TWI738925B - 用於具有新無線電pdcch波形的通道保留信號的方法及裝置 - Google Patents

用於具有新無線電pdcch波形的通道保留信號的方法及裝置 Download PDF

Info

Publication number
TWI738925B
TWI738925B TW106140577A TW106140577A TWI738925B TW I738925 B TWI738925 B TW I738925B TW 106140577 A TW106140577 A TW 106140577A TW 106140577 A TW106140577 A TW 106140577A TW I738925 B TWI738925 B TW I738925B
Authority
TW
Taiwan
Prior art keywords
channel
signal
resources
channel reservation
transmission
Prior art date
Application number
TW106140577A
Other languages
English (en)
Other versions
TW201824798A (zh
Inventor
晉 孫
天爾阿德爾 庫多茲
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW201824798A publication Critical patent/TW201824798A/zh
Application granted granted Critical
Publication of TWI738925B publication Critical patent/TWI738925B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • H04L5/0083Timing of allocation at predetermined intervals symbol-by-symbol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了用於具有新無線電(NR)實體下行鏈路控制通道波形的通道保留信號設計的技術。一種用於無線通訊的方法包括決定一或多個正交分頻多工(OFDM)符號以傳送通道保留信號,以及決定在該(諸)OFDM符號期間可用於傳送通道保留信號的複數個資源。該方法進一步包括在複數個資源中選擇一個資源集以傳送通道保留信號,以及在所選資源集中傳送通道保留信號以保留用於通訊的一部分頻譜。另一用於無線通訊的方法包括決定(諸)OFDM符號以監視通道保留信號,決定在該(諸)OFDM符號期間可用於監視通道保留信號的複數個資源,以及監視在該複數個資源內的資源集中傳送的一或多個通道保留信號。

