TW201921981A - 混合數值方案的載波聚合(ca) - Google Patents

混合數值方案的載波聚合(ca) Download PDF

Info

Publication number
TW201921981A
TW201921981A TW107128154A TW107128154A TW201921981A TW 201921981 A TW201921981 A TW 201921981A TW 107128154 A TW107128154 A TW 107128154A TW 107128154 A TW107128154 A TW 107128154A TW 201921981 A TW201921981 A TW 201921981A
Authority
TW
Taiwan
Prior art keywords
transmission
numerical scheme
tti
time slot
downlink
Prior art date
Application number
TW107128154A
Other languages
English (en)
Other versions
TWI756461B (zh
Inventor
楊揚
陳旺旭
彼得 加爾
李熙春
約瑟夫畢那米拉 索瑞亞嘉
李治平
畢賴爾 薩迪克
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW201921981A publication Critical patent/TW201921981A/zh
Application granted granted Critical
Publication of TWI756461B publication Critical patent/TWI756461B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本案內容的某些態樣係關於用於處理涉及具有不同數值方案的分量載波(CC)的載波聚合(CA)的方法和裝置。

Description

混合數值方案的載波聚合(CA)
本專利申請案主張享受於2017年8月11日提出申請的、序號為No. 62/544,689美國臨時專利申請案的權益,該美國臨時專利申請案的全部內容經由引用的方式併入本文。
大體而言,本案內容係關於無線通訊系統,並且更具體地,本案內容係關於用於載波聚合(CA)的方法和裝置,其中在不同的分量載波(CC)中使用不同的數值方案(numerology)。
無線通訊系統被廣泛地部署以提供諸如電話、視訊、資料、訊息傳遞和廣播之類的各種電信服務。典型的無線通訊系統可以採用多工存取技術,其能夠經由共享可用的系統資源(例如,頻寬、傳輸功率)來支援與多個使用者的通訊。此種多工存取技術的實例係包括長期進化(LTE)系統、分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、正交分頻多工存取(OFDMA)系統、單載波分頻多工存取(SC-FDMA)系統以及分時同步分碼多工存取(TD-SCDMA)系統。
在一些實例中,無線多工存取通訊系統可以包括多個基地站,每個基地站同時支援針對多個通訊設備(另外被稱為使用者設備(UE))的通訊。在LTE或LTE-A網路中,一或多個基地站的集合可以定義進化型節點B(eNB)。在其他實例中(例如,在下一代或者第5代(5G)網路中),無線多工存取通訊系統可以包括與多個中央單元(CU)(例如,中央節點(CN)、存取節點控制器(ANC)等)進行通訊的多個分散式單元(DU)(例如,邊緣單元(EU)、邊緣節點(EN)、無線電頭端(RH)、智慧無線電頭端(SRH)、傳輸接收點(TRP)等),其中與中央單元進行通訊的一或多個分散式單元的集合可以定義存取節點(例如,新無線電基地站(NR BS)、新無線電節點B(NR NB)、網路節點、5G NB、 eNB等)。基地站或DU可以在下行鏈路通道(例如,用於來自基地站或者去往UE的傳輸)和上行鏈路通道(例如,用於從UE到基地站或分散式單元的傳輸)上與UE集合進行通訊。
已經在各種電信標準中採用了該等多工存取技術以提供共用協定,該共用協定使得不同的無線設備能夠在城市、國家、地區以及甚至全球層面上進行通訊。一種新興的電信標準的實例是新無線電(NR),例如,5G無線電存取。NR是對由第三代合作夥伴計畫(3GPP)發佈的LTE行動服務標準的增強集。其被設計為經由提高頻譜效率、降低成本、改良服務、利用新頻譜,以及在下行鏈路(DL)上和在上行鏈路(UL)上使用具有循環字首(CP)的OFDMA來更好地與其他開放標準整合,從而更好地支援行動寬頻網際網路存取,以及支援波束成形、多輸入多輸出(MIMO)天線技術和載波聚合。
然而,隨著對行動寬頻存取的需求持續增長,存在對NR技術進一步改良的期望。較佳地,該等改良應當適用於其他多工存取技術以及採用該等技術的電信標準。
