TW201843973A - 經由不同模式中的dmrs/pbch的時序指示 - Google Patents

經由不同模式中的dmrs/pbch的時序指示 Download PDF

Info

Publication number
TW201843973A
TW201843973A TW107115032A TW107115032A TW201843973A TW 201843973 A TW201843973 A TW 201843973A TW 107115032 A TW107115032 A TW 107115032A TW 107115032 A TW107115032 A TW 107115032A TW 201843973 A TW201843973 A TW 201843973A
Authority
TW
Taiwan
Prior art keywords
pbch
tti
bits
duration
indication
Prior art date
Application number
TW107115032A
Other languages
English (en)
Other versions
TWI757480B (zh
Inventor
納維德 阿貝迪尼
穆罕默德納茲穆爾 伊斯萊
桑德 撒伯曼尼恩
畢賴爾 薩迪克
濤 駱
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW201843973A publication Critical patent/TW201843973A/zh
Application granted granted Critical
Publication of TWI757480B publication Critical patent/TWI757480B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Abstract

本案內容的某些態樣係關於用於傳送時序資訊的方法和裝置,該時序資訊跨越實體廣播通道(PBCH)的多個冗餘版本在其中被傳輸的傳輸時間間隔(TTI)進行改變。

Description

經由不同模式中的DMRS/PBCH的時序指示
本專利申請案主張享受於2017年5月4日提出申請的美國臨時專利申請案第62/501,539,以及於2017年6月29日提出申請的美國臨時專利申請案第62/526,966,以及於2018年5月1日提出申請的美國專利申請案第15/968,598的權益,據此將所有上述三個申請案的全部內容經由引用的方式明確地併入本文。
大體而言,本案內容係關於無線通訊系統,並且更具體地,本案內容係關於用於傳送時序資訊的方法和裝置。
無線通訊系統被廣泛地部署以提供諸如電話、視訊、資料、訊息傳遞以及廣播之類的各種電信服務。典型的無線通訊系統可以採用能夠經由共享可用的系統資源(例如,頻寬、傳輸功率)來支援與多個使用者的通訊的多工存取技術。此種多工存取技術的實例包括長期進化(LTE)系統、分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、正交分頻多工存取(OFDMA)系統、單載波分頻多工存取(SC-FDMA)系統以及分時同步分碼多工存取(TD-SCDMA)系統。
在一些實例中,無線多工存取通訊系統可以包括多個基地站,每個基地站同時支援針對多個通訊設備(另外被稱為使用者設備(UE))的通訊。在LTE或LTE-A網路中,一或多個基地站的集合可以定義進化型節點B(eNB)。在其他實例中(例如,在下一代或第5代(5G)網路中),無線多工存取通訊系統可以包括與多個中央單元(CU)(例如,中央節點(CN)、存取節點控制器(ANC)等)進行通訊的多個分散式單元(DU)(例如,邊緣單元(EU)、邊緣節點(EN)、無線電頭端(RH)、智慧無線電頭端(SRH)、傳輸接收點(TRP)等),其中與中央單元進行通訊的一或多個分散式單元的集合可以定義存取節點(例如,新無線電基地站(NR BS)、新無線電節點B(NR NB)、網路節點、5G NB、eNB等)。基地站或DU可以在下行鏈路通道(例如,針對從基地站到UE的傳輸)和上行鏈路通道(例如,針對從UE到基地站或分散式單元的傳輸)上與UE集合進行通訊。
已經在各種電信標準中採用了該等多工存取技術以提供共用協定,該協定使得不同的無線設備能夠在城市、國家、地區,以及甚至全球層面上進行通訊。一種新興的電信標準的實例是新無線電(NR),例如,5G無線電存取。NR通常代表對由第三代合作夥伴計畫(3GPP)發佈的LTE行動服務標準的增強集。其被設計為經由提高頻譜效率、降低成本、改良服務、利用新頻譜以及在下行鏈路(DL)上和在上行鏈路(UL)上使用具有循環字首(CP)的OFDMA來與其他開放標準更好地整合,從而更好地支援行動寬頻網際網路存取,以及支援波束成形、多輸入多輸出(MIMO)天線技術和載波聚合。
然而,隨著對行動寬頻存取的需求持續增長,存在對NR技術進行進一步改良的期望。較佳地,該等改良應該適用於其他多工存取技術以及採用該等技術的電信標準。
本案內容的系統、方法和設備均具有若干態樣,其中沒有單個態樣單獨地負責其期望屬性。在不限制由隨後的請求項表達的本案內容的範疇的情況下,現在將簡要地論述一些特徵。在考慮該論述之後,並且尤其是在閱讀了標題為「具體實施方式」的部分之後,將理解本案內容的特徵如何提供優點,其包括無線網路中的存取點與站之間的改良的通訊。
某些態樣提供了用於經由不同模式中的解調參考信號(DMRS)和實體廣播通道(PBCH)來傳送時序指示的技術,如本文描述的。
某些態樣提供了一種用於由基地站(BS)進行的無線通訊的方法。大體而言,該方法包括以下步驟:基於實體廣播通道(PBCH)傳輸週期和PBCH傳輸時間間隔(TTI)的持續時間,來決定在該PBCH中傳送的時序元件符號中的、在該TTI的持續時間內改變的一或多個位元的第一集合;在該TTI內傳輸實體廣播通道(PBCH)的多個版本,其中該PBCH的每個版本具有相同內容,該相同內容包括該時序元件符號中的、在該TTI的該持續時間內不改變的位元的第二集合;及伴隨每個PBCH傳輸來提供對該時序元件符號中的位元的該第一集合的指示。
某些態樣提供了一種用於由使用者設備(UE)進行的無線通訊的方法。大體而言,該方法包括以下步驟:基於實體廣播通道(PBCH)傳輸週期和PBCH傳輸時間間隔(TTI)的持續時間,來決定在該PBCH中傳送的時序元件符號中的、在該TTI的持續時間內改變的一或多個位元的第一集合;對該TTI內的實體廣播通道(PBCH)的多個版本中的至少一個版本進行解碼,其中該PBCH的每個版本具有相同內容,該相同內容包括該時序元件符號中的、在該TTI的該持續時間內不改變的位元的第二集合;及伴隨每個經解碼的PBCH傳輸來獲得對該時序元件符號中的位元的該第一集合的指示。
某些態樣提供了一種用於由基地站進行的無線通訊的裝置。大體而言,該裝置包括:用於基於實體廣播通道(PBCH)傳輸週期和PBCH傳輸時間間隔(TTI)的持續時間,來決定在該PBCH中傳送的時序元件符號中的、在該TTI的持續時間內改變的一或多個位元的第一集合的構件;用於在該TTI內傳輸實體廣播通道(PBCH)的多個版本的構件,該多個版本包括該時序元件符號中的、在該TTI的該持續時間內不改變的位元的第二集合;及用於伴隨每個PBCH傳輸來提供對該時序元件符號中的位元的該第一集合的指示的構件。
某些態樣提供了一種用於由無線設備進行的無線通訊的裝置。大體而言,該裝置包括:用於基於實體廣播通道(PBCH)傳輸週期和PBCH傳輸時間間隔(TTI)的持續時間,來決定時序元件符號中的、在該TTI的持續時間內改變的一或多個位元的第一集合的構件;用於對該TTI內的實體廣播通道(PBCH)的多個版本中的至少一個版本進行解碼的構件,其中該多個版本包括該時序元件符號中的、在該TTI的該持續時間內不改變的位元的第二集合;及用於伴隨每個經解碼的PBCH傳輸來獲得對該時序元件符號中的位元的該第一集合的指示的構件。
某些態樣提供了一種用於由無線設備進行的無線通訊的裝置。大體而言,該裝置包括:至少一個處理器,該至少一個處理器與記憶體耦合並且被配置為:基於實體廣播通道(PBCH)傳輸週期和PBCH傳輸時間間隔(TTI)的持續時間,來決定在該PBCH中傳送的時序元件符號中的、在該TTI的持續時間內改變的一或多個位元的第一集合;及收發機,其被配置為:在該TTI內傳輸實體廣播通道(PBCH)的多個版本,該多個版本包括該時序元件符號中的、在該TTI的該持續時間內不改變的位元的第二集合;及伴隨每個PBCH傳輸來提供對該時序元件符號中的位元的該第一集合的指示。
某些態樣提供了一種用於由無線設備進行的無線通訊的裝置。大體而言,該裝置包括:至少一個處理器,該至少一個處理器與記憶體耦合並且被配置為:基於實體廣播通道(PBCH)傳輸週期和PBCH傳輸時間間隔(TTI)的持續時間,來決定時序元件符號中的、在該TTI的持續時間內改變的一或多個位元的第一集合;及解碼器,其被配置為:對該TTI內的實體廣播通道(PBCH)的多個版本中的至少一個版本進行解碼,其中該多個版本包括該時序元件符號中的、在該TTI的該持續時間內不改變的位元的第二集合;及伴隨每個經解碼的PBCH傳輸來獲得對該時序元件符號中的位元的該第一集合的指示。
各態樣通常包括如本文中參照附圖充分描述的並且經由附圖圖示的方法、裝置、系統、電腦可讀取媒體和處理系統。
為了實現前述和相關的目的,一或多個態樣包括下文中充分描述並在請求項中特別指出的特徵。以下描述和附圖詳細闡述了一或多個態樣的某些說明性的特徵。但是,該等特徵指示可以採用各個態樣的原理的各種方式中的僅幾種方式,並且該描述意欲包括所有此類態樣及其均等物。
本案內容的各態樣係關於用於傳送時序資訊的方法和裝置,該時序資訊可以例如在PBCH的冗餘版本在其內被傳輸的傳輸時間間隔內改變。
本案內容的各態樣提供了用於新無線電(NR)(新無線電存取技術或5G技術)的裝置、方法、處理系統和電腦可讀取媒體。
NR可以支援各種無線通訊服務,例如,以寬頻寬(例如,超過80 MHz)為目標的增強型行動寬頻(eMBB)、以高載波頻率(例如,60 GHz)為目標的毫米波(mmW)、以非向後相容MTC技術為目標的大規模MTC(mMTC),及/或以超可靠低時延通訊(URLLC)為目標的任務關鍵。該等服務可以包括時延和可靠性要求。該等服務亦可以具有不同的傳輸時間間隔(TTI),以滿足相應的服務品質(QoS)要求。另外,該等服務可以共存於同一子訊框中。