Description

用於具有新無線電PDCCH波形的通道保留信號的方法及裝置
本專利申請案主張於2016年12月16日提出申請的美國臨時專利申請案第62/435,570號、以及於2017年9月19日提出申請的美國專利申請案第15/708,949號的權益,該兩件申請案的全部內容由此經由引用之方式被明確併入於本文。
本案的各態樣大體而言係關於無線通訊系統,且更特定言之係關於基於新無線電(NR)實體下行鏈路控制通道(PDCCH)的通道保留信號設計。
無線通訊系統被廣泛部署以提供諸如電話、視訊、資料、訊息傳遞和廣播等各種電信服務。典型的無線通訊系統可採用能夠藉由共享可用系統資源(例如,頻寬、發射功率)來支援與多個使用者通訊的多工存取技術。此類多工存取技術的實例包括長期進化(LTE)系統、分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、正交分頻多工存取(OFDMA)系統、單載波分頻多工存取(SC-FDMA)系統和分時同步分碼多工存取(TD-SCDMA)系統。
在一些實例中,無線多工存取通訊系統可包括數個基地台,每個基地台同時支援多個通訊設備(亦稱為使用者裝備(UEs))的通訊。在LTE或LTE-A網路中,一或多個基地台的集合可定義進化型B節點(eNB)。在其他實例中(例如,在下一代或5G網路中),無線多工存取通訊系統可包括數個分散式單元(DUs)(例如,邊緣單元(EUs)、邊緣節點(ENs)、無線電頭端(RHs)、智能無線電頭端(SRHs)、傳送接收點(TRPs)等)與數個中央單元(CUs)(例如,中央節點(CN)、存取節點控制器(ANC)等)處於通訊,其中與中央單元處於通訊的一或多個分散式單元的集合可定義存取節點(例如,新無線電基地台(NR BS)、新無線電B節點(NR NB)、網路節點、5G NB、gNB等)。基地台或DU可在下行鏈路通道(例如,用於從基地台或至UE的傳輸)和上行鏈路通道(例如,用於從UE至基地台或分散式單元的傳輸)上與一組UE通訊。
該等多工存取技術已經在各種電信標準中被採納以提供使不同的無線設備能夠在城市、國家、地區、以及甚至全球位準上進行通訊的共用協定。新興電信標準的一實例為新無線電(NR),例如5G無線電存取。NR是對由第三代合作夥伴計劃(3GPP)頒佈的LTE行動服務標準的增強集。其被設計成藉由改善頻譜效率、降低成本、改善服務、利用新頻譜、並且更好地與在下行鏈路(DL)和上行鏈路(UL)上使用具有循環字首(CP)的OFDMA的其他開放標準進行整合來更好地支援行動寬頻網際網路存取,以及支援波束成形、多輸入多輸出(MIMO)天線技術和載波聚合。
然而,隨著對行動寬頻存取的需求持續增長,存在對NR技術中的進一步改進的需要。優選地,該等改進應當適用於其他多工存取技術以及採用該等技術的電信標準。
隨著對行動寬頻存取的需求持續增長,已經考慮使用共享射頻頻譜(SRFS)(其可包括未授權射頻頻譜(URFS))來幫助解決將來無線需求的頻譜壅塞問題,以便不僅滿足對行動寬頻存取的日益增長的需求,而且提升並增強使用者對行動通訊的體驗。然而,SRFS可攜帶其他傳輸,並且因此可使用諸如先聽後講(LBT)和暢通通道評估(CCA)等技術以力圖防止過量干擾。在某些場景中,在共享頻譜中操作的無線設備可以是非同步的。可能期望緩解由在共享頻譜中操作的無線設備引起的干擾。
本案的系統、方法和設備各自具有若干態樣,其中並非僅靠任何單一態樣來負責其期望屬性。在不限定如所附請求項所表述的本案的範圍的情況下,現在將簡要地論述一些特徵。在考慮本論述後,並且尤其是在閱讀題為「詳細描述」的章節之後,將理解本案的特徵是如何提供包括無線網路中的存取點與站之間的改進通訊在內的優點的。
本文描述了用於基於新無線電(NR)實體下行鏈路控制通道(PDCCH)波形來傳送通道保留信號的技術。
本案的某些態樣提供了一種可由例如裝置(例如,基地台、使用者裝備等)執行的方法。該方法一般包括決定一或多個正交分頻多工(OFDM)符號以傳送通道保留信號。該方法亦包括決定在該一或多個OFDM符號期間可用於傳送通道保留信號的複數個資源。該方法進一步包括在該複數個資源內選擇一個資源集以傳送通道保留信號。該方法又進一步包括在所選資源集中傳送該通道保留信號以保留用於通訊的一部分頻譜。
本案的某些態樣提供了一種用於無線通訊的裝置。該裝置一般包括用於決定一或多個正交分頻多工(OFDM)符號以傳送通道保留信號的構件。該裝置亦包括用於決定在該一或多個OFDM符號期間可用於傳送通道保留信號的複數個資源的構件。該裝置進一步包括用於在該複數個資源內選擇一個資源集以傳送通道保留信號的構件。該裝置又進一步包括用於在所選資源集中傳送該通道保留信號以保留用於通訊的一部分頻譜的構件。
本案的某些態樣提供了一種用於無線通訊的裝置。該裝置一般包括至少一個處理器和耦合至該至少一個處理器的記憶體。該至少一個處理器一般被配置成決定一或多個正交分頻多工(OFDM)符號以傳送通道保留信號。該至少一個處理器亦被配置成決定在該一或多個OFDM符號期間可用於傳送通道保留信號的複數個資源。該至少一個處理器被進一步配置成在該複數個資源內選擇一個資源集以傳送通道保留信號。該至少一個處理器被又進一步配置成在所選資源集中傳送該通道保留信號以保留用於通訊的一部分頻譜。
本案的某些態樣提供了一種其上儲存有電腦可執行代碼的電腦可讀取媒體。該電腦可執行代碼一般包括用於決定一或多個正交分頻多工(OFDM)符號以傳送通道保留信號的代碼。該電腦可執行代碼亦包括用於決定在該一或多個OFDM符號期間可用於傳送通道保留信號的複數個資源的代碼。該電腦可執行代碼進一步包括用於在該複數個資源內選擇一個資源集以傳送通道保留信號的代碼。該電腦可執行代碼又進一步包括用於在所選資源集中傳送該通道保留信號以保留用於通訊的一部分頻譜的代碼。
本案的某些態樣提供了一種可由例如裝置(例如,基地台、使用者裝備等)執行的方法。該方法一般包括決定一或多個OFDM符號以監視通道保留信號。該方法亦包括決定在該一或多個OFDM符號期間可用於監視通道保留信號的複數個資源。該方法進一步包括監視在該複數個資源內的資源集中傳送的一或多個通道保留信號。
本案的某些態樣提供了一種用於無線通訊的裝置。該裝置一般包括用於決定一或多個OFDM符號以監視通道保留信號的構件。該裝置亦包括用於決定在該一或多個OFDM符號期間可用於監視通道保留信號的複數個資源的構件。該裝置進一步包括用於監視在該複數個資源內的資源集中傳送的一或多個通道保留信號的構件。
本案的某些態樣提供了一種用於無線通訊的裝置。該裝置一般包括至少一個處理器和耦合至該至少一個處理器的記憶體。該至少一個處理器一般被配置成決定一或多個OFDM符號以監視通道保留信號。該至少一個處理器亦被配置成決定在該一或多個OFDM符號期間可用於監視通道保留信號的複數個資源。該至少一個處理器被進一步配置成監視在該複數個資源內的資源集中傳送的一或多個通道保留信號。
本案的某些態樣提供了一種其上儲存有電腦可執行代碼的電腦可讀取媒體。該電腦可執行代碼一般包括用於決定一或多個OFDM符號以監視通道保留信號的代碼。該電腦可執行代碼亦包括用於決定在該一或多個OFDM符號期間可用於監視通道保留信號的複數個資源的代碼。該電腦可執行代碼進一步包括用於監視在該複數個資源內的資源集中傳送的一或多個通道保留信號的代碼。
為能達成前述及相關目的,該一或多個態樣包括在下文中充分描述並在所附請求項中特別指出的特徵。以下描述和附圖詳細闡述了該一或多個態樣的某些說明性特徵。但是,該等特徵僅僅是指示了可採用各種態樣的原理的各種方式中的若干種,並且本描述意欲涵蓋所有此類態樣及其等效方案。
本案的各態樣提供了用於新無線電(NR)(新無線電存取技術或5G技術)的裝置、方法、處理系統和電腦可讀取媒體。NR可以支援各種無線通訊服務,諸如以高載波頻率(例如,60 GHz)為目標的毫米波(mmW)、大規模多輸入多輸出(MIMO)、亞6 GHz系統等。
在一些情形中,此類系統中的一或多個節點可參與通道保留信號交換以從頻譜中保留用於期望通訊(例如,傳輸或接收)的通道資源。此類交換可允許跨節點共存。
本案的各態樣提供用於基於NR PDCCH波形的通道保留信號設計的技術和裝置。例如,一種裝置可決定一或多個正交分頻多工(OFDM)符號以傳送通道保留信號。該裝置亦可決定可用於傳送通道保留信號的複數個資源。該複數個資源可使用NR實體下行鏈路控制通道(PDCCH)結構。該裝置可在該複數個資源中選擇一個資源集以傳送通道保留信號,並在所選資源集中傳送該通道保留信號以保留(例如,存取)用於通訊的一部分頻譜(例如,資料通道)。該通訊例如可用於在該部分頻譜期間發送傳輸或接收傳輸。該裝置可進一步監視在該複數個資源內的資源集中傳送的一或多個通道保留信號。
以下描述提供實例而並非限定請求項中闡述的範圍、適用性或者實例。可以對所論述的要素的功能和佈置作出改變而不會脫離本案的範圍。各種實例可合適地省略、替代,或添加各種程序或元件。例如,可以按不同於所描述的次序來執行所描述的方法,並且可以添加、省去,或組合各種步驟。另外,參照一些實例所描述的特徵可在一些其他實例中被組合。例如,可使用本文所闡述的任何數目的態樣來實施裝置或實踐方法。另外,本案的範圍意欲覆蓋使用作為本文中所闡述的本案的各種態樣的補充或者另外的其他結構、功能性,或者結構及功能性來實踐的此類裝置或方法。應當理解,本文中所揭示的本案的任何態樣可由請求項的一或多個元素來實施。措辭「示例性」在本文中用於意謂「用作示例、實例,或說明」。本文中描述為「示例性」的任何態樣不必被解釋為優於或勝過其他態樣。
本文中所描述的技術可用於各種無線通訊網路,諸如LTE、CDMA、TDMA、FDMA、OFDMA、SC-FDMA及其他網路。術語「網路」和「系統」常常可互換地使用。CDMA網路可以實施諸如通用地面無線電存取(UTRA)、cdma2000等無線電技術。UTRA包括寬頻CDMA(WCDMA)和CDMA的其他變體。cdma2000涵蓋IS-2000、IS-95和IS-856標準。TDMA網路可實施諸如行動通訊全球系統(GSM)之類的無線電技術。OFDMA網路可實施諸如NR(例如,5G RA)、進化UTRA(E-UTRA)、超行動寬頻(UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDMA等無線電技術。UTRA和E-UTRA是通用行動電信系統(UMTS)的部分。NR是正協同5G技術論壇(5GTF)進行開發的新興無線通訊技術。3GPP長期進化(LTE)和高級LTE(LTE-A)是使用E-UTRA的UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A和GSM在來自名為「第3代合作夥伴計劃」(3GPP)的組織的文件中描述。cdma2000和UMB在來自名為「第3代合作夥伴計劃2」(3GPP2)的組織的文件中描述。本文所描述的技術可被用於以上所提及的無線網路和無線電技術以及其他無線網路和無線電技術。為了清楚起見,儘管各態樣在此處可使用通常與3G及/或4G無線技術相關聯的術語來描述,但本案的各態樣可以在包括NR技術在內的基於其他代的通訊系統(諸如5G和後代)中應用。
新無線電(NR)可代表被配置成根據新空中介面(例如,不同於基於正交分頻多工存取(OFDMA)的空中介面)或固定傳輸層(例如,不同於網際網路協定(IP))操作的無線電。NR可包括以寬頻寬(例如,超過80 MHz)為目標的增強行動寬頻(eMBB)、以高載波頻率(例如,60 GHz)為目標的毫米波(mmW)、以非與舊版相容MTC技術為目標的大規模MTC(mMTC)、亞6 GHz系統、以及以超可靠低潛時通訊(URLLC)為目標的關鍵任務。對於該等通用主題,考慮不同的技術,諸如編碼、低密度同位檢查(LDPC)和極化。NR細胞服務區可代表根據新空中介面或固定傳輸層操作的細胞服務區。NR B節點(例如,5G B節點)可對應於一或多個傳送接收點(TRPs)。 示例性無線通訊系統
圖1圖示了其中可執行本案的各態樣的示例性無線網路100。例如,該無線網路可以是新無線電(NR)或5G網路。如圖1中所圖示的,無線網路100可包括數個BS 110和其他網路實體。該網路中的各BS 110可被配置成處於不同的同步模式及/或與不同服務供應商相關聯。BS可以是與UE通訊的站。每個BS 110可為特定地理區域提供通訊覆蓋。在3GPP中,術語「細胞服務區」可代表B節點的覆蓋區域及/或服務該覆蓋區域的B節點子系統,這取決於使用該術語的上下文。在NR系統中,術語「細胞服務區」和gNB、B節點、5G NB、AP、NR BS、NR BS,或TRP可以是可互換的。
在一些實例中,細胞服務區可以未必是駐定的,並且細胞服務區的地理區域可根據行動基地台的位置而移動。在一些實例中,基地台可經由各種類型的回載介面(諸如直接實體連接、虛擬網路,或使用任何合適的傳輸網路的類似物)來彼此互連及/或互連至無線網路100中的一或多個其他基地台或網路節點(未圖示)。
