(A)多官能化合物中,〈活性能量線硬化性多官能單體〉為相同內容的化合物,即,為由前述的多官能(甲基)丙烯酸酯化合物及多官能胺基甲酸酯(甲基)丙烯酸酯化合物所成之群所選出之單體。   [0041] 硬化性組成物中,上述(a)活性能量線硬化性多官能單體,可單獨使用由上述多官能(甲基)丙烯酸酯化合物及上述多官能胺基甲酸酯(甲基)丙烯酸酯化合物所成之群所選出之一種,或將二種以上組合使用皆可。就所得硬化物之耐擦傷性之觀點,以合併使用多官能(甲基)丙烯酸酯化合物及多官能胺基甲酸酯(甲基)丙烯酸酯化合物者為佳。又,上述多官能(甲基)丙烯酸酯化合物,又以合併使用5官能以上的多官能(甲基)丙烯酸酯化合物及4官能以下的多官能(甲基)丙烯酸酯化合物為佳。   又,上述多官能(甲基)丙烯酸酯化合物與上述多官能胺基甲酸酯(甲基)丙烯酸酯化合物組合使用之情形,相對於多官能(甲基)丙烯酸酯化合物100質量份,以使用多官能胺基甲酸酯(甲基)丙烯酸酯化合物20~100質量份為佳,以使用30~70質量份為較佳。   又,於上述多官能(甲基)丙烯酸酯化合物中,將上述5官能以上的多官能(甲基)丙烯酸酯化合物與上述4官能以下的多官能(甲基)丙烯酸酯化合物組合使用之情形,相對於5官能以上的多官能(甲基)丙烯酸酯化合物100質量份,以使用4官能以下的多官能(甲基)丙烯酸酯化合物10~100質量份為佳,以使用20~60質量份為較佳。   又,以相對於多官能(甲基)丙烯酸酯化合物100質量份,使用多官能胺基甲酸酯(甲基)丙烯酸酯化合物20~100質量份,且相對於相對於5官能以上的多官能(甲基)丙烯酸酯化合物100質量份,使用4官能以下的多官能(甲基)丙烯酸酯化合物10~100質量份、   相對於多官能(甲基)丙烯酸酯化合物100質量份,使用多官能胺基甲酸酯(甲基)丙烯酸酯化合物20~100質量份,且相對於相對於5官能以上的多官能(甲基)丙烯酸酯化合物100質量份,使用4官能以下的多官能(甲基)丙烯酸酯化合物20~60質量份、   相對於多官能(甲基)丙烯酸酯化合物100質量份,使用多官能胺基甲酸酯(甲基)丙烯酸酯化合物30~70質量份,且相對於相對於5官能以上的多官能(甲基)丙烯酸酯化合物100質量份,使用4官能以下的多官能(甲基)丙烯酸酯化合物10~100質量份、   相對於多官能(甲基)丙烯酸酯化合物100質量份,使用多官能胺基甲酸酯(甲基)丙烯酸酯化合物30~70質量份,且相對於相對於5官能以上的多官能(甲基)丙烯酸酯化合物100質量份,使用4官能以下的多官能(甲基)丙烯酸酯化合物20~60質量份者為佳。   [0042] [(b)含有聚(氧代全氟伸烷)基的分子鏈之兩末端介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結活性能量線聚合性基之全氟聚醚]   本發明中,(b)成份,為使用於含有聚(氧代全氟伸烷)基的分子鏈之兩末端,介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結活性能量線聚合性基之全氟聚醚(以下,亦僅稱為「(b)兩末端具有聚合性基之全氟聚醚」)。(b)成份,於使用本發明所使用之硬化性組成物的硬塗覆層中,具有作為表面改質劑之機能。   [0043] 上述聚(氧代全氟伸烷)基中之伸烷基的碳原子數並未有特別之限定,較佳以碳原子數1~4為宜。即,上述聚(氧代全氟伸烷)基,係指碳原子數1~4的2價氟化碳基與氧原子具有呈交互連結的結構之基,氧代全氟伸烷基係指碳原子數1~4的2價氟化碳基與氧原子具有呈連結的結構之基。具體而言,例如,-[OCF2 ]-(氧代全氟伸甲基)、-[OCF2 CF2 ]-(氧代全氟伸乙基)、-[OCF2 CF2 CF2 ]-(氧代全氟丙烷-1,3-二基-基)、-[OCF2 C(CF3 )F]-(氧代全氟丙烷-1,2-二基-基)等的基等。   上述氧代全氟伸烷基,可單獨使用一種亦可,或將二種以上組合使用亦可,該情形中,複數種的氧代全氟伸烷基之鍵結,可為嵌段鍵結或無規鍵結中之任一種皆可。   [0044] 該些之中,就可製得具有良好耐擦傷性的硬化膜之觀點,該聚(氧代全氟伸烷)基,以使用具有 -[OCF2 ]-(氧代全氟伸甲基)與-[OCF2 CF2 ]-(氧代全氟伸乙基)二者作為重複單位之基為佳。   其中,上述聚(氧代全氟伸烷)基,又以含有莫耳比例為[重複單位:-[OCF2 ]-]:[重複單位:-[OCF2 CF2 ]-]=2:1~1:2之比例的重複單位:-[OCF2 ]-與-[OCF2 CF2 ]-之基為佳,以含有大致為1:1之比例之基為較佳。該些重複單位之鍵結,可為嵌段鍵結及無規鍵結中之任一者。   上述氧代全氟伸烷基的重複單位數,其重複單位數之總計以5~30的範圍為佳,以7~21之範圍為較佳。   又,上述聚(氧代全氟伸烷)基的凝膠滲透層析儀的聚苯乙烯換算所測定之重量平均分子量(Mw)為1,000~5,000,較佳為1,500~2,000。   [0045] 上述聚(伸氧烷)基中之伸烷基的碳原子數並未有特別之限定,較佳為碳原子數1~4為宜。即,上述聚(伸氧烷)基,係指碳原子數1~4之伸烷基與氧原子具有呈交互連結的結構之基,氧烷基係指碳原子數1~4的2價伸烷基與氧原子具有呈連結的結構之基。上述伸烷基,例如,伸乙基、1-甲基伸乙基、伸三甲基、伸四甲基等。   上述氧烷基,可單獨使用一種亦可,或將二種以上組合使用亦可,該情形中,複數種之氧烷基的鍵結可為嵌段鍵結或無規鍵結之任一者皆可。   其中,上述聚(伸氧烷)基又以聚(伸氧乙烯)基為佳。   上述聚(伸氧烷)基中之氧烷基的重複單位數,例如可為1~15之範圍,例如可為5~12之範圍,又例如以7~12之範圍為較佳。   [0046] 介由上述聚(伸氧烷)基或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基鍵結之活性能量線聚合性基,例如,(甲基)丙烯醯基、胺基甲酸酯(甲基)丙烯醯基、乙烯基等。   [0047] 上述活性能量線聚合性基,並不僅限定於具有1個(甲基)丙烯醯基部份等的活性能量線聚合性部份者,其亦可具有2個以上的活性能量線聚合性部份者,例如,以下所示之A1~A5之結構,及該些之結構中的丙烯醯基被甲基丙烯醯基所取代之結構等。   [0048][0049] 該些(b)兩末端具有聚合性基之全氟聚醚,就工業上容易製造等觀點,以下示之化合物及該些之化合物中的丙烯醯基被甲基丙烯醯基所取代之化合物為較佳之例示。又,結構式中,A表示前述式[A1]~式[A5]所表示之結構中之1個,PFPE表示前述聚(氧代全氟伸烷)基,n各別獨立表示氧乙烯基的重複單位數,較佳為表示1~15之數,更佳為表示5~12之數,特佳為表示7~12之數。[0050] 其中,本發明之(b)兩末端具有聚合性基之全氟聚醚,又以於含有聚(氧代全氟伸烷)基的分子鏈之兩末端,依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,即,於含有聚(氧代全氟伸烷)基的分子鏈之兩末端分別鍵結聚(伸氧烷)基,並於該兩端的各聚(伸氧烷)基上分別鍵結1個胺基甲酸酯鍵結基,並於該兩端的各胺基甲酸酯鍵結上,分別鍵結活性能量線聚合性基而得的全氟聚醚為佳。又,於前述全氟聚醚中,以具有至少2個以上的活性能量線聚合性基之活性能量線聚合性部份之基的全氟聚醚為佳。   [0051] 本發明中,(b)兩末端具有聚合性基之全氟聚醚,相對於前述(a)活性能量線硬化性多官能單體100質量份,為使用0.1~10質量份,較佳為0.2~5質量份之比例。   [0052] 上述(b)兩末端具有聚合性基之全氟聚醚,例如,可使用於聚(氧代全氟伸烷)基的兩末端具有介由聚(伸氧烷)基之羥基的化合物中,對該兩端的羥基,使用2-(甲基)丙烯醯氧基異氰酸乙酯或1,1-雙((甲基)丙烯醯氧基甲基)異氰酸乙酯等之具有聚合性基的異氰酸酯化合物進行胺基甲酸酯化反應之方法、使(甲基)丙烯酸氯化物或氯甲基苯乙烯進行脫鹽酸反應之方法、使(甲基)丙烯酸進行脫水反應之方法、使依康酸酐進行酯化反應之方法等而製得。   其中,又以於聚(氧代全氟伸烷)基的兩末端具有介由聚(伸氧烷)基之羥基的化合物中,對該兩端的羥基,使用2-(甲基)丙烯醯氧基異氰酸乙酯或1,1-雙((甲基)丙烯醯氧基甲基)異氰酸乙酯等之具有聚合性基的異氰酸酯化合物進行胺基甲酸酯化反應之方法,或對該羥基使用(甲基)丙烯酸氯化物或氯甲基苯乙烯進行脫鹽酸反應之方法,就容易進行反應之觀點,而為特佳。   [0053] 又,本發明所使用之硬化性組成物中,除(b)含有聚(氧代全氟伸烷)基的分子鏈之兩末端介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結活性能量線聚合性基之全氟聚醚以外,可再包含於含有聚(氧代全氟伸烷)基的分子鏈之一端介由聚(伸氧烷)基或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,而具有活性能量線聚合性基,且其他端介由聚(伸氧烷)基而具有羥基之全氟聚醚,或,於含有聚(氧代全氟伸烷)基的分子鏈之兩端介由聚(伸氧烷)基而具有羥基之全氟聚醚[未鍵結活性能量線聚合性基之化合物]。   [0054] [(c)經由活性能量線產生自由基之聚合起始劑]   本發明所使用之硬化性組成物中,較佳之經由活性能量線產生自由基之聚合起始劑(以下,亦僅稱為「(c)聚合起始劑」),例如,經由電子線、紫外線、X線等的活性能量線,特別是經紫外線照射而產生自由基之聚合起始劑,其可使用與添加於前述底漆層形成組成物之(C)聚合起始劑為相同內容之起始劑。   其中,本發明就透明性、表面硬化性、薄膜硬化性之觀點,以使用(c)作為聚合起始劑之烷基苯酮類為佳。使用烷基苯酮類聚合起始劑時,可製得使耐擦傷性更為提升之硬化膜。   本發明中,(c)聚合起始劑,相對於前述(a)活性能量線硬化性多官能單體100質量份,為使用1~20質量份,較佳為使用2~10質量份之比例為宜。   [0055] [(d)溶劑]   本發明所使用之硬化性組成物中,可再含有(d)溶劑,即形成塗料(膜形成材料)形態者亦可。   上述溶劑,例如,可於考慮可溶解前述(a)~(c)成份,且於後述形成硬化膜(硬塗覆層)時的塗佈時之作業性或硬化前後之乾燥性等,作適當之選擇即可,例如,苯、甲苯、二甲苯、乙基苯、四氫萘等的芳香族烴類;n-己烷、n-庚烷、礦油精、環己烷等的脂肪族或脂環式烴類;氯化甲酯、溴化甲酯、碘化甲酯、二氯甲烷、氯仿、四氯化碳、三氯乙烯、過氯乙烯、o-二氯苯等的鹵化烴類;乙酸乙酯、乙酸丁酯、甲氧基丁基乙酸酯、甲基溶纖劑乙酸酯、乙基溶纖劑乙酸酯、丙二醇單甲醚乙酸酯等的酯類或酯醚類;二乙醚、四氫呋喃、1,4-二噁烷、甲基溶纖劑、乙基溶纖劑、丁基溶纖劑、丙二醇單甲醚、丙二醇單乙醚、丙二醇單-n-丙醚、丙二醇單異丙醚、丙二醇單-n-丁醚等的醚類;丙酮、甲基乙酮、甲基異丁酮、二-n-丁酮、環己酮等的酮類;甲醇、乙醇、n-丙醇、異丙醇、n-丁醇、異丁醇、tert-丁醇、2-乙基己醇、苄醇、乙二醇等的醇類;N,N-二甲基甲醯胺、N,N-二甲基乙醯胺等之醯胺類;二甲基亞碸等的亞碸類;N-甲基-2-吡咯啶酮等的雜環式化合物類,及該些之2種以上之混合溶劑等。   該些(d)溶劑之使用量並未有特別之限定,例如可使用使本發明所使用之硬化性組成物中之固形成份濃度為1~70質量%,較佳為5~50質量%之濃度。其中,固形成份濃度(亦稱為不揮發成份濃度),係指相對於本發明所使用之硬化性組成物的前述(a)~(d)成份(及所期待之其他添加劑)的總質量(合計質量),固形成份(由全成份去除溶劑成份者)之含量之意。   [0056] [其他添加物]   又,本發明所使用之硬化性組成物中,於無損及本發明效果之範圍,必要時,可適當添加一般的添加劑,例如,聚合促進劑、聚合阻礙劑、光增感劑、均染劑、界面活性劑、密著性賦予劑、可塑劑、紫外線吸收劑、抗氧化劑、儲存安定劑、抗靜電劑、無機填充劑、顏料、染料等。   [0057] 《高硬度硬塗覆層合體》   如前所述,本發明之高硬度硬塗覆層合體為由基材,與該基材上方之底漆層,與該底漆層更上方的硬塗覆層所形成的3層之層合體。   本發明之高硬度硬塗覆層合體為包含:   (i)於基材上塗佈底漆層形成用組成物而形成塗膜之步驟、   (ii)使用活性能量線照射該底漆層形成用組成物之塗膜,使該塗膜硬化,而形成底漆層之步驟、   (iii)於前述底漆層上塗佈硬化性組成物,而形成塗膜之步驟,及   (iv)使用活性能量線照射該硬化性組成物之塗膜,使其硬化而形成硬塗覆層之步驟 而製得者。   其中,底漆層形成用組成物及硬化性組成物,為可使用上述各組成物。   [0058] 上述(i)及(iii)步驟中之底漆層形成用組成物及硬化性組成物的塗覆方法,可適當地選擇鑄模塗佈法、旋轉塗佈法、平板塗佈法、浸潤塗佈(dipcoat)法、滾筒塗佈法、條狀塗佈法、模具(die)塗佈法、噴灑塗佈法、淋幕式塗佈法、噴墨法、印刷法(凸版、凹版、平版、網版印刷等)等,其又可使用捲對捲(roll-to-roll)法,又,就薄膜塗佈性之觀點,以使用凸版印刷法,特別是凹版塗佈法為佳。其中所使用的底漆層形成用組成物及硬化性組成物,只要為前述塗料形態者,皆可適當使用。又,以於事前使用孔徑2μm左右的過濾器,將底漆層形成用組成物及硬化性組成物過濾之後,再予塗覆為佳。   [0059] 於上述(i)步驟之塗覆底漆層形成用組成物之後,及,(iii)步驟塗覆硬化性組成物後,較佳為繼續使用加熱板或烘箱等,經由預乾燥而去除溶劑(溶劑去除步驟)。此時加熱乾燥之條件,例如,40~120℃、30秒~10分左右者為佳。   乾燥後,於(ii)或(iv)步驟為使用紫外線等的活性能量線照射,進行光硬化而形成底漆層及硬塗覆層。活性能量線,例如,紫外線、電子線、X線等。紫外線照射所使用的光源,例如,可使用太陽光線、化學燈、低壓水銀燈、高壓水銀燈、金屬鹵素燈、氙氣燈、UV-LED等。   隨後,經進行後燒焙,具體而言,為使用加熱板、烘箱等進行加熱,而完成聚合及聚縮合反應。   [0060] 依此方式所得之本發明之層合體中,上述底漆層之厚度並未有特別之限定,例如可為0.1~1,000μm,較佳為1~100μm之範圍。   又,硬塗覆層之厚度並未有特別之限定,例如為1~30μm之範圍,較佳為1~20μm,更佳為3~10μm。[Problems to be Solved by the Invention] [0007] In the methods disclosed in Patent Document 1 and Patent Document 2, although the reactive cerium oxide microparticles can be compounded at a high concentration to obtain higher hardness, The reason why the fine particles are formed is that fine irregularities are formed on the surface, and there is a problem that sufficient scratch resistance cannot be obtained. Further, in the method specifically described in Patent Document 3, in order to provide scratch resistance and antifouling properties to the surface of the hard coat layer, there has been no specific research on how to produce high hardness. . [Means for Solving the Problems] [0008] The present inventors have conducted intensive studies to solve the above problems, and have found that when a primer layer containing inorganic fine particles is provided between a substrate and a hard coat layer, hard coat can be imparted. The coating has a higher hardness. That is, a poly(oxyalkylene) group or a poly(oxyalkylene) group and one urethane bond are used at both ends of a molecular chain to be contained in a poly(oxoperfluoroalkylene) group. The perfluoropolyether having a base-bonded active energy ray-polymerizable group, which is a curable composition of a fluorine-based surface modifier, is excellent in scratch resistance as a material for forming a hard coat layer, and can be formed. A laminate having a hard coat layer having a high hardness is thus completed. [0009] That is, a first aspect of the present invention relates to a high-hardness hard-coating laminate comprising a substrate, a primer layer above the substrate, and a hard coating layer over the primer layer. The formed high hardness hard coat layer characterized in that the primer layer is selected from the group consisting of (A) an active energy ray-curable polyfunctional monomer and an active energy ray-curable polyfunctional polymer. 100 parts by mass of the polyfunctional compound, (B) 100 to 1,000 parts by mass of the inorganic fine particles, and (C) a total of 100 masses of the polymerization initiator which generates a radical via the active energy ray with respect to the component (A) and the component (B) Further, the inorganic fine particles of the component (B) are formed of a cured material of a composition for forming a primer layer having particles of an active energy ray polymerizable group; the hard coat layer Is a poly(oxyalkylene) group via a terminal of a molecular chain containing (a) an active energy ray-curable polyfunctional monomer, (b) a poly(oxoperfluoroalkylene) group-containing molecular chain, or Directly bonding a poly(oxyalkylene) group and a urethane linkage group to bond the active energy ray 0.1 to 10 parts by mass of a perfluoropolyether substrate, and (c) 1 to 20 parts of the formed mass of a radical polymerization initiator is cured curable composition produced by the active energy ray. According to a second aspect, the high hardness hard coat layer according to the first aspect, wherein the inorganic fine particles of the component (B) are particles having an average particle diameter of 10 to 100 nm. According to a third aspect, the high hardness hard coat layer according to the first aspect or the second aspect, wherein the inorganic fine particles of the component (B) are cerium oxide fine particles. The high hardness hard coat layer according to any one of the first aspect to the third aspect, wherein the polyfluoropolyether of the component (b) is poly(oxoperfluoroalkylene) Base, with -[OCF 2 ]-and-[OCF 2 CF 2 ]- as the basis of the repeating unit. The high hardness hard coat layer according to any one of the first aspect to the fourth aspect, wherein the poly(polyoxyalkylene) group of the perfluoropolyether of the component (b) is agglomerated (Exhaloethylene) base. The high hardness hard coat layer according to any one of the first aspect to the fifth aspect, wherein the polyfunctional monomer of the component (A) is a polyfunctional (meth)acrylic acid. At least one selected from the group consisting of an ester compound and a polyfunctional urethane (meth) acrylate compound. The high hardness hard coat layer according to any one of the first aspect to the sixth aspect, wherein the polyfunctional monomer of the component (a) is a polyfunctional (meth)acrylic acid. At least one selected from the group consisting of an ester compound and a polyfunctional urethane (meth) acrylate compound. The high hardness hard coat layer according to any one of the above aspects, wherein the component (C) is a polymerization initiator which generates a radical via an active energy ray. Alkyl phenone polymerization initiator. The high hardness hard coat layer according to any one of the first aspect to the eighth aspect, wherein the component (c) is a polymerization initiator which generates a radical via an active energy ray. Alkyl phenone polymerization initiator. A tenth aspect relates to a method for producing a high-hardness hard-coating laminate comprising a primer layer on a surface of at least one of the substrates and a high hardness of the hard coating layer above the primer layer A method for producing a hard coat layer comprising a step of forming a coating film by coating a composition for forming a primer layer on a substrate, and a coating film for irradiating the composition for forming a primer layer with an active energy ray. a step of forming the primer layer to form a primer layer, a step of applying a curable composition on the primer layer, forming a coating film, and irradiating the coating film of the curable composition with an active energy ray. The coating film is cured to form a hard coat layer; and the primer layer forming composition is composed of (A) an active energy ray-curable polyfunctional monomer and an active energy ray-curable polyfunctional polymer. 