以下描述提供了實例,而不對請求項中闡述的範疇、適用性或實例進行限制。可以在不脫離本案內容的範疇的情況下,在論述的元素的功能和佈置態樣進行改變。各個實例可以酌情省略、替換或添加各種程序或元件。例如,所描述的方法可以以與所描述的次序不同的次序來執行,並且可以添加、省略或組合各種步驟。此外,可以將關於一些實例描述的特徵組合到一些其他實例中。例如,使用本文所闡述的任何數量的態樣,可以實現一種裝置或可以實施一種方法。此外,本案內容的範疇意欲涵蓋使用除了本文所闡述的揭示內容的各個態樣以外或與其不同的其他結構、功能,或者結構和功能來實施的此種裝置或方法。應當理解的是,本文所揭示的揭示內容的任何態樣可以由請求項的一或多個元素來體現。本文使用「示例性」一詞來意指「用作示例、實例或說明」。本文中被描述為「示例性」的任何態樣未必被解釋為比其他態樣更佳或具有優勢。
本文描述的技術可以被用於各種無線通訊網路,例如,LTE、CDMA、TDMA、FDMA、OFDMA、SC-FDMA以及其他網路。術語「網路」和「系統」經常可互換地使用。CDMA網路可以實現諸如通用陸地無線電存取(UTRA)、cdma 2000等的無線電技術。UTRA包括寬頻CDMA(WCDMA)和CDMA的其他變型。cdma 2000涵蓋IS-2000、IS-95和IS-856標準。TDMA網路可以實現諸如行動通訊全球系統(GSM)之類的無線電技術。OFDMA網路可以實現諸如NR(例如,5G RA)、進化型UTRA(E-UTRA)、超行動寬頻(UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、快閃-OFDMA等的無線電技術。UTRA和E-UTRA是通用行動電信系統(UMTS)的一部分。NR是處於開發中的、結合5G技術論壇(5GTF)的新興的無線通訊技術。3GPP長期進化(LTE)和改進的LTE(LTE-A)是UMTS的使用E-UTRA的版本。在來自名稱為「第三代合作夥伴計畫」(3GPP)的組織的文件中描述了UTRA、E-UTRA、UMTS、LTE、LTE-A和GSM。在來自名稱為「第三代合作夥伴計畫2」(3GPP2)的組織的文件中描述了cdma 2000和UMB。本文描述的技術可以被用於上文提及的無線網路和無線電技術以及其他無線網路和無線電技術。為了清楚起見,儘管本文可能使用通常與3G及/或4G無線技術相關聯的術語來描述各態樣,但是本案內容的各態樣可以應用於基於其他代的通訊系統(例如,5G及以後的技術(包括NR技術))。 示例性無線通訊系統
圖1圖示可以在其中執行本案內容的各態樣的示例性無線網路100,例如,新無線電(NR)或5G網路。
如圖1中所示,無線網路100可以包括多個BS 110和其他網路實體。BS可以是與UE進行通訊的站。每個BS 110可以為特定的地理區域提供通訊覆蓋。在3GPP中,術語「細胞」可以代表節點B的覆蓋區域及/或為該覆蓋區域服務的節點B子系統,此情形取決於使用該術語的上下文。在NR系統中,術語「細胞」和eNB、節點B、5G NB、AP、NR BS、NR BS或TRP可以互換。在一些實例中,細胞可能未必是靜止的,而且細胞的地理區域可以根據行動基地站的位置而移動。在一些實例中,基地站可以經由各種類型的回載介面(例如,直接實體連接、虛擬網路,或者使用任何適當的傳輸網路的介面)來彼此互連及/或與無線網路100中的一或多個其他基地站或網路節點(未圖示)互連。
通常,可以在給定的地理區域中部署任何數量的無線網路。每個無線網路可以支援特定的無線電存取技術(RAT)並且可以在一或多個頻率上操作。RAT亦可以被稱為無線電技術、空中介面等。頻率亦可以被稱為載波、頻率通道等。每個頻率可以在給定的地理區域中支援單個RAT,以便避免具有不同RAT的無線網路之間的干擾。在一些情況下,可以部署NR或5G RAT網路。
BS可以提供針對巨集細胞、微微細胞、毫微微細胞及/或其他類型的細胞的通訊覆蓋。巨集細胞可以覆蓋相對大的地理區域(例如,半徑為幾公里)並且可以允許由具有服務訂閱的UE進行不受限制的存取。微微細胞可以覆蓋相對小的地理區域並且可以允許由具有服務訂閱的UE進行不受限制的存取。毫微微細胞可以覆蓋相對小的地理區域(例如,住宅)並且可以允許由與該毫微微細胞具有關聯的UE(例如,封閉用戶群組(CSG)中的UE、針對住宅中的使用者的UE等)進行受限制的存取。用於巨集細胞的BS可以被稱為巨集BS。用於微微細胞的BS可以被稱為微微BS。用於毫微微細胞的BS可以被稱為毫微微BS或家庭BS。在圖1中圖示的實例中,BS 110a、110b和110c可以分別是用於巨集細胞102a、102b和102c的巨集BS。BS 110x可以是用於微微細胞102x的微微BS。BS 110y和110z可以分別是用於毫微微細胞102y和102z的毫微微BS。BS可以支援一或多個(例如,三個)細胞。
無線網路100亦可以包括中繼站。中繼站是從上游站(例如,BS或UE)接收資料傳輸及/或其他資訊以及將資料傳輸及/或其他資訊發送給下游站(例如,UE或BS)的站。中繼站亦可以是為其他UE中繼傳輸的UE。在圖1中圖示的實例中,中繼站110r可以與BS 110a和UE 120r進行通訊,以便促進BS 110a與UE 120r之間的通訊。中繼站亦可以被稱為中繼BS、中繼器等。
無線網路100可以是包括不同類型的BS(例如,巨集BS、微微BS、毫微微BS、中繼器等)的異質網路。該等不同類型的BS可以具有不同的傳輸功率位準、不同的覆蓋區域以及對無線網路100中的干擾的不同影響。例如,巨集BS可以具有高傳輸功率位準(例如,20瓦),而微微BS、毫微微BS和中繼器可以具有較低的傳輸功率位準(例如,1瓦)。
無線網路100可以支援同步操作或非同步操作。對於同步操作,BS可以具有相似的訊框時序,並且來自不同BS的傳輸在時間上可以近似地對準。對於非同步操作,BS可以具有不同的訊框時序,並且來自不同BS的傳輸在時間上可以不對準。本文描述的技術可以用於同步操作和非同步操作二者。
網路控制器130可以耦合到一組BS,以及提供針對該等BS的協調和控制。網路控制器130可以經由回載與BS 110進行通訊。BS 110亦可以例如經由無線或有線回載直接地或間接地相互通訊。
UE 120(例如,120x、120y等)可以散佈於整個無線網路100中,並且每個UE可以是靜止的或行動的。UE亦可以被稱為行動站、終端、存取終端、用戶單元、站、客戶駐地設備(CPE)、蜂巢式電話、智慧型電話、個人數位助理(PDA)、無線數據機、無線通訊設備、手持設備、膝上型電腦、無線電話、無線區域迴路(WLL)站、平板設備、相機、遊戲設備、小筆電、智慧型電腦、超級本、醫療設備或醫療裝置、生物計量感測器/設備、可穿戴設備(例如,智慧手錶、智慧服裝、智慧眼鏡、智慧腕帶、智慧珠寶(例如,智慧指環、智慧手鏈等))、娛樂設備(例如,音樂設備、視訊設備、衛星無線電單元等)、車輛元件或感測器、智慧型儀器表/感測器、工業製造設備、全球定位系統設備,或者被配置為經由無線或有線媒體來進行通訊的任何其他適當的設備。一些UE可以被認為是進化型或機器類型通訊(MTC)設備或進化型MTC(eMTC)設備。MTC和eMTC UE包括例如機器人、無人機、遠端設備、感測器、儀錶、監視器、位置標籤等,上述各者可以與BS、另一個設備(例如,遠端設備)或某個其他實體進行通訊。無線節點可以經由有線或無線通訊鏈路來提供例如針對網路(例如,諸如網際網路或蜂巢網路之類的廣域網路)或到網路的連接。一些UE可以被認為是物聯網路(IoT)設備。在圖1中,具有雙箭頭的實線指示UE與服務BS之間的期望傳輸,服務BS是被指定為在下行鏈路及/或上行鏈路上為UE服務的BS。具有雙箭頭的虛線指示UE與BS之間的干擾傳輸。
某些無線網路(例如,LTE)在下行鏈路上利用正交分頻多工(OFDM)以及在上行鏈路上利用單載波分頻多工(SC-FDM)。OFDM和SC-FDM將系統頻寬劃分成多個(K個)正交次載波,該多個正交次載波通常亦被稱為音調、頻段等。可以利用資料來調制每個次載波。通常,在頻域中利用OFDM以及在時域中利用SC-FDM來發送調制符號。相鄰次載波之間的間隔可以是固定的,並且次載波的總數(K)可以取決於系統頻寬。例如,次載波的間隔可以是15 kHz並且最小資源分配(被稱為「資源區塊」)可以是12個次載波(或180 kHz)。因此,針對1.25、2.5、5、10或20兆赫茲(MHz)的系統頻寬,標稱的FFT大小可以分別等於128、256、512、1024或2048。亦可以將系統頻寬劃分成次頻帶。例如,次頻帶可以覆蓋1.08 MHz(亦即,6個資源區塊),並且針對1.25、2.5、5、10或20 MHz的系統頻寬,可以分別存在1、2、4、8或16個次頻帶。
儘管本文描述的實例的各態樣可以與LTE技術相關聯,但是本案內容的各態樣可以與其他無線通訊系統(例如,NR)一起應用。NR可以在上行鏈路和下行鏈路上利用具有CP的OFDM,並且可以包括針對使用分時雙工(TDD)的半雙工操作的支援。可以支援100 MHz的單分量載波頻寬。NR資源區塊可以在0.1 ms持續時間內跨越具有75 kHz的次載波頻寬的12個次載波。每個無線電訊框可以由50個子訊框組成,具有10 ms的長度。因此,每個子訊框可以具有0.2 ms的長度。每個子訊框可以指示用於資料傳輸的鏈路方向(亦即,DL或UL),並且可以動態地切換用於每個子訊框的鏈路方向。每個子訊框可以包括DL/UL資料以及DL/UL控制資料。用於NR的UL和DL子訊框可以如下文關於圖6和圖7更加詳細地描述的。可以支援波束成形並且可以動態地配置波束方向。亦可以支援具有預編碼的MIMO傳輸。DL中的MIMO配置可以支援多至8個傳輸天線,其中多層DL傳輸多至8個串流並且每個UE多至2個串流。可以支援具有每個UE多至2個串流的多層傳輸。可以支援具有多至8個服務細胞的多個細胞的聚合。或者,NR可以支援除了基於OFDM的空中介面之外的不同的空中介面。NR網路可以包括諸如CU及/或DU之類的實體。
在一些實例中,可以排程對空中介面的存取,其中排程實體(例如,基地站)在其服務區域或細胞內的一些或所有設備和裝置之間分配用於通訊的資源。在本案內容內,如下文進一步論述的,排程實體可以負責排程、分配、重新配置和釋放用於一或多個從屬實體的資源。亦即,對於被排程的通訊,從屬實體利用排程實體所分配的資源。基地站不是可以用作排程實體的僅有的實體。亦即,在一些實例中,UE可以用作排程實體,其排程用於一或多個從屬實體(例如,一或多個其他UE)的資源。在該實例中,UE正在用作排程實體,而其他UE利用該UE所排程的資源來進行無線通訊。UE可以用作同級間(P2P)網路中及/或網狀網路中的排程實體。在網狀網路實例中,除了與排程實體進行通訊之外,UE亦可以可選地彼此直接進行通訊。