一般而言,在給定的地理區域中可部署任何數目的無線網路。每個無線網路可支援特定無線電存取技術(RAT),並且可在一或多個頻率上工作。RAT亦可被稱為無線電技術、空中介面等。頻率亦可被稱為載波、頻道等。每個頻率可在給定地理區域中支援單個RAT以迴避不同RAT的無線網路之間的干擾。在一些情形中,可部署NR或5G RAT網路。
BS可提供對巨集細胞服務區、微微細胞服務區、毫微微細胞服務區,及/或其他類型的細胞服務區的通訊覆蓋。巨集細胞服務區可覆蓋相對較大的地理區域(例如,半徑為數公里),並且可允許無約束地由具有服務訂閱的UE存取。微微細胞服務區可覆蓋相對較小的地理區域,並且可允許無約束地由具有服務訂閱的UE存取。毫微微細胞服務區可覆蓋相對較小的地理區域(例如,住宅)且可允許有約束地由與該毫微微細胞服務區有關聯的UE(例如,封閉用戶群組(CSG)中的UE、住宅中使用者的UE等)存取。用於巨集細胞服務區的BS可被稱為巨集BS。用於微微細胞服務區的BS可被稱為微微BS。用於毫微微細胞服務區的BS可被稱為毫微微BS或家用BS。在圖1中所示的實例中,BS 110a、110b和110c可以分別是巨集細胞服務區102a、102b和102c的巨集BS。BS 110x可以是用於微微細胞服務區102x的微微BS。BS 110y和110z可以分別是毫微微細胞服務區102y和102z的毫微微BS。BS可支援一或多個(例如,三個)細胞服務區。
無線網路100亦可包括中繼站。中繼站是從上游站(例如,BS或UE)接收資料及/或其他資訊的傳輸並向下游站(例如,UE或BS)發送該資料及/或其他資訊的傳輸的站。中繼站亦可以是為其他UE中繼傳輸的UE。在圖1中所示的實例中,中繼站110r可與BS 110a和UE 120r進行通訊以促進BS 110a與UE 120r之間的通訊。中繼站亦可被稱為中繼BS、中繼等。
無線網路100可以是包括不同類型的BS(例如,巨集BS、微微BS、毫微微BS、中繼等)的異質網路。該等不同類型的BS可能具有不同的發射功率位準、不同的覆蓋區域、以及對無線網路100中的干擾的不同影響。例如,巨集BS可具有高發射功率位準(例如,20 瓦),而微微BS、毫微微BS和中繼可具有較低的發射功率位準(例如,1瓦)。
無線網路100可支援同步或非同步操作。對於同步操作,各BS可以具有相似的訊框時序,並且來自不同BS的傳輸可以在時間上大致對準。對於非同步操作,各BS可以具有不同的訊框時序,並且來自不同BS的傳輸可能在時間上並不對準。本文中描述的技術可用於同步和非同步操作兩者。
網路控制器130可耦合至一組BS並可提供對該等BS的協調和控制。網路控制器130可經由回載與BS 110進行通訊。BS 110亦可例如經由無線或有線回載直接或間接地彼此進行通訊。
UE 120(例如,120x、120y等)可分散遍及無線網路100,並且每個UE可以是駐定或行動的。UE亦可被稱為行動站、終端、存取終端、用戶單元、站、用戶端裝備(CPE)、蜂巢式電話、智慧型電話、個人數位助理(PDA)、無線數據機、無線通訊設備、掌上型設備、膝上型電腦、無線電話、無線本端迴路(WLL)站、平板設備、相機、遊戲設備、小筆電、智慧型電腦、超級本、醫療設備或醫療裝備、生物測定感測器/設備、可穿戴設備(諸如智慧手錶、智慧服裝、智慧眼鏡、智慧腕帶,及/或智慧珠寶(例如,智慧戒指、智慧項鍊等))、娛樂設備(例如,音樂設備、視訊設備、衛星無線電等)、車輛元件或感測器、智慧計量儀/感測器、工業製造裝備、全球定位系統設備,或者被配置成經由無線或有線媒體進行通訊的任何其他合適的設備。一些UE可被認為是進化型或機器類型通訊(MTC)設備或進化型MTC(eMTC)設備。MTC和eMTC UE例如包括機器人、無人機、遠端設備、感測器、儀錶、監視器、位置標籤等,其可與BS、另一設備(例如,遠端設備)或某一其他實體通訊。無線節點可例如經由有線或無線通訊鏈路來為網路(例如,廣域網路,諸如網際網路或蜂巢網路)提供連通性或提供至該網路的連通性。一些UE可被認為是物聯網路(IoT)設備。
在圖1中,帶有雙箭頭的實線指示UE與服務BS之間的期望傳輸,服務BS是被指定在下行鏈路及/或上行鏈路上服務該UE的BS。帶有雙箭頭的細虛線指示UE與BS之間的干擾傳輸。
某些無線網路(例如,LTE)可以在下行鏈路上利用正交分頻多工(OFDM)並在上行鏈路上利用單載波分頻多工(SC-FDM)。OFDM和SC-FDM將系統頻寬劃分成多個(K個)正交次載波,該等次載波亦常被稱為音調、頻段等。每個次載波可用資料來調制。一般而言,調制符號在OFDM下是在頻域中發送的,而在SC-FDM下是在時域中發送的。毗鄰次載波之間的間距可以是固定的,且次載波的總數(K)可取決於系統頻寬。例如,次載波的間距可以是15 kHz,而最小資源分配(稱為‘資源區塊’)可以是12個次載波(或180 kHz)。因此,對於1.25、2.5、5、10或20兆赫茲(MHz)的系統頻寬,標稱FFT大小可以分別等於128、256、512、1024或2048。系統頻寬亦可被劃分成次頻帶。例如,次頻帶可覆蓋1.08 MHz(亦即,6個資源區塊),並且對於1.25、2.5、5、10或20 MHz的系統頻寬,可分別有1、2、4、8或16個次頻帶。
儘管本文描述的實例的各態樣可與LTE技術相關聯,但是本案的各態樣可適用於其他無線通訊系統(諸如NR)。
NR可在上行鏈路和下行鏈路上利用具有CP的OFDM並且包括對使用TDD的半雙工操作的支援。可支援100 MHz的單個分量載波頻寬。NR資源區塊可在0.1 ms歷時上跨越具有75 kHz的次載波頻寬的12個次載波。每個無線電訊框可包括具有10 ms的長度的50個子訊框。因此,每個子訊框可具有0.2 ms的長度。每個子訊框可指示用於資料傳輸的鏈路方向(亦即,DL或UL)並且用於每個子訊框的鏈路方向可動態切換。每個子訊框可包括DL/UL資料以及DL/UL控制資料。用於NR的UL和DL子訊框可在以下參照圖6和7更詳細地描述。可支援波束成形並且可動態配置波束方向。亦可支援具有預編碼的MIMO傳輸。DL中的MIMO配置可支援至多達8個發射天線(具有至多達8個串流的多層DL傳輸)和每UE至多達2個串流。可支援每UE至多達2個串流的多層傳輸。多個細胞服務區的聚合可使用至多達8個服務細胞服務區來支援。替換地,除了基於OFDM之外,NR亦可支援不同的空中介面。NR網路可包括諸如中央單元(CUs)及/或分散式單元(DUs)之類的實體。
在一些實例中,可排程對空中介面的存取,其中排程實體(例如,基地台)在其服務區域或細胞服務區內的一些或全部設備和裝備之中分配用於通訊的資源。在本案內,如以下進一步論述的,排程實體可以負責排程、指派、重新配置、以及釋放用於一或多個下級實體的資源。亦即,對於受排程的通訊而言,下級實體利用由排程實體分配的資源。基地台不是可用作排程實體的唯一實體。亦即,在一些實例中,UE可用作排程實體,從而排程用於一或多個下級實體(例如,一或多個其他UE)的資源。在該實例中,UE正充當排程實體,並且其他UE利用由該UE排程的資源以用於無線通訊。UE可在同級間(P2P)網路中及/或在網狀網路中充當排程實體。在網狀網路實例中,UE除與排程實體通訊之外可任選地直接彼此通訊。
因此,在具有對時頻資源的經排程存取並且具有蜂巢配置、P2P配置和網狀配置的無線通訊網路中,排程實體和一或多個下級實體可利用所排程的資源來通訊。
如以上提及的,RAN可包括CU和DU。NR BS(例如,gNB、5G NB、NB、TRP、AP)可對應於一或多個BS。NR細胞服務區可被配置為存取細胞服務區(ACells)或僅資料細胞服務區(DCells)。例如,RAN(例如,中央單元或分散式單元)可配置該等細胞服務區。DCell可以是用於載波聚合或雙連通性、但不被用於初始存取、細胞服務區選擇/重選,或交遞的細胞服務區。在一些情形中,DCell可以不傳送同步信號——在一些情形中,DCell可以傳送SS。NR BS可向UE傳送下行鏈路信號以指示細胞服務區類型。基於該細胞服務區類型指示,UE可與NR BS通訊。例如,UE可基於所指示的細胞服務區類型來決定要考慮用於細胞服務區選擇、存取、交遞及/或量測的NR BS。
圖2圖示了分散式無線電存取網路(RAN)200的示例性邏輯架構,該RAN 200可在圖1中圖示的無線通訊系統中實施。5G存取節點206可包括存取節點控制器(ANC)202。ANC可以是分散式RAN 200的中央單元(CU)。到下一代核心網路(NG-CN)204的回載介面可在ANC處終接。至相鄰下一代存取節點(NG-ANs)的回載介面可在ANC處終接。ANC可包括一或多個TRP 208(其亦可被稱為BS、NR BS、B節點、5G NB、AP或其他某一術語)。如前述,TRP可與「細胞服務區」可互換地使用。
TRP 208可以是DU。TRP可被連接至一個ANC(ANC 202)或者多於一個ANC(未圖示)。例如,對於RAN共享、作為服務的無線電(RaaS)和因服務而異的AND部署,TRP可被連接至多於一個ANC。TRP可包括一或多個天線埠。TRP可被配置成個體地(例如,動態選擇)或聯合地(例如,聯合傳輸)服務至UE的訊務。
本端架構200可被用來圖示去程(fronthaul)定義。該架構可被定義為支援跨不同部署類型的去程方案。例如,該架構可以基於傳送網路能力(例如,頻寬、潛時及/或信號干擾)。
該架構可與LTE共享特徵及/或元件。根據各態樣,下一代AN(NG-AN)210可支援與NR的雙連通性。NG-AN可共享用於LTE和NR的共用去程。
該架構可實現各TRP 208之間和當中的協調。例如,可在TRP內及/或經由ANC 202跨各TRP預設協調。根據各態樣,可以不需要/存在TRP間介面。
根據各態樣,分離邏輯功能的動態配置可存在於架構200內。如將參照圖5更詳細地描述的,可在DU或CU處(例如,分別在TRP或ANC處)可自我調整地放置無線電資源控制(RRC)層、封包資料收斂協定(PDCP)層、無線電鏈路控制(RLC)層、媒體存取控制(MAC)層、以及實體(PHY)層。根據某些態樣,BS可包括中央單元(CU)(例如,ANC 202)及/或一或多個分散式單元(例如,一或多個TRP 208)。
圖3圖示了根據本案的各態樣的分散式RAN 300的示例性實體架構。集中式核心網路單元(C-CU)302可主存核心網路功能。C-CU可集中地部署。C-CU功能性可被卸載(例如,到高級無線服務(AWS))以力圖處置峰值容量。
集中式RAN單元(C-RU)304可主存一或多個ANC功能。可任選地,C-RU可本端主存核心網路功能。C-RU可具有分散式部署。C-RU可以更靠近網路邊緣。
DU 306可主存一或多個TRP(邊緣節點(EN)、邊緣單元(EU)、無線電頭端(RH)、智能無線電頭端(SRH)等)。DU可位於具有射頻(RF)功能性的網路的邊緣處。
圖4圖示了圖1中圖示的BS 110和UE 120的示例性元件,其可被用來實施本案的各態樣。BS 110和UE 120的一或多個元件可被用來實踐本案的各態樣。例如,UE 120的天線452、處理器466、458、464及/或控制器/處理器480及/或BS 110的天線434、處理器430、420、438及/或控制器/處理器440可用於執行本文描述且參照圖9或10圖示的操作。
圖4圖示BS 110和UE 120的設計的方塊圖,其可以是圖1中BS之一和UE之一。對於受約束關聯場景,基地台110可以是圖1中的巨集BS 110c,並且UE 120可以是UE 120y。基地台110亦可以是某種其他類型的基地台。基地台110可裝備有天線434a到434t,並且UE 120可裝備有天線452a到452r。
在基地台110處,發射處理器420可接收來自資料來源412的資料和來自控制器/處理器440的控制資訊。該控制資訊可用於實體廣播通道(PBCH)、實體控制格式指示符通道(PCFICH)、實體混合ARQ指示符通道(PHICH)、實體下行鏈路控制通道(PDCCH)等。該資料可用於實體下行鏈路共享通道(PDSCH)等。處理器420可處理(例如,編碼和符號映射)資料和控制資訊以分別獲得資料符號和控制符號。處理器420亦可產生(例如,用於PSS、SSS、以及因細胞服務區而異的參考信號的)參考符號。發射(TX)多輸入多輸出(MIMO)處理器430可在適用的情況下對資料符號、控制符號,及/或參考符號執行空間處理(例如,預編碼),並且可將輸出符號串流提供給調制器(MODs)432a到432t。每個調制器432可處理各自的輸出符號串流(例如,針對OFDM等等)以獲得輸出取樣串流。每個調制器432可進一步處理(例如,類比轉換、放大、濾波,及升頻轉換)輸出取樣串流以獲得下行鏈路信號。來自調制器432a到432t的下行鏈路信號可分別經由天線434a到434t被發射。
在UE 120處,天線452a到452r可接收來自基地台110的下行鏈路信號並可分別向解調器(DEMODs)454a到454r提供收到信號。每個解調器454可調節(例如,濾波、放大、降頻轉換、以及數位化)各自的收到信號以獲得輸入取樣。每個解調器454可進一步處理輸入取樣(例如,針對OFDM等)以獲得收到符號。MIMO偵測器456可從所有解調器454a到454r獲得收到符號,在適用的情況下對該等收到符號執行MIMO偵測,並提供偵測出的符號。接收處理器458可處理(例如,解調、解交錯、以及解碼)該等偵測出的符號,將經解碼的給UE 120的資料提供給資料槽460,並且將經解碼的控制資訊提供給控制器/處理器480。