本案內容的系統、方法和設備均具有若干態樣,其中沒有單個態樣單獨地負責其期望的屬性。在不限制由隨後的請求項表達的本案內容的範疇的情況下,現在將簡要地論述一些特徵。在考慮該論述之後,並且尤其是在閱讀了標題為「具體實施方式」的部分之後,將理解本案內容的特徵如何提供優點(其包括無線網路中的存取點和站之間改良的通訊)。
某些態樣提供了一種用於由基地站(BS)進行的無線通訊的方法。概括而言,該方法包括以下步驟:經由具有第一數值方案的第一分量載波(CC),來將使用者設備(UE)排程用於該第一CC中的至少一個下行鏈路傳輸和第二CC中的至少一個下行鏈路傳輸;及在該第一CC或該第二CC中的一項中從該UE接收上行鏈路控制資訊(UCI),該UCI攜帶針對在該第一CC和該第二CC兩者中發送的下行鏈路傳輸的回饋。
某些態樣提供了一種用於由使用者設備(UE)進行的無線通訊的方法。概括而言,該方法包括以下步驟:經由具有第一數值方案的第一分量載波(CC),來接收針對該第一CC中的至少一個下行鏈路傳輸和第二CC中的至少一個下行鏈路傳輸的排程;及在該第一CC或該第二CC中的一項中傳輸上行鏈路控制資訊(UCI),該UCI攜帶針對在該第一CC和該第二CC兩者中發送的下行鏈路傳輸的回饋。
概括而言,各態樣包括如本文中參照附圖充分描述的並且經由附圖圖示的方法、裝置、系統、電腦可讀取媒體和處理系統。
為了實現前述和相關的目的,一或多個態樣包括下文中充分描述並在請求項中特別指出的特徵。以下描述和附圖詳細闡述了一或多個態樣的某些說明性的特徵。但是,該等特徵指示可以採用各個態樣的原理的各種方式中的僅幾種方式,並且該描述意欲包括所有此類態樣及其均等物。
概括而言,本案內容的各態樣提供用於對具有不同數值方案的分量載波(CC)的聚合進行處理的技術。例如,該等技術可以應用於新無線電(NR)(亦被稱為第3代合作夥伴計畫(3GPP)第5代(5G)無線電存取技術)中。
NR可以支援各種無線通訊服務,例如,以寬頻寬(例如,超過80 MHz)為目標的增強型行動寬頻(eMBB)、以高載波頻率(例如,60 GHz)為目標的毫米波(mmW)、以非向後相容MTC技術為目標的大規模MTC(mMTC),及/或以超可靠低時延通訊(URLLC)為目標的任務關鍵。該等服務可以包括時延和可靠性要求。該等服務亦可以具有不同的傳輸時間間隔(TTI),以滿足相應的服務品質(QoS)要求。另外,該等服務可以共存於同一子訊框中。
以下描述提供了實例,並且不對請求項中闡述的範疇、適用性或實例進行限制。可以在不脫離本案內容的範疇的情況下,在所論述的元素的功能和佈置態樣進行改變。各個實例可以酌情省略、替換或添加各種程序或元件。例如,所描述的方法可以以與所描述的次序不同的次序來執行,並且可以添加、省略或組合各個步驟。此外,可以將關於一些實例描述的特徵組合到一些其他實例中。例如,使用本文所闡述的任何數量的態樣,可以實現一種裝置或可以實施一種方法。此外,本案內容的範疇意欲涵蓋使用除了本文所闡述的本案內容的各個態樣以外或與其不同的其他結構、功能,或者結構和功能來實施的此種裝置或方法。應當理解的是,本文所揭示的揭示內容的任何態樣可以由請求項的一或多個元素來體現。本文使用「示例性」一詞來意指「用作示例、實例或說明」。本文中被描述為「示例性」的任何態樣未必被解釋為比其他態樣更佳或具有優勢。
本文描述的技術可以被用於各種無線通訊網路,例如,LTE、CDMA、TDMA、FDMA、OFDMA、SC-FDMA以及其他網路。術語「網路」和「系統」經常可互換地使用。CDMA網路可以實現諸如通用陸地無線電存取(UTRA)、cdma 2000等的無線電技術。UTRA包括寬頻CDMA(WCDMA)和CDMA的其他變型。cdma 2000涵蓋IS-2000、IS-95和IS-856標準。TDMA網路可以實現諸如行動通訊全球系統(GSM)之類的無線電技術。OFDMA網路可以實現諸如NR(例如,5G RA)、進化型UTRA(E-UTRA)、超行動寬頻(UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、快閃-OFDMA等的無線電技術。UTRA和E-UTRA是通用行動電信系統(UMTS)的一部分。NR是處於開發中的、結合5G技術論壇(5GTF)的新興的無線通訊技術。3GPP長期進化(LTE)和改進的LTE(LTE-A)是UMTS的使用E-UTRA的版本。在來自名稱為「第三代合作夥伴計畫」(3GPP)的組織的文件中描述了UTRA、E-UTRA、UMTS、LTE、LTE-A和GSM。在來自名稱為「第三代合作夥伴計畫2」(3GPP2)的組織的文件中描述了cdma 2000和UMB。本文描述的技術可以被用於上文提及的無線網路和無線電技術以及其他無線網路和無線電技術。為了清楚起見,儘管本文可能使用通常與3G及/或4G無線技術相關聯的術語來描述各態樣,但是本案內容的各態樣可以應用於基於其他代的通訊系統(例如,5G及以後的技術(包括NR技術))。 示例性無線通訊系統