因此,在具有對時間頻率資源的排程存取且具有蜂巢配置、P2P配置和網狀配置的無線通訊網路中,排程實體和一或多個從屬實體可以利用所排程的資源來進行通訊。
如上文提及的,RAN可以包括CU和DU。NR BS(例如,eNB、5G節點B、節點B、傳輸接收點(TPR)、存取點(AP))可以與一或多個BS相對應。NR細胞可以被配置成存取細胞(ACell)或僅資料細胞(DCell)。例如,RAN(例如,中央單元或分散式單元)可以對細胞進行配置。DCell可以是用於載波聚合或雙重連接、但是不是用於初始存取、細胞選擇/重選或交遞的細胞。在一些情況下,DCell可以不傳輸同步信號——在一些情況下,DCell可以傳輸SS。NR BS可以向UE傳輸用於指示細胞類型的下行鏈路信號。基於細胞類型指示,UE可以與NR BS進行通訊。例如,UE可以基於所指示的細胞類型,來決定要考慮用於細胞選擇、存取、交遞及/或量測的NR BS。
圖2圖示可以在圖1中圖示的無線通訊系統中實現的分散式無線電存取網路(RAN)200的示例性邏輯架構。5G存取節點206可以包括存取節點控制器(ANC)202。ANC可以是分散式RAN 200的中央單元(CU)。到下一代核心網路(NG-CN)204的回載介面可以在ANC處終止。到相鄰的下一代存取節點(NG-AN)的回載介面可以在ANC處終止。ANC可以包括一或多個TRP 208(其亦可以被稱為BS、NR BS、節點B、5G NB、AP或某種其他術語)。如前述,TRP可以與「細胞」互換地使用。
TRP 208可以是DU。TRP可以連接到一個ANC(ANC 202)或多於一個的ANC(未圖示)。例如,對於RAN共享、無線電作為服務(RaaS)和特定於服務的AND部署,TRP可以連接到多於一個的ANC。TRP可以包括一或多個天線埠。TRP可以被配置為單獨地(例如,動態選擇)或聯合地(例如,聯合傳輸)向UE提供訊務。
本端架構200可以用於圖示前傳定義。該架構可以被定義成支援跨越不同部署類型的前傳方案。例如,該架構可以是基於傳輸網路能力(例如,頻寬、時延及/或信號干擾)的。
該架構可以與LTE共享特徵及/或元件。根據各態樣,下一代AN(NG-AN)210可以支援與NR的雙重連接。NG-AN可以共享針對LTE和NR的共用前傳。
該架構可以實現各TRP 208之間和其間的合作。例如,可以經由ANC 202在TRP內及/或跨越TRP預先設置合作。根據各態樣,可以不需要/不存在任何TRP間介面。
根據各態樣,可以在架構200中存在分離邏輯功能的動態配置。如將參照圖5更加詳細描述的,可以將無線電資源控制(RRC)層、封包資料彙聚協定(PDCP)層、無線電鏈路控制(RLC)層、媒體存取控制(MAC)層和實體(PHY)層適應性地放置在DU或CU(例如,分別是TRP或ANC)處。根據某些態樣,BS可以包括中央單元(CU)(例如,ANC 202)及/或一或多個分散式單元(例如,一或多個TRP 208)。
圖3圖示根據本案內容的各態樣的、分散式RAN 300的示例性實體架構。集中式核心網路單元(C-CU)302可以主管核心網路功能。C-CU可以被部署在中央。C-CU功能可以被卸載(例如,至高級無線服務(AWS))以便處理峰值容量。
集中式RAN單元(C-RU)304可以主管一或多個ANC功能。可選地,C-RU可以在本端主管核心網路功能。C-RU可以具有分散式部署。C-RU可以更接近網路邊緣。
DU 306可以主管一或多個TRP(邊緣節點(EN)、邊緣單元(EU)、無線電頭端(RH)、智慧無線電頭端(SRH)等)。DU可以位於具有射頻(RF)功能的網路的邊緣處。
圖4圖示在圖1中圖示的BS 110和UE 120的示例性元件,該等示例性元件可以用於實現本案內容的各態樣。如前述,BS可以包括TRP。BS 110和UE 120中的一或多個元件可以用於實施本案內容的各態樣。例如,UE 120的天線452、Tx/Rx 222、處理器466、458、464及/或控制器/處理器480,及/或BS 110的天線434、處理器460、420、438及/或控制器/處理器440可以用於執行本文描述的並且參照圖8-圖11圖示的操作。
圖4圖示BS 110和UE 120(BS 110和UE 120可以是圖1中的BS中的一個BS以及UE中的一個UE)的設計的方塊圖。對於受限關聯場景,基地站110可以是圖1中的巨集BS 110c,以及UE 120可以是UE 120y。基地站110亦可以是某種其他類型的基地站。基地站110可以被配備有天線434a至434t,以及UE 120可以被配備有天線452a至452r。
在基地站110處,傳輸處理器420可以從資料來源412接收資料以及從控制器/處理器440接收控制資訊。控制資訊可以用於實體廣播通道(PBCH)、實體控制格式指示符通道(PCFICH)、實體混合ARQ指示符通道(PHICH)、實體下行鏈路控制通道(PDCCH)等。資料可以用於實體下行鏈路共享通道(PDSCH)等。處理器420可以分別處理(例如,編碼和符號映射)資料和控制資訊以獲得資料符號和控制符號。處理器420亦可以產生例如用於PSS、SSS和細胞特定參考信號的參考符號。傳輸(TX)多輸入多輸出(MIMO)處理器430可以對資料符號、控制符號及/或參考符號執行空間處理(例如,預編碼)(若適用的話),並且可以向調制器(MOD)432a至432t提供輸出符號串流。例如,TX MIMO處理器430可以執行本文針對RS多工描述的某些態樣。每個調制器432可以(例如,針對OFDM等)處理相應的輸出符號串流以獲得輸出取樣串流。每個調制器432可以進一步處理(例如,轉換到類比、放大、濾波以及升頻轉換)輸出取樣串流以獲得下行鏈路信號。可以分別經由天線434a至434t來傳輸來自調制器432a至432t的下行鏈路信號。
在UE 120處,天線452a至452r可以從基地站110接收下行鏈路信號,並且可以分別向解調器(DEMOD)454a至454r提供接收的信號。每個解調器454可以調節(例如,濾波、放大、降頻轉換以及數位化)相應的接收的信號以獲得輸入取樣。每個解調器454可以(例如,針對OFDM等)進一步處理輸入取樣以獲得接收符號。MIMO偵測器456可以從所有解調器454a至454r獲得接收符號,對接收符號執行MIMO偵測(若適用的話),以及提供偵測到的符號。例如,MIMO偵測器456提供偵測到的、使用本文描述的技術傳輸的RS。接收處理器458可以處理(例如,解調、解交錯以及解碼)所偵測到的符號,向資料槽460提供經解碼的針對UE 120的資料,以及向控制器/處理器480提供經解碼的控制資訊。根據一或多個情況,CoMP態樣可以包括提供天線以及一些Tx/Rx功能,使得該等Tx/Rx功能位於分散式單元中。例如,一些Tx/Rx處理可以在中央單元中完成,而其他處理可以在分散式單元處完成。例如,根據如圖中圖示的一或多個態樣,BS調制器/解調器432可以在分散式單元中。
在上行鏈路上,在UE 120處,傳輸處理器464可以接收並且處理來自資料來源462的資料(例如,用於實體上行鏈路共享通道(PUSCH))和來自控制器/處理器480的控制資訊(例如,用於實體上行鏈路控制通道(PUCCH))。傳輸處理器464亦可以產生用於參考信號的參考符號。來自傳輸處理器464的符號可以被TX MIMO處理器466預編碼(若適用的話),被解調器454a至454r(例如,針對SC-FDM等)進一步處理,以及被傳輸給基地站110。在BS 110處,來自UE 120的上行鏈路信號可以由天線434接收,由調制器432處理,由MIMO偵測器436偵測(若適用的話),以及由接收處理器438進一步處理,以獲得經解碼的由UE 120發送的資料和控制資訊。接收處理器438可以向資料槽439提供經解碼的資料,並且向控制器/處理器440提供經解碼的控制資訊。
控制器/處理器440和480可以分別導引基地站110和UE 120處的操作。處理器440及/或基地站110處的其他處理器和模組可以執行或導引例如在圖8-圖11中圖示的功能方塊及/或用於本文描述的技術的其他過程的執行。處理器480及/或UE 120處的其他處理器和模組亦可以執行或導引用於本文描述的技術的過程。記憶體442和482可以分別儲存用於BS 110和UE 120的資料和程式碼。排程器444可以排程UE用於下行鏈路及/或上行鏈路上的資料傳輸。
圖5圖示圖示根據本案內容的各態樣的、用於實現通訊協定堆疊的實例的圖500。所圖示的通訊協定堆疊可以由在5G系統(例如,支援基於上行鏈路的行動性的系統)中操作的設備來實現。圖500圖示通訊協定堆疊,其包括無線電資源控制(RRC)層510、封包資料彙聚協定(PDCP)層515、無線電鏈路控制(RLC)層520、媒體存取控制(MAC)層525和實體(PHY)層530。在各個實例中,協定堆疊的該等層可以被實現成單獨的軟體模組、處理器或ASIC的部分、經由通訊鏈路連接的非共置的設備的部分,或其各種組合。共置和非共置的實現可以用在例如用於網路存取設備(例如,AN、CU及/或DU)或UE的協定堆疊中。
第一選項505-a圖示協定堆疊的分離實現,其中在集中式網路存取設備(例如,圖2中的ANC 202)和分散式網路存取設備(例如,圖2中的DU 208)之間分離協定堆疊的實現。在第一選項505-a中,RRC層510和PDCP層515可以由中央單元來實現,而RLC層520、MAC層525和實體層530可以由DU來實現。在各個實例中,CU和DU可以是共置或非共置的。在巨集細胞、微細胞或微微細胞部署中,第一選項505-a可以是有用的。
第二選項505-b圖示協定堆疊的統一實現,其中協定堆疊是在單個網路存取設備(例如,存取節點(AN)、新無線電基地站(NR BS)、新無線電節點B(NR NB)、網路節點(NN)等)中實現的。在第二選項中,RRC層510、PDCP層515、RLC層520、MAC層525和實體層530均可以由AN來實現。在毫微微細胞部署中,第二選項505-b可以是有用的。
不管網路存取設備實現協定堆疊的一部分還是全部,UE皆可以實現整個協定堆疊(例如,RRC層510、PDCP層515、RLC層520、MAC層525和實體層530)。