100 parts by mass of the polyfunctional compound selected by the group, (B) 100 to 1,000 parts by mass of the inorganic fine particles, and (C) a polymerization initiator which generates a radical via the active energy ray, with respect to the component (A) and the component (B) 100 parts by mass in total, 1 to 20 parts by mass, The inorganic fine particles of the component (B) are particles having an active energy ray polymerizable group, and the curable composition contains (a) 100 parts by weight of the active energy ray-curable polyfunctional monomer, and (b) contains poly(oxygen). The terminal of the molecular chain of the perfluoroalkylene group is bonded via a poly(oxyalkylene) group or a poly(oxyalkylene) group and a urethane-bonding group, respectively. 0.1 to 10 parts by mass of the perfluoropolyether of the active energy ray polymerizable group, and (c) 1 to 20 parts by mass of a polymerization initiator which generates a radical via an active energy ray. [Effects of the Invention] According to the description of the present invention, it is possible to provide a laminate of a hard coat layer having a high hardness and a film having a thickness of about 1 to 15 μm and having excellent scratch resistance. [Form of the Invention] The high-hardness hard coat layer of the present invention is formed of a base material, a primer layer above the base material, and a hard coat layer above the primer layer. . Further, in the high-hardness hard-coating laminate of the present invention, the primer layer is formed of a cured product of a composition for forming a primer layer, and the hard coating layer is formed of a cured product of a curable composition. Hereinafter, the contents of the respective layers constituting the high hardness hard coat layer of the present invention will be described in detail. [Substrate] The substrate in the high hardness hard coat layer of the present invention is not particularly limited, for example, plastic (polycarbonate, polymethyl acrylate, polymethyl methacrylate (PMMA)). , polystyrene, polyester, PET (polyethylene terephthalate), polyolefin, epoxy resin, melamine resin, triethylenesulfonyl cellulose, ABS (acrylonitrile-butadiene-styrene copolymer ), AS (acrylonitrile-styrene copolymer), norbornene resin, etc.), metal, wood, paper, glass, cerium oxide, slate, and the like. The shape of the substrates may be a plate shape, a film shape or a three-dimensional molded body. Among them, in the present invention, the substrate is preferably PET or PMMA. The thickness of the above substrate is not particularly limited, and may be, for example, 10 to 1,000 μm or the like. [Primer layer] <Purchase layer forming composition> The primer layer in the high hardness hard coat layer of the present invention is formed of a primer layer containing the following (A) to (C) It is formed of a cured product of the composition: (A) 100 parts by mass of the polyfunctional compound selected from the group consisting of active energy ray-curable polyfunctional monomer and active energy ray-curable polyfunctional polymer, (B) inorganic 100 to 1,000 parts by mass of the fine particles, and (C) a polymerization initiator which generates a radical via the active energy ray is 1 to 20 parts by mass based on 100 parts by mass of the total of the component (A) and the component (B). Hereinafter, each component (A) to (C) will be described. [(A) A polyfunctional compound selected from the group consisting of an active energy ray-curable polyfunctional monomer and an active energy ray-curable polyfunctional polymer] Active energy ray-curable polyfunctional monomer and active energy The line curable polyfunctional polymer refers to a monomer and a polymer which can be polymerized and cured by irradiation with an active energy ray such as ultraviolet rays. Further, in the (a) active energy ray-curable polyfunctional monomer in the curable composition described later, the compound listed in the following "active energy ray-curable polyfunctional monomer" in the (A) polyfunctional compound can be used. A compound that is the same content. <Active energy ray-curable polyfunctional monomer> In the curable composition of the present invention, a preferred active energy ray-curable polyfunctional monomer is, for example, a polyfunctional (meth) acrylate compound and A monomer selected from the group of functional urethane (meth) acrylate compounds. Further, in the present invention, the (meth) acrylate compound means both an acrylate compound and a methyl acrylate compound. For example, (meth)acrylic means the meaning of acrylic acid and methacrylic acid. [0016] The above polyfunctional (meth) acrylate compound, for example, trimethylolpropane tri(meth) acrylate, di-trimethylolpropane tetra(meth) acrylate, pentaerythritol di(methyl) Acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol di(meth)acrylate monostearate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol six (a) Acrylate, glycerol tri(meth)acrylate, propoxylated glycerol tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, propoxylated trimethylol Propane tri(meth)acrylate, pentoxide tetraol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, ethoxylated glycerol tri(meth)acrylate, ethoxylated bisphenol A Di(meth)acrylate, ethoxylated bisphenol F di(meth)acrylate, 1,3-propanediol di(meth)acrylate, 1,3-butanediol di(meth)acrylic acid Ester, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 2-methyl-1,8-octyl Diol (meth) acrylate, 1,9-nonanediol di(meth) acrylate, 1,10-decanediol di(meth) acrylate, neopentyl glycol di(methyl) Acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, Propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, bis(2-hydroxyethyl)isocyanate di(meth)acrylate, tris(2-hydroxyethyl) Cyanurate di(meth)acrylate, tris(2-hydroxyethyl)isocyanate tri(meth)acrylate, tricyclo[5.2.1.0 2,6 ]decane dimethanol di(meth)acrylate, dioxanediol di(meth)acrylate, 2-hydroxy-1-propenyloxy-3-methylpropenyloxypropane, 2-hydroxyl -1,3-bis(meth)acryloxypropane, 9,9-bis[4-(2-(methyl)propenyloxyethoxy)phenyl]indole, bis[4-( Methyl)propenylthiophenyl]thioether, bis[2-(methyl)propenylthioethyl]thioether, 1,3-adamantanediol di(meth)acrylate, 1,3 -adamantane dimethanol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, tris(2-(methyl)acryloxyethyl) Phosphate and ε-caprolactone denatured tris(2-hydroxyethyl)isocyanate tri(meth)acrylate and the like. Among them, preferred are, for example, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and the like. [0017] The polyfunctional urethane (meth) acrylate compound has a plurality of acryl fluorenyl groups or methacryl fluorenyl groups in one molecule, and has one or more urethane bonds ( -NHCOO-) compound. For example, the above polyfunctional urethane (meth) acrylate compound, for example, obtained by reacting a polyfunctional isocyanate with a (meth) acrylate having a hydroxyl group, is composed of a polyfunctional isocyanate and a hydroxyl group (A) The acrylate is reacted with a polyalcohol to obtain a compound, etc., and is not limited to the exemplified examples of the functional urethane (meth) acrylate compound which can be used in the present invention. Further, the polyfunctional isocyanate is, for example, tolyl diisocyanate, isophorone diisocyanate, xylene diisocyanate, hexamethyl diisocyanate or the like. Further, a (meth) acrylate having the above hydroxyl group, for example, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol-5 ( Methyl) acrylate, tripentaerythritol hepta (meth) acrylate, and the like. Further, the polyhydric alcohol is, for example, a glycol such as ethylene glycol, propylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol or dipropylene glycol; These polyesters are polyester polyols of a reaction product of an aliphatic dicarboxylic acid or a dicarboxylic acid anhydride such as succinic acid, maleic acid or adipic acid; a polyether polyol; a polycarbonate diol or the like. <Active Energy Ray-Curable Polyfunctional Polymer> The active energy ray-curable polyfunctional polymer has a plurality of acrylonitrile groups or methacryl fluorenyl groups in a polymer side chain, and has a weight average molecular weight (Mw). It is a compound of more than 10,000. For example, the above active energy ray-curable polyfunctional polymer, for example, a polymer having a glycidyl group (meth) acrylate (co)polymer reacted with (meth)acrylic acid, and a (meth)acrylic acid having a hydroxyl group A polymer in which an ester (co)polymer is reacted with a (meth) acrylate having an isocyanate group, a (meth) acrylate (co)polymer having an isocyanate group, and a (meth) acrylate having a hydroxyl group are reacted. a polymer, a polymer which selectively polymerizes only a vinyl ether group having a vinyl ether group and a (meth) acrylonitrile group, but an active energy ray curable polyfunctional compound which can be used in the present invention The polymer is not limited by these illustrations. [0020] Commercially available products of the active energy ray-curable polyfunctional polymer, for example, manufactured by DAICEL-ALLNEX Co., Ltd., polymer acrylate: ACA Z200M, same as Z230AA, same Z250, same Z251, same Z300, same Z320, the same Z254F; DIC (share) system, polymer type acrylate: UNIDIC (registered trademark) V-6840, the same V-6841, the same WHV-649, with EKS-675; Dacheng precision chemical (stock) system, UV Hardening type polymer: 8KX-012C, 8KX-014C, 8KX-018C, 8KX-052C, 8KX-056C, 8KX-058, 8KX-077, 8KX-078, 8KX-089; Hitachi Chemical Co., Ltd., polymer Type acrylate: HIDEROIDE (registered trademark) 7975, the same 7975D, the same 7798; Asia Industrial Co., Ltd., polymer type acrylate: RUA-049, RUA-054, KX50-200 and the like. In the present invention, the (A) polyfunctional compound may be a single one selected from the group consisting of an active energy ray-curable polyfunctional monomer and an active energy ray-curable polyfunctional polymer, or two kinds thereof. The combination of the above. Further, as the active energy ray-curable polyfunctional monomer, a single one selected from the group consisting of the above polyfunctional (meth) acrylate compound and the above polyfunctional urethane (meth) acrylate compound can be used. , or a combination of two or more. From the viewpoint of increasing the hardness of the obtained cured product, (A) a polyfunctional compound is preferably at least an active energy ray-curable polyfunctional polymer, particularly in combination with an active energy ray-curable polyfunctional polymer and an active energy ray. A curable polyfunctional monomer is preferred. In this case, the active energy ray-curable polyfunctional monomer is preferably a combination of a polyfunctional (meth) acrylate compound and the above polyfunctional urethane (meth) acrylate compound. Further, the polyfunctional (meth) acrylate compound is preferably a combination of a polyfunctional (meth) acrylate compound having 5 or more functional groups and a polyfunctional (meth) acrylate compound having 4 or less functional groups. In the above (A) polyfunctional compound, the active energy ray-curable polyfunctional polymer and the active energy ray-curable polyfunctional monomer are preferably used in a mass ratio of from 100:0 to 25:75. [0022] In the above active energy ray-curable polyfunctional monomer, when a polyfunctional (meth) acrylate compound is used in combination with the above polyfunctional urethane (meth) acrylate compound, it is relatively multifunctional ( It is preferable to use 30 to 70 parts by mass of the polyfunctional urethane (meth) acrylate compound in an amount of 20 to 100 parts by mass, based on 100 parts by mass of the methyl acrylate compound. Further, in the above polyfunctional (meth) acrylate compound, when the above-mentioned five-functional or more polyfunctional (meth) acrylate compound is used in combination with the above-described tetrafunctional or lower polyfunctional (meth) acrylate compound, 100 parts by mass of the polyfunctional (meth) acrylate compound having a functional or higher functional group is preferably 10 to 100 parts by mass of a tetrafunctional or lower polyfunctional (meth) acrylate compound, and preferably 20 to 60 parts by mass. . [0023] wherein, the active energy ray-curable polyfunctional polymer and the active energy ray-curable polyfunctional monomer are in a mass ratio of 95:5 to 25:75, and relative to the polyfunctional (meth) acrylate. 