圖1圖示可以在其中執行本案內容的各態樣的示例性無線網路100,例如,新無線電(NR)或5G網路。
如圖1中所示,無線網路100可以包括多個BS 110和其他網路實體。BS可以是與UE進行通訊的站。每個BS 110可以為特定的地理區域提供通訊覆蓋。在3GPP中,術語「細胞」可以代表節點B的覆蓋區域及/或為該覆蓋區域服務的節點B子系統,此情形取決於使用該術語的上下文。在NR系統中,術語「細胞」和eNB、節點B、5G NB、AP、NR BS、NR BS或TRP可以互換。在一些實例中,細胞可能未必是靜止的,而且細胞的地理區域可以根據行動基地站的位置而移動。在一些實例中,基地站可以經由各種類型的回載介面(例如,直接實體連接、虛擬網路,或者使用任何適當的傳輸網路的類似介面)來彼此互連及/或與無線網路100中的一或多個其他基地站或網路節點(未圖示)互連。
通常,可以在給定的地理區域中部署任何數量的無線網路。每個無線網路可以支援特定的無線電存取技術(RAT)並且可以在一或多個頻率上操作。RAT亦可以被稱為無線電技術、空中介面等。頻率亦可以被稱為載波、頻率通道等。每個頻率可以在給定的地理區域中支援單個RAT,以便避免具有不同RAT的無線網路之間的干擾。在一些情況下,可以部署NR或5G RAT網路。
BS可以提供針對巨集細胞、微微細胞、毫微微細胞及/或其他類型的細胞的通訊覆蓋。巨集細胞可以覆蓋相對大的地理區域(例如,半徑為幾公里),並且可以允許由具有服務訂閱的UE進行不受限制的存取。微微細胞可以覆蓋相對小的地理區域,並且可以允許由具有服務訂閱的UE進行不受限制的存取。毫微微細胞可以覆蓋相對小的地理區域(例如,住宅),並且可以允許由與該毫微微細胞具有關聯的UE(例如,封閉用戶群組(CSG)中的UE、針對住宅中的使用者的UE等)進行受限制的存取。用於巨集細胞的BS可以被稱為巨集BS。用於微微細胞的BS可以被稱為微微BS。用於毫微微細胞的BS可以被稱為毫微微BS或家庭BS。在圖1中圖示的實例中,BS 110a、110b和110c可以分別是用於巨集細胞102a、102b和102c的巨集BS。BS 110x可以是用於微微細胞102x的微微BS。BS 110y和110z可以分別是用於毫微微細胞102y和102z的毫微微BS。BS可以支援一或多個(例如,三個)細胞。
無線網路100亦可以是包括中繼站。中繼站是用於從上游站(例如,BS或者UE)接收資料及/或其他資訊的傳輸並且將資料及/或其他資訊的傳輸發送到下游站(例如,UE或BS)的站。中繼站亦可以是為其他UE中繼傳輸的UE。如圖1中圖示的實例,為了促進BS 110a和UE 120r之間的通訊,中繼站110r可以與BS 110a和UE 120r進行通訊。中繼站亦可以被稱作中繼BS、中繼器等。
無線網路100可以是包括不同類型的BS(例如,巨集BS、微微BS、毫微微BS、中繼器等)的異質網路。該等不同類型的BS可以具有不同的傳輸功率位準、不同的覆蓋區域以及對無線網路100中的干擾的不同影響。例如,巨集BS可以具有高傳輸功率位準(例如,20瓦),而微微BS、毫微微BS和中繼器可以具有較低的傳輸功率位準(例如,1瓦)。
無線網路100可以支援同步操作或非同步操作。對於同步操作,BS可以具有相似的訊框時序,並且來自不同BS的傳輸在時間上可以近似地對準。對於非同步操作,BS可以具有不同的訊框時序,並且來自不同BS的傳輸在時間上可以不對準。本文描述的技術可以用於同步操作和非同步操作二者。
網路控制器130可以耦合到一組BS,以及提供針對該等BS的協調和控制。網路控制器130可以經由回載與BS 110進行通訊。BS 110亦可以例如經由無線或有線回載直接地或間接地彼此通訊。
UE 120(例如,120x、120y等)可以散佈於整個無線網路100中,並且每個UE可以是靜止的或行動的。UE亦可以被稱為行動站、終端、存取終端、用戶單元、站、客戶駐地設備(CPE)、蜂巢式電話、智慧型電話、個人數位助理(PDA)、無線數據機、無線通訊設備、手持設備、膝上型電腦、無線電話、無線區域迴路(WLL)站、平板設備、相機、遊戲設備、小筆電、智慧型電腦、超級本、醫療設備或醫療裝置、生物計量感測器/設備、可穿戴設備(例如,智慧手錶、智慧服裝、智慧眼鏡、智慧腕帶、智慧珠寶(例如,智慧指環、智慧手鏈等))、娛樂設備(例如,音樂設備、視訊設備、衛星無線電單元等)、車輛元件或感測器、智慧型儀器表/感測器、工業製造設備、全球定位系統設備,或者被配置為經由無線或有線媒體來進行通訊的任何其他適當的設備。一些UE可以被認為是進化型或機器類型通訊(MTC)設備或進化型MTC(eMTC)設備。MTC和eMTC UE包括例如機器人、無人機、遠端設備、感測器、儀錶、監視器、位置標籤等,上述各項可以與BS、另一個設備(例如,遠端設備)或某個其他實體進行通訊。無線節點可以經由有線或無線通訊鏈路來提供例如針對網路(例如,諸如網際網路或蜂巢網路之類的廣域網路)或到網路的連接。一些UE可以被認為是物聯網路(IoT)設備。在圖1中,具有雙箭頭的實線指示UE與服務BS之間的期望傳輸,其中服務BS是被指定為在下行鏈路及/或上行鏈路上為UE服務的BS。具有雙箭頭的虛線指示UE與BS之間的干擾傳輸。