圖6是圖示以DL為中心的子訊框的實例的圖600。以DL為中心的子訊框可以包括控制部分602。控制部分602可以存在於以DL為中心的子訊框的初始或開始部分。控制部分602可以包括與以DL為中心的子訊框的各個部分相對應的各種排程資訊及/或控制資訊。在一些配置中,控制部分602可以是實體DL控制通道(PDCCH),如圖6中所指出的。以DL為中心的子訊框亦可以包括DL資料部分604。DL資料部分604有時可以被稱為以DL為中心的子訊框的有效負荷。DL資料部分604可以包括用於從排程實體(例如,UE或BS)向從屬實體(例如,UE)傳送DL資料的通訊資源。在一些配置中,DL資料部分604可以是實體DL共享通道(PDSCH)。
以DL為中心的子訊框亦可以包括共用UL部分606。共用UL部分606有時可以被稱為UL短脈衝、共用UL短脈衝及/或各種其他適當的術語。共用UL部分606可以包括與以DL為中心的子訊框的各個其他部分相對應的回饋資訊。例如,共用UL部分606可以包括與控制部分602相對應的回饋資訊。回饋資訊的非限制性實例可以包括ACK信號、NACK信號、HARQ指示符及/或各種其他適當類型的資訊。共用UL部分606可以包括額外的或替代的資訊,例如,與隨機存取通道(RACH)程序、排程請求(SR)有關的資訊和各種其他適當類型的資訊。如圖6中所示,DL資料部分604的結束在時間上可以與共用UL部分606的開始分離。此種時間分離有時可以被稱為間隙、保護時段、保護間隔及/或各種其他適當的術語。此種分離提供了用於從DL通訊(例如,由從屬實體(例如,UE)進行的接收操作)切換到UL通訊(例如,由從屬實體(例如,UE)進行的傳輸)的時間。一般技術者將理解的是,前文僅是以DL為中心的子訊框的一個實例,並且在沒有必要脫離本文描述的各態樣的情況下,可以存在具有類似特徵的替代結構。
圖6A是圖示以UL為中心的子訊框的實例的圖650。以UL為中心的子訊框可以包括控制部分652。控制部分652可以存在於以UL為中心的子訊框的初始或開始部分。圖6A中的控制部分652可以類似於上文參照圖6描述的控制部分。以UL為中心的子訊框亦可以包括UL資料部分654。UL資料部分654有時可以被稱為以UL為中心的子訊框的有效負荷。UL資料部分可以代表用於從從屬實體(例如,UE)向排程實體(例如,UE或BS)傳送UL資料的通訊資源。在一些配置中,控制部分652可以是實體DL控制通道(PDCCH)。
如圖6A中所示,控制部分652的結束在時間上可以與UL資料部分654的開始分離。此種時間分離有時可以被稱為間隙、保護時段、保護間隔及/或各種其他適當的術語。此種分離提供了用於從DL通訊(例如,由排程實體進行的接收操作)切換到UL通訊(例如,由排程實體進行的傳輸)的時間。以UL為中心的子訊框亦可以包括共用UL部分656。圖6A中的共用UL部分656可以類似於上文參照圖6A描述的共用UL部分656。共用UL部分656可以另外或替代地包括與通道品質指示符(CQI)、探測參考信號(SRS)有關的資訊和各種其他適當類型的資訊。一般技術者將理解的是,前文僅是以UL為中心的子訊框的一個實例,以及在沒有必要脫離本文描述的各態樣的情況下,可以存在具有類似特徵的替代結構。
在一些情況下,兩個或更多個從屬實體(例如,UE)可以使用副鏈路信號相互通訊。此種副鏈路通訊的現實生活的應用可以包括公共安全、接近度服務、UE到網路中繼、運載工具到運載工具(V2V)通訊、萬物聯網路(IoE)通訊、IoT通訊、任務關鍵網狀網,及/或各種其他適當的應用。通常,副鏈路信號可以代表從一個從屬實體(例如,UE1)傳送到另一個從屬實體(例如,UE2)的信號,而不需要經由排程實體(例如,UE或BS)來中繼該通訊,即使排程實體可以用於排程及/或控制目的。在一些實例中,可以使用經授權頻譜來傳送副鏈路信號(與通常使用未授權頻譜的無線區域網路不同)。
UE可以在各種無線電資源配置中操作,該等無線電資源配置包括與使用專用資源集合來傳輸引導頻相關聯的配置(例如,無線電資源控制(RRC)專用狀態等),或者與使用共用資源集合來傳輸引導頻相關聯的配置(例如,RRC共用狀態等)。當在RRC專用狀態下操作時,UE可以選擇用於向網路傳輸引導頻信號的專用資源集合。當在RRC共用狀態下操作時,UE可以選擇用於向網路傳輸引導頻信號的共用資源集合。在任一情況下,UE傳輸的引導頻信號可以被一或多個網路存取設備(例如,AN或DU或其部分)接收。每個接收網路存取設備可以被配置為接收和量測在共用資源集合上傳輸的引導頻信號,並且亦接收和量測在被分配給UE(針對該等UE而言,該網路存取設備是針對UE進行監測的網路存取設備集合中的成員)的專用資源集合上傳輸的引導頻信號。接收網路存取設備中的一或多個,或者接收網路存取設備向其傳輸引導頻信號的量測結果的CU可以使用量測結果來辨識用於UE的服務細胞,或者啟動對用於該等UE中的一或多個UE的服務細胞的改變。 示例性PBCH TTI
在一些情況下,控制資訊可以被「附隨」成被稱為傳輸時間間隔(TTI)的時間段內的多個傳輸。例如,可以在TTI內週期性地傳輸相同資訊的不同的「冗餘」版本,從而允許接收器對資訊的多個實例進行組合,以實現更優的解碼效能。
例如,如圖7中所示,在LTE中,可以在40 msec BCH TTI內,以10 msec的週期來傳輸PBCH。BCH TTI內的PBCH的每個實例702是所編碼的區塊的一個RV(冗餘版本)(RV0、RV1、RV2、RV3)。UE可以在解碼之前,對BCH TTI內的PBCH的多個實例702進行組合,以得到更優的效能。然而,UE需要對冗餘版本進行盲解碼以執行組合,此舉是因為在PBCH的後續實例704中的所編碼的資訊可能在下一TTI中改變。
MIB(主資訊區塊)是經由PBCH傳輸的。MIB攜帶作為時序參考的SFN(系統訊框編號)位元。MIB攜帶除了兩個LSB(最低有效位元)之外的所有SFN位元。該兩個LSB可以是由UE經由PBCH解碼來獲取的。
換言之,由於四個10 msec訊框裝在40 msec TTI內,因此僅SFN的該2個LSB將在TTI內改變。因此,可以將其他位元包括在不同的冗餘版本中,同時保持相同的內容,此舉允許進行組合。
在一些情況下,第一無線電訊框結構(被稱為類型1)用於FDD(用於全雙工和半雙工操作兩者)並且具有10 ms的持續時間,並且包括20個時槽,其中時槽持續時間為0.5 ms。在此種情況下,兩個相鄰時槽形成長度為1 ms的一個子訊框。第二無線電訊框結構(被稱為類型2)用於TDD,並且是由均具有5 ms的持續時間的兩個半訊框形成的。每個半訊框包括10個長度為0.5 ms的時槽,或者8個長度為0.5 ms的時槽以及具有可配置的單獨長度並且總長度為1 ms的三個特殊欄位(DwPTS、GP和UpPTS),支援5 ms和10 ms下行鏈路到上行鏈路切換點週期兩者。 示例性同步信號區塊設計
根據3GPP的5G無線通訊標準,已經針對NR同步(synch)信號(NR-SS)(亦被稱為NR同步通道)定義了結構。根據5G,攜帶不同類型的同步信號(例如,主要同步信號(PSS)、次要同步信號(SSS)、時間同步信號(TSS)和PBCH)的連續OFDM符號的集合形成SS區塊。在一些情況下,一或多個SS區塊的集合可以形成SS短脈衝。另外,可以在不同的波束上傳輸不同的SS區塊,以實現用於同步信號的波束掃瞄,其可以被UE用於快速地辨識和獲取細胞。此外,SS區塊中的通道中的一或多個通道可以用於量測。此種量測可以用於各種目的,例如,無線電鏈路量測(RLM)、波束管理等等。例如,UE可以量測細胞品質並且以量測報告的形式報告回該品質,其可以被基地站用於波束管理和其他目的。
圖8圖示根據本案內容的各態樣的用於新無線電電信系統的同步信號的示例性傳輸等時線800。根據本案內容的某些態樣,BS(例如,在圖1中圖示的BS 110)可以在具有Y µsec的時段806期間傳輸SS短脈衝802。SS短脈衝802可以包括具有零至N-1的索引的N個SS區塊804,並且BS可以使用不同的傳輸波束(例如,用於波束掃瞄)來傳輸短脈衝的不同SS區塊。如上文提及的,每個SS區塊可以包括例如PSS、SSS和一或多個PBCH。BS可以利用X msec的週期808來週期性地傳輸SS短脈衝。
圖9圖示根據本案內容的各態樣的用於示例性SS區塊902的示例性資源映射900。示例性SS區塊包括PSS 910、SSS 912和兩個PBCH 920和922,但是本案內容不限於此,並且SS區塊可以包括更多或更少的同步信號和同步通道。如圖所示,PBCH的傳輸頻寬(B1)可以不同於同步信號的傳輸頻寬(B2)。例如,PBCH的傳輸頻寬可以是288個音調,而PSS和SSS的傳輸頻寬可以是127個音調。如圖9中所示,SS區塊內的PSS、SSS和PBCH(以及用於PBCH的DMRS)在時域中多工。
存在不同的同步模式:獨立模式中的初始獲取、非獨立模式中的初始獲取,以及閒置或連接模式中的同步。如本文將描述的,該等不同的同步模式可以具有不同的PBCH TTI和PBCH傳輸週期。因此,不同的SFN位元可以在TTI內改變,從而對在每個冗餘版本中保持相同的內容提出了挑戰。 經由MIB的示例性時序指示
本案內容的某些態樣係關於用於傳送時序資訊的方法和裝置,該時序資訊跨越實體廣播通道(PBCH)的多個冗餘版本在其中被傳輸的傳輸時間間隔(TTI)進行改變。
圖10圖示根據本案內容的各態樣的用於由基地站(BS)(例如,圖1中圖示的BS 110)(或某種其他類型的網路實體)傳送時序資訊的示例性操作1000。
在1002處,操作1000開始於:基於實體廣播通道(PBCH)傳輸週期和PBCH傳輸時間間隔(TTI)的持續時間,來決定在PBCH中傳送的時序元件符號中的、在TTI的持續時間內改變的一或多個位元的第一集合。在1004處,基地站在TTI內傳輸實體廣播通道(PBCH)的多個版本,其包括時序元件符號中的、在TTI的持續時間內不改變的位元的第二集合。在1006處,基地站伴隨每個PBCH傳輸來提供對時序元件符號中的位元的第一集合的指示。
圖11圖示根據本案內容的各態樣的用於由使用者設備(UE)(例如,圖1中圖示的UE 120)(或某種其他類型的無線設備(例如,充當回載中繼器的無線設備))進行的無線通訊的示例性操作1100。例如,UE可以執行操作1100,以對BS根據操作1000傳送的時序資訊進行解碼。
在1102處,操作1100開始於:基於實體廣播通道(PBCH)傳輸週期和PBCH傳輸時間間隔(TTI)的持續時間,來決定在PBCH中傳送的時序元件符號中的、在TTI的持續時間內改變的一或多個位元的第一集合。在1104處,UE對TTI內的實體廣播通道(PBCH)的多個版本中的至少一個版本進行解碼,該多個版本包括時序元件符號中的、在TTI的持續時間內不改變的位元的第二集合。在1106處,UE伴隨每個經解碼的PBCH傳輸來獲得對時序元件符號中的位元的第一集合的指示。