100 parts by mass of the compound, 20 to 100 parts by mass of the polyfunctional urethane (meth) acrylate compound, and 4 parts or less with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound having 5 or more functional groups. The polyfunctional (meth) acrylate compound is preferably used in an amount of 10 to 100 parts by mass, preferably 20 to 60 parts by mass, particularly an active energy ray-curable polyfunctional polymer and an active energy ray-curable polyfunctional monomer. a mass ratio of 95:5 to 25:75, and 30 to 70 parts by mass of the polyfunctional urethane (meth) acrylate compound, and 100 parts by mass of the polyfunctional (meth) acrylate compound, and It is preferable to use 10 to 100 parts by mass of a polyfunctional (meth)acrylate compound having 4 or less functional groups, preferably 20 to 60 parts by mass, per 100 parts by mass of the polyfunctional (meth) acrylate compound having 5 or more functional groups. . [(B) Inorganic fine particles] The inorganic fine particles (B) used in the present invention are not particularly limited as long as they are particles having an active energy ray polymerizable group to be described later, for example, cerium oxide ( Silica; metal oxide fine particles such as alumina, zirconia, titania, zinc oxide, cerium oxide, indium oxide, tin oxide, indium tin oxide, cerium oxide, cerium oxide; magnesium fluoride, sodium fluoride, etc. Metal fluoride microparticles; metal sulfide microparticles; metal nitride microparticles; metal microparticles, and the like. [0025] When the inorganic fine particles (B) are used for the purpose of improving the dispersibility in the composition for forming a primer layer, or for improving the adhesion to the substrate or the hard coat layer and forming a uniform primer layer, Alternatively, the microparticles may be surface-treated for the purpose of forming a primer layer of a hard coat layer of higher hardness. For the surface treatment, for example, a decane-based coupling agent such as vinyl decane or amino decane; a titanate-based coupling agent; an aluminate-based coupling agent; and an activity having a (meth) acrylonitrile group, a vinyl group, or the like can be used. An organic compound of a reactive functional group such as an energy ray polymerizable group or an epoxy group; a surface treatment agent such as a fatty acid or a fatty acid metal salt; or the like. In the above (B) inorganic fine particles used in the present invention, when inorganic fine particles having an active energy ray polymerizable group after surface treatment with a surface treatment agent having an active energy ray-polymerizable group are used, the primer can be formed. The polyfunctional compound selected from the group consisting of the active energy ray-curable polyfunctional monomer and the active energy ray-curable polyfunctional polymer of the component (A) of the layer, forms a crosslinked structure with the inorganic fine particles, and is promoted The hardness of the laminated structure of the primer layer and the hard coat layer. The average particle diameter of the inorganic fine particles of the component (B) can be obtained from the viewpoint of obtaining a hardness improving effect, and the transparency of the primer layer can be maintained at 300 nm or less, for example, 1 to 200 nm, particularly 5 to 5 100nm is preferred. Here, the average particle diameter referred to herein means a specific surface area (m) measured by a nitrogen adsorption method (BET method). 2 ), the value calculated by the calculation formula of the average particle diameter = (2720 / specific surface area). Further, the shape of the inorganic fine particles is not particularly limited. For example, it may be a spherical shape, a spherical shape, or an amorphous shape such as a powder. It may be preferably a spherical shape, and more preferably an aspect ratio. Slightly spherical particles of 1.5 or less are preferably spherical particles. [0027] In the (B) inorganic fine particles used in the present invention, it is preferable to use a primer layer having a hard coat layer having a higher hardness, and it is preferable to use an inorganic oxide particle having a Mohs hardness of 6 or more, for example. Preferably, cerium oxide microparticles, titanium oxide microparticles, zirconia fine particles, alumina fine particles, and the like are preferred. [0028] As the inorganic fine particles, colloidal particles of inorganic fine particles can be used. For example, as the cerium oxide microparticles, a cerium oxide gel dispersed by a dispersion medium or a commercially available colloidal cerium oxide can be suitably used. The cerium oxide gel, for example, an aqueous cerium oxide gel obtained by a known method using an aqueous solution of sodium citrate as a raw material, and water used as a dispersion medium of the aqueous cerium oxide gel, using an organic solvent A substituted organic cerium oxide gel or the like. Examples of the organic solvent (dispersion medium) in the above organic cerium oxide gel, for example, lower alcohols such as methanol, ethanol, isopropanol, butanol; ethylene glycol, ethyl cellosolve, and c a solvate such as a cellosolve, propylene glycol monomethyl ether (PGME) or propylene glycol monomethyl ether acetate (PGMEA); a ketone such as methyl ethyl ketone (MEK) or methyl isobutyl ketone (MIBK); Aromatic hydrocarbons such as toluene and xylene; N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone ( An amine such as NMP); an ester such as ethyl acetate, butyl acetate or γ-butyrolactone; an ether such as tetrahydrofuran or 1,4-dioxane; and the like. Among the above-mentioned inorganic fine particles, a commercially available product of a preferred cerium oxide microparticle (cerium oxide gel), for example, manufactured by Nissan Chemical Industries Co., Ltd.: organic cerium oxide gel (registered trademark) MEK-AC -2140Z, with MEK-AC-4130Y, with MEK-AC-5140Z, with PGM-AC-2140Y, with PGM-AC-4130Y, with MIBK-AC-2140Y, with MIBK-SD, with MIBK-SD-L, etc. . The cerium oxide microparticles are those having an active energy ray polymerizable matrix. The amount of the inorganic fine particles added to the component (B) is 100 parts by mass or more, preferably 200 parts by mass or more, and more preferably 400%, based on 100 parts by mass of the component (A). More than one. On the other hand, from the viewpoint of crack resistance, it is preferably 1,000 parts by mass or less, more preferably 900 parts by mass or less, and particularly preferably 800 parts by mass or less. Further, the amount of (B) inorganic fine particles added is preferably such that the volume fraction of the inorganic fine particles (B) is 50 to 90% by volume based on the entire volume of the primer layer. [(C) A polymerization initiator which generates a radical via an active energy ray] A polymerization initiator which generates a radical via an active energy ray in the composition for forming a primer layer used in the present invention (hereinafter, also The term "(C) polymerization initiator") can be, for example, an active energy ray such as an electron beam, an ultraviolet ray or an X-ray, or a polymerization initiator which can generate a radical via ultraviolet ray irradiation. Further, (c) a polymerization initiator which generates a radical via an active energy ray in the curable composition to be described later, a polymerization initiator which is the same as the compound exemplified in the (C) polymerization initiator. [0032] The above (C) polymerization initiator, for example, benzoquinones, alkyl benzophenones, 9-oxosulfur Class, azo, azide, diazo, o-quinonediazide, phosphine oxide, oxime ester, organic peroxide, benzophenone, double incense Beans, biimidazoles, ferrocenes, thioethers, halogenated hydrocarbons, trichloromethyl three Classes, barium salts, barium salts, etc. These may be used alone or in combination of two or more. In the present invention, from the viewpoints of transparency, surface hardenability, and film curability, an alkylphenone polymerization initiator which uses (C) as a polymerization initiator is preferred. When an alkyl phenone polymerization initiator is used, a cured film having more excellent scratch resistance can be obtained. The above alkyl benzophenone polymerization initiator, for example, 1-hydroxycyclohexyl=phenyl=ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-hydroxy- 1-(4-(2-hydroxyethoxy)phenyl)-2-methylpropan-1-one, 2-hydroxy-1-(4-(4-(2-hydroxy-2-methylpropionamidine) Α-hydroxyalkylphenones such as benzyl)phenyl)-2-methylpropan-1-one; 2-methyl-1-(4-(methylthio)phenyl)-2- α-Amine alkylphenones such as morpholinylpropan-1-one and 2-benzyl-2-dimethylamino-1-(4-morpholinylphenyl)butan-1-one; , 2-dimethoxy-1,2-diphenylethane-1-one; phenylglyoxylate methyl, and the like. [0034] The (C) polymerization initiator in the present invention is selected from the group consisting of the active energy ray-curable polyfunctional monomer and the active energy ray-curable polyfunctional polymer. The total amount of the compound and (B) inorganic fine particles is preferably from 1 to 20 parts by mass, preferably from 2 to 10 parts by mass, per 100 parts by mass. [(D) Solvent] The composition for forming a primer layer used in the present invention may be in the form of a coating (film forming material) containing (D) a solvent. In the above-mentioned solvent, for example, it is considered that the components (A) to (C) are dissolved, and workability at the time of coating, drying property before and after curing, and the like which are performed when a cured product (primer layer) is formed later is considered. Suitable choices are, for example, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, tetrahydronaphthalene, etc.; n-hexane, n-heptane, mineral spirits, cyclohexane Aliphatic or alicyclic hydrocarbons; methyl chloride, methyl bromide, methyl iodide, dichloromethane, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, o-dichlorobenzene Halogenated hydrocarbons such as ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol monomethyl ether acetate, etc. Ester or ester ether; diethyl ether, tetrahydrofuran, 1,4-dioxane, methyl cellosolve, ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n- An ether such as propyl ether, propylene glycol monoisopropyl ether or propylene glycol mono-n-butyl ether; a ketone such as acetone, methyl ethyl ketone, methyl isobutyl ketone, di-n-butanone or cyclohexanone; methanol , Alcohols such as ethanol, n-propanol, isopropanol, n-butanol, isobutanol, tert-butanol, 2-ethylhexanol, benzyl alcohol, ethylene glycol, etc.; N,N-dimethyl a guanamine such as methotrexate or N,N-dimethylacetamide; an