在上行鏈路上,在UE 120處,發射處理器464可接收並處理來自資料來源462的(例如,用於實體上行鏈路共享通道(PUSCH)的)資料以及來自控制器/處理器480的(例如,用於實體上行鏈路控制通道(PUCCH)的)控制資訊。發射處理器464亦可產生參考信號的參考符號。來自發射處理器464的符號可在適用的場合由TX MIMO處理器466預編碼,進一步由解調器454a到454r處理(例如,用於SC-FDM等),並且向基地台110傳送。在BS 110處,來自UE 120的上行鏈路信號可由天線434接收,由調制器432處理,在適用的情況下由MIMO偵測器436偵測,並由接收處理器438進一步處理以獲得經解碼的由UE 120發送的資料和控制資訊。接收處理器438可將經解碼資料提供給資料槽439並將經解碼控制資訊提供給控制器/處理器440。
控制器/處理器440和480可以分別導引基地台110和UE 120處的操作。基地台110處的控制器/處理器440及/或其他處理器和模組可執行或導引例如用於本文所描述的技術的各種過程(諸如圖9中的操作900、圖10中的操作1000等)的執行。UE 120處的控制器/處理器480及/或其他處理器和模組同樣可執行或導引例如用於本文所描述的技術的諸過程(諸如圖9中的操作900、圖10中的操作1000等)的執行。記憶體442和482可分別儲存用於BS 110和UE 120的資料和程式碼。排程器444可排程UE以進行下行鏈路及/或上行鏈路上的資料傳輸。
圖5圖示了根據本案的各態樣的示出用於實施通訊協定堆疊的實例的示圖500。所圖示的通訊協定堆疊可由在5G系統(例如,支援基於上行鏈路的行動性的系統)中操作的設備來實施。示圖500圖示了包括無線電資源控制(RRC)層510、封包資料收斂協定(PDCP)層515、無線電鏈路控制(RLC)層520、媒體存取控制(MAC)層525、以及實體(PHY)層530的通訊協定堆疊。在各種實例中,協定堆疊的該等層可被實施為單獨的軟體模組、處理器或ASIC的諸部分、由通訊鏈路連接的非共處一地的設備的諸部分,或其各種組合。共處一地和非共處一地的實施可例如在協定堆疊中用於網路存取設備(例如,AN、CU及/或DU)或UE。
第一選項505-a圖示協定堆疊的分離實施,其中協定堆疊的實施在集中式網路存取設備(例如,圖2中的ANC 202)與分散式網路存取設備(例如,圖2中的DU 208)之間分離。在第一選項505-a中,RRC層510和PDCP層515可由中央單元實施,而RLC層520、MAC層525和PHY層530可由DU實施。在各種實例中,CU和DU可共處一地或非共處一地。第一選項505-a在巨集細胞服務區、微細胞服務區,或微微細胞服務區部署中可以是有用的。
第二選項505-b圖示協定堆疊的統一實施,其中協定堆疊是在單個網路存取設備(例如,存取節點(AN)、新無線電基地台(NR BS)、新無線電B節點(NR NB)、網路節點(NN)等)中實施的。在第二選項中,RRC層510、PDCP層515、RLC層520、MAC層525、以及PHY層530可各自由AN實施。第二選項505-b在毫微微細胞服務區部署中可以是有用的。
無論網路存取設備實施協定堆疊的一部分還是全部,UE可實施整個協定堆疊(例如,RRC層510、PDCP層515、RLC層520、MAC層525、以及PHY層530)。
圖6是圖示DL中心式子訊框的實例的示圖600。DL中心式子訊框可包括控制部分602。控制部分602可存在於DL中心式子訊框的初始或開始部分中。控制部分602可包括對應於DL中心式子訊框的各個部分的各種排程資訊及/或控制資訊。在一些配置中,控制部分602可以是實體DL控制通道(PDCCH),如圖6中指示的。DL中心式子訊框亦可以包括DL資料部分604。DL資料部分604有時可被稱為DL中心式子訊框的有效負荷。DL資料部分604可包括被用來從排程實體(例如,UE或BS)向下級實體(例如,UE)傳達DL資料的通訊資源。在一些配置中,DL資料部分604可以是實體DL共享通道(PDSCH)。
DL中心式子訊框亦可以包括共用UL部分606。共用UL部分606有時可被稱為UL短脈衝、共用UL短脈衝,及/或各種其他合適術語。共用UL部分606可包括對應於DL中心式子訊框的各個其他部分的回饋資訊。例如,共用UL部分606可包括對應於控制部分602的回饋資訊。回饋資訊的非限定性實例可包括ACK信號、NACK信號、HARQ指示符,及/或各種其他合適類型的資訊。共用UL部分606可包括附加或替換資訊,諸如,涉及隨機存取通道(RACH)程序的資訊、排程請求(SR)和各種其他合適類型的資訊。如圖6中圖示的,DL資料部分604的結束可在時間上與共用UL部分606的開始分隔開。該時間分隔有時可被稱為間隙、保護時段、保護間隔,及/或各種其他合適術語。該分隔提供了用於從DL通訊(例如,下級實體(例如,UE)的接收操作)到UL通訊(例如,下級實體(例如,UE)的傳送)的切換的時間。本領域一般技藝人士將理解,前述內容僅僅是DL中心式子訊框的一個實例,並且可存在具有類似特徵的替換結構而不必然偏離本文所描述的各態樣。
圖7是圖示UL中心式子訊框的實例的示圖700。UL中心式子訊框可包括控制部分702。控制部分702可存在於UL中心式子訊框的初始或開始部分中。圖7中的控制部分702可類似於以上參照圖6描述的控制部分。UL中心式子訊框亦可以包括UL資料部分704。UL資料部分704有時可被稱為UL中心式子訊框的有效負荷。UL部分可代表被用來從下級實體(例如,UE)向排程實體(例如,UE或BS)傳達UL資料的通訊資源。在一些配置中,控制部分702可以是實體DL控制通道(PDCCH)。
如圖7中圖示的,控制部分702的結束可在時間上與UL資料部分704的開始分隔開。該時間分隔有時可被稱為間隙、保護時段、保護間隔,及/或各種其他合適術語。該間隔提供了用於從DL通訊(例如,排程實體的接收操作)到UL通訊(例如,排程實體的傳送)的切換的時間。UL中心式子訊框亦可以包括共用UL部分706。圖7中的共用UL部分706可類似於以上參照圖6描述的共用UL部分606。共用UL部分706可附加或替換地包括涉及通道品質指示符(CQI)、探通參考信號(SRSs)的資訊,以及各種其他合適類型的資訊。本領域一般技藝人士將理解,前述內容僅僅是UL中心式子訊框的一個實例,並且可存在具有類似特徵的替換結構而不必然偏離本文所描述的各態樣。在一個實例中,訊框可包括UL中心式子訊框和DL中心式子訊框兩者。在此實例中,可基於傳送的UL資料量和DL資料量來動態地調整訊框中UL中心式子訊框與DL子訊框的比率。例如,若有更多UL資料,則可增大UL中心式子訊框與DL子訊框的比率。相反,若有更多DL資料,則可減小UL中心式子訊框與DL子訊框的比率。示例性共享頻譜部署
針對共享頻譜(其可包括對未授權射頻頻譜的使用)的示例性部署場景可包括基於服務供應商的部署、獨立操作模式,及/或雙連通性操作模式。在基於服務供應商的部署中,多個服務供應商可以共享同一頻帶。獨立操作模式可包括從經授權載波的公用陸地行動網路(PLMN)間交遞。雙連通性操作模式可包括與共享頻譜分量載波以及經授權頻譜上的錨載波的連通性。未授權頻譜存取
未授權頻譜中的媒體存取可涉及動態先聽後講(LBT)程序。動態LBT程序可允許在毫秒時間尺度上共享網路資源(例如,頻率資源)。然而,例如在非同步系統中,對媒體的存取可能不被保證。對於非同步操作,各B節點(BSs)可以具有不同的訊框時序,並且來自不同B節點的傳輸可能在時間上並不對準(例如,不同B節點的一或多個子訊框及/或訊框邊界可能並不同期地對準)。
可針對動態LBT程序最佳化Wi-Fi非同步系統設計。在Wi-Fi系統中,信標傳輸(管理負擔信號、參考信號)可能會受限於LBT。週期性信標信號在本質上可以是「非同步的」。在Wi-Fi系統中,信標傳輸可能不會被頻繁地傳送,並且接收站(STAs)可觸發信標的非同步傳輸。
可能需要基於STA的行動性以力圖補償因例如信標傳輸的非同步本質引起的不良無線電資源管理(RRM)。資料傳輸可各自包含前序信號,該前序信號可被用於同步和資料短脈衝偵測。經授權頻譜存取
在4G/LTE中,可針對經授權頻譜最佳化媒體存取。因此,可能不要求在RF頻帶上通訊(「講話」)之前進行「感測」(例如,監視或監聽)以決定另一網路節點是否正佔用同一RF頻帶以力圖迴避干擾。4G/LTE系統取而代之使用週期性管理負擔信號傳輸。RRM程序利用該等管理負擔信號的週期性傳輸。量測報告可被用於受網路控制的行動性,其可考慮到無線電狀況和系統負載。
UE的電池壽命可使用非連續接收(DRX)程序來延長,由此UE非連續地接收資訊。在DRX時段期間,UE可關閉其大部分電路系統,由此節省功率。
可針對經授權頻譜最佳化NR。儘管4G/LTE可能不支援快速開啟/關閉程序(其中傳送方BS可與無線設備進行通訊,快速地停止使用諸頻譜部分,並且快速地重建通訊),但NR系統設計可支援此特徵。共享 頻譜媒體存取
共享頻譜可嘗試使對NR經授權頻譜的操作的改變最小化以力圖加快共享頻譜部署。共享頻譜可容適管理負擔及/或共用通道的週期性傳輸。共享頻譜可以不對RRM進行太多改變,並且可以利用快速開啟/關閉程序。根據一個實例,BS可使用共享頻譜的一部分來與無線設備進行通訊,並且可停止使用共享頻譜例如以退讓於經授權傳送方。BS可在經授權傳送方停止使用頻譜資源時重新開始使用該頻譜。
共享頻譜中的操作可包括B節點(BS)處的網路監聽功能。諸部署可以保護其他部署的管理負擔及/或共用通道。另外聲明,與第一頻譜和第一服務供應商相關聯的節點可以保護由與第二頻譜和第二服務供應商相關聯的節點傳送的管理負擔及/或共用通道。
在共享頻譜中,可藉由偵測和量測鄰點B節點的探索參考信號(DRS)及/或廣播通道(BSH)來學習其他無線設備所使用的配置。DRS可包括例如PSS、SSS、CRS,及/或CSI-RS。共享頻譜可以不將LBT程序用於管理負擔信號及/或共用通道。
在共享頻譜中操作的UE可執行LBT程序以力圖存取不受保護的資源。
頻譜存取系統(SAS)可在層內分配通道以及跨層分配通道。該等層可包括(按優先順序排序):(1)現任獲許可方;(2)優先存取獲許可方(PALs);及(3)通用授權存取(GAA)服務供應商。共享頻譜可以利用用於通道選擇的空中傳輸機制來補充SAS伺服器功能性。 具有NR PDCCH波形的示例性通道保留信號
一般而言,通道保留(CR)信號可被用來保留頻譜的諸部分以用於通訊。例如,某些無線區域網路(例如,WiFi)將請求發送(RTS)信號和清除發送(CTS)信號用於通道保留。某些系統(諸如NR)亦可以支援節點之間的通道保留信號交換以允許跨該等節點共存。例如,在NR的未授權及/或共享頻譜使用中,通道保留信號可被用來減少跨存取該未授權/共享頻譜的不同節點的傳輸造成的衝突。在一些態樣中,NR中節點之間的通道保留信號交換可包括預准予(PG)訊息、用於傳送的通道保留(CR-T)信號、以及用於接收的通道保留(CR-R)信號的交換。
PG訊息可由BS傳送,並且可包括指示哪些節點被排程進行通訊的資訊以及包括對該通訊的(UL或DL)准予。CR-T信號可宣告進行傳送的意圖並且包括關於即將到來的資料傳輸的發射功率(例如,功率控制)資訊。接收到CR-T信號的節點可基於該CR-T信號中的發射功率資訊來決定(或估計)其在傳送節點發送該資料傳輸時將從該傳送節點接收的干擾位準。CR-R信號可宣告接收資料傳輸的意圖,並且包括指示可接受干擾位準(對於傳送該CR-R信號的節點)或該CR-R信號的發射功率資訊中的至少一者的資訊。接收到CR-R信號的節點可基於該CR-R信號來決定其在進行傳送時將產生的干擾位準,並且決定該干擾位準對於傳送該CR-R信號的節點是否可接受。
圖8圖示了根據本案的某些態樣的可被用於NR中的通道保留信號交換的示例性訊框結構800。如圖所示,訊框結構800可包括802處的PG訊息短脈衝、804處的CR-T信號短脈衝、806處的CR-R信號短脈衝、以及808處的資料傳輸。
一或多個節點(例如,BS)可在802處傳送PG訊息,以便排程一或多個其他節點(例如,UE)在808處在一部分頻譜(例如,資料通道)期間進行通訊。如以下更詳細描述的,該等PG訊息可由一或多個BS並行地傳送(亦即,每個PG訊息可在頻率上與其他PG訊息正交)。PG訊息傳輸之後可以是CR-T信號的並行傳輸(例如,由BS及/或UE進行)(在804處),繼之以CR-R信號的並行傳輸(例如,由BS及/或UE進行)(在806處)。在一些情形中,各節點可被配置成在該等節點未被排程用於傳輸時監視CR-R/CR-T信號。亦即,被排程用於在806處傳送CR-R信號的節點可在804處監視CR-T信號。類似地,被排程用於在804處傳送CR-T信號的節點可在806處監視CR-R信號。