某些無線網路(例如,LTE)在下行鏈路上利用正交分頻多工(OFDM)以及在上行鏈路上利用單載波分頻多工(SC-FDM)。OFDM和SC-FDM將系統頻寬(例如,系統頻帶)劃分成多個(K個)正交次載波,該多個正交次載波通常亦被稱為音調、頻段等。可以利用資料來調制每個次載波。通常,在頻域中利用OFDM以及在時域中利用SC-FDM來發送調制符號。在一些情況下,相鄰次載波之間的間隔可以是固定的,並且次載波的總數(K)取決於系統頻寬。例如,次載波的間隔可以是15 kHz並且最小資源分配(被稱為「資源區塊」)可以是12個次載波(或180 kHz)。因此,針對1.25、2.5、5、10或20兆赫茲(MHz)的系統頻寬,標稱的FFT大小可以分別等於128、256、512、1024或2048。亦可以將系統頻寬劃分成次頻帶。例如,次頻帶可以覆蓋1.08 MHz(亦即,6個資源區塊),並且針對1.25、2.5、5、10或20 MHz的系統頻寬,可以分別存在1、2、4、8或16個次頻帶。
儘管本文描述的實例的各態樣可以與LTE技術相關聯,但是本案內容的各態樣可以與其他無線通訊系統(例如,NR)一起應用。NR可以在上行鏈路和下行鏈路上利用具有CP的OFDM,並且包括針對使用分時雙工(TDD)的半雙工操作的支援。可以支援100 MHz的單分量載波頻寬。NR資源區塊可以在0.1 ms持續時間內跨越具有75 kHz的次載波頻寬的12個次載波。每個無線電訊框可以由50個子訊框組成,具有10 ms的長度。因此,每個子訊框可以具有0.2 ms的長度。每個子訊框可以指示用於資料傳輸的鏈路方向(亦即,DL或UL),並且可以動態地切換用於每個子訊框的鏈路方向。每個子訊框可以包括DL/UL資料以及DL/UL控制資料。用於NR的UL和DL子訊框可以如下文關於圖6和圖7更加詳細地描述的。可以支援波束成形並且可以動態地配置波束方向。亦可以支援利用預編碼的MIMO傳輸。DL中的MIMO配置可以支援多至8個傳輸天線,其中多層DL傳輸多至8個串流並且每個UE多至2個串流。可以支援具有每個UE多至2個串流的多層傳輸。可以支援具有多至8個服務細胞的多個細胞的聚合。或者,NR可以支援除了基於OFDM的空中介面之外的不同的空中介面。NR網路可以包括諸如CU及/或DU之類的實體。
在一些實例中,可以排程對空中介面的存取,其中排程實體(例如,基地站)在其服務區域或細胞內的一些或所有設備和裝置之間分配用於通訊的資源。在本案內容內,如下文進一步論述的,排程實體可以負責排程、指派、重新配置和釋放用於一或多個從屬實體的資源。亦即,對於被排程的通訊,從屬實體利用排程實體所分配的資源。基地站不是可以用作排程實體的僅有的實體。亦即,在一些實例中,UE可以用作排程實體,其排程用於一或多個從屬實體(例如,一或多個其他UE)的資源。在該實例中,UE正在用作排程實體,而其他UE利用該UE所排程的資源來進行無線通訊。UE可以用作同級間(P2P)網路及/或網狀網路中的排程實體。在網狀網路實例中,除了與排程實體進行通訊之外,UE亦可以可選地彼此直接進行通訊。
因此,在具有對時間頻率資源的排程存取並且具有蜂巢配置、P2P配置和網狀配置的無線通訊網路中,排程實體和一或多個從屬實體可以利用所排程的資源來進行通訊。
如上文提及的,RAN可以包括CU和DU。NR BS(例如,eNB、5G節點B、節點B、傳輸接收點(TPR)、存取點(AP))可以與一或多個BS相對應。NR細胞可以被配置成存取細胞(ACell)或僅資料細胞(DCell)。例如,RAN(例如,中央單元或分散式單元)可以對細胞進行配置。DCell可以是用於載波聚合或雙連接、但是不是用於初始存取、細胞選擇/重選或交遞的細胞。在一些情況下,DCell可以不傳輸同步信號——在一些情況下,DCell可以傳輸SS。NR BS可以向UE傳輸用於指示細胞類型的下行鏈路信號。基於細胞類型指示,UE可以與NR BS進行通訊。例如,UE可以基於所指示的細胞類型,來決定要考慮用於細胞選擇、存取、交遞及/或量測的NR BS。
圖2圖示可以在圖1中圖示的無線通訊系統中實現的分散式無線電存取網路(RAN)200的示例性邏輯架構。5G存取節點206可以包括存取節點控制器(ANC)202。ANC可以是分散式RAN 200的中央單元(CU)。到下一代核心網路(NG-CN)204的回載介面可以在ANC處終止。到相鄰的下一代存取節點(NG-AN)的回載介面可以在ANC處終止。ANC可以包括一或多個TRP 208(其亦可以被稱為BS、NR BS、節點B、5G NB、AP或某種其他術語)。如前述,TRP可以與「細胞」互換地使用。