如上文提及的,由於不同的TTI和BCH傳輸週期,因此不同的SFN位元可以在TTI內改變,此舉取決於同步模式。
例如,如圖12中所示,在獨立同步模式中的初始獲取期間,PBCH實例1202可以具有20 msec傳輸週期和80 msec BCH TTI。
圖13圖示PBCH內容可以如何在TTI內改變(再次假設10 msec訊框)。如圖所示,在20 msec傳輸週期的情況下,LSB(位元b0)在每個冗餘版本中將不改變,而位元3-9在80 ms TTI內亦將不改變。在另一態樣,位元2和1(b2和b1)在每個傳輸週期中將改變。
因此,為了保持每個冗餘版本中的內容是相同的並且允許組合,可以在MIB中傳送位元b0和b3-b9,而可以單獨地傳送位元b1和b2。
例如,可以在同步信號、MIB或DMRS中傳送位元b1和b2。在一些情況下,可以將該等位元的值作為短脈衝集合索引來傳送或者作為PBCH冗餘版本來傳送。換言之,四個不同的值(對於2位元組合)之每一者值可以被映射到四個不同的冗餘版本。
如圖所示,在一些情況下,為了指示訊框內的5 msec(半訊框)邊界(半訊框邊界),可以傳送額外位元(例如,作為前序信號/中序信號)。換言之,該額外位元可以提供半訊框指示,例如,其指示訊框內的兩個半訊框中的一個半訊框。
在一些情況下,更長的傳輸週期(例如,40、80或160 msec)可以用於閒置/連接模式或非獨立模式中的初始獲取。在此種情況下,為了允許PBCH組合,可以針對該等模式來相應地增加BCH TTI。
例如,圖14圖示具有160 msec BCH TTI的示例性配置,其中針對每個PBCH實例1402具有(TTI內的)40 msec的傳輸週期。
圖15圖示在160 msec BCH TTI的情況下,MIB內容的特定SFN位元亦可以如何相應地改變。在該實例中,由於用於每個PBCH實例的傳輸的40 msec週期,因此位元b1和b0在每個冗餘版本中將不改變。在另一態樣,位元b2和b3將改變。因此,可以在MIB中傳送位元b0-b1和位元b4-b9,而可以以如前述的另一種方式來傳送位元b3和b2,以確保內容在較長TTI內不改變,並且可以仍然執行組合來增強解碼效能。
當然,可以使用PBCH週期(例如,20 msec、40 msec)和BCH TTI(80 msec、160 msec)的各種組合,並且可以相應地調整在MIB中而不是經由其他機制傳輸的特定SFN位元。在一些情況下,可以經由RV及/或DMRS傳送2個位元,而可以經由同步信號(例如,SSS)傳送2個位元。
如本文描述的,在一些情況下,用於在MIB中攜帶時序資訊的配置是基於所決定的PBCH Tx週期和BCH TTI來決定的。如上文提及的,該等參數可以是基於操作模式來決定的(例如,獨立模式中的初始獲取、對於RRC閒置或RRC連接模式中、非獨立模式中的一或多個UE)。
如在上文描述的實例中證明地,可以將BCH TTI選擇為整數數量的PBCH Tx實例(例如,4個或2個)。
在一些情況下,可以向UE指示關於週期和BCH TTI的此種資訊。例如,該資訊可以是經由主資訊區塊(MIB)、系統資訊區塊(SIB)或無線電資源控制(RRC)訊息信號傳遞被預先配置(例如,在標準規範中)用於相同細胞或相鄰細胞的(換言之,一個基地站可以傳輸資訊,而另一個基地站傳輸PBCH)。
在雙重連接場景(其中設備經由至少兩種不同的無線電存取技術(RAT)進行通訊)中,可以在一種RAT中傳送資訊,而在另一種RAT中傳輸PBCH。例如,在LTE-NR雙重連接模式中,可以經由LTE提供用於NR的資訊。作為另一個實例,對於涉及兩種類型的新無線電的雙重連接模式(NR1-NR2雙重連接模式),低於6 GHz NR1可以提供用於高於6 GHz NR2的資訊。
如在上文描述的實例中提及的,以此種方式傳送的時序資訊可以是指SFN(系統訊框編號)。在一些情況下,傳送的時序資訊可以是指子訊框水平時序(例如,用於指示5 msec邊界的中序信號/前序信號)或符號水平時序(例如,SS短脈衝集合內的SS區塊索引)。
在任何情況下,時序指示配置是採用使能夠對BCH TTI內的PBCH的多個實例進行組合的方式來決定的。如前述,時序資訊的指示PBCH實例在BCH TTI內的位置的部分可以不是在MIB內容中顯式地攜帶的,而是可以經由其他方式(例如,PBCH RV及/或SSS/DMRS/PSS)來傳送的。
在一些情況下,可以在PBCH RV和SSS/DMRS/PSS的組合兩者中攜帶該時序資訊(此舉意味著存在某種冗餘)。在此種情況下,若UE可以從SSS/DMRS/PSS中成功地獲取該資訊(的一部分),則此舉可以經由避免RV盲偵測(的一部分)來降低PBCH處理的複雜度。
如在上文實例中所描述的,若時序資訊是指X位元SFN(例如,其中X=10),則X位元中的辨識PBCH實例在BCH TTI內的位置的b個位元(例如,b=2)可以不是在MIB中攜帶的,而是可以經由其他手段來傳送的。 經由不同模式中的DMRS/PBCH的示例性時序指示
根據某些態樣,時序指示亦可以(另外地或替代地)是經由不同模式中的解調參考信號(DMRS)和實體廣播通道(PBCH)傳輸來提供的。
如本文描述的,在一些情況下,UE可以經由對DMRS的多個實例的偵測來(至少部分地)推導同步週期(同步短脈衝的週期)。在推導出此種資訊之後,UE可以使用所推導出的資訊來進行PBCH處理(例如,對多個PBCH傳輸的組合)。
在一些情況下,DMRS/PBCH加擾設計(在時序指示方案態樣)對於同步週期的第一集合而言可以是相同的,而對於(同步週期的)第二集合而言可以是依賴於同步週期的。換言之,對於PBCH TTI的第一集合,DMRS和加擾序列的設計對於每個PBCH TTI而言是相同的,而對於PBCH TTI的第二集合而言,DMRS和加擾序列的設計是依賴於PBCH TTI的。
如上文描述的,時序資訊可以是在MIB(PBCH內容)、DMRS、SSS、PBCH冗餘版本(RV)中提供的。在一些情況下,時序資訊可以是經由「PBCH加擾序列」提供的。作為一個實例,替代(或者除了)經由PBCH RV來傳送資訊,此種資訊可以是經由PBCH加擾序列來傳送的。
存在用於經由DMRS/PBCH來傳送時序資訊的各種替代方案。例如,對於第一替代方案(Alt 1),在非獨立模式或RRC閒置/連接模式中,短脈衝集合週期可以取{5,10,20,40,80,160}msec中的任意值,不管短脈衝集合週期如何,DMRS和PBCH加擾皆可以傳送相同的時序資訊(例如,)。
對於第二替代方案(Alt 2),DMRS和PBCH加擾可以針對不同的短脈衝集合週期來傳送不同的時序資訊,例如: 5 msec週期:& 1位元前序信號/中序信號 10 msec週期:20 mse週期:40 msec週期:80 msec週期:160 msec週期:。 在一些情況下,為了使UE能夠在沒有歧義的情況下獲取時序,亦可以在PBCH內容中傳送短脈衝集合週期(3位元)。
對於第三替代方案(Alt 3),DMRS和PBCH加擾針對低於特定閾值(例如,<=20 msec )的週期來傳送相同的時序資訊(例如,),並且可以針對更大的週期來傳送不同的時序資訊,例如: 40 msec 週期:80 msec週期:160 msec週期:。 該方法可以具有某些益處。例如,使用該方法,(1)可以針對低於閾值(<=20 msec )的所有同步短脈衝週期實現DMRS和PBCH加擾隨機化;及(2)當跨越短脈衝集合進行組合時,可能不需要進行PBCH盲解碼。
本文所揭示的方法包括用於實現所描述的方法的一或多個步驟或動作。在不脫離請求項的範疇的情況下,該等方法步驟及/或動作可以彼此互換。換言之,除非指定了步驟或動作的特定次序,否則,在不脫離請求項的範疇的情況下,可以對特定步驟及/或動作的次序及/或使用進行修改。
如本文所使用的,提及項目列表「中的至少一個」的短語代表彼等項目的任意組合,包括單個成員。舉例而言,「a、b或c中的至少一個」意欲涵蓋a、b、c、a-b、a-c、b-c和a-b-c,以及與相同元素的倍數的任意組合(例如,a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c和c-c-c或者a、b和c的任何其他排序)。
如本文所使用的,術語「決定」包括多種多樣的動作。例如,「決定」可以包括計算、運算、處理、推導、調查、檢視(例如,在表、資料庫或另一資料結構中檢視)、查明等等。此外,「決定」可以包括接收(例如,接收資訊)、存取(例如,存取記憶體中的資料)等等。此外,「決定」可以包括解析、選定、選擇、建立等等。
提供前面的描述以使任何熟習此項技術者能夠實施本文描述的各個態樣。對該等態樣的各種修改對於熟習此項技術者而言將是顯而易見的,以及本文所定義的整體原理可以應用到其他態樣。因此,請求項並不意欲限於本文所展示的態樣,而是被賦予與文字請求項相一致的全部範疇,其中除非特別聲明如此,否則對單數形式的元素的提及不意欲意指「一個且僅僅一個」,而是「一或多個」。除非另外明確地聲明,否則術語「一些」指的是一或多個。貫穿本案內容描述的各個態樣的元素的所有結構和功能均等物以引用方式明確地併入本文中,以及意欲由請求項來包含,該等結構和功能均等物對於一般技術者而言是已知的或者將要已知的。此外,本文中沒有任何所揭示的內容是想要奉獻給公眾的,不管此種揭示內容是否明確記載在請求項中。沒有請求項元素要根據專利法施行細則第18條第8項的規定來解釋,除非該元素是明確地使用短語「用於……的構件」來記載的,或者在方法請求項的情況下,該元素是使用短語「用於……的步驟」來記載的。
上文所描述的方法的各種操作可以由能夠執行相應功能的任何適當的構件來執行。該等構件可以包括各種硬體及/或軟體元件及/或模組,包括但不限於:電路、特殊應用積體電路(ASIC)或處理器。通常,在存在圖中所圖示的操作的情況下,彼等操作可以具有帶有類似編號的相應的配對構件加功能元件。
例如,用於傳輸的構件及/或用於接收的構件可以包括以下各項中的一項或多項:基地站110的傳輸處理器420、TX MIMO處理器430、接收處理器438或天線434,及/或使用者設備120的傳輸處理器464、TX MIMO處理器466、接收處理器458或天線452。另外,用於產生的構件、用於多工的構件、用於解碼的構件(解碼器)及/或用於應用的構件可以包括一或多個處理器,例如,基地站110的控制器/處理器440及/或使用者設備120的控制器/處理器480。