一般而言,一些系統(例如,諸如WiFi)中用於傳送通道保留信號的辦法可能並不適用於其他系統,諸如NR。例如,在WiFi中,通道保留信號(例如,RTS/CTS)一般以小封包傳送,每個封包約為前序信號大小。然而,在具有大量節點的系統(諸如NR)中,傳送此類訊框會導致大量衝突,這進而會使接收器處對通道保留信號的偵測降級。因此,期望用於NR中的通道保留信號的新設計波形。
本案的各態樣提供了用於基於NR PDCCH的通道保留信號設計的技術和裝置。
圖9是圖示根據本案的某些態樣的可由例如通道保留(CR)傳送節點(例如,BS 110、UE 120等)執行的示例性操作900的流程圖。操作900可始於在902處,CR傳送節點決定一或多個OFDM符號以傳送通道保留信號。
在904處,CR傳送節點決定可用於在該一或多個OFDM符號期間傳送通道保留信號的複數個資源。該複數個資源可使用與NR PDCCH相同的結構。在906處,CR傳送節點在該複數個資源中選擇一個資源集以傳送通道保留信號。在908處,CR傳送節點在所選資源集中傳送通道保留信號(例如,CR-T或CR-R)以保留用於通訊的一部分頻譜。該部分頻譜例如可對應於正被用於通訊的通道(例如,資料通道)。此類通訊可包括發送傳輸或接收傳輸。在一個態樣中,CR傳送節點一次可發送一個CR信號(例如,CR-T或CR-R)。亦即,CR傳送節點可傳送CR-T信號,繼之以CR-R信號,或者反之。
圖10是圖示根據本案的某些態樣的可由例如CR接收節點(例如,BS 110、UE 120等)執行的示例性操作1000的流程圖。操作1000可始於在1002處,CR接收節點決定一或多個OFDM符號以監視通道保留信號(例如,CR-T、CR-R等)。在1004處,CR接收節點決定可用於在這一或多個OFDM符號期間監視通道保留信號的複數個資源。在一個態樣中,可用於監視通道保留信號的該複數個資源使用下行鏈路控制通道(例如,NR-PDCCH)的結構。在1006處,CR接收節點監視在該複數個資源中的資源集中傳送的一或多個通道保留信號。
在某些態樣中,用於通道保留信號傳輸的該複數個資源可使用下行鏈路控制通道(例如,PDCCH)的結構並且包括一或多個控制通道元素(CCEs)。例如,在一個態樣中,該複數個資源可包括NR中的因UE而異的控制次頻帶。NR中因UE而異的PDCCH結構的基本資源元素一般是實體資源區塊(PRB)。例如,每個NR PDCCH可佔用一或多個NR-CCE,並且每個NR-CCE可包括一或多個PRB。用於特定NR PDCCH的PBR集可分佈在控制次頻帶上。解調參考信號可嵌入在每個PRB中,並且使用與PRB中的控制資料相同的波束成形。解調參考信號可由UE用來解調NR-PDCCH。
一般而言,對於NR-PDCCH,不同數目的NR-CCE可形成用於下行鏈路控制資訊(DCI)的資源。NR-PDCCH中的NR-CCE數目一般代表NR-PDCCH的聚合位準。該聚合位準一般配置DCI的覆蓋以及用於DCI的資源量。此外,類似於舊式LTE,對於NR PDCCH,可定義一或多個搜尋空間,其中每個搜尋空間包括具有一或多個聚合位準的解碼候選集。
根據某些態樣,NR中因UE而異的控制次頻帶可被重用於通道保留信號傳輸。亦即,NR中的通道保留信號傳輸可應用與NR中基於因UE而異的DMRS的PDCCH傳輸所使用的概念類似的PRB(具有DRMS)/NR-CCE/解碼候選概念。在一個態樣中,該等通道保留信號傳輸可使用與NR-PDCCH相同的編碼及/或速率匹配機制。然而,與NR-PDCCH相比,該等通道保留信號傳輸的有效負荷大小可以更小(例如,與PDCCH中的典型DCI相比可在通道保留信號中包括更少資訊)。這可轉化成對於與NR-PDCCH相同的覆蓋而言,用於CR傳輸的聚合位準更低。
在一個態樣中,通道保留信號(例如,CR-T及/或CR-R)可佔用該等NR-PDCCH之一所使用的資源集。亦即,該等NR-PDCCH之一可以用通道保留信號來替代。對於通道保留信號,可定義包括解碼候選集的搜尋空間。該通道保留搜尋空間可以是通訊系統中的所有節點(例如,BS、UE)知曉的共用搜尋空間。例如,在一個態樣中,可經由廣播訊號傳遞來半靜態地配置該搜尋空間。可基於期望通道保留信號覆蓋和控制能力來控制用於每個解碼候選的聚合位準。
根據某些態樣,CR傳送節點可決定用於發送通道保留信號的複數個解碼候選,其中每個解碼候選包括一或多個CCE。CR傳送節點可選擇該等解碼候選之一以用於發送通道保留信號。在一些情形中,所選解碼候選可不同於另一CR傳送節點的通道保留信號傳輸所使用的解碼候選。在一些情形中,CR傳送節點可藉由從該複數個解碼候選中隨機地選擇一解碼候選來選擇解碼候選。該複數個資源中的所選資源集可包括所選解碼候選的CCE。每個CCE可包括一或多個PRB且每個PRB可包括DMRS。一旦選定,CR傳送節點就可產生通道保留封包,用CRC插入對該封包進行編碼,並且填充該解碼候選中的CR信號。CR傳送節點亦可在該解碼候選的每個PRB中多工DMRS,並傳送該波束。如所提及的,通道保留信號可以是CR-T(其指示該通訊(例如,在一部分頻譜期間)是用於發送傳輸)或CR-R(其指示該通訊(例如,在一部分頻譜期間)是用於接收傳輸)。
在一個態樣中,當CR接收節點監視到通道保留信號時,其可執行對通道保留信號搜尋空間中的所有解碼候選的盲解碼。例如,CR接收節點可決定(例如,基於接收到的配置及/或較高層訊號傳遞)該資源集中可用於發送通道保留信號的複數個解碼候選,其中每個通道保留信號使用該複數個解碼候選之一。CR接收節點可跨該複數個解碼候選對該一或多個通道保留信號執行盲解碼程序。如所提及的,每個解碼候選可包括一或多個CCE,每個CCE可包括一或多個PRB,並且每個PRB可包括DMRS。
CR接收節點可基於該等DMRS來處理用於通道保留信號之一的解碼候選之一。例如,CR接收節點可使用每個PRB中的DMRS來進行通道估計,並使用所估計的通道來執行針對每個PRB的對數概度比(LLR)計算。該接收節點可將每個解碼候選的LLR縫合在一起並執行解碼。若CRC通過,則該接收節點可將該內容記入日誌。
圖11圖示了根據本案的某些態樣的NR中使用因UE而異的控制次頻帶中的資源的通道保留信號交換1100的實例。在此實例中,定義了eNB與UE之間的四條鏈路(例如,eNBi 至UEi ,其中i = 0, 1, 2, 3)。通道保留信號交換1100包括1102處的PG短脈衝、1104處的CR-R短脈衝、1106處的CR-T短脈衝、以及1108處的CR-R短脈衝。然而,注意,所圖示的交換1100僅僅是可使用的通道參考信號交換的參考實例。本領域一般技藝人士將認識到,可使用其他通道參考信號交換配置。
在一些態樣中,CR傳送節點可在傳送通道保留信號之前向一或多個設備(例如,UE、eNB等)傳送准予訊息(例如,諸如PG)。該准予訊息可包括對上行鏈路通訊或下行鏈路通訊中的至少一者的准予,並且可指示供每個設備傳送通道保留信號的時間或供每個設備監視通道保留信號的時間中的至少一者。類似地,每個設備可監視資源(例如,因UE而異的控制次頻帶資源)中的准予訊息,並基於該准予訊息中的排程來決定監視一或多個通道保留信號的時間。
如圖11所示,例如,在1102處的PG階段中,每個eNBi 向UEi 發送PG。注意,每個eNBi 是不同的傳送節點。PG可排程(例如,包括准予)UEi 以進行通訊(例如,在資料通道期間)並且可指示該通訊是下行鏈路傳輸(例如,來自eNBi )還是上行鏈路通訊(例如,來自UEi )。例如,給UE0 的PG針對至eNB0 的上行鏈路通訊,給UE1 的PG針對來自eNB1 的下行鏈路通訊,給UE2 的PG針對至eNB2 的上行鏈路通訊,並且給UE3 的PG針對來自eNB3 的下行鏈路通訊。
從每個UE的視角,該等PG可以在PG搜尋空間中。在一些情形中,若該PG短脈衝是與正常准予短脈衝共享的,則該PG搜尋空間可以是該UE正在監視的因UE而異的正常搜尋空間或共用搜尋空間的子集(或者與該正常搜尋空間或共用搜尋空間相同)(例如,以節省UE的解碼嘗試)。
對於CR-R/CR-T短脈衝,可定義所有節點共用的CR搜尋空間。每個CR傳送節點可將該搜尋空間中的一個解碼候選用於CR-T及/或CR-R傳輸。在一些情形中,每個CR傳送節點可選擇分開的解碼候選以用於CR-T及/或CR-R傳輸。在1104處的CR-R短脈衝,eNB0 發送CR-R以準備來自UE0 的資料接收,UE1 發送CR-R以準備來自eNB1 的資料接收,eNB2 發送CR-R以準備來自UE2 的資料接收,並且UE3 發送CR-R以準備來自UE3 的資料接收。
在一個態樣中,通道保留信號的一或多個傳送方可選擇相同的OFDM符號集以對準CR傳輸。亦即,第一CR傳送節點可選擇與至少第二CR傳送節點選取的OFDM符號集相同的OFDM符號集以用於通道保留信號傳輸,以便對準(例如,由第一CR傳送節點和至少第二CR傳送節點進行的)通道保留信號傳輸。例如,如圖11所示,1104處的每個CR-R傳輸可使用相同的OFDM符號集,1106處的每個CR-T傳輸可使用相同的OFDM符號集,依此類推。在一個態樣,由特定節點用於CR-R/CR-T傳輸的每個解碼候選可以不與另一節點用於CR-R/CR-T傳輸的另一解碼候選重疊(例如,在頻率上)。例如,如圖11所示,該等解碼候選不重疊(例如,是正交的)。然而,在一些態樣中,本文所提出的技術可允許一或多個解碼候選重疊。在此類情形中,可使用分集及/或波束成形技術來減少傳送CR信號的節點之間的衝突。
如前述,一或多個節點可在該等節點不在傳送時監視CR-R/CR-T信號。參考圖11中的實例,UE0 、eNB1 、UE2 和eNB3 可監視在1104處分別自eNB0 、UE1 、eNB2 和UE3 傳送的CR-R信號。在一個態樣中,一或多個CR接收節點可選擇相同的ODFM符號集(例如,與一或多個其他CR接收節點相同)以監視通道保留信號(例如,以便對準該等CR接收節點之間的監視)。一旦接收到,每個節點就可基於嵌入在CR-R中的資訊(例如,該CR-R的發射功率資訊及/或傳送該CR-R的節點的可接受干擾位準)來決定是否接受其各自相應的PG並在該部分頻譜(例如,資料通道)期間繼續進行傳送。例如,每個CR接收節點可基於該發射功率資訊來決定自身與該CR傳送節點之間的路徑損耗量測。基於該路徑損耗量測,該CR接收節點可決定將由該CR傳送節點接收的因來自該CR接收節點的資料傳輸引起的干擾位準。若所決定的干擾位準超過該CR傳送節點的可接受干擾位準,則該CR接收節點可決定丟棄其PG。
如圖11所示,例如,在1104處,UE0 (例如,CR接收節點)從eNB0 (例如,CR傳送節點)接收針對至eNB0 的待決上行鏈路傳輸的CR-R。類似地,在1104處,eNB3 (例如,CR接收節點)從UE3 (例如,CR傳送節點)接收針對來自eNB3 的待決下行鏈路傳輸的CR-R。然而,在1106處,UE0 制止向eNB0 傳送CR-T且eNB3 制止向UE3 傳送CR-T。在此情境中,UE0 可能已決定其待決上行鏈路資料傳輸的干擾幅度會超過eNB0 的可接受干擾位準(例如,在接收自eNB0 的CR-R中指示的可接受干擾位準)。類似地,eNB3 可能已決定其待決下行鏈路通訊的干擾幅度會超過UE3 的可接受干擾位準(例如,在接收自UE3 的CR-R中指示的可接受干擾位準)。由此,在1106處,該CR-T短脈衝可僅包括分別來自eNB1 和UE2 的CR-T傳輸。在1108處,另一CR-R短脈衝發生並且包括來自UE1 和eNB2 的CR-R傳輸。
在各態樣中,CR傳輸與PDCCH傳輸的一個區別在於可從不同節點傳送通道保留傳輸。如此,在一些情形中,當每個節點選擇解碼候選並使用所選解碼候選傳送通道保留信號時,可能存在解碼候選衝突。例如,該等節點可能不能夠如同PDCCH情形中一般動態地使用不同解碼候選來迴避衝突。
相應地,本文所提出的各態樣提供了用於迴避(或減少)通道保留傳輸之間的衝突的技術。
在一個態樣中,CR傳送節點可使用隨機化解碼候選來進行通道保留信號傳輸。亦即,CR傳送節點可從通道保留信號搜尋空間中的複數個解碼候選中隨機地選擇解碼候選。對於NR中的mmW系統而言,使用隨機化解碼候選選擇程序可能是期望的。例如,在此類系統中,衝突問題可能不那麼嚴重,因為不同傳送方被不同地波束成形。由此,即使在NR-CCE使用上存在衝突,干擾亦可藉由波束成形來抑制。
在一些態樣中,CR傳送節點可識別由另一設備(例如,另一CR傳送節點)用來發送通道保留信號的至少一個其他解碼候選。CR傳送節點可決定所選解碼候選是否與該另一設備所使用的解碼候選衝突,並在存在衝突的情況下選擇另一解碼候選。例如,在一個態樣中,CR傳送節點可使用半靜態衝突迴避演算法來減少衝突。例如,在一些情形中,給定節點可針對CR-R和CR-T傳輸兩者使用相同解碼候選。因此,各CR傳送節點可監視哪些解碼候選被其他CR傳送節點使用,而若偵測到衝突(例如,該節點決定鄰點節點在使用相同解碼候選),則各CR傳送節點可切換至不同解碼候選。此辦法對於在其鄰域中(例如,在閾值鄰近度內)具有某個數目的有效節點的CR傳送節點而言是期望的。
如此,本文所提出的技術使得節點能夠將NR-PDCCH波形重用於通道保留信號傳輸。這樣做允許硬體/韌體/軟體中的PDCCH處理被重用於NR中的通道保留信號,並且可以避免對NR中的新通道設計的需求。