TRP 208可以是DU。TRP可以連接到一個ANC(ANC 202)或多於一個的ANC(未圖示)。例如,對於RAN共享、無線電作為服務(RaaS)和特定於服務的AND部署,TRP可以連接到多於一個的ANC。TRP可以包括一或多個天線埠。TRP可以被配置為單獨地(例如,動態選擇)或聯合地(例如,聯合傳輸)向UE提供訊務。
局部架構200可以用於圖示前傳定義。該架構可以被定義成支援跨越不同部署類型的前傳方案。例如,該架構可以是基於傳輸網路能力(例如,頻寬、時延及/或信號干擾)的。
該架構可以與LTE共享特徵及/或元件。根據各態樣,下一代AN(NG-AN)210可以支援與NR的雙連接。NG-AN可以共享針對LTE和NR的共用前傳。
該架構可以實現各TRP 208之間和其間的合作。例如,可以在TRP內及/或經由ANC 202跨越TRP預先設置合作。根據各態樣,可以不需要/不存在任何TRP間介面。
根據各態樣,可以在架構200中存在分離邏輯功能的動態配置。如將參照圖5更加詳細描述的,可以將無線電資源控制(RRC)層、封包資料彙聚協定(PDCP)層、無線電鏈路控制(RLC)層、媒體存取控制(MAC)層和實體(PHY)層適應性地放置在DU或CU(例如,分別是TRP或ANC)處。根據某些態樣,BS可以包括中央單元(CU)(例如,ANC 202)及/或一或多個分散式單元(例如,一或多個TRP 208)。
圖3圖示根據本案內容的各態樣的分散式RAN 300的示例性實體架構。集中式核心網路單元(C-CU)302可以主管核心網路功能。C-CU可以被部署在中央。C-CU功能可以被卸載(例如,至高級無線服務(AWS))以便處理峰值容量。
集中式RAN單元(C-RU)304可以主管一或多個ANC功能。可選地,C-RU可以在本端主管核心網路功能。C-RU可以具有分散式部署。C-RU可以更接近網路邊緣。
DU 306可以主管一或多個TRP(邊緣節點(EN)、邊緣單元(EU)、無線電頭端(RH)、智慧無線電頭端(SRH)等)。DU可以位於具有射頻(RF)功能的網路的邊緣處。
圖4圖示在圖1中圖示的BS 110和UE 120的示例性元件,該等元件可以用於實現本案內容的各態樣。如前述,BS可以包括TRP。BS 110和UE 120中的一或多個元件可以用於實施本案內容的各態樣。例如,UE 120的天線452、Tx/Rx 222、處理器466、458、464及/或控制器/處理器480,及/或BS 110的天線434、處理器460、420、438及/或控制器/處理器440可以用於執行本文描述的並且參照圖9-圖10圖示的操作。
在基地站110處,傳輸處理器420可以從資料來源412接收資料以及從控制器/處理器440接收控制資訊。控制資訊可以用於實體廣播通道(PBCH)、實體控制格式指示符通道(PCFICH)、實體混合ARQ指示符通道(PHICH)、實體下行鏈路控制通道(PDCCH)等。資料可以用於實體下行鏈路共享通道(PDSCH)等。處理器420可以分別處理(例如,編碼和符號映射)資料和控制資訊以獲得資料符號和控制符號。處理器420亦可以產生例如用於PSS、SSS和細胞特定參考信號的參考符號。傳輸(TX)多輸入多輸出(MIMO)處理器430可以對資料符號、控制符號及/或參考符號執行空間處理(例如,預編碼)(若適用的話),並且可以向調制器(MOD)432a至432t提供輸出符號串流。例如,TX MIMO處理器430可以執行本文針對RS多工描述的某些態樣。每個調制器432可以(例如,針對OFDM等)處理相應的輸出符號串流以獲得輸出取樣串流。每個調制器432可以進一步處理(例如,轉換到類比、放大、濾波以及升頻轉換)輸出取樣串流以獲得下行鏈路信號。可以分別經由天線434a至434t來傳輸來自調制器432a至432t的下行鏈路信號。
在UE 120處,天線452a至452r可以從基地站110接收下行鏈路信號,並且可以分別向解調器(DEMOD)454a至454r提供接收的信號。每個解調器454可以調節(例如,濾波、放大、降頻轉換以及數位化)相應的接收的信號以獲得輸入取樣。每個解調器454可以(例如,針對OFDM等)進一步處理輸入取樣以獲得接收符號。MIMO偵測器456可以從所有解調器454a至454r獲得接收符號,對接收符號執行MIMO偵測(若適用的話),以及提供偵測到的符號。例如,MIMO偵測器456可以提供偵測到的、使用本文描述的技術傳輸的RS。接收處理器458可以處理(例如,解調、解交錯以及解碼)所偵測到的符號,向資料槽460提供經解碼的針對UE 120的資料,以及向控制器/處理器480提供經解碼的控制資訊。根據一或多個情況,CoMP態樣可以包括提供天線以及一些Tx/Rx功能,使得該等Tx/Rx功能位於分散式單元中。例如,一些Tx/Rx處理可以在中央單元中完成,而其他處理可以在分散式單元處完成。例如,根據如圖中圖示的一或多個態樣,BS調制器/解調器432可以在分散式單元中。