anthracene such as dimethyl hydrazine; a heterocyclic compound such as N-methyl-2-pyrrolidone; Two or more kinds of mixed solvents and the like. The amount of the solvent (D) to be used is not particularly limited. For example, the solid content of the primer layer-forming composition used in the present invention may be from 1 to 70% by mass, preferably from 10 to 60. The mass concentration is used in a manner. Here, the solid content concentration (also referred to as a non-volatile component concentration) means the components (A) to (D) (and other additives expected) of the primer layer-forming composition used in the present invention. Total mass (total mass), the content of the solid component (after removal of the solvent component from the total component). [Other Additives] Further, in the composition for forming a primer layer to be used in the present invention, it is possible to appropriately add an additive which is generally added, for example, a polymerization accelerator, as long as it does not impair the effects of the present invention. , polymerization inhibitor, photo sensitizer, leveling agent, surfactant, adhesion imparting agent, plasticizer, ultraviolet absorber, antioxidant, storage stabilizer, antistatic agent, inorganic filler, pigment, dye, etc. . In particular, in the composition for forming a primer layer used in the present invention, since the inorganic fine particles are added, the surface of the coating film when the primer layer is formed is smoothed to prevent damage to the coating appearance or transparency. In view of the occurrence of defects, it is preferable to add a leveling agent. As the leveling agent, a known polyfluorene-based, fluorine-based, acrylic-based, or vinyl-based one can be used. The above-mentioned leveling agent, for example, an acrylic leveling agent, a polyfluorene type leveling agent, a fluorine type leveling agent, a polyfluorene/acrylic copolymer-based leveling agent, a fluorine-denatured acrylic type leveling agent, and a fluorine denaturation agent. a polyfluorene-based leveling agent, and an alkoxy group, a mercaptooxy group, a halogen group, an amine group, a vinyl group, an epoxy group, a methyl group such as a methoxy group or an ethoxy group, which are introduced into the leveling agents. A leveling agent of a functional group such as an acryloxy group, an acryloxy group or an isocyanate group. In the case where a leveling agent is added, the polyfunctional compound selected from the group consisting of the active energy ray-curable polyfunctional monomer and the active energy ray-curable polyfunctional polymer and (B) the inorganic fine particles are When the total amount is 100 parts by mass, it is preferably 5 parts by mass or less, more preferably 0.001 to 2 parts by mass, even more preferably 0.01 to 1 part by mass, from the viewpoints of transparency, coating appearance, adhesion, hardness, and the like. [Hard Coat Layer] <Curable Composition> The hard coat layer in the high hardness hard coat layer of the present invention is obtained from the curable composition containing the following (a) to (c). The cured product (ie, the cured film) is formed. (a) 100 parts by mass of an active energy ray-curable polyfunctional monomer; (b) a terminal of a molecular chain containing a poly(oxoperfluoroalkylene) group via a poly(oxyalkylene) group, or 0.1 to 10 parts by mass of a perfluoropolyether having an active energy ray-polymerizable group bonded to a poly(oxyalkylene) group and one urethane-bonding group, and (c) generating a radical via an active energy ray The polymerization initiator is 1 to 20 parts by mass. Hereinafter, each component of the above (a) to (c) will be described. [(a) Active energy ray-curable polyfunctional monomer] (a) Active energy ray-curable polyfunctional monomer used in the curable composition used in the present invention means active energy via ultraviolet rays or the like In the case of the (A) polyfunctional compound added to the primer layer forming composition, the <active energy ray-curable polyfunctional monomer> is the same as the monomer which is hardened by the polymerization reaction. The content of the compound, that is, the monomer selected from the group consisting of the aforementioned polyfunctional (meth) acrylate compound and polyfunctional urethane (meth) acrylate compound. [0041] In the curable composition, the (a) active energy ray-curable polyfunctional monomer may be used singly from the above polyfunctional (meth) acrylate compound and the above polyfunctional urethane (methyl). One type selected from the group consisting of acrylate compounds, or a combination of two or more types may be used. From the viewpoint of the scratch resistance of the obtained cured product, it is preferred to use a polyfunctional (meth) acrylate compound and a polyfunctional urethane (meth) acrylate compound in combination. Further, in the above polyfunctional (meth) acrylate compound, a polyfunctional (meth) acrylate compound having 5 or more functional groups and a polyfunctional (meth) acrylate compound having 4 or less functional groups are preferably used in combination. Further, when the polyfunctional (meth) acrylate compound is used in combination with the above polyfunctional urethane (meth) acrylate compound, it is used in an amount of 100 parts by mass based on the polyfunctional (meth) acrylate compound. The polyfunctional urethane (meth) acrylate compound is preferably 20 to 100 parts by mass, and preferably 30 to 70 parts by mass. Further, in the above polyfunctional (meth) acrylate compound, when the above-described pentafunctional or higher polyfunctional (meth) acrylate compound is used in combination with the above-described tetrafunctional or lower polyfunctional (meth) acrylate compound, It is preferable to use 10 to 100 parts by mass of a polyfunctional (meth)acrylate compound having 4 or less functional groups, and to use 20 to 60 parts by mass, based on 100 parts by mass of the polyfunctional (meth) acrylate compound having 5 or more functional groups. Preferably. Further, the polyfunctional urethane (meth) acrylate compound is used in an amount of 20 to 100 parts by mass based on 100 parts by mass of the polyfunctional (meth) acrylate compound, and is relatively polyfunctional with respect to 5 or more functional groups. 100 parts by mass of a (meth) acrylate compound, 10 to 100 parts by mass of a polyfunctional (meth) acrylate compound having 4 or less functional groups, and 100 parts by mass of a polyfunctional (meth) acrylate compound, and a polyfunctional amine is used. 20 to 100 parts by mass of the carbamic acid ester (meth) acrylate compound, and a polyfunctional (meth) group having 4 or less functional groups is used with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound having 5 or more functional groups. 20 to 60 parts by mass of the acrylate compound, and 30 to 70 parts by mass of the polyfunctional urethane (meth) acrylate compound with respect to 100 parts by mass of the polyfunctional (meth) acrylate compound, and relative to 100 parts by mass of a polyfunctional (meth) acrylate compound having 5 or more functional groups, 10 to 100 parts by mass of a polyfunctional (meth) acrylate compound having 4 or less functional groups, and a polyfunctional (meth) acrylate compound 100 The amount of the polyfunctional urethane (meth) acrylate compound is 30 to 70 parts by mass, and the amount of the functional group is less than or equal to 100 parts by mass based on 100 parts by mass of the polyfunctional (meth) acrylate compound. The polyfunctional (meth) acrylate compound is preferably 20 to 60 parts by mass. [(b) a molecular chain containing a poly(oxoperfluoroalkylene) group is bonded to both ends via a poly(oxyalkylene) group, or sequentially via a poly(oxyalkylene) group and one a urethane-bonding group, a perfluoropolyether bonded to an active energy ray-polymerizable group] In the present invention, the component (b) is used for a molecular chain containing a poly(oxoperfluoroalkylene) group. At both ends, through a poly(oxyalkylene) group, or sequentially via a poly(oxyalkylene) group and a urethane linkage group, a perfluoropoly group bonded to an active energy ray polymerizable group Ether (hereinafter, also referred to as "(b) perfluoropolyether having a polymerizable group at both ends). The component (b) has a function as a surface modifier in the hard coat layer using the curable composition used in the present invention. The number of carbon atoms of the alkylene group in the poly(oxoperfluoroalkylene) group is not particularly limited, and is preferably from 1 to 4 carbon atoms. That is, the above poly(oxoperfluoroalkylene) group means a group having a structure in which a divalent fluorinated carbon group having 1 to 4 carbon atoms and an oxygen atom are mutually linked, and an oxoperfluoroalkylene group means The divalent fluorinated carbon group having 1 to 4 carbon atoms and the oxygen atom have a structure in which a structure is bonded. Specifically, for example, -[OCF 2 ]-(Oxo-perfluoromethyl), -[OCF 2 CF 2 ]-(oxoperfluoroextended ethyl), -[OCF 2 CF 2 CF 2 ]-(oxoperfluoropropane-1,3-diyl-yl), -[OCF 2 C (CF 3 a group such as F]-(oxoperfluoropropane-1,2-diyl-yl). The oxoperfluoroalkylene group may be used singly or in combination of two or more. In this case, a plurality of oxoperfluoroalkylene groups may be bonded to each other. Or any of the random bonds can be used. Among these, from the viewpoint of producing a cured film having good scratch resistance, the poly(oxoperfluoroalkylene) group is used to have -[OCF 2 ]-(Oxo-perfluoromethyl) and -[OCF 2 CF 2 It is preferred that both - (oxoperfluoroextended ethyl) be used as the basis of the repeating unit. Wherein, the above poly(oxoperfluoroalkylene) group has a molar ratio of [repeating unit: -[OCF] 2 ]-]:[Repeat unit:-[OCF 2 CF 2 ]-]=2:1~1:2 ratio of repeating units: -[OCF 2 ]-and-[OCF 2 CF 2 Preferably, the base is preferably a base having a ratio of approximately 1:1. The bonding of the repeating units may be any one of a block bond and a random bond. The number of repeating units of the oxoperfluoroalkylene group is preferably in the range of 5 to 30 in terms of the number of repeating units, and preferably in the range of 7 to 21. Moreover, the weight average molecular weight (Mw) measured by polystyrene conversion of the poly(oxoperfluoroalkylene) group gel permeation chromatography is 1,000 to 5,000, preferably 1,500 to 2,000. The number of carbon atoms of the alkylene group in the poly(oxyalkylene) group is not particularly limited, and is preferably from 1 to 4 carbon atoms. That is, the above poly(oxyalkylene) group means a group in which an alkylene group having 1 to 4 carbon atoms and an oxygen atom have an interconnected structure, and an oxyalkyl group means a divalent extension having 1 to 4 carbon atoms. The alkyl group and the oxygen atom have a group having a bonded structure. The above alkyl group is, for example, an ethyl group, a methyl group, a methyl group, a methyl group, a tetramethyl group or a tetramethyl group. The above oxyalkyl groups may be used singly or in combination of two or more. In this case, the bonding of the plurality of oxyalkyl groups may be either block bonding or random bonding. Can be. Among them, the above poly(oxyalkylene) group is preferably a poly(ethylene oxide) group. The number of repeating units of the oxyalkyl group in the poly(oxyalkylene) group may be, for example, in the range of 1 to 15, and may be, for example, in the range of 5 to 12, and preferably in the range of 7 to 12, for example. [0046] an active energy ray-polymerizable group bonded via a