如本文中所使用的,引述項目清單中的「至少一者」的用語代表該等項目的任何組合,包括單個成員。作為實例,「a、b或c中的至少一者」意欲涵蓋:a、b、c、a-b、a-c、b-c和a-b-c,以及具有多個相同元素的任何組合(例如,a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c和c-c-c,或者a、b和c的任何其他排序)。此外,術語「或」意欲意謂包含性「或」而非排他性「或」。亦即,除非另外指明或從上下文能清楚地看出,否則用語「X採用A或B」意欲意謂任何自然的可兼排列。亦即,用語「X採用A或B」得到以下任何實例的滿足:X採用A;X採用B;或X採用A和B兩者。另外,本案和所附申請專利範圍中所使用的冠詞「一」和「某」一般應當被解釋成意謂「一或多個」,除非另外聲明或者可從上下文中清楚看出是指單數形式。
本文所揭示的方法包括用於達成所描述的方法的一或多個步驟或動作。該等方法步驟及/或動作可以彼此互換而不會脫離請求項的範圍。換言之,除非指定了步驟或動作的特定次序,否則特定步驟及/或動作的次序及/或使用可以改動而不會脫離請求項的範圍。
如本文所使用的,術語「決定」涵蓋各種各樣的動作。例如,「決定」可包括演算、計算、處理、推導、研究、識別、檢視(例如,在表、資料庫或其他資料結構中檢視)、確定及諸如此類。而且,「決定」可包括接收(例如,接收資訊)、存取(例如,存取記憶體中的資料)及諸如此類。而且,「決定」亦可包括解析、選擇、選取、確立及類似動作。
提供先前描述是為了使本領域任何技藝人士均能夠實踐本文中所述的各個態樣。對該等態樣的各種修改將容易為本領域技藝人士所明白,並且在本文中所定義的普適原理可被應用於其他態樣。因此,請求項並非意欲被限定於本文中所示的態樣,而是應被授予與語言上的請求項相一致的全部範圍,其中對要素的單數形式的引述除非特別聲明,否則並非意欲意謂「有且僅有一個」,而是「一或多個」。除非特別另外聲明,否則術語「一些」代表「一或多個」。本案通篇描述的各個態樣的要素為本領域一般技藝人士當前或今後所知的所有結構上和功能上的等效方案經由引述被明確併入於本文,且意欲被請求項所涵蓋。此外,本文中所揭示的任何內容皆並非意欲貢獻給公眾,無論此種揭示內容是否在申請專利範圍中被顯式地敘述。請求項的任何要素皆不應當在專利法施行細則第18條第8項的規定下來解釋,除非該要素是使用用語「用於......的構件」來明確敘述的或者在方法請求項情形中該要素是使用用語「用於......的步驟」來敘述的。
以上所描述的方法的各種操作可由能夠執行相應功能的任何合適的構件來執行。該等構件可包括各種硬體及/或軟體元件及/或模組,包括但不限於電路、特殊應用積體電路(ASIC),或處理器。一般而言,在存在附圖中圖示的操作的場合,該等操作可具有帶相似編號的相應配對手段功能元件。
例如,用於決定的構件、用於選擇的構件、用於執行的構件、用於使用的構件、用於發送的構件、用於傳送的構件、用於接收的構件、用於配置的構件、用於識別的構件、用於獲取的構件、用於對準的構件、用於選取的構件、用於指示的構件、用於通訊的構件、用於控制的構件、用於監視的構件、用於處理的構件及/或用於解碼的構件可包括一或多個處理器或其他元件,諸如圖4中所圖示的基地台110的發射處理器420、控制器/處理器440、接收處理器438、調制器/解調器432及/或(諸)天線434,及/或圖4中所圖示的使用者裝備120的發射處理器464、控制器/處理器480、接收處理器458、解調器/調制器454及/或(諸)天線452。
結合本案所描述的各種說明性邏輯區塊、模組、以及電路可用設計成執行本文描述的功能的通用處理器、數位訊號處理器(DSP)、特殊應用積體電路(ASIC)、現場可程式閘陣列(FPGA)或其他可程式邏輯設備(PLD)、個別閘門或電晶體邏輯、個別的硬體元件,或其任何組合來實施或執行。通用處理器可以是微處理器,但在替代方案中,處理器可以是任何市售的處理器、控制器、微控制器,或狀態機。處理器亦可以被實施為計算設備的組合,例如,DSP與微處理器的組合、複數個微處理器、與DSP核心協同的一或多個微處理器,或任何其他此類配置。
若以硬體實施,則示例性硬體設定可包括無線節點中的處理系統。處理系統可以用匯流排架構來實施。取決於處理系統的特定應用和整體設計約束,匯流排可包括任何數目的互連匯流排和橋接器。匯流排可將包括處理器、機器可讀取媒體、以及匯流排介面的各種電路連結在一起。匯流排介面可被用於將網路配接器等經由匯流排連接至處理系統。網路配接器可被用於實施PHY層的信號處理功能。在使用者終端120(見圖1)的情形中,使用者介面(例如,小鍵盤、顯示器、滑鼠、操縱桿,等等)亦可以被連接到匯流排。匯流排亦可以連結各種其他電路,諸如時序源、周邊設備、穩壓器、功率管理電路以及類似電路,其在本領域中是眾所周知的,因此將不再進一步描述。處理器可用一或多個通用及/或專用處理器來實現。實例包括微處理器、微控制器、DSP處理器、以及其他能執行軟體的電路系統。取決於特定應用和加諸於整體系統上的總設計約束,本領域技藝人士將認識到如何最佳地實施關於處理系統所描述的功能性。
若以軟體實施,則各功能可作為一或多數指令或代碼儲存在電腦可讀取媒體上或藉其進行傳送。軟體應當被寬泛地解釋成意謂指令、資料,或其任何組合,無論是被稱作軟體、韌體、中介軟體、微代碼、硬體描述語言,或其他。電腦可讀取媒體包括電腦儲存媒體和通訊媒體兩者,該等媒體包括促進電腦程式從一地向另一地轉移的任何媒體。處理器可負責管理匯流排和一般處理,包括執行儲存在機器可讀儲存媒體上的軟體模組。電腦可讀取儲存媒體可被耦合到處理器以使得該處理器能從該儲存媒體讀取資訊,並且向該儲存媒體寫入資訊。在替代方案中,儲存媒體可以被整合到處理器。作為實例,機器可讀取媒體可包括傳輸線、由資料調制的載波,及/或與無線節點分開的其上儲存有指令的電腦可讀取儲存媒體,其全部可由處理器經由匯流排介面來存取。替換地或補充地,機器可讀取媒體或其任何部分可被整合到處理器中,諸如快取記憶體及/或通用暫存器檔案可能就是此種情形。作為實例,機器可讀儲存媒體的實例可包括RAM(隨機存取記憶體)、快閃記憶體、ROM(唯讀記憶體)、PROM(可程式設計唯讀記憶體)、EPROM(可抹除可程式設計唯讀記憶體)、EEPROM(電可抹除可程式設計唯讀記憶體)、暫存器、磁碟、光碟、硬驅動器,或者任何其他合適的儲存媒體,或其任何組合。機器可讀取媒體可被實施在電腦程式產品中。
軟體模組可包括單一指令,或許多數指令,且可分佈在若干不同的代碼區段上,分佈在不同的程式間以及跨多個儲存媒體分佈。電腦可讀取媒體可包括數個軟體模組。該等軟體模組包括當由裝置(諸如處理器)執行時使處理系統執行各種功能的指令。該等軟體模組可包括傳送模組和接收模組。每個軟體模組可以常駐在單個儲存設備中或者跨多個儲存設備分佈。作為實例,當觸發事件發生時,可以從硬驅動器中將軟體模組載入到RAM中。在軟體模組執行期間,處理器可以將一些指令載入到快取記憶體中以提高存取速度。隨後可將一或多個快取記憶體行載入到通用暫存器檔案中以供處理器執行。在以下述及軟體模組的功能性時,將理解此類功能性是在處理器執行來自該軟體模組的指令時由該處理器來實施的。
任何連接亦被正當地稱為電腦可讀取媒體。例如,若軟體是使用同軸電纜、光纖電纜、雙絞線、數位用戶線(DSL),或無線技術(諸如紅外線(IR)、無線電、以及微波)從web網站、伺服器,或其他遠端源傳送而來,則該同軸電纜、光纖電纜、雙絞線、DSL或無線技術(諸如紅外線、無線電、以及微波)就被包括在媒體的定義之中。如本文中所使用的磁碟(disk)和光碟(disc)包括壓縮光碟(CD)、雷射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光® 光碟,其中磁碟(disk)常常磁性地再現資料,而光碟(disc)用雷射來光學地再現資料。因此,在一些態樣中,電腦可讀取媒體可包括非暫態電腦可讀取媒體(例如,有形媒體)。另外,對於其他態樣,電腦可讀取媒體可包括暫態電腦可讀取媒體(例如,信號)。上述的組合應當亦被包括在電腦可讀取媒體的範圍內。
因此,某些態樣可包括用於執行本文中提供的操作的電腦程式產品。例如,此類電腦程式產品可包括其上儲存(及/或編碼)有指令的電腦可讀取媒體,該等指令能由一或多個處理器執行以執行本文中所描述的操作。
此外,應當瞭解,用於執行本文中所描述的方法和技術的模組及/或其他合適構件能由使用者終端及/或基地台在適用的場合下載及/或以其他方式獲得。例如,此類設備能被耦合至伺服器以促進用於執行本文中所描述的方法的構件的轉移。或者,本文所述的各種方法能經由儲存構件(例如,RAM、ROM、諸如壓縮光碟(CD)或軟碟等實體儲存媒體等)來提供,以使得在將該儲存構件耦合至或提供給使用者終端及/或基地台之後,該設備就能獲得各種方法。此外,可利用適於向設備提供本文所描述的方法和技術的任何其他合適的技術。
將理解,請求項並不被限定於以上所說明的精確配置和元件。可在以上所描述的方法和裝置的佈局、操作和細節上作出各種改動、更換和變形而不會脫離請求項的範圍。
100‧‧‧無線網路102a‧‧‧巨集細胞服務區102b‧‧‧巨集細胞服務區102c‧‧‧巨集細胞服務區102x‧‧‧微微細胞服務區102y‧‧‧毫微微細胞服務區102z‧‧‧毫微微細胞服務區110‧‧‧BS110a‧‧‧BS110b‧‧‧BS110r‧‧‧BS110x‧‧‧BS110y‧‧‧BS110z‧‧‧BS120‧‧‧UE120r‧‧‧UE120x‧‧‧UE120y‧‧‧UE130‧‧‧網路控制器200‧‧‧分散式無線電存取網路(RAN)202‧‧‧存取節點控制器(ANC)204‧‧‧下一代核心網路(NG-CN)206‧‧‧5G存取節點208‧‧‧TRP210‧‧‧下一代AN(NG-AN)300‧‧‧分散式RAN302‧‧‧集中式核心網路單元(C-CU)304‧‧‧集中式RAN單元(C-RU)306‧‧‧DU412‧‧‧資料來源420‧‧‧處理器430‧‧‧發射(TX)多輸入多輸出(MIMO)處理器432a‧‧‧調制器(MOD)432t‧‧‧調制器(MOD)434a‧‧‧天線434t‧‧‧天線436‧‧‧MIMO偵測器438‧‧‧接收處理器439‧‧‧資料槽440‧‧‧控制器/處理器442‧‧‧記憶體444‧‧‧排程器452a‧‧‧天線452r‧‧‧天線454a‧‧‧解調器(DEMOD)454r‧‧‧解調器(DEMOD)456‧‧‧MIMO偵測器458‧‧‧接收處理器460‧‧‧資料槽462‧‧‧資料來源464‧‧‧發射處理器466‧‧‧TX MIMO處理器480‧‧‧控制器/處理器482‧‧‧記憶體500‧‧‧示圖505-a‧‧‧第一選項505-b‧‧‧第二選項510‧‧‧RRC層515‧‧‧PDCP層520‧‧‧RLC層525‧‧‧MAC層530‧‧‧PHY層600‧‧‧示圖602‧‧‧控制部分604‧‧‧DL資料部分606‧‧‧共用UL部分700‧‧‧示圖702‧‧‧控制部分704‧‧‧UL資料部分706‧‧‧共用UL部分800‧‧‧訊框結構802‧‧‧PG訊息短脈衝804‧‧‧CR-T信號短脈衝806‧‧‧CR-R信號短脈衝808‧‧‧資料傳輸900‧‧‧操作902‧‧‧操作904‧‧‧操作906‧‧‧操作908‧‧‧操作1000‧‧‧操作1002‧‧‧操作1004‧‧‧操作1006‧‧‧操作1100‧‧‧通道保留信號交換1102‧‧‧PG短脈衝1104‧‧‧CR-R短脈衝1106‧‧‧CR-T短脈衝1108‧‧‧CR-R短脈衝
為了能詳細理解本案的以上陳述的特徵所用的方式,可參照各態樣來對以上簡要概述的內容進行更具體的描述,其中一些態樣在附圖中圖示。然而應該注意,附圖僅圖示了本案的某些典型態樣,故不應被認為限定其範圍,因為本描述可允許有其他等同有效的態樣。
圖1是概念地圖示根據本案的某些態樣的示例性電信系統的方塊圖。
圖2是圖示根據本案的某些態樣的分散式RAN的示例性邏輯架構的方塊圖。
圖3是圖示根據本案的某些態樣的分散式RAN的示例性實體架構的示圖。
圖4是概念性地圖示根據本案的某些態樣的示例性BS和使用者裝備(UE)的設計的方塊圖。
圖5是根據本案的某些態樣的圖示用於實施通訊協定堆疊的實例的示圖。
圖6圖示了根據本案的某些態樣的DL中心式子訊框的實例。
圖7圖示了根據本案的某些態樣的UL中心式子訊框的實例。
圖8圖示了根據本案的某些態樣的可被用於NR中的通道保留信號交換的示例性訊框結構。
圖9圖示了根據本案的某些態樣的可由傳送方節點執行的示例性操作的流程圖。
圖10是圖示根據本案的某些態樣的可由接收方節點執行的示例性操作的流程圖。
圖11圖示了根據本案的某些態樣的NR中使用因UE而異的控制次頻帶中的資源的通道保留信號交換的實例。
為了促進理解,在可能之處使用了相同的元件符號來指定各附圖共用的相同元件。構想了一個態樣中所揭示的元件可有益地用在其他態樣而無需具體引述。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
900‧‧‧操作
902‧‧‧操作
904‧‧‧操作
906‧‧‧操作
908‧‧‧操作