結合本案內容所描述的各種說明性的邏輯區塊、模組和電路可以利用被設計成執行本文所描述的功能的通用處理器、數位信號處理器(DSP)、特殊應用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)或其他可程式設計邏輯設備(PLD)、個別閘門或電晶體邏輯、個別硬體元件,或者其任意組合來實現或執行。通用處理器可以是微處理器,但在替代方案中,處理器可以是任何商業上可獲得的處理器、控制器、微控制器或狀態機。處理器亦可以實現為計算設備的組合,例如,DSP與微處理器的組合、複數個微處理器、一或多個微處理器結合DSP核,或者任何其他此種配置。
若用硬體來實現,則示例性硬體配置可以包括無線節點中的處理系統。處理系統可以利用匯流排架構來實現。根據處理系統的特定應用和整體設計約束,匯流排可以包括任意數量的互連匯流排和橋接。匯流排可以將包括處理器、機器可讀取媒體和匯流排介面的各種電路連接在一起。除此之外,匯流排介面亦可以用於將網路配接器經由匯流排連接至處理系統。網路配接器可以用於實現PHY層的信號處理功能。在使用者終端120(參見圖1)的情況下,使用者介面(例如,小鍵盤、顯示器、滑鼠、操縱桿等)亦可以連接至匯流排。匯流排亦可以連接諸如定時源、周邊設備、電壓調節器、功率管理電路等的各種其他電路,該等電路在本領域中是公知的,並且因此將不再進一步描述。處理器可以利用一或多個通用及/或專用處理器來實現。實例包括微處理器、微控制器、DSP處理器和可以執行軟體的其他電路系統。熟習此項技術者將認識到,如何根據特定的應用和施加在整體系統上的整體設計約束,來最佳地實現針對處理系統所描述的功能。
若用軟體來實現,則該等功能可以作為一或多個指令或代碼儲存在電腦可讀取媒體上或經由其進行傳輸。無論是被稱為軟體、韌體、中間軟體、微代碼、硬體描述語言還是其他術語,軟體皆應當被廣義地解釋為意指指令、資料或其任意組合。電腦可讀取媒體包括電腦儲存媒體和通訊媒體兩者,通訊媒體包括促進將電腦程式從一個地方傳送到另一個地方的任何媒體。處理器可以負責管理匯流排和通用處理,其包括執行在機器可讀取儲存媒體上儲存的軟體模組。電腦可讀取儲存媒體可以耦合到處理器,以使得處理器可以從該儲存媒體讀取資訊以及向該儲存媒體寫入資訊。在替代方案中,儲存媒體可以是處理器的組成部分。舉例而言,機器可讀取媒體可以包括傳輸線、由資料調制的載波,及/或與無線節點分開的其上儲存有指令的電腦可讀取儲存媒體,所有該等項可以由處理器經由匯流排介面來存取。替代地或此外,機器可讀取媒體或其任何部分可以整合到處理器中,例如,該情況可以是快取記憶體及/或通用暫存器檔案。舉例而言,機器可讀取儲存媒體的實例可以包括RAM(隨機存取記憶體)、快閃記憶體、ROM(唯讀記憶體)、PROM(可程式設計唯讀記憶體)、EPROM(可抹除可程式設計唯讀記憶體)、EEPROM(電子可抹除可程式設計唯讀記憶體)、暫存器、磁碟、光碟、硬驅動器,或任何其他適當的儲存媒體,或其任意組合。機器可讀取媒體可以體現在電腦程式產品中。
軟體模組可以包括單一指令或許多指令,並且可以分佈在若干不同的程式碼片段上,分佈在不同的程式之中以及跨越多個儲存媒體而分佈。電腦可讀取媒體可以包括多個軟體模組。軟體模組包括指令,該等指令在由諸如處理器之類的裝置執行時使得處理系統執行各種功能。軟體模組可以包括傳輸模組和接收模組。每個軟體模組可以位於單個儲存設備中或跨越多個儲存設備而分佈。舉例而言,當觸發事件發生時,可以將軟體模組從硬驅動器載入到RAM中。在軟體模組的執行期間,處理器可以將指令中的一些指令載入到快取記憶體中以增加存取速度。隨後可以將一或多個快取列載入到通用暫存器檔案中以便由處理器執行。將理解的是,當在下文提及軟體模組的功能時,此種功能由處理器在執行來自該軟體模組的指令時來實現。
此外,任何連接被適當地稱為電腦可讀取媒體。例如,若使用同軸電纜、光纖光纜、雙絞線、數位用戶線路(DSL)或者無線技術(例如,紅外線(IR)、無線電和微波)從網站、伺服器或其他遠端源傳輸軟體,則同軸電纜、光纖光纜、雙絞線、DSL或者無線技術(例如,紅外線、無線電和微波)被包括在媒體的定義中。如本文所使用的,磁碟(disk)和光碟(disc)包括壓縮光碟(CD)、鐳射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光®光碟,其中磁碟通常磁性地複製資料,而光碟則用鐳射來光學地複製資料。因此,在一些態樣中,電腦可讀取媒體可以包括非暫時性電腦可讀取媒體(例如,有形媒體)。短語電腦可讀取媒體不代表暫時性傳播信號。上文的組合亦應當包括在電腦可讀取媒體的範疇之內。
因此,某些態樣可以包括一種用於執行本文提供的操作的電腦程式產品。例如,此種電腦程式產品可以包括具有儲存(及/或編碼)在其上的指令的電腦可讀取媒體,該等指令可由一或多個處理器執行以執行本文所描述的操作。
此外,應當明白的是,用於執行本文所描述的方法和技術的模組及/或其他適當的構件可以由使用者終端及/或基地站在適用的情況下進行下載及/或以其他方式獲得。例如,此種設備可以耦合至伺服器,以便促進傳送用於執行本文所描述的方法的構件。或者,本文所描述的各種方法可以經由儲存構件(例如,RAM、ROM、諸如壓縮光碟(CD)或軟碟之類的實體儲存媒體等)來提供,以使得使用者終端及/或基地站在將儲存構件耦合至或提供給該設備之後,可以獲取各種方法。此外,可以使用用於向設備提供本文所描述的方法和技術的任何其他適當的技術。
應當理解的是,請求項並不限於上文說明的精確配置和元件。在不脫離請求項的範疇的情況下,可以在上文所描述的方法和裝置的佈置、操作和細節態樣進行各種修改、改變和變化。
100‧‧‧無線網路
102a‧‧‧巨集細胞
102b‧‧‧巨集細胞
102c‧‧‧巨集細胞
102x‧‧‧微微細胞
102y‧‧‧毫微微細胞
102z‧‧‧毫微微細胞
110‧‧‧BS
110a‧‧‧BS
110b‧‧‧BS
110c‧‧‧BS
110r‧‧‧中繼站
110x‧‧‧BS
110y‧‧‧BS
110z‧‧‧BS
120‧‧‧UE
120r‧‧‧UE
120x‧‧‧UE
120y‧‧‧UE
130‧‧‧網路控制器
200‧‧‧分散式無線電存取網路(RAN)/本端架構
202‧‧‧存取節點控制器(ANC)
204‧‧‧下一代核心網路(NG-CN)
206‧‧‧5G存取節點
208‧‧‧TRP
210‧‧‧下一代AN(NG-AN)
300‧‧‧分散式RAN
302‧‧‧集中式核心網路單元(C-CU)
304‧‧‧集中式RAN單元(C-RU)
306‧‧‧DU
412‧‧‧資料來源
420‧‧‧傳輸處理器
430‧‧‧傳輸(TX)多輸入多輸出(MIMO)處理器
432a‧‧‧調制器/解調器
432t‧‧‧調制器/解調器
434a‧‧‧天線
434t‧‧‧天線
436‧‧‧MIMO偵測器
438‧‧‧接收處理器
439‧‧‧資料槽
440‧‧‧控制器/處理器
442‧‧‧記憶體
444‧‧‧排程器
452a‧‧‧天線
452r‧‧‧天線
454a‧‧‧解調器/調制器
454r‧‧‧解調器/調制器
456‧‧‧MIMO偵測器
458‧‧‧接收處理器
460‧‧‧資料槽
462‧‧‧資料來源
464‧‧‧傳輸處理器
466‧‧‧TX MIMO處理器
480‧‧‧控制器/處理器
482‧‧‧記憶體
500‧‧‧圖
505-a‧‧‧第一選項
505-b‧‧‧第二選項
510‧‧‧RRC層
515‧‧‧PDCP層
520‧‧‧RLC層
525‧‧‧MAC層
530‧‧‧實體層
600‧‧‧圖
602‧‧‧控制部分
604‧‧‧DL資料部分
606‧‧‧共用UL部分
650‧‧‧圖
652‧‧‧控制部分
654‧‧‧UL資料部分
656‧‧‧共用UL部分
702‧‧‧實例
704‧‧‧後續實例
800‧‧‧傳輸等時線
802‧‧‧SS短脈衝
804‧‧‧SS區塊
806‧‧‧時段
808‧‧‧週期
900‧‧‧資源映射
902‧‧‧SS區塊
910‧‧‧PSS
912‧‧‧SSS
920‧‧‧PBCH
922‧‧‧PBCH
1000‧‧‧操作
1002‧‧‧步驟
1004‧‧‧步驟
1006‧‧‧步驟
1100‧‧‧操作
1102‧‧‧步驟
1104‧‧‧步驟
1106‧‧‧步驟
1202‧‧‧PBCH實例
1402‧‧‧PBCH實例
為了可以詳細地理解本案內容的上述特徵,可以經由參照各態樣,來作出更加具體的描述(上文所簡要概述的),其中一些態樣在附圖中圖示。然而,要注意的是,附圖僅圖示本案內容的某些典型的態樣並且因此不被認為限制其範疇,因為該描述可以允許其他同等有效的態樣。
圖1是概念性地圖示根據本案內容的某些態樣的示例性電信系統的方塊圖。
圖2是圖示根據本案內容的某些態樣的分散式RAN的示例性邏輯架構的方塊圖。
圖3是圖示根據本案內容的某些態樣的分散式RAN的示例性實體架構的圖。
圖4是概念性地圖示根據本案內容的某些態樣的示例性BS和使用者設備(UE)的設計的方塊圖。
圖5是圖示根據本案內容的某些態樣的用於實現通訊協定堆疊的實例的圖。
圖6圖示根據本案內容的某些態樣的以下行鏈路為中心的(以DL為中心的)子訊框的實例。
圖6A圖示根據本案內容的某些態樣的以上行鏈路為中心的(以UL為中心的)子訊框的實例。
圖7圖示示例性實體廣播通道(PBCH)傳輸時間間隔(TTI)和傳輸週期。
圖8圖示根據本案內容的各態樣的用於新無線電電信系統的同步信號的示例性傳輸等時線。
圖9圖示根據本案內容的各態樣的用於示例性同步信號(SS)區塊(SSB)的示例性資源映射。
圖10圖示根據本案內容的某些態樣的用於由基地站進行的無線通訊的示例性操作。
圖11圖示根據本案內容的某些態樣的用於由使用者設備(UE)進行的無線通訊的示例性操作。
圖12圖示另一個示例性實體廣播通道(PBCH)傳輸時間間隔(TTI)和傳輸週期。
圖13圖示可以如何傳送針對圖12的配置的時序資訊。
圖14圖示又一個示例性實體廣播通道(PBCH)傳輸時間間隔(TTI)和傳輸週期。
圖15圖示可以如何傳送針對圖14的配置的時序資訊。
為了促進理解,在可能的情況下,已經使用相同的元件符號來指定對於附圖而言共同的相同元素。預期的是,在一個態樣中揭示的元素可以有益地用在其他態樣上,而不需要具體的記載。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無