poly(oxyalkylene) group or a poly(oxyalkylene) group and a urethane-bonding group, for example, Methyl) acrylonitrile, urethane (meth) acrylonitrile, vinyl, and the like. The active energy ray polymerizable group is not limited to an active energy ray polymerizable portion having one (meth) acryl fluorenyl moiety, and may have two or more active energy ray polymerizations. The functional part is, for example, the structures of A1 to A5 shown below, and the structure in which the acryl fluorenyl group in these structures is substituted by a methacryl fluorenyl group. [0048] The (b) perfluoropolyether having a polymerizable group at both terminals is industrially easy to manufacture, and the compound shown below and the propylene sulfonyl group in the compounds are replaced by a methacryl fluorenyl group. The compounds are preferably exemplified. Further, in the structural formula, A represents one of the structures represented by the above formulas [A1] to [A5], PFPE represents the poly(oxoperfluoroalkylene) group, and n each independently represents an oxyethylene group. The number of repeating units is preferably from 1 to 15, more preferably from 5 to 12, and particularly preferably from 7 to 12. [0050] wherein, (b) the perfluoropolyether having a polymerizable group at both ends, and the two ends of the molecular chain containing a poly(oxoperfluoroalkylene) group, sequentially through the poly( An alkoxyalkylene group and a urethane linkage group, that is, a poly(oxyalkylene) group is bonded to each of the two ends of the molecular chain containing a poly(oxoperfluoroalkylene) group, and A urethane bond group is bonded to each of the poly(oxyalkylene) groups at the two ends, and the active energy ray polymerization is bonded to each of the urethane bonds at the two ends. The fluorinated polyether is preferred. Further, in the perfluoropolyether, a perfluoropolyether having a base of an active energy ray polymerizable portion having at least two or more active energy ray-polymerizable groups is preferred. In the present invention, (b) a perfluoropolyether having a polymerizable group at both terminals is used in an amount of 0.1 to 10 parts by mass based on 100 parts by mass of the (a) active energy ray-curable polyfunctional monomer. The ratio is preferably 0.2 to 5 parts by mass. The perfluoropolyether having a polymerizable group at both ends of the above (b), for example, can be used for a poly(oxo-perpendane) group having a hydroxyl group via a poly(oxyalkylene) group. In the compound, 2-(methyl)propenyloxyisocyanate or 1,1-bis((meth)acryloxymethyl)isocyanate or the like is used for the hydroxyl group at both ends. Method for performing urethanization reaction of an isocyanate compound having a polymerizable group, a method for dehydrochlorinating (meth)acrylic acid chloride or chloromethylstyrene, and a method for dehydrating (meth)acrylic acid It is obtained by subjecting isoconic anhydride to an esterification reaction or the like. Wherein, in the compound having a poly(oxyalkylene) group-containing hydroxyl group at both ends of the poly(oxoperfluoroalkylene) group, 2-(meth)acrylofluorene is used for the hydroxyl group at both ends a method of performing a urethanization reaction of an isocyanate compound having a polymerizable group such as ethyl isocyanate or 1,1-bis((meth)acryloxymethyl)isocyanate; or It is particularly preferable that the hydroxyl group is subjected to a dehydrochlorination reaction using (meth)acrylic acid chloride or chloromethylstyrene, and the reaction is easily carried out. Further, in the curable composition used in the present invention, the (b) molecular chain containing a poly(oxoperfluoroalkylene) group is bonded to both ends via a poly(oxyalkylene) group, or sequentially. The poly(oxygenated perfluoroalkylene) may be further contained in addition to the perfluoropolyether bonded to the active energy ray-polymerizable group via a poly(oxyalkylene) group and one urethane linkage group. One of the molecular chains of the group has an active energy ray-polymerizable group via a poly(oxyalkylene) group or a poly(oxyalkylene) group and a urethane-bonding group. And a perfluoropolyether having a hydroxyl group at the other end or a poly(oxyalkylene) group at both ends of the molecular chain containing the poly(oxoperfluoroalkylene) group A perfluoropolyether having a hydroxyl group [a compound which does not bond an active energy ray polymerizable group]. [(c) Polymerization initiator for generating a radical via an active energy ray] The curable composition used in the present invention is preferably a polymerization initiator which generates a radical via an active energy ray (hereinafter, only It is called "(c) polymerization initiator"), for example, an active energy ray such as an electron beam, an ultraviolet ray, an X-ray or the like, particularly a polymerization initiator which generates a radical by ultraviolet irradiation, which can be used and added thereto. The (C) polymerization initiator of the aforementioned primer layer forming composition is the same starting agent. Among them, in the present invention, from the viewpoints of transparency, surface hardenability, and film hardenability, it is preferred to use (c) an alkyl benzophenone as a polymerization initiator. When an alkyl phenone polymerization initiator is used, a cured film which is more excellent in scratch resistance can be obtained. In the present invention, (c) the polymerization initiator is used in an amount of from 1 to 20 parts by mass, preferably from 2 to 10 parts by mass, per 100 parts by mass of the active energy ray-curable polyfunctional monomer. It is appropriate. [(d) Solvent] The curable composition used in the present invention may further contain (d) a solvent, that is, a form of a coating material (film forming material). In the above-mentioned solvent, for example, it is possible to dissolve the components (a) to (c), and to form a cured film (hard coat layer), which will be described later, workability at the time of coating, dryness before and after curing, and the like. The choice may be, for example, an aromatic hydrocarbon such as benzene, toluene, xylene, ethylbenzene or tetrahydronaphthalene; an aliphatic group such as n-hexane, n-heptane, mineral spirit or cyclohexane; Alicyclic hydrocarbons; halogenated hydrocarbons such as methyl chloride, methyl bromide, methyl iodide, dichloromethane, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, o-dichlorobenzene, etc. Ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol monomethyl ether acetate, ester or ester ether Diethyl ether, tetrahydrofuran, 1,4-dioxane, methyl cellosolve, ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol An ether such as isopropyl ether or propylene glycol mono-n-butyl ether; a ketone such as acetone, methyl ethyl ketone, methyl isobutyl ketone, di-n-butanone or cyclohexanone; methanol, ethanol, n- Propanol Alcohols such as isopropanol, n-butanol, isobutanol, tert-butanol, 2-ethylhexanol, benzyl alcohol, ethylene glycol, etc.; N,N-dimethylformamide, N,N - anthracene such as dimethylacetamide; an anthracene such as dimethyl hydrazine; a heterocyclic compound such as N-methyl-2-pyrrolidone; and two or more of these Mix solvents and the like. The amount of the solvent (d) to be used is not particularly limited. For example, the solid content of the curable composition used in the present invention may be from 1 to 70% by mass, preferably from 5 to 50% by mass. concentration. Wherein the solid component concentration (also referred to as the non-volatile component concentration) refers to the total mass of the above components (a) to (d) (and other additives expected) relative to the curable composition used in the present invention ( Total mass), the content of the solid component (the solvent component is removed from the total component). [Other Additives] Further, in the curable composition used in the present invention, a general additive such as a polymerization accelerator or a polymerization inhibitor may be appropriately added as needed, without departing from the scope of the effects of the present invention. Light sensitizer, leveling agent, surfactant, adhesion imparting agent, plasticizer, ultraviolet absorber, antioxidant, storage stabilizer, antistatic agent, inorganic filler, pigment, dye, and the like. [High Hardness Hard Coat Laminate] As described above, the high hardness hard coat laminate of the present invention is composed of a substrate, a primer layer above the substrate, and a top layer of the primer layer. A laminate of 3 layers formed by a hard coating layer. The high hardness hard coat layer of the present invention comprises: (i) a step of forming a coating film by coating a composition for forming a primer layer on a substrate, and (ii) forming the primer layer by irradiation with an active energy ray. a coating film of the composition, a step of curing the coating film to form a primer layer, (iii) applying a curable composition on the primer layer to form a coating film, and (iv) using active energy The line is irradiated with the coating film of the curable composition to be hardened to form a hard coat layer. Among them, the composition for forming a primer layer and the curable composition are each of the above-mentioned compositions. [0058] The coating layer forming composition and the curable composition coating method in the steps (i) and (iii), the mold coating method, the spin coating method, the flat coating method, and the like can be appropriately selected. Dipcoat method, roll coating method, strip coating method, die coating method, spray coating method, curtain coating method, inkjet method, printing method (embossing, gravure, For the lithographic printing, screen printing, etc., it is also possible to use a roll-to-roll method, and it is preferable to use a relief printing method, particularly a gravure coating method, from the viewpoint of film coating properties. The primer layer-forming composition and the curable composition used therein may be suitably used as long as they are in the form of the above-mentioned coating material. In addition, it is preferable to use a filter having a pore size of about 2 μm in advance to filter the primer layer-forming composition and the curable composition. [0059] After applying the composition for forming a primer layer in the above step (i), and after applying the curable composition in the step (iii), it is preferred to continue using a hot plate or an oven, etc., by pre-drying. The solvent is removed (solvent removal step). The conditions for heating and drying at this time are preferably, for example, 40 to 120 ° C and 30 seconds to 10 minutes. After drying, the step (ii) or (iv) is irradiated with an active energy ray such as ultraviolet rays, and photocured to form a primer layer and a hard coat layer. Active energy rays, for example, ultraviolet rays, electron wires, X-rays, and the like. As the light source used for the ultraviolet irradiation, for example, a solar ray, a chemical lamp, a low pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, a xenon lamp, a UV-LED, or the like can be used. Subsequently, post-baking is performed, specifically, heating is performed using a hot plate, an oven, or the like to complete polymerization and polycondensation. In the laminate of the present invention obtained in this manner, the thickness of the primer layer is not particularly limited, and may be, for example, 0.1 to 1,000 μm, preferably 1 to 100 μm. Further, the thickness of the hard coat layer is not particularly limited, and is, for example, in the range of 1 to 30 μm, preferably 1 to 20 μm, more preferably 3 to 10 μm.