Claims (27)

  1. 一種用於由一裝置進行無線通訊的方法,包括以下步驟:決定一或多個正交分頻多工(OFDM)符號以傳送通道保留信號;藉由在該一或多個OFDM符號期間可用於發送該等通道保留信號的複數個資源內決定複數個解碼候選來決定在該一或多個OFDM符號期間可用於傳送該等通道保留信號的該複數個資源,其中每個解碼候選包括一或多個控制通道元素(CCEs);在該複數個資源內選擇一個資源集以傳送一通道保留信號,該選擇步驟包括選擇該等解碼候選之一以用於發送該通道保留信號;及在該所選資源集中傳送該通道保留信號以保留用於通訊的一頻譜的一部分,其中該所選資源集包括該所選解碼候選的該一或多個CCE。
  2. 如請求項1所述之方法,其中:用於通道保留信號傳輸的該複數個資源使用一下行鏈路控制通道的一結構。
  3. 如請求項1所述之方法,其中選擇該等解碼候選之一之步驟包括從該複數個解碼候選中隨機地選擇該等解碼候選之該者。
  4. 如請求項1所述之方法,進一步包括以下步驟:識別由另一設備用來發送一通道保留信號的至少一個其他解碼候選;決定該所選解碼候選是否與該另一設備所使用的解碼候選衝突;及在存在一衝突的情況下選擇另一解碼候選。
  5. 如請求項3所述之方法,其中:每個CCE包括一或多個實體資源區塊(PRBs);並且每個PRB包括一解調參考信號(DMRS)。
  6. 如請求項1所述之方法,其中決定該一或多個OFDM符號之步驟包括選擇與由至少另一設備選取用於一通道保留信號傳輸的OFDM符號集相同的一OFDM符號集以對準通道保留信號傳輸。
  7. 如請求項6所述之方法,其中該所選解碼候選不同於被用於該另一設備的通道保留信號傳輸的一解碼候選。
  8. 如請求項1所述之方法,其中該通道保留信號包括一第一通道保留信號或一第二通道保留信號,該第一通道保留信號指示該通訊是用於發送一傳輸,該第二通道保留信號指示該通訊是用於接收一傳輸。
  9. 如請求項8所述之方法,其中該第一通道保留信號包括關於該通訊的功率控制資訊。
  10. 如請求項8所述之方法,其中該第二通道保留信號包括該第二通道保留信號的功率控制資訊。
  11. 如請求項8所述之方法,其中:該第一通道保留信號是與來自另一設備的至少一個其他通道保留信號同時傳送的;並且該其他通道保留信號指示該另一設備的一通訊是用於發送一傳輸。
  12. 如請求項11所述之方法,其中用於該第一通道保留信號的該資源集與該複數個資源中用於該其他通道保留信號的一資源集不重疊。
  13. 如請求項8所述之方法,其中:該第二通道保留信號是與來自另一設備的至少一個其他通道保留信號同時傳送的;並且該其他通道保留信號指示該另一設備的一通訊是用於接收一傳輸。
  14. 如請求項13所述之方法,其中用於該第二通道保留信號的該資源集與該複數個資源中用於該其他通道保留信號的一資源集不重疊。
  15. 如請求項1所述之方法,進一步包括以下步驟: 在傳送該通道保留信號之前向一或多個使用者裝備(UEs)傳送一准予訊息,其中該准予訊息包括對上行鏈路通訊或下行鏈路通訊中的至少一者的一准予並且指示以下至少一者:供該一或多個UE中的每一者傳送一通道保留信號的一時間或供該一或多個UE中的每一者監視一通道保留信號的一時間。
  16. 如請求項1所述之方法,其中該裝置是一基地台(BS)或一使用者裝備(UE)。
  17. 一種用於由一裝置進行無線通訊的方法,包括以下步驟:決定一或多個正交分頻多工(OFDM)符號以監視通道保留信號;決定在該一或多個OFDM符號期間可用於監視該通道保留信號的複數個資源;及監視在該複數個資源內的一資源集中傳送的一或多個通道保留信號,該監視步驟包括以下步驟:決定該資源集中可用於發送該一或多個通道保留信號的複數個解碼候選,其中每個通道保留信號使用該複數個解碼候選之一,而每個解碼候選包括一或多個控制通道元素(CCEs);及跨該複數個解碼候選對該一或多個通道保留信號執行一盲解碼程序。
  18. 如請求項17所述之方法,其中該等通道保留信號中的至少一個通道保留信號指示在一頻譜的一部分期間的一通訊是用於發送一傳輸。
  19. 如請求項17所述之方法,其中該等通道保留信號中的至少一個通道保留信號指示在一頻譜的一部分期間的一通訊是用於接收一傳輸。
  20. 如請求項17所述之方法,其中決定該一或多個OFDM符號之步驟包括選擇與由至少另一設備選取用於監視一通道保留信號的OFDM符號集相同的一OFDM符號集以對準對該等通道保留信號的監視。
  21. 如請求項17所述之方法,其中:每個CCE包括一或多個實體資源區塊(PRBs);並且每個PRB包括一解調參考信號(DMRS)。
  22. 如請求項21所述之方法,進一步包括以下步驟:基於該等DMRS來處理用於該等通道保留信號之一的該等解碼候選之一。
  23. 如請求項17所述之方法,其中可用於監視該通道保留信號的該複數個資源使用一下行鏈路控制通道的一結構。
  24. 如請求項17所述之方法,進一步包括以下步驟:監視該複數個資源中的一准予訊息;及基於該准予訊息中的一排程來決定用於監視該一或多個通道保留信號的一時間。
  25. 如請求項17所述之方法,其中該裝置包括一基地台(BS)或一使用者裝備(UE)。
  26. 一種用於無線通訊的裝置,包括:用於決定一或多個正交分頻多工(OFDM)符號以傳送通道保留信號的構件;用於決定在該一或多個OFDM符號期間可用於傳送該等通道保留信號的複數個資源的構件,用於決定的該構件包括用於在該一或多個OFDM符號期間可用於發送該等通道保留信號的該複數個資源內決定複數個解碼候選的構件,其中每個解碼候選包括一或多個控制通道元素(CCEs);用於在該複數個資源內選擇一個資源集以傳送一通道保留信號的構件,用於選擇的該構件包括用於選擇該等解碼候選之一以用於發送該通道保留信號的構件;及用於在該所選資源集中傳送該通道保留信號以保留用於通訊的一頻譜的一部分的構件,其中該所選資源 集包括該所選解碼候選的該一或多個CCE。
  27. 一種用於無線通訊的裝置,包括:用於決定一或多個正交分頻多工(OFDM)符號以監視通道保留信號的構件;用於決定在該一或多個OFDM符號期間可用於監視該等通道保留信號的複數個資源的構件;及用於監視在該複數個資源內的一資源集中傳送的一或多個通道保留信號的構件,用於監視的該構件包括用於決定該資源集中可用於發送該一或多個通道保留信號的複數個解碼候選的構件,其中每個通道保留信號使用該複數個解碼候選之一,而每個解碼候選包括一或多個控制通道元素(CCEs);及用於跨該複數個解碼候選對該一或多個通道保留信號執行一盲解碼程序的構件。
TW106140577A 2016-12-16 2017-11-22 用於具有新無線電pdcch波形的通道保留信號的方法及裝置 TWI738925B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662435570P 2016-12-16 2016-12-16
US62/435,570 2016-12-16
US15/708,949 US10779320B2 (en) 2016-12-16 2017-09-19 Channel reservation signal with new radio PDCCH waveform
US15/708,949 2017-09-19