在上行鏈路上,在UE 120處,傳輸處理器464可以接收並且處理來自資料來源462的資料(例如,用於實體上行鏈路共享通道(PUSCH))和來自控制器/處理器480的控制資訊(例如,用於實體上行鏈路控制通道(PUCCH))。傳輸處理器464亦可以產生用於參考信號的參考符號。來自傳輸處理器464的符號可以被TX MIMO處理器466預編碼(若適用的話),被解調器454a至454r(例如,針對SC-FDM等)進一步處理,以及被傳輸給基地站110。在BS 110處,來自UE 120的上行鏈路信號可以被天線434接收,被調制器432處理,被MIMO偵測器436偵測(若適用的話),以及被接收處理器438進一步處理,以獲得經解碼的由UE 120發送的資料和控制資訊。接收處理器438可以向資料槽439提供經解碼的資料,並且向控制器/處理器440提供經解碼的控制資訊。
控制器/處理器440和480可以分別導引基地站110和UE 120處的操作。處理器440及/或基地站110處的其他處理器和模組可以執行或導引例如圖9-圖10中圖示的功能方塊及/或用於本文描述的技術的其他過程的執行。處理器480及/或UE 120處的其他處理器和模組亦可以執行或導引用於本文描述的技術的過程。記憶體442和482可以分別儲存用於BS 110和UE 120的資料和程式碼。排程器444可以排程UE用於下行鏈路及/或上行鏈路上的資料傳輸。
圖5圖示圖示根據本案內容的各態樣的、用於實現通訊協定堆疊的實例的圖500。所圖示的通訊協定堆疊可以由在5G系統(例如,支援基於上行鏈路的行動性的系統)中操作的設備來實現。圖500圖示通訊協定堆疊,其包括無線電資源控制(RRC)層510、封包資料彙聚協定(PDCP)層515、無線電鏈路控制(RLC)層520、媒體存取控制(MAC)層525和實體(PHY)層530。在各個實例中,協定堆疊的該等層可以被實現成單獨的軟體模組、處理器或ASIC的部分、經由通訊鏈路連接的非共置的設備的部分,或其各種組合。共置和非共置的實現可以用在例如用於網路存取設備(例如,AN、CU及/或DU)或UE的協定堆疊中。
第一選項505-a圖示協定堆疊的分離實現,其中在集中式網路存取設備(例如,圖2中的ANC 202)和分散式網路存取設備(例如,圖2中的DU 208)之間分離協定堆疊的實現。在第一選項505-a中,RRC層510和PDCP層515可以由中央單元來實現,而RLC層520、MAC層525和PHY層530可以由DU來實現。在各個實例中,CU和DU可以是共置或非共置的。在巨集細胞、微細胞或微微細胞部署中,第一選項505-a可以是有用的。
第二選項505-b圖示協定堆疊的統一實現,其中在單個網路存取設備(例如,存取節點(AN)、新無線電基地站(NR BS)、新無線電節點B(NR NB)、網路節點(NN)等)中實現協定堆疊。在第二選項中,RRC層510、PDCP層515、RLC層520、MAC層525和PHY層530均可以由AN來實現。第二選項505-b在毫微微細胞部署中可以是有用的。
不管網路存取設備實現協定堆疊的一部分還是全部,UE皆可以實現整個協定堆疊(例如,RRC層510、PDCP層515、RLC層520、MAC層525和PHY層530)。
圖6是圖示以DL為中心的子訊框的實例的圖600。以DL為中心的子訊框可以包括控制部分602。控制部分602可以存在於以DL為中心的子訊框的初始或開始部分中。控制部分602可以包括與以DL為中心的子訊框的各個部分相對應的各種排程資訊及/或控制資訊。在一些配置中,控制部分602可以是實體DL控制通道(PDCCH),如圖6中所指出的。以DL為中心的子訊框亦可以包括DL資料部分604。DL資料部分604有時可以被稱為以DL為中心的子訊框的有效負荷。DL資料部分604可以包括用於從排程實體(例如,UE或BS)向從屬實體(例如,UE)傳送DL資料的通訊資源。在一些配置中,DL資料部分604可以是實體DL共享通道(PDSCH)。
以DL為中心的子訊框亦可以包括共用UL部分606。共用UL部分606有時可以被稱為UL短脈衝、共用UL短脈衝及/或各種其他適當的術語。共用UL部分606可以包括與以DL為中心的子訊框的各個其他部分相對應的回饋資訊。例如,共用UL部分606可以包括與控制部分602相對應的回饋資訊。回饋資訊的非限制性實例可以包括ACK信號、NACK信號、混合認可重傳請求(HARQ)指示符及/或各種其他適當類型的資訊。共用UL部分606可以包括額外的或替代的資訊,例如,與隨機存取通道(RACH)程序、排程請求(SR)傳輸有關的資訊和各種其他適當類型的資訊。如圖6中所示,DL資料部分604的結束在時間上可以與共用UL部分606的開始分離。此種時間分離有時可以被稱為間隙、保護時段、保護間隔及/或各種其他適當的術語。此種分離提供了用於從DL通訊(例如,由從屬實體(例如,UE)進行的接收操作)切換到UL通訊(例如,由從屬實體(例如,UE)進行的傳輸)的時間。一般技術者將理解的是,前文僅是以DL為中心的子訊框的一個實例,並且在沒有必要脫離本文描述的各態樣的情況下,可以存在具有類似特徵的替代結構。