[實施例]   [0061] 以下,將列舉實施例,對本發明作更具體的說明,但本發明並不受下述實施例所限定。   又,實施例中,樣品之製造及物性分析所使用的裝置及條件,係如以下所示。   [0062] (1)條狀塗佈塗佈   裝置:(股)S.M.T.製 PM-9050MC   塗佈速度:4m/分鐘   刮棒1(bar1):OSG系統製造(股)製 A-Bar OSP-25、最大濕膜厚25μm(刮棒#10相當)   刮棒2(bar2):OSG系統製造(股)製 A-Bar OSP-30、最大濕膜厚30μm(刮棒#12相當)   刮棒3(bar3):OSG系統製造(股)製 A-Bar OSP-52、最大濕膜厚52μm(刮棒#20相當)   刮棒4(bar4):OSG系統製造(股)製 A-Bar OSP-100、最大濕膜厚100μm(刮棒#37相當) (2)烘箱   裝置:ADVANTEC東洋(股)製 無塵乾燥器 DRC433FA (3)UV照射   裝置:HERAEUS(股)製 CV-110QC-G   燈:HERAEUS(股)製 高壓水銀燈H-bulb (4)擦傷試驗   裝置:新東科學(股)製 往返摩耗試驗機 TRIBOGEAR TYPE:30S   荷重:1kg/cm2 掃瞄速度:3m/分鐘 (5)鉛筆硬度   裝置:(股)安田精機製作所製 電動鉛筆拉刻硬度試驗機 No.553-M   荷重:750g   鉛筆:三菱鉛筆(股)製 UNI(登記商標)   測定溫度:20℃ (6)凝膠滲透層析儀(GPC)   裝置:東曹(股)製 HLC-8220GPC   管柱:昭和電工(股)製 Shodex(登記商標)GPC KF-804L、GPC KF-805L   管柱溫度:40℃   溶離液:四氫呋喃   檢出器:RI (7)膜厚   裝置:(股)尼康製 數位測長機 DEGIMICRO MH-15M+計測器TC-101A (8)全光線穿透率、霧值   裝置:日本電色工業(股)製 霧值測試表 NDH5000 (9)接觸角   裝置:協和界面科學(股)製 DropMaster DM-501   測定溫度:20℃   [0063] 又,縮寫表示以下之意義。   PFPE1:兩末端介由聚(伸氧烷)基(重複單位數8~9)而具有羥基之全氟聚醚[Solvay Specialty Polymers公司製 Fluorolink 5147X]   BEI:1,1-雙(丙烯醯氧基甲基)異氰酸乙酯[昭和電工(股)製 Karenz(登記商標)BEI]   DBTDL:月桂酸二丁基錫[東京化成工業(股)製]   4ELA:四乙二醇單月桂醚丙烯酸酯[日油(股)製 PLUMER (登記商標)ALE-200]   HDDA:1,6-己烷二醇二丙烯酸酯[新中村化學工業(股)製 NK酯A-HD-N]   LA:丙烯酸月桂基[日油(股)製 PLUMER (登記商標)LA]   ADVN:2,2’-偶氮雙(2,4-二甲基戊腈)[和光純藥工業(股)製 V-65]   C6FA:丙烯酸2-(全氟己基)乙酯[UNIMATEC(股)製 FAAC-6]   EGDMA:乙二醇二丙烯酸甲酯[新中村化學工業(股)製 1G]   VEEA:丙烯酸2-(2-乙烯基氧代乙氧基)乙酯[(股)日本觸媒製 VEEA]   MAIB:二甲基2,2’-偶氮雙異丁酯[大塚化學(股)製 MAIB]   AA1:聚丙烯酸基丙烯酸酯[DIC(股)製 UNIDIC(登記商標)V-6840、有效成份50質量%MIBK溶液]   AA2:聚丙烯酸基丙烯酸酯[DAICEL-ALLNEX(股)製 ACA Z200M、有效成份50質量%PGME溶液]   AA3:聚丙烯酸基丙烯酸酯[DAICEL-ALLNEX(股)製 ACA Z230AA、有效成份50質量%PGME溶液]   DPHA:二季戊四醇五丙烯酸酯/二季戊四醇六丙烯酸酯混合物[日本化藥(股)製 KAYALAD DN-0075]   PETA:季戊四醇三丙烯酸酯/季戊四醇四丙烯酸酯混合物[新中村化學工業(股)製 NK酯 A-TMM-3LM-N]   UA:6官能 脂肪族胺基甲酸酯丙烯酸酯低聚物[DAICEL-ALLNEX(股)製 EBECRYL(登記商標)5129]   IP1:含活性能量線聚合性基之二氧化矽凝膠[日產化學工業(股)製 PGM-AC-2140Y、40質量%PGME分散液、1次平均粒徑10~15nm、二氧化矽比重1.24]   IP2:含活性能量線聚合性基之二氧化矽凝膠[日產化學工業(股)製 MIBK-SD、33質量%MIBK分散液、1次平均粒徑10~15nm、二氧化矽比重0.99~1.03]   IP3:二氧化矽凝膠[日產化學工業(股)製 PGM-ST、33質量%PGME分散液、1次平均粒徑10~15nm、二氧化矽比重1.11~1.15]   LA1:非氟系整平劑[共榮社化學(股)製 回焊No.77]   SM2:具有全氟聚醚結構之UV反應型氟系表面改質劑[DIC(股)製 美格氟(登記商標)RS-75、有效成份40質量%MEK/MIBK溶液]   I184:1-羥基環己基=苯基=酮[BASF日本(股)製 IRGACURE(登記商標)184]   I2959:2-羥基-1-(4-(2-羥基乙氧基)苯基)-2-甲基丙烷-1-酮[BASF日本(股)製 IRGACURE(登記商標)2959]   EPA:p-二甲胺基安息香酸乙基[日本化藥(股)製 KAYACURE EPA]   PET:一側面經易接著處理聚乙烯對苯二甲酸酯(PET)薄膜[東洋紡績(股)製 COSMOSHINE(登記商標)A4100、厚度125μm]   PMMA:聚甲基丙烯酸甲酯(PMMA)薄膜[住友丙烯酸販賣(股)製 TECKNOROI薄膜S000、厚度125μm]   MEK:甲基乙酮   MIBK:甲基異丁酮   PGME:丙二醇單甲醚   [0064] [製造例1]兩末端介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結之具有丙烯醯基的全氟聚醚SM1之製造   於螺旋管中,置入PFPE1 1.05g(0.5mmol)、BEI 0.26g (1.0mmol)、DBTDL 10mg(0.016mmol),及MEK 1.30g。使用攪拌子於室溫(約23℃)下攪拌該混合物24小時。使用MEK 3.93g稀釋該反應混合物,而製得目的化合物之SM1的20質量%MEK溶液。   使用GPC之依聚苯乙烯換算所測定的所得SM1的重量平均分子量Mw為3,400、分散度:Mw(重量平均分子量)/Mn(數平均分子量)為1.2。   [0065] [製造例2]具有長鏈烷基之高分支聚合物LA2之製造   於200mL反應燒瓶中,置入MIBK54g,於攪拌中流入5分鐘氮氣,加熱至內液迴流為止(溫度約莫116℃)。   於另一100mL反應燒瓶中,置入HDDA 6.7g (30mmol)、LA 3.6g(15mmol)、4ELA 18.6g(45mmol)、ADVN 6.0g (24mmol),及MIBK 54g,於攪拌中流入5分鐘氮氣進行氮取代,於氷浴中冷卻至0℃為止。   使用滴入幫浦,將置入有HDDA、LA、4ELA、ADVN的前述100mL反應燒瓶,以30分鐘時間將內容物滴入於前述200mL反應燒瓶中迴流的MIBK中。滴入結束後、再攪拌1小時。   將該反應混合物冷卻至室溫(約莫23℃),製得目的高分支聚合物(LA2)之聚合物濃度為25質量%的MIBK溶液143.0g。   所得的高分支聚合物LA2之依GPC測定的聚苯乙烯換算之重量平均分子量:Mw為7,300、分散度:Mw/Mn為4.6。   [0066] [製造例3]具有氟烷基之高分支聚合物LA3之製造   於200mL反應燒瓶中,置入甲苯59g,於攪拌中流入5分鐘氮氣,加熱至內液迴流為止(約莫110℃)。   於另一100mL反應燒瓶中,置入EGDMA 4.0g (20 mmol)、C6FA 5.2g(12.5mmol)、VEEA 1.9g(10mmol)、MAIB 2.8g(12mmol),及甲苯59g,於攪拌中流入5分鐘氮氣進行氮取代,於氷浴中冷卻至0℃為止。   使用滴入幫浦,將置入EGDMA、C6FA、VEEA、MAIB的前述100mL反應燒瓶,以30分鐘時間將內容物滴入於前述200mL反應燒瓶中迴流的甲苯中。滴入結束後、再攪拌1小時。   該反應混合物添加於己烷277g中,使聚合物以淤漿狀態沈澱。將該淤漿減壓過濾、真空乾燥後,製得目的高分支聚合物(LA3)之白色粉末6.6g。   所得的高分支聚合物LA3之依GPC測定的聚苯乙烯換算之重量平均分子量:Mw為8,400、分散度:Mw/Mn為2.5。   [0067] [製造例4-1~4-8]底漆組成物(底漆層形成用組成物)之製造   依表1之記載,將以下各成份混合,而製得表1記載之固形成份濃度的底漆組成物(PR1~PR8)。又,其中之固形成份係指溶劑以外的成份。又,表中,[份]為表示[質量份]、[%]為表示[質量%]。   (1)多官能化合物:表1記載之多官能聚合物及/或單體依表1記載之量(有效成份換算)   (2)無機微粒子:表1記載之無機微粒子依表1記載之量(固形成份換算)   (3)聚合起始劑:表1記載之聚合起始劑5質量份   (4)聚合促進劑:EPA依表1記載之量(表中,“-”表示未添加)。   (5)均染劑:表1記載之均染劑依表1記載之量(固形成份或有效成份換算)   (6)溶劑:PGME表1記載之量(表中,負的數值為表示經蒸發器餾除溶劑者)。   [0068][0069] [製造例5-1~5-2]硬塗覆組成物(硬化性組成物)之製造   依表2之記載將以下各成份混合,製得固形成份濃度40質量%之硬塗覆組成物(HC1~HC2)。又,其中之固形成份係指溶劑以外之成份。又,表中,[份]為表示[質量份]、[%]為表示[質量%]。   (1)多官能單體:DPHA 50質量份、UA 30質量份,及PETA 20質量份   (2)表面改質劑:表2記載之表面改質劑 1質量份(固形成份或有效成份換算)   (3)聚合起始劑:I2959 5質量份   (4)聚合促進劑:EPA 0.1質量份   (5)溶劑:PGME 依表2記載之量   [0070][0071] [實施例1~6、比較例1~5]   將表3記載之底漆組成物,使用表3記載之刮棒於表3記載之基材上(PET為使用易接著處理面)進行條狀塗佈,而製得塗膜。將該塗膜於表3記載之乾燥溫度的烘箱內,乾燥1分鐘,以去除溶劑。將所得之膜,於大氣氛圍下,照射曝光量100mJ/cm2 的UV光,進行曝光處理後,形成表3所示厚度的底漆層(硬化膜)。又,比較例1,因底漆層龜裂,故將隨後之操作中斷。   將表3記載之硬塗覆組成物,使用表3記載之刮棒於該底漆層上進行條狀塗佈,而製得塗膜。將該該塗膜於表3記載之乾燥溫度的烘箱內,乾燥3分鐘,以去除溶劑。將所得之膜,於氮氣氛圍下,照射曝光量300mJ/cm2 之UV光,進行曝光處理後,而製得具有表3所示厚度的硬塗覆層(硬化膜)之硬塗覆層合體。又,比較例3,未形成底漆層,而直接於基材上形成硬塗覆層。又,比較例5,未形成硬塗覆層,而形成僅具有底漆層之硬塗覆層合體。   [0072] 將所得硬塗覆層合體進行耐擦傷性、鉛筆硬度、全光線穿透率、霧值,及水的接觸角之評估。耐擦傷性、鉛筆硬度,及接觸角之評估順序係如以下所示。又,結果併記如表4所示。   [0073] [耐擦傷性]   使用裝設有鋼絲棉[BONSTAR販賣(股)製 BONSTAR(登記商標)#0000(超極細)]之往返摩耗試驗機,以1kg/cm2 荷重,對硬塗覆層表面進行1,000次往返摩擦,於該摩擦部份使用油性麥克筆[ZEBRA(股)製 Mackey極細(藍)、使用細側之邊]描繪線路。隨後,使用不織布刮片[旭化成(股)製 BEMCOT(登記商標)M-1]擦拭該描繪線條,並依以下之基準以目視方式確認傷痕程度以進行評估。又,硬塗覆層合體於設定可實際使用之情形,其至少需為B之等級,又以A之等級為佳。   A:未具有傷痕,可乾淨地去除油性麥克筆所描繪之線條   B:僅有少許傷痕,但可乾淨地去除油性麥克筆所描繪之線條   C:油性麥克筆之油墨深入傷痕中,無法擦拭乾淨   [0074] [鉛筆硬度]   依JIS 5600-5-4為基準,測定鉛筆硬度(刮傷硬度)。又,硬塗覆層合體於設定可實際使用之情形,至少需為5H以上之等級,又以7H以上者為佳。   [0075] [接觸角]   使水1μL附著於硬塗覆層表面,於5秒後測定5處之接觸角θ,並以其平均值作為接觸角值。   [0076][0077][0078] 如表1至表4所示般,使用作為表面改質劑之於兩末端介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結丙烯醯基之全氟聚醚SM1,形成硬塗覆層之情形,於設置含有無機微粒子的底漆層之實施例1至實施例6的層合體1至層合體6中,具有優良耐擦傷性,且鉛筆硬度亦達可滿足實際使用上之品質,且為具有優良透明性之層合體。   另一方面,底漆層使用不具有活性能量線聚合性基的無機微粒子之情形(比較例1),於形成底漆層時發生龜裂,而無法形成層合體。   又,底漆層中,無機微粒子之含量未達規定量之情形(比較例2),及,未設置底漆層之情形(比較例3),雖顯示出與本發明之層合體具有同等的耐擦傷性,但其鉛筆硬度較低,而無法得到所期待的硬度。   又,硬塗覆層中,表面改質劑使用具有全氟聚醚結構之UV反應型氟系表面改質劑SM2之情形(比較例4),雖鉛筆硬度可達到良好的效果,但無法得到所期待的耐擦傷性。   又,未設置硬塗覆層,而僅將硬塗覆層之表面改質劑SM1添加於底漆層之情形(比較例5),雖可得到較添加無機微粒子時為更高硬度之層,但無法得到具有耐擦傷性之層。   [0079] 以上,如實施例之結果所示般,具有表面改質劑使用特定全氟聚醚之硬塗覆層的層合體中,經設置含有無機微粒子的底漆層時,即可製得具有優良耐擦傷性、高硬度的層合體。[Examples] Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited by the following examples. Further, in the examples, the apparatus and conditions used for the production and physical property analysis of the samples are as follows. (1) Strip coating and coating device: PM-9050MC manufactured by SMT (coating): Coating speed of 4 m/min, bar 1 (bar1): A-Bar OSP-25 manufactured by OSG system (share) Maximum wet film thickness 25μm (scratch bar #10 equivalent) Bar 2 (bar2): OSG system manufacturing (stock) A-Bar OSP-30, maximum wet film thickness 30μm (scraping bar #12 equivalent) Bar 3 (bar3 ): OSG system manufacturing (stock) A-Bar OSP-52, maximum wet film thickness 52μm (scratch bar #20 equivalent) Scraper 4 (bar4): OSG system manufacturing (stock) A-Bar OSP-100, maximum Wet film thickness 100μm (scratch bar #37 equivalent) (2) Oven device: ADVANTEC Toyo (stock) dust-free dryer DRC433FA (3) UV irradiation device: HERAEUS (share) system CV-110QC-G lamp: HERAEUS (shares) High-pressure mercury lamp H-bulb (4) scratch test device: Xindong Science (stock) system round-trip friction test machine TRIBOGEAR TYPE: 30S load: 1kg / cm 2 scan speed: 3m / minute (5) pencil hardness device: ( Stock) Electric pencil drawing hardness tester made by Yasuda Seiki Co., Ltd. No.553-M Load: 750g Pencil: UNI (registered trademark) manufactured by Mitsubishi Pencil Co., Ltd. Measurement temperature: 20 ° C (6) Gel permeation chromatography (GPC) ) Device: HTC-8220GPC tube made by Tosoh Co., Ltd. : Showa Denko (registered trademark) GPC KF-804L, GPC KF-805L Column temperature: 40 ° C Dissolution: Tetrahydrofuran detector: RI (7) Film thickness device: (share) Nikon digital measurement Long-distance DEGIMICRO MH-15M+ measuring instrument TC-101A (8) Full light transmittance, fog value device: Japan Electric Color Industry (stock) fog value test table NDH5000 (9) Contact angle device: Concord Interface Science (shares) DropMaster DM-501 Measurement temperature: 20 ° C [0063] Again, the abbreviation indicates the following meaning. PFPE1: a perfluoropolyether having a hydroxyl group at both ends via a poly(oxyalkylene) group (repeating unit number 8 to 9) [Fluorolink 5147X manufactured by Solvay Specialty Polymers Co., Ltd.] BEI: 1,1-bis(propyleneoxyloxy group) Methyl)ethyl isocyanate [Karenz (registered trademark) BEI, manufactured by Showa Denko Co., Ltd.] DBTDL: Dibutyltin laurate [Tokyo Chemical Industry Co., Ltd.] 4ELA: Tetraethylene glycol monolaurate acrylate [Day Oil (stock) PLUMER (registered trademark) ALE-200] HDDA: 1,6-hexanediol diacrylate [Naka Nakamura Chemical Industry Co., Ltd. NK ester A-HD-N] LA: Acrylic acid lauryl [ PLUMER (registered trademark) LA] ADVN: 2,2'-azobis(2,4-dimethylvaleronitrile) [V-65, manufactured by Wako Pure Chemical Industries, Ltd.] C6FA: Acrylic acid 2-(Perfluorohexyl)ethyl ester [FAMAT-6 manufactured by UNIMATEC] EGDMA: Ethylene glycol diacrylate [1G manufactured by Shin-Nakamura Chemical Co., Ltd.] VEEA: 2-(2-vinyloxy acrylate) Ethoxyethyl)ethyl ester [(Febrication) VEEA by Japanese Catalyst] MAIB: dimethyl 2,2'-azobisisobutyl ester [MAIB manufactured by Otsuka Chemical Co., Ltd.] AA1: Polyacrylic acrylate [ DIC (share) system UNIDIC (registered trademark) V-6840, effective ingredient 50 quality %MIBK solution] AA2: Polyacrylic acrylate [ACAZ-ALLNEX (ACA Z200M, active ingredient 50% by mass PGME solution] AA3: Polyacrylic acrylate [DAICEL-ALLNEX ACA Z230AA, active ingredient 50% by mass PGME solution] DPHA: dipentaerythritol pentaacrylate/dipentaerythritol hexaacrylate mixture [KAYALAD DN-0075, manufactured by Nippon Kayaku Co., Ltd.] PETA: pentaerythritol triacrylate/pentaerythritol tetraacrylate mixture [Xinzhongcun Chemical Industry] (Stock) NK ester A-TMM-3LM-N] UA: 6-functional aliphatic urethane acrylate oligomer [EBECRYL (registered trademark) 5129 by DAICEL-ALLNEX) IP1: Containing active energy Linear polymerizable cerium oxide gel [PGM-AC-2140Y, 40% by mass PGME dispersion, primary average particle size 10-15 nm, cerium oxide specific gravity 1.24] IP2: active Energy ray polymerizable group of cerium oxide gel [MIBK-SD manufactured by Nissan Chemical Industries Co., Ltd., 33% by mass MIBK dispersion, primary average particle diameter of 10 to 15 nm, cerium oxide specific gravity of 0.99 to 1.03] IP3: two Yttrium oxide gel [Nissan Chemical Industry Co., Ltd. PGM-ST, 33% by mass PGME Liquid, primary average particle size 10 to 15 nm, cerium oxide specific gravity 1.11 to 1.15] LA1: non-fluorine leveling agent [Kyoeisha Chemical Co., Ltd. reflow soldering No. 77] SM2: having a perfluoropolyether structure UV-reactive fluorine-based surface modifier [DIC (trade) RS-75, active ingredient 40% by mass MEK/MIBK solution] I184: 1-hydroxycyclohexyl = phenyl = ketone [ BASF Japan (stock) IRGACURE (registered trademark) 184] I2959: 2-hydroxy-1-(4-(2-hydroxyethoxy)phenyl)-2-methylpropan-1-one [BASF Japan (shares) ) IRGACURE (registered trademark) 2959] EPA: p-dimethylamino benzoic acid ethyl [KAYACURE EPA manufactured by Nippon Kayaku