Publications (2)

Publication Number Publication Date
TW201824798A TW201824798A (zh) 2018-07-01
TWI738925B true TWI738925B (zh) 2021-09-11

Family

ID=60703066

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106140577A TWI738925B (zh) 2016-12-16 2017-11-22 用於具有新無線電pdcch波形的通道保留信號的方法及裝置

Country Status (6)

Country Link
US (1) US10779320B2 (zh)
EP (1) EP3556038B1 (zh)
CN (1) CN110073630B (zh)
BR (1) BR112019011369A2 (zh)
TW (1) TWI738925B (zh)
WO (1) WO2018111516A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10499416B2 (en) * 2017-01-10 2019-12-03 Qualcomm Incorporated Downlink channel rate matching of synchronization signal block transmissions in a new radio wireless communication system
US10841953B2 (en) * 2018-05-21 2020-11-17 Qualcomm Incorporated Receiver-based listen before talk techniques in shared millimeter wave radio frequency spectrum
US11133970B2 (en) * 2018-09-27 2021-09-28 Qualcomm Incorporated Techniques for supporting multiple waveforms in wireless communications
US10432272B1 (en) 2018-11-05 2019-10-01 XCOM Labs, Inc. Variable multiple-input multiple-output downlink user equipment
US10659112B1 (en) 2018-11-05 2020-05-19 XCOM Labs, Inc. User equipment assisted multiple-input multiple-output downlink configuration
US10756860B2 (en) 2018-11-05 2020-08-25 XCOM Labs, Inc. Distributed multiple-input multiple-output downlink configuration
US11032818B2 (en) 2018-11-05 2021-06-08 Qualcomm Incorporated Radio-unlicensed (NR-U) channel reservation at slot boundary
US10812216B2 (en) 2018-11-05 2020-10-20 XCOM Labs, Inc. Cooperative multiple-input multiple-output downlink scheduling
US11290172B2 (en) 2018-11-27 2022-03-29 XCOM Labs, Inc. Non-coherent cooperative multiple-input multiple-output communications
US11063645B2 (en) 2018-12-18 2021-07-13 XCOM Labs, Inc. Methods of wirelessly communicating with a group of devices
US10756795B2 (en) 2018-12-18 2020-08-25 XCOM Labs, Inc. User equipment with cellular link and peer-to-peer link
CN111416685B (zh) 2019-01-08 2023-02-28 财团法人工业技术研究院 未授权频带中的下行链路接收方法和用户设备
US11388632B2 (en) * 2019-01-10 2022-07-12 Qualcomm Incorporated Pre-reservation resource management
US11330649B2 (en) 2019-01-25 2022-05-10 XCOM Labs, Inc. Methods and systems of multi-link peer-to-peer communications
US10756767B1 (en) 2019-02-05 2020-08-25 XCOM Labs, Inc. User equipment for wirelessly communicating cellular signal with another user equipment
US11032841B2 (en) 2019-04-26 2021-06-08 XCOM Labs, Inc. Downlink active set management for multiple-input multiple-output communications
US10756782B1 (en) 2019-04-26 2020-08-25 XCOM Labs, Inc. Uplink active set management for multiple-input multiple-output communications
US10735057B1 (en) 2019-04-29 2020-08-04 XCOM Labs, Inc. Uplink user equipment selection
US10686502B1 (en) 2019-04-29 2020-06-16 XCOM Labs, Inc. Downlink user equipment selection
US11411778B2 (en) 2019-07-12 2022-08-09 XCOM Labs, Inc. Time-division duplex multiple input multiple output calibration
US11411779B2 (en) 2020-03-31 2022-08-09 XCOM Labs, Inc. Reference signal channel estimation
CA3175361A1 (en) 2020-04-15 2021-10-21 Tamer Adel Kadous Wireless network multipoint association and diversity
US11743929B2 (en) * 2020-05-01 2023-08-29 Qualcomm Incorporated Method to mitigate timing resolution limitation due to SSB with smaller SCS
CA3178604A1 (en) 2020-05-26 2021-12-02 XCOM Labs, Inc. Interference-aware beamforming
KR20230091910A (ko) 2020-10-19 2023-06-23 엑스콤 랩스 인코퍼레이티드 무선 통신 시스템에서의 참조 신호
WO2022093988A1 (en) 2020-10-30 2022-05-05 XCOM Labs, Inc. Clustering and/or rate selection in multiple-input multiple-output communication systems
WO2024187393A1 (en) * 2023-03-15 2024-09-19 Qualcomm Incorporated Techniques for communicating with passive devices using multiplexed waveforms

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150223075A1 (en) * 2014-01-31 2015-08-06 Intel IP Corporation Systems, methods and devices for channel reservation
US20150373682A1 (en) * 2014-06-23 2015-12-24 Shafi Bashar Communication systems and methods

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070077622A (ko) * 2006-01-24 2007-07-27 엘지전자 주식회사 톤 예약 방식을 적용한 직교 주파수 분할 다중화 송신 장치및 방법
CN102571660B (zh) * 2010-12-20 2016-01-13 上海贝尔股份有限公司 在通信系统中基于rt的n阶连续ofdm方法和设备
US20120281640A1 (en) 2011-05-02 2012-11-08 Research In Motion Limited Methods of PDCCH Capacity Enhancement in LTE Systems Based on a TP-Specific Reference Signal
KR101909035B1 (ko) 2011-06-06 2018-12-19 엘지전자 주식회사 반송파 집성 기법이 적용된 무선 통신 시스템에서 복수의 단말에 관한 신호를 다중화하는 방법 및 이를 위한 장치
US9197387B2 (en) * 2011-08-15 2015-11-24 Google Technology Holdings LLC Method and apparatus for control channel transmission and reception
CN102958183B (zh) 2011-08-18 2015-09-09 华为技术有限公司 传输增强下行控制信道的方法、设备和系统
CN103327521B (zh) 2012-03-20 2016-12-14 上海贝尔股份有限公司 用于分配和检测下行链路控制信道资源的方法以及设备
US9877314B2 (en) 2013-02-27 2018-01-23 Lg Electronics Inc. Method and apparatus for receiving control information over an enhanced physical downlink control channel (PDCCH) in wireless communication system
KR102040624B1 (ko) * 2014-08-07 2019-11-27 엘지전자 주식회사 디스커버리 신호 수신 방법 및 사용자기기와, 디스커버리 신호 전송 방법 및 기지국
US10637619B2 (en) 2014-11-03 2020-04-28 Samsung Electronics Co., Ltd. Method and apparatus for channel access for LTE on unlicensed spectrum
KR101612304B1 (ko) * 2014-12-19 2016-04-14 주식회사 이노헬스 보호자 동행 서비스 중개 방법 및 이를 실행하는 서버
CN106060933B (zh) * 2015-04-08 2019-08-27 财团法人资讯工业策进会 基站、使用者装置、传输控制方法及数据传输方法
CN106304199A (zh) * 2015-05-27 2017-01-04 中兴通讯股份有限公司 信道协商方法、站点及系统
US10356770B2 (en) 2015-10-01 2019-07-16 Qualcomm Incorporated Techniques for using an enhanced physical control format indicator channel to identify characteristics of a control region including a set of physical downlink control channels
US10098140B2 (en) * 2016-01-27 2018-10-09 Qualcomm Incorporated Channel reservation techniques for unlicensed spectrum

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150223075A1 (en) * 2014-01-31 2015-08-06 Intel IP Corporation Systems, methods and devices for channel reservation
US20150373682A1 (en) * 2014-06-23 2015-12-24 Shafi Bashar Communication systems and methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A1 *
US2015/0223075 A1

Also Published As

Publication number Publication date
EP3556038B1 (en) 2023-10-18
WO2018111516A1 (en) 2018-06-21
TW201824798A (zh) 2018-07-01
CN110073630B (zh) 2021-08-24
EP3556038A1 (en) 2019-10-23
CN110073630A (zh) 2019-07-30
BR112019011369A2 (pt) 2019-10-15
US10779320B2 (en) 2020-09-15
US20180176946A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
TWI738925B (zh) 用於具有新無線電pdcch波形的通道保留信號的方法及裝置
TWI750229B (zh) Prach 及/或srs 切換增強
AU2017332127B2 (en) Resource allocation patterns for scheduling services in a wireless network
TWI724297B (zh) 剩餘系統資訊傳輸訊窗的配置
TW201840157A (zh) 組共用pdcch中的時槽格式指示符(sfi)和時槽聚合水平指示以及sfi衝突處理
JP2021501511A (ja) Rmsi pdcch送信および監視のための技法
JP2023111919A (ja) 物理アップリンク制御チャネル(pucch)のためのリソース割振り
TW201838369A (zh) 用於單載波波形的控制資源集合
TW202005422A (zh) 具有簡訊指示符的傳呼設計
TW201931906A (zh) 用於具有不同的數位方案的上行鏈路的時序提前粒度
TW201817266A (zh) 新無線電pdcch設計之特徵
TW201924432A (zh) 車聯網(v2x)無線電存取技術(rat)特徵協商及控制
TWI797236B (zh) 上行鏈路功率控制配置
TW201841521A (zh) 利用通道狀態資訊參考信號(csi-rs)的行動性增強
JP6928176B2 (ja) 補助アップリンクキャリアを用いた効率的なデータスケジューリング
KR102666150B1 (ko) 시스템 정보의 신뢰가능한 전달
TW201914351A (zh) 用於多種無線電存取技術的緩衝器管理
TW201843973A (zh) 經由不同模式中的dmrs/pbch的時序指示
TWI775962B (zh) 與載波相關的隨機存取通道(rach)回應搜尋空間
TW201904337A (zh) 用於低時延通訊的縮短傳輸時間間隔(stti)配置
WO2018191646A1 (en) Scheduling request multiplexing based on reliability and latency objectives
TW201844024A (zh) 統一存取控制
TW201907744A (zh) 實體上行鏈路控制通道(pucch)序列配置
TW201906472A (zh) 動態回收為前向相容性預留的資源
TW201902171A (zh) 取決於頻寬的控制大小