Claims (32)

  1. 一種用於由一基地站進行的無線通訊的方法,包括以下步驟: 基於一實體廣播通道(PBCH)傳輸週期和一PBCH傳輸時間間隔(TTI)的一持續時間,來決定在該PBCH中傳送的一時序元件符號中的、在該TTI的一持續時間內改變的一或多個位元的一第一集合;在該TTI內傳輸一實體廣播通道(PBCH)的多個版本,該多個版本包括該時序元件符號中的、在該TTI的該持續時間內不改變的位元的一第二集合;及伴隨每個PBCH傳輸來提供對該時序元件符號中的位元的該第一集合的一指示。
  2. 根據請求項1之方法,其中該時序元件符號包括以下各項中的至少一項:一系統訊框編號(SFN)、對子訊框水平的一指示、對符號水平時序的一指示、一同步信號區塊(SSB)索引,或對一半訊框的一指示。
  3. 根據請求項1之方法,其中不同的同步模式具有不同的該TTI的持續時間。
  4. 根據請求項3之方法,其中不同的同步模式包括以下各項中的至少兩項:獨立模式中的一初始獲取、非獨立模式中的一初始獲取、閒置模式中的一同步、在一回載網路或一連接模式中向另一個基地站提供的同步。
  5. 根據請求項1之方法,其中該指示是經由以下各項中的至少一項提供的:一同步信號、一主資訊區塊(MIB)或一解調參考信號(DMRS)。
  6. 根據請求項1之方法,其中: 該指示是經由該等PBCH傳輸的一冗餘版本或一加擾序列中的至少一項提供的;及位元的該第一集合的不同值被映射到不同的冗餘版本。
  7. 根據請求項1之方法,其中該指示是經由以下各項中的至少兩項提供的: 一同步信號、一主資訊區塊(MIB)、一解調參考信號(DMRS)、一加擾序列,或者位元的該第一集合的不同值到該PBCH的不同的冗餘版本的一映射。
  8. 根據請求項7之方法,其中該DMRS和該加擾序列兩者攜帶一同步信號區塊(SSB)索引的一部分。
  9. 根據請求項7之方法,其中: 對於PBCH TTI的一第一集合,該DMRS和該加擾序列的一設計對於每個PBCH TTI而言是相同的;及對於PBCH TTI的一第二集合,該DMRS和該加擾序列的該設計是依賴於PBCH TTI的。
  10. 根據請求項7之方法,其中該DMRS和該MIB兩者攜帶對一半訊框的一指示的一部分。
  11. 根據請求項1之方法,亦包括以下步驟:向一無線設備傳送關於該PBCH週期及/或TTI持續時間的資訊。
  12. 根據請求項11之方法,其中該資訊是經由以下各項中的至少一項傳送的:一主資訊區塊(MIB)、系統資訊區塊(SIB)或無線電資源控制(RRC)信號傳遞。
  13. 根據請求項11之方法,其中: 該資訊是經由一第一無線電存取技術(RAT)網路傳送的;及該PBCH是經由一第二RAT網路傳輸的。
  14. 一種用於由一無線設備進行的無線通訊的方法,包括以下步驟: 基於一實體廣播通道(PBCH)傳輸週期和一PBCH傳輸時間間隔(TTI)的一持續時間,來決定一時序元件符號中的、在該TTI的一持續時間內改變的一或多個位元的一第一集合;對該TTI內的一實體廣播通道(PBCH)的多個版本中的至少一個版本進行解碼,其中該多個版本包括該時序元件符號中的、在該TTI的該持續時間內不改變的位元的一第二集合;及伴隨每個經解碼的PBCH傳輸來獲得對該時序元件符號中的位元的該第一集合的一指示。
  15. 根據請求項14之方法,其中該時序元件符號包括以下各項中的至少一項:一系統訊框編號(SFN)、對子訊框水平的一指示、對符號水平時序的一指示、一同步信號區塊(SSB)索引,或對一半訊框的一指示。
  16. 根據請求項14之方法,其中不同的同步模式具有不同的該TTI的持續時間。
  17. 根據請求項16之方法,其中不同的同步模式包括以下各項中的至少兩項:獨立模式中的一初始獲取、非獨立模式中的一初始獲取、閒置模式中的一同步、在一回載網路或一連接模式中向另一個基地站提供的同步。
  18. 根據請求項14之方法,其中該指示是經由以下各項中的至少一項提供的:一同步信號、主資訊區塊(MIB)或解調參考信號(DMRS)。
  19. 根據請求項14之方法,其中: 該指示是經由該等PBCH傳輸的一冗餘版本或一加擾序列中的至少一項提供的;及位元的該第一集合的不同值被映射到不同的冗餘版本。
  20. 根據請求項14之方法,其中該指示是經由以下各項中的至少兩項提供的: 一同步信號、一主資訊區塊(MIB)、一解調參考信號(DMRS)、一加擾序列,或者位元的該第一集合的不同值到該PBCH的不同的冗餘版本的一映射。
  21. 根據請求項20之方法,其中該DMRS和該加擾序列兩者攜帶一同步信號區塊(SSB)索引的一部分。
  22. 根據請求項20之方法,其中: 對於PBCH TTI的一第一集合,該DMRS和該加擾序列的一設計對於每個PBCH TTI而言是相同的;及對於PBCH TTI的一第二集合,該DMRS和該加擾序列的該設計是依賴於PBCH TTI的。
  23. 根據請求項20之方法,其中該DMRS和該MIB兩者攜帶對一半訊框的一指示的一部分。
  24. 根據請求項14之方法,亦包括以下步驟:從另一個無線設備獲得關於該PBCH週期及/或TTI持續時間的資訊。
  25. 根據請求項24之方法,其中該資訊是經由以下各項中的至少一項獲得的:一主資訊區塊(MIB)、系統資訊區塊(SIB)或無線電資源控制(RRC)信號傳遞。
  26. 根據請求項24之方法,其中: 該資訊是從一第一基地站獲得的;及該PBCH是由一第二基地站傳輸的。
  27. 根據請求項24之方法,其中: 該資訊是經由一第一無線電存取技術(RAT)網路獲得的;及該PBCH是經由一第二RAT網路傳輸的。
  28. 根據請求項14之方法,亦包括以下步驟: 經由對解調參考信號(DMRS)的多個實例的該偵測,來至少部分地推導關於該PBCH TTI的該週期的資訊;及使用所推導的該資訊來進行後續PBCH處理。
  29. 一種用於由一基地站進行的無線通訊的裝置,包括: 用於基於一實體廣播通道(PBCH)傳輸週期和一PBCH傳輸時間間隔(TTI)的一持續時間,來決定在該PBCH中傳送的一時序元件符號中的、在該TTI的一持續時間內改變的一或多個位元的一第一集合的構件;用於在該TTI內傳輸一實體廣播通道(PBCH)的多個版本的構件,該多個版本包括該時序元件符號中的、在該TTI的該持續時間內不改變的位元的一第二集合;及用於伴隨每個PBCH傳輸來提供對該時序元件符號中的位元的該第一集合的一指示的構件。
  30. 一種用於由一無線設備進行的無線通訊的裝置,包括: 用於基於一實體廣播通道(PBCH)傳輸週期和一PBCH傳輸時間間隔(TTI)的一持續時間,來決定一時序元件符號中的、在該TTI的一持續時間內改變的一或多個位元的一第一集合的構件;用於對該TTI內的一實體廣播通道(PBCH)的多個版本中的至少一個版本進行解碼的構件,其中該多個版本包括該時序元件符號中的、在該TTI的該持續時間內不改變的位元的一第二集合;及用於伴隨每個經解碼的PBCH傳輸來獲得對該時序元件符號中的位元的該第一集合的一指示的構件。
  31. 一種用於由一基地站進行的無線通訊的裝置,包括: 至少一個處理器,其與一記憶體耦合並且被配置為:基於一實體廣播通道(PBCH)傳輸週期和一PBCH傳輸時間間隔(TTI)的一持續時間,來決定在該PBCH中傳送的一時序元件符號中的、在該TTI的一持續時間內改變的一或多個位元的一第一集合;及一收發機,其被配置為:在該TTI內傳輸一實體廣播通道(PBCH)的多個版本,該多個版本包括該時序元件符號中的、在該TTI的該持續時間內不改變的位元的一第二集合;及伴隨每個PBCH傳輸來提供對該時序元件符號中的位元的該第一集合的一指示。
  32. 一種用於由一無線設備進行的無線通訊的裝置,包括: 至少一個處理器,其與一記憶體耦合並且被配置為:基於一實體廣播通道(PBCH)傳輸週期和一PBCH傳輸時間間隔(TTI)的一持續時間,來決定一時序元件符號中的、在該TTI的一持續時間內改變的一或多個位元的一第一集合;及一解碼器,其被配置為:對該TTI內的一實體廣播通道(PBCH)的多個版本中的至少一個版本進行解碼,其中該多個版本包括該時序元件符號中的、在該TTI的該持續時間內不改變的位元的一第二集合;及伴隨每個經解碼的PBCH傳輸來獲得對該時序元件符號中的位元的該第一集合的一指示。
TW107115032A 2017-05-04 2018-05-03 經由不同模式中的dmrs/pbch的時序指示 TWI757480B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762501539P 2017-05-04 2017-05-04
US62/501,539 2017-05-04
US201762526966P 2017-06-29 2017-06-29
US62/526,966 2017-06-29
US15/968,598 2018-05-01
US15/968,598 US10609661B2 (en) 2017-05-04 2018-05-01 Timing indication through DMRS/PBCH in different modes