儘管圖6中圖示的子訊框被示為一個傳輸時間間隔(TTI),但是在NR的一些數值方案(例如,使用次載波間隔(SCS)或多於15 kHz的彼等數值方案)中,子訊框可以被分為複數個時槽。下文參照圖8論述了被劃分為複數個時槽的子訊框。在CA情況下,某些資訊(例如,包含認可或否定認可資訊的UCI)可以僅在一個CC中的時槽的子集中是可獲得的。
圖7是圖示以UL為中心的子訊框的實例的圖700。以UL為中心的子訊框可以包括控制部分702。控制部分702可以存在於以UL為中心的子訊框的初始或開始部分中。圖7中的控制部分702可以類似於上文參照圖6描述的控制部分。以UL為中心的子訊框亦可以包括UL資料部分704。UL資料部分704有時可以被稱為以UL為中心的子訊框的有效負荷。UL資料部分可以代表用於從從屬實體(例如,UE)向排程實體(例如,UE或BS)傳送UL資料的通訊資源。在一些配置中,控制部分702可以是實體DL控制通道(PDCCH)。
如圖7中所示,控制部分702的結束在時間上可以與UL資料部分704的開始分離。此種時間分離有時可以被稱為間隙、保護時段、保護間隔及/或各種其他適當的術語。此種分離提供了用於從DL通訊(例如,由排程實體進行的接收操作)切換到UL通訊(例如,由排程實體進行的傳輸)的時間。以UL為中心的子訊框亦可以包括共用UL部分706。圖7中的共用UL部分706可以類似於上文參照圖7描述的共用UL部分706。共用UL部分706可以另外或替代地包括與通道品質指示符(CQI)、探測參考信號(SRS)有關的資訊和各種其他適當類型的資訊。一般技術者將理解的是,前文僅是以UL為中心的子訊框的一個實例,以及在沒有必要脫離本文描述的各態樣的情況下,可以存在具有類似特徵的替代結構。
儘管圖7中圖示的子訊框被示為一個傳輸時間間隔(TTI),但是在NR的一些數值方案(例如,使用次載波間隔(SCS)或多於15 kHz的彼等數值方案)中,子訊框可以被劃分為複數個時槽。下文參照圖8論述了被劃分為複數個時槽的子訊框。
在一些情況下,兩個或更多個從屬實體(例如,UE)可以使用側鏈路信號彼此通訊。此種側鏈路通訊的現實應用可以包括公共安全、接近度服務、UE到網路中繼、運載工具到運載工具(V2V)通訊、萬物聯網路(IoE)通訊、IoT通訊、任務關鍵網狀網,及/或各種其他適當的應用。通常,側鏈路信號可以代表從一個從屬實體(例如,UE1)傳送到另一個從屬實體(例如,UE2)的信號,而不需要經由排程實體(例如,UE或BS)來中繼該通訊,即使排程實體可以用於排程及/或控制目的。在一些實例中,可以使用經授權頻譜來傳送側鏈路信號(與通常使用免授權頻譜的無線區域網路不同)。
UE可以在各種無線電資源配置中操作,該等無線電資源配置包括與使用專用資源集合來傳輸引導頻相關聯的配置(例如,無線電資源控制(RRC)專用狀態等),或者與使用共用資源集合來傳輸引導頻相關聯的配置(例如,RRC共用狀態等)。當在RRC專用狀態下操作時,UE可以選擇專用資源集合來向網路傳輸引導頻信號。當在RRC共用狀態下操作時,UE可以選擇共用資源集合來向網路傳輸引導頻信號。在任一情況下,UE傳輸的引導頻信號可以被一或多個網路存取設備(例如,AN或DU或其部分)接收。每個接收網路存取設備可以被配置為接收和量測在共用資源集合上傳輸的引導頻信號,並且亦接收和量測在被分配給UE(針對該等UE而言,該網路存取設備是針對UE進行監測的網路存取設備集合中的成員)的專用資源集合上傳輸的引導頻信號。接收網路存取設備中的一或多個,或者接收網路存取設備向其傳輸引導頻信號的量測結果的CU可以使用量測結果來辨識用於UE的服務細胞,或者啟動對用於該等UE中的一或多個UE的服務細胞的改變。 混合數值方案的示例性載波聚合(CA)
在諸如3GPP的5G(亦稱為新無線電(NR))無線通訊標準之類的各種部署中,支援多個分量載波(CC)的聚合。利用此種載波聚合(CA),相同載波或跨載波排程是可用的。顧名思義,相同載波排程是指在一個分量載波中傳送容許以排程該相同載波中的(後續上行鏈路或下行鏈路)傳輸。在另一態樣,跨載波排程是指在一個分量載波中傳送容許以排程不同載波中的傳輸。
在NR CA和雙連接(DC)場景中,所涉及的不同分量載波可能具有不同的數值方案。如本文中所使用的,術語數值方案通常是指定義用於通訊的時間和頻率資源的結構的參數集合。此種參數可以包括例如次載波間隔(SCS)、諸如普通CP(NCP)或擴展CP(ECP)之類的循環字首(CP)的類型,以及諸如子訊框或時槽持續時間之類的傳輸時間間隔(TTI)。
NR可能需要覆蓋寬範圍的載波頻率,包括低於6 GHz和毫米波(mmW)的載波頻率。此外,可以支援不同的傳輸時間間隔(TTI),例如不同的時槽持續時間(例如,1 ms、0.5 ms、0.25 ms和0.125 ms),其中每時槽具有14或7個符號。亦可以支援不同的次載波間隔(SCS)或音調間隔(例如,15 kHz、30 kHz、60 kHz、120 kHz等等)。因此,NR CA及/或DC可能需要適應不同的數值方案,例如取決於被配置用於UE的不同CC。