Co., Ltd.] PET: One side is easily treated with polyethylene terephthalate (PET)膜 MOS MOS MOS MOS COS MOS COS MOS COS MOS COS MOS COS MOS COS MOS COS MOS COS MOS COS MOS COS MOS COS Ethyl ketone MIBK: methyl isobutyl ketone PGME: propylene glycol monomethyl ether [Production Example 1] propylene fluorenyl group bonded at both ends via a poly(oxyalkylene) group and one urethane bond Perfluoropolyether SM1 Built in screw tube placed PFPE1 1.05g (0.5mmol), BEI 0.26g (1.0mmol), DBTDL 10mg (0.016mmol), and MEK 1.30g. The mixture was stirred at room temperature (about 23 ° C) for 24 hours using a stir bar. The reaction mixture was diluted with MEK 3.93 g to obtain a 20% by mass MEK solution of SM1 of the objective compound. The weight average molecular weight Mw of the obtained SM1 measured by using GPC in terms of polystyrene was 3,400, and the degree of dispersion: Mw (weight average molecular weight) / Mn (number average molecular weight) was 1.2. [Production Example 2] The high-branched polymer LA2 having a long-chain alkyl group was produced in a 200 mL reaction flask, and placed in a MIBK (54 g), and a nitrogen gas was introduced for 5 minutes while stirring, and heated until the internal liquid was refluxed (the temperature was about 116 ° C). ). In a separate 100 mL reaction flask, 6.7 g (30 mmol) of HDDA, 3.6 g (15 mmol) of LA, 18.6 g (45 mmol) of 4ELA, 6.0 g (24 mmol) of ADVN, and 54 g of MIBK were placed, and nitrogen gas was introduced for 5 minutes while stirring. The nitrogen was replaced and cooled to 0 ° C in an ice bath. Using the drip pump, the above 100 mL reaction flask containing HDDA, LA, 4ELA, and ADVN was placed, and the contents were dropped into MIBK refluxed in the above 200 mL reaction flask over 30 minutes. After the completion of the dropwise addition, the mixture was further stirred for 1 hour. The reaction mixture was cooled to room temperature (about 23 ° C) to obtain 143.0 g of a MIBK solution having a polymer concentration of the target high branched polymer (LA2) of 25% by mass. The weight average molecular weight of the obtained highly branched polymer LA2 in terms of polystyrene measured by GPC: Mw was 7,300, and the degree of dispersion: Mw/Mn was 4.6. [Production Example 3] Production of a highly branched polymer LA3 having a fluoroalkyl group was carried out in a 200 mL reaction flask, and 59 g of toluene was placed, and nitrogen gas was introduced for 5 minutes while stirring, and heated until the internal liquid was refluxed (about 110 ° C). . In another 100 mL reaction flask, EGDMA 4.0 g (20 mmol), C6FA 5.2 g (12.5 mmol), VEEA 1.9 g (10 mmol), MAIB 2.8 g (12 mmol), and toluene 59 g were placed, and the mixture was stirred for 5 minutes. Nitrogen was replaced with nitrogen and cooled to 0 ° C in an ice bath. Using the dropping pump, the above 100 mL reaction flask of EGDMA, C6FA, VEEA, MAIB was placed, and the contents were dropped into toluene refluxed in the above 200 mL reaction flask over 30 minutes. After the completion of the dropwise addition, the mixture was further stirred for 1 hour. The reaction mixture was added to 277 g of hexane to precipitate the polymer in a slurry state. The slurry was filtered under reduced pressure and dried in vacuo to give 6.6 g of white powder of the desired high-branched polymer (LA3). The weight average molecular weight of the obtained highly branched polymer LA3 in terms of polystyrene measured by GPC: Mw was 8,400, and the degree of dispersion: Mw/Mn was 2.5. [Production Examples 4-1 to 4-8] Preparation of primer composition (primer layer-forming composition) According to Table 1, the following components were mixed to obtain a solid component described in Table 1. The primer composition of the concentration (PR1 to PR8). Further, the solid component thereof means a component other than the solvent. In the table, [parts] means [parts by mass] and [%] means [% by mass]. (1) Polyfunctional compound: The polyfunctional polymer and/or monomer described in Table 1 are in the amounts described in Table 1 (in terms of active ingredient). (2) Inorganic fine particles: The inorganic fine particles described in Table 1 are in the amounts shown in Table 1 ( (3) Polymerization initiator: 5 parts by mass of the polymerization initiator described in Table 1 (4) Polymerization accelerator: EPA The amount described in Table 1 ("-" indicates no addition). (5) Leveling agent: The amount of the leveling agent described in Table 1 is in accordance with the amount shown in Table 1 (solid composition or active ingredient conversion) (6) Solvent: PGME The amount described in Table 1 (in the table, a negative value indicates evaporation) Distillate solvent). [0068] [Production Examples 5-1 to 5-2] Preparation of Hard Coating Composition (Curable Composition) According to the description of Table 2, the following components were mixed to obtain a hard coating having a solid content concentration of 40% by mass. Composition (HC1 to HC2). Further, the solid component thereof means a component other than the solvent. In the table, [parts] means [parts by mass] and [%] means [% by mass]. (1) Polyfunctional monomer: 50 parts by mass of DPHA, 30 parts by mass of UA, and 20 parts by mass of PETA (2) Surface modifier: 1 part by mass of the surface modifier described in Table 2 (solid content or active ingredient conversion) (3) Polymerization initiator: I2959 5 parts by mass (4) Polymerization accelerator: EPA 0.1 parts by mass (5) Solvent: PGME According to the amount described in Table 2 [0070] [Examples 1 to 6 and Comparative Examples 1 to 5] The primer compositions described in Table 3 were coated on the substrate described in Table 3 using the bar shown in Table 3 (PET is an easy-to-handle surface). Strip coating was carried out to obtain a coating film. The coating film was dried in an oven at a drying temperature as described in Table 3 for 1 minute to remove the solvent. The obtained film was irradiated with UV light having an exposure amount of 100 mJ/cm 2 in an air atmosphere, and subjected to exposure treatment to form a primer layer (cured film) having a thickness shown in Table 3. Further, in Comparative Example 1, since the primer layer was cracked, the subsequent operation was interrupted. The hard coat composition shown in Table 3 was applied to the primer layer by strip coating using the bar shown in Table 3 to obtain a coating film. The coating film was dried in an oven at a drying temperature as described in Table 3, and dried for 3 minutes to remove the solvent. The obtained film was irradiated with UV light having an exposure amount of 300 mJ/cm 2 under a nitrogen atmosphere, and subjected to exposure treatment to obtain a hard coat layer having a hard coat layer (hardened film) having a thickness shown in Table 3. . Further, in Comparative Example 3, a primer layer was not formed, and a hard coat layer was formed directly on the substrate. Further, in Comparative Example 5, the hard coat layer was not formed, and a hard coat layer having only the primer layer was formed. The resulting hard coat laminate was evaluated for scratch resistance, pencil hardness, total light transmittance, haze value, and contact angle of water. The order of evaluation of scratch resistance, pencil hardness, and contact angle is as follows. Also, the results are shown in Table 4. [Scratch Resistance] The hard-coating was carried out at a load of 1 kg/cm 2 using a round-trip abrasion tester equipped with steel wool [BONSTAR (registered trademark) #0000 (superfine)]. The surface of the layer was subjected to 1,000 reciprocating frictions, and an oily mic pen [Macaque (blue) made of ZEBRA) and a side of the thin side were used to draw the line. Subsequently, the drawing line was wiped using a non-woven blade [BEMCOT (registered trademark) M-1 manufactured by Asahi Kasei Co., Ltd.), and the degree of the scratch was visually confirmed on the basis of the following criteria for evaluation. Moreover, in the case where the hard coat layer is set to be practical, it needs to be at least a grade of B and a grade of A. A: There is no scar, it can cleanly remove the line drawn by the oily microphone. B: There are only a few scars, but the line drawn by the oily microphone can be cleanly removed. C: The ink of the oily pen is deep into the scar and cannot be wiped clean. [Pencil Hardness] The pencil hardness (scratch hardness) was measured in accordance with JIS 5600-5-4. Further, in the case where the hard coat layer is set to be practical, it is required to be at least 5H or more, and more preferably 7H or more. [Contact Angle] 1 μL of water was attached to the surface of the hard coat layer, and the contact angle θ at 5 points was measured after 5 seconds, and the average value thereof was used as the contact angle value. [0076] [0077] [0078] As shown in Tables 1 to 4, as a surface modifier, a poly(oxyalkylene) group and a urethane bond group are bonded to both ends to bond an acrylonitrile group. The perfluoropolyether SM1, in the case of forming a hard coat layer, has excellent scratch resistance in the laminate 1 to the laminate 6 of Examples 1 to 6 in which the primer layer containing the inorganic fine particles is provided, and the pencil The hardness is also such that it can satisfy the quality of practical use and is a laminate having excellent transparency. On the other hand, in the case where the primer layer was made of inorganic fine particles having no active energy ray polymerizable group (Comparative Example 1), cracking occurred at the time of forming the primer layer, and the laminate could not be formed. Further, in the primer layer, the content of the inorganic fine particles was less than the predetermined amount (Comparative Example 2), and the case where the primer layer was not provided (Comparative Example 3) showed the same as the laminate of the present invention. It is scratch-resistant, but its pencil hardness is low, and the expected hardness cannot be obtained. Further, in the case where the surface modification agent used the UV-reactive fluorine-based surface modifier SM2 having a perfluoropolyether structure in the hard coat layer (Comparative Example 4), although the pencil hardness can achieve a good effect, it cannot be obtained. Expected scratch resistance. Further, in the case where the hard coat layer was not provided, and only the surface modifier SM1 of the hard coat layer was added to the primer layer (Comparative Example 5), a layer having a higher hardness than that of the inorganic fine particles was obtained. However, it is impossible to obtain a layer having scratch resistance. [0079] As described above, as shown in the results of the examples, a laminate having a surface-modifying agent using a hard coating layer of a specific perfluoropolyether can be obtained by providing a primer layer containing inorganic fine particles. A laminate having excellent scratch resistance and high hardness.

Claims (10)

一種高硬度硬塗覆層合體,其為由基材,與該基材上方的底漆層,與該底漆層之上方的硬塗覆層所形成的高硬度硬塗覆層合體,其特徵為,   前述底漆層為由含有   (A)由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物100質量份、   (B)無機微粒子100~1,000質量份,及   (C)經由活性能量線產生自由基之聚合起始劑相對於成份(A)及成份(B)之合計100質量份,為1~20質量份;   又,前述成份(B)之無機微粒子,為具有活性能量線聚合性基之粒子,   的底漆層形成用組成物之硬化物所形成;   前述硬塗覆層為由含有   (a)活性能量線硬化性多官能單體100質量份、   (b)含有聚(氧代全氟伸烷)基的分子鏈之兩末端介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結活性能量線聚合性基之全氟聚醚0.1~10質量份,及   (c)經由活性能量線產生自由基之聚合起始劑1~20質量份 的硬化性組成物之硬化物所形成。A high hardness hard coat laminate which is a high hardness hard coat laminate formed from a substrate, a primer layer over the substrate, and a hard coat layer over the primer layer, characterized The primer layer is 100 parts by mass of a polyfunctional compound selected from the group consisting of (A) an active energy ray-curable polyfunctional monomer and an active energy ray-curable polyfunctional polymer, (B) inorganic 100 to 1,000 parts by mass of the fine particles, and (C) the polymerization initiator which generates a radical via the active energy ray is 1 to 20 parts by mass based on 100 parts by mass of the total of the component (A) and the component (B); The inorganic fine particles of the component (B) are formed of a cured product of a primer layer forming composition of particles having an active energy ray polymerizable group; and the hard coat layer is hardened by containing (a) an active energy ray. 100 parts by mass of the functional monomer, (b) the terminal of the molecular chain containing the poly(oxoperfluoroalkylene) group is bonded via a poly(oxyalkylene) group, or sequentially via a poly(oxyalkylene) group and One urethane bond group, bonding active energy 0.1 to 10 parts by mass of a perfluoropolyether of the polymerizable group, and (c) 1 to 20 parts of the formed mass of a radical polymerization initiator is cured curable composition produced by the active energy ray. 如請求項1之高硬度硬塗覆層合體,其中,前述成份(B)之無機微粒子為具有10~100nm的平均粒徑之粒子。The high hardness hard coat layer of claim 1, wherein the inorganic fine particles of the component (B) are particles having an average particle diameter of 10 to 100 nm. 如請求項1或請求項2之高硬度硬塗覆層合體,其中,前述成份(B)之無機微粒子為二氧化矽微粒子。The high hardness hard coat layer of claim 1 or claim 2, wherein the inorganic fine particles of the component (B) are cerium oxide fine particles. 如請求項1至請求項3中任一項之高硬度硬塗覆層合體,其中,前述成份(b)的全氟聚醚之聚(氧代全氟伸烷)基,為具有以-[OCF2 ]-及-[OCF2 CF2 ]-作為重複單位之基。The high-hardness hard-coating laminate according to any one of Claims 1 to 3, wherein the poly(oxyperfluoroalkylene) group of the perfluoropolyether of the above component (b) has a group of -[ OCF 2 ]- and -[OCF 2 CF 2 ]- are used as the basis of the repeating unit. 如請求項1至請求項4中任一項之高硬度硬塗覆層合體,其中,前述成份(b)的全氟聚醚之聚(伸氧烷)基,為聚(伸氧乙烯)基。The high-hardness hard-coating laminate according to any one of Claims 1 to 4, wherein the poly(polyoxyalkylene) group of the perfluoropolyether of the above component (b) is a poly(ethylene oxide) group. . 如請求項1至請求項5中任一項之高硬度硬塗覆層合體,其中,前述成份(A)的多官能單體,為由多官能(甲基)丙烯酸酯化合物及多官能胺基甲酸酯(甲基)丙烯酸酯化合物所成之群所選出之至少1種。The high hardness hard coat layer according to any one of Claims 1 to 5, wherein the polyfunctional monomer of the above component (A) is a polyfunctional (meth) acrylate compound and a polyfunctional amine group. At least one selected from the group consisting of formate (meth) acrylate compounds. 如請求項1至請求項6中任一項之高硬度硬塗覆層合體,其中,前述成份(a)的多官能單體,為由多官能(甲基)丙烯酸酯化合物及多官能胺基甲酸酯(甲基)丙烯酸酯化合物所成之群所選出之至少1種。The high-hardness hard-coating laminate according to any one of Claims 1 to 6, wherein the polyfunctional monomer of the aforementioned component (a) is a polyfunctional (meth) acrylate compound and a polyfunctional amine group. At least one selected from the group consisting of formate (meth) acrylate compounds. 如請求項1至請求項7中任一項之高硬度硬塗覆層合體,其中,前述成份(C)之經由活性能量線產生自由基之聚合起始劑,為烷基苯酮類聚合起始劑。The high-hardness hard-coating laminate according to any one of Claims 1 to 7, wherein the polymerization initiator of the component (C) which generates a radical via an active energy ray is a polymerization of an alkyl phenone. Starting agent. 如請求項1至請求項8中任一項之高硬度硬塗覆層合體,其中,前述成份(c)之經由活性能量線產生自由基之聚合起始劑,為烷基苯酮類聚合起始劑。The high-hardness hard-coating laminate according to any one of Claims 1 to 8, wherein the polymerization initiator which generates a radical via the active energy ray of the component (c) is an alkyl phenone polymerization. Starting agent. 一種高硬度硬塗覆層合體的製造方法,其為於基材之至少一者之面上具備底漆層,與該底漆層之上方的硬塗覆層之高硬度硬塗覆層合體的製造方法,其特徵為包含:   於基材上塗佈底漆層形成用組成物而形成塗膜之步驟、   使用活性能量線照射該底漆層形成用組成物之塗膜,使該塗膜硬化,而形成底漆層之步驟、   於前述底漆層上塗佈硬化性組成物,而形成塗膜之步驟,及   使用活性能量線照射該硬化性組成物之塗膜,使該塗膜硬化,而形成硬塗覆層之步驟;   前述底漆層形成用組成物為含有:   (A)由活性能量線硬化性多官能單體及活性能量線硬化性多官能聚合物所成之群所選出之多官能化合物100質量份、   (B)無機微粒子100~1,000質量份,及   (C)經由活性能量線產生自由基之聚合起始劑相對於成份(A)及成份(B)之合計100質量份,為1~20質量份   又,前述成份(B)之無機微粒子,為具有活性能量線聚合性基之粒子;   前述硬化性組成物為含有   (a)活性能量線硬化性多官能單體100質量份、   (b)含有聚(氧代全氟伸烷)基的分子鏈之兩末端介由聚(伸氧烷)基,或依序介由聚(伸氧烷)基及1個的胺基甲酸酯鍵結基,鍵結活性能量線聚合性基之全氟聚醚0.1~10質量份,及   (c)經由活性能量線產生自由基之聚合起始劑1~20質量份。A method for producing a high-hardness hard-coating laminate comprising a primer layer on a surface of at least one of the substrates, and a hard coat layer of a hard coat layer on the hard coat layer above the primer layer A manufacturing method comprising the steps of: forming a coating film by coating a composition for forming a primer layer on a substrate; and irradiating the coating film for forming the composition for forming the primer layer with an active energy ray to harden the coating film And forming a primer layer, coating the curable composition on the primer layer to form a coating film, and irradiating the coating film of the curable composition with an active energy ray to harden the coating film. a step of forming a hard coat layer; the primer layer-forming composition contains: (A) selected from the group consisting of an active energy ray-curable polyfunctional monomer and an active energy ray-curable polyfunctional polymer 100 parts by mass of the polyfunctional compound, (B) 100 to 1,000 parts by mass of the inorganic fine particles, and (C) a total of 100 parts by mass of the polymerization initiator which generates a radical via the active energy ray with respect to the component (A) and the component (B) 1 to 20 parts by mass, the inorganic fine particles of the component (B) are particles having an active energy ray polymerizable group; and the curable composition contains (a) an active energy ray-curable polyfunctional monomer 100 mass. And (b) a molecular chain containing a poly(oxoperfluoroalkylene) group at both ends via a poly(oxyalkylene) group, or sequentially a poly(oxyalkylene) group and an amine group The formate bond group, 0.1 to 10 parts by mass of the perfluoropolyether bonded to the active energy ray-polymerizable group, and (c) 1 to 20 parts by mass of a polymerization initiator which generates a radical via an active energy ray.
TW106134882A 2016-10-12 2017-10-12 Hard coat laminate having high hardness and manufacturing method for the same TWI739922B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016201362 2016-10-12
JP2016-201362 2016-10-12

Publications (2)

Publication Number Publication Date
TW201832936A true TW201832936A (en) 2018-09-16
TWI739922B TWI739922B (en) 2021-09-21

Family

ID=61905605

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106134882A TWI739922B (en) 2016-10-12 2017-10-12 Hard coat laminate having high hardness and manufacturing method for the same

Country Status (5)

Country Link
JP (1) JP6982280B2 (en)
KR (1) KR102399829B1 (en)
CN (1) CN109715399B (en)
TW (1) TWI739922B (en)
WO (1) WO2018070446A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051371B (en) * 2017-09-01 2023-03-28 日产化学株式会社 Curable composition for stretch-based scratch-resistant coating
JPWO2020162323A1 (en) * 2019-02-06 2021-12-16 日産化学株式会社 Curable composition for flexible hardcourt

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779293B2 (en) * 2003-10-21 2011-09-28 Tdk株式会社 Hard coating agent composition and optical information medium using the same
JP5483810B2 (en) 2007-09-28 2014-05-07 株式会社ニデック Resin composition
JP5104698B2 (en) 2008-09-30 2012-12-19 大日本印刷株式会社 Hard coat film, method for producing hard coat film, and curable resin composition for hard coat layer
JP2010237572A (en) 2009-03-31 2010-10-21 Dainippon Printing Co Ltd Optical sheet
JP6045096B2 (en) * 2011-07-13 2016-12-14 関西ペイント株式会社 Laminate and method for producing laminate
JP2013076029A (en) * 2011-09-30 2013-04-25 Tdk Corp Hard coat agent composition and hard coat film using the same
WO2015060458A1 (en) 2013-10-25 2015-04-30 日産化学工業株式会社 Polymerizable composition containing perfluoropolyether having hydroxyl group
JP6340210B2 (en) * 2014-02-27 2018-06-06 デクセリアルズ株式会社 Surface conditioner and article using the same
JP6402643B2 (en) 2014-03-31 2018-10-10 信越化学工業株式会社 Fluorine-containing acrylic compound, method for producing the same, curable composition, and substrate
JP6574608B2 (en) * 2014-12-26 2019-09-11 中国塗料株式会社 Photocurable resin composition, cured film formed from the composition and substrate with film, and method for producing cured film and substrate with film
JP2016145304A (en) 2015-02-09 2016-08-12 ユニマテック株式会社 Fluorine-containing 2-block copolymer having polymerizable unsaturated group

Also Published As

Publication number Publication date
WO2018070446A1 (en) 2018-04-19
JP6982280B2 (en) 2021-12-17
TWI739922B (en) 2021-09-21
CN109715399A (en) 2019-05-03
JPWO2018070446A1 (en) 2019-07-25
CN109715399B (en) 2021-08-20
KR20190060978A (en) 2019-06-04
KR102399829B1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
TWI736530B (en) Coating curable composition having marring resistance
TWI791863B (en) Curable composition for flexible coating
KR102345843B1 (en) Curable composition for anti-glare coating
TWI791603B (en) Curable composition for extensible and scratch-resistant coating
TW201827535A (en) Anti-glare hard coat laminate
CN109715685B (en) Scratch-resistant hard coating material
TWI739922B (en) Hard coat laminate having high hardness and manufacturing method for the same
TWI810431B (en) Curable composition for flexible hard coating
JP7332989B2 (en) Curable composition for antiglare hard coat
WO2022190937A1 (en) Curable composition for hard coat
WO2022203060A1 (en) Curable composition containing two perfluoropolyethers
TW202045554A (en) Curable composition for hard coating
TW202302781A (en) Antistatic hardcoat layer, and curable composition