Publications (2)

Publication Number Publication Date
TW201843973A true TW201843973A (zh) 2018-12-16
TWI757480B TWI757480B (zh) 2022-03-11

Family

ID=64013820

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107115032A TWI757480B (zh) 2017-05-04 2018-05-03 經由不同模式中的dmrs/pbch的時序指示

Country Status (8)

Country Link
US (1) US10609661B2 (zh)
EP (1) EP3619853B1 (zh)
JP (1) JP7094985B2 (zh)
CN (1) CN110603761B (zh)
BR (1) BR112019022596A2 (zh)
CA (1) CA3057980A1 (zh)
TW (1) TWI757480B (zh)
WO (1) WO2018204517A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI811581B (zh) * 2019-11-08 2023-08-11 大陸商大唐移動通信設備有限公司 資訊的發送、接收方法、裝置及終端

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810059B (zh) 2017-05-05 2024-04-16 华为技术有限公司 广播信号的发送方法、接收方法、网络设备和终端设备
CN114513291A (zh) 2017-06-16 2022-05-17 中兴通讯股份有限公司 定时信息的发送、确定方法、装置、存储介质及处理器
US11102738B2 (en) 2018-04-06 2021-08-24 Apple Inc. Synchronization signal design for unlicensed spectrum access using cellular communications
BR112021000232A2 (pt) * 2019-01-11 2021-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Método realizado em um nó de acesso integrado e de retorno, e, estação base para uso como um nó de acesso integrado e de retorno
US11369003B2 (en) * 2019-07-15 2022-06-21 Qualcomm Incorporated Configuring non-standalone mode for a multi-subscriber identity module user equipment
WO2022208239A1 (en) * 2021-03-31 2022-10-06 Radisys India Private Limited Systems and method of time-synchronization of a wireless system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8982750B2 (en) * 2009-01-16 2015-03-17 Qualcomm Incorporated Method and apparatus for transmitting overload indicator over the air
US9178640B2 (en) * 2010-08-20 2015-11-03 Qualcomm Incorporated Determination of network synchronization
US8635517B2 (en) * 2011-01-31 2014-01-21 Samsung Electronics Co., Ltd. Methods and apparatus for fast synchronization using quasi-cyclic low-density parity-check (QC-LDPC) codes
KR102097693B1 (ko) * 2013-07-26 2020-04-06 삼성전자주식회사 무선 통신시스템의 다중경로 탐색 장치 및 방법
US10200977B2 (en) * 2015-01-30 2019-02-05 Qualcomm Incorporated System information block channel design for enhanced machine type communication with coverage enhancements
CN105188128B (zh) * 2015-08-21 2018-10-16 北京北方烽火科技有限公司 一种无线授时和空口同步方法、基站、通讯设备及系统
US10932185B2 (en) * 2016-01-19 2021-02-23 Apple Inc. Transmitter and receiver for master information block over physical broadcast channel
WO2017127181A1 (en) 2016-01-20 2017-07-27 Intel IP Corporation Discovery reference signal transmission window and position identification
US10448346B2 (en) 2016-11-11 2019-10-15 Qualcomm Incorporated Synchronization signal design
JP6802296B2 (ja) * 2017-02-03 2020-12-16 株式会社Nttドコモ 端末、無線通信方法及び基地局

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI811581B (zh) * 2019-11-08 2023-08-11 大陸商大唐移動通信設備有限公司 資訊的發送、接收方法、裝置及終端

Also Published As

Publication number Publication date
TWI757480B (zh) 2022-03-11
CA3057980A1 (en) 2018-11-08
EP3619853B1 (en) 2021-03-17
EP3619853A1 (en) 2020-03-11
CN110603761B (zh) 2022-05-27
JP2020519119A (ja) 2020-06-25
US10609661B2 (en) 2020-03-31
US20180324728A1 (en) 2018-11-08
BR112019022596A2 (pt) 2020-05-19
WO2018204517A1 (en) 2018-11-08
CN110603761A (zh) 2019-12-20
KR20200003855A (ko) 2020-01-10
JP7094985B2 (ja) 2022-07-04

Similar Documents

Publication Publication Date Title
TWI748064B (zh) 用於單載波波形的控制資源集合
TWI724297B (zh) 剩餘系統資訊傳輸訊窗的配置
TW201840157A (zh) 組共用pdcch中的時槽格式指示符(sfi)和時槽聚合水平指示以及sfi衝突處理
TW201939994A (zh) 上行鏈路和下行鏈路搶佔指示
TW201931906A (zh) 用於具有不同的數位方案的上行鏈路的時序提前粒度
TWI737910B (zh) 在新無線中多工傳呼信號與同步信號
TW201921981A (zh) 混合數值方案的載波聚合(ca)
KR20210100625A (ko) Dci 반복을 위한 프루닝 규칙들
TW201921866A (zh) 用於載波聚合中的srs天線切換的方法和裝置
TW201933932A (zh) 用於時槽聚合的信號傳遞
TW201921879A (zh) 用於實體上行鏈路共享通道(pusch)上的上行鏈路控制資訊(uci)馱載的資源(re)映射規則
TWI757480B (zh) 經由不同模式中的dmrs/pbch的時序指示
TW201944813A (zh) 在rrc建立之前的pucch資源分配
TW201909612A (zh) 用於實體廣播通道(pbch)傳輸的解調參考信號(dmrs)序列產生和資源映射
TWI816894B (zh) 對處理的下行鏈路控制資訊(dci)的數量的限制
TWI797236B (zh) 上行鏈路功率控制配置
TW201914351A (zh) 用於多種無線電存取技術的緩衝器管理
TW201841521A (zh) 利用通道狀態資訊參考信號(csi-rs)的行動性增強
TW201838359A (zh) 同步時槽中的資料傳輸
US10965420B2 (en) Information combining across beams
TWI775962B (zh) 與載波相關的隨機存取通道(rach)回應搜尋空間
TW201909676A (zh) 在新無線電中將解調參考信號和同步信號進行多工處理
TW201906358A (zh) 長上行鏈路短脈衝通道設計
TW201929470A (zh) 對上行鏈路傳輸塊的改良的排程
TW201907669A (zh) 在用於對資訊位元進行編碼的代碼類型之間的選擇