圖8和圖9圖示針對NR中CA/DC的可以被配置用於UE的具有不同數值方案的CC的實例。
如圖8所示,第一CC(CC1)可以具有30 kHz音調間隔和具有14個符號的0.5 ms的時槽,而第二CC(CC2)可以具有60 kHz音調間隔、具有14個符號的0.25 ms的時槽。在圖9中所示的實例中,CC1可以是具有30 kHz音調間隔和具有14個符號的0.5 ms的子訊框的低於6 GHz的CC,而CC2可以是具有120 kHz音調間隔和具有14個符號的0.125 ms的子訊框的mmW CC。
可以實現關於CA及/或DC部署的各種協定。例如,關於搜尋空間(通常是指設備針對符合定義的準則的有效解碼「候選」進行監測的資源集合),UE可以在至少用於剩餘最小系統資訊(RMSI)的一或多個共用搜尋空間(CSS)中,並且在主分量載波(PCC)上的UE特定搜尋空間(UESS)中,監測PDCCH候選。UE可以至少在用於次分量載波(SCC)的UE特定搜尋空間(UESS)中針對PDCCH候選進行監測。
對跨載波排程的支援可以經由載波指示標誌(CIF),例如,其指示相應的容許排程與攜帶容許的CC不同的CC上的上行鏈路/下行鏈路傳輸。NR可以至少支援由一個且僅一個載波排程一載波。CIF位元的數量可以變化,或者可以是基於各種考慮來決定的。在一些情況下,可以支援多個時序提前群組(例如,其中LTE時序差要求作為出發點)。NR亦可以支援用於SCC上的時序提前擷取的PRACH傳輸。NR可以支援用於針對NR DC及/或CA的PUCCH的多個細胞群組。
針對跨載波排程而言,PDCCH和由PDCCH 排程的PDSCH可以具有相同或者不同的數值方案。針對自排程(排程攜帶容許的相同的CC上的傳輸),攜帶PDCCH的CC和用於所排程的PDSCH的CC可以具有相同的數值方案或不同的數值方案。
當數值方案在PDCCH和所排程的傳輸之間是不同的時,在DCI中指示的用於在PDCCH的結束和相應的所排程的傳輸之間的時序關係的時間細微性可以基於用於所排程的傳輸的CC的數值方案。此種時序可以以符號為單位(例如,用於時序N0和N2),其中符號持續時間是基於PDSCH或者PUSCH的(並且N0及/或N2可以是整數或者分數)。PDSCH/PUSCH的起始可以是最早的起始符號,然而,可能具有用於PDSCH(或PUSCH)的非對準的起始符號(例如,第一起始符號用於第一RB,而第二起始符號用於第二RB)。
如圖10中所示,對於利用相同或不同數值方案操作的DL CC,可以支援與多個DL分量載波相關的上行鏈路控制資訊(UCI)(例如,HARQ-ACK傳輸)。在排程PDSCH的DCI中指示的HARQ-ACK傳輸的時間細微性可以基於PUCCH傳輸的數值方案。例如,如圖10中所示,可以在CC1中的時槽n 中的PDSCH傳輸之後的CC1k 個時槽中傳輸的PUCCH中攜帶HARQ-ACK。
如圖11A中所示,在一些情況下,單個傳輸塊可以跨越兩個或更多個時槽。在一些情況下,高效操作可以經由將最初被指定用於自包含時槽的間隙時段(GP)/UL共用短脈衝/DL控制區域重用於PDSCH來實現。例如,如圖11B中所示,亦可能具有多時槽排程,其中時槽n 的最後幾個符號(先前用於GP/UL共用短脈衝)及/或時槽n +1 的前幾個符號(先前用於DL共用短脈衝)用於PDSCH傳輸。
如圖12中所示,針對自排程而言亦可能的是,PDCCH和所排程的PDSCH可以具有不同的數值方案。在一些情況下,為了適應不同的數值方案,可以實施各種約束。例如,一個可能的約束是:將用於PDCCH的SCS限制為不小於用於同一載波上的PDSCH的SCS。此種約束可以幫助避免PDCCH和PDSCH之間潛在的間隙。然而,在一些情況下,如圖12中所示,間隙可能潛在地存在於PDCCH和PDSCH之間(例如,其中控制為30 kHz,資料為15 kHz,具有1個控制符號)。
當支援利用不同數值方案的跨載波排程時,可以存在各種DL控制考慮因素。例如,如圖13A中所示,在排程發生在與其中傳輸被排程的CC相比具有較大SCS(較大間隔)的第一CC中的情況下,可能未必在每個時槽中實現跨載波容許。例如,在圖13A中,在時槽2n+1中可以不允許跨載波容許。
如圖13B中所示,在小SCS(較小間隔)的CC用於排程具有較大SCS(相應地,以及較小的TTI/時槽持續時間)的CC中的傳輸的情況下,一個時槽可以排程兩個或更多個時槽。例如,在圖13B中,CC1上的時槽m 可以排程在CC2上在時槽2n 和時槽2n +1中的PDSCH或PUSCH。在一些情況下,使用聯合容許,單個DCI(在CC1上)可以排程兩個或更多個PDSCH(在CC2上)。在其他情況下,經由單獨的容許,CC1可以攜帶兩個或更多個DCI,每個DCI排程相應的PDSCH(在CC2上)。
圖13B中圖示的情況對於涉及低於6 GHz(或者簡寫為「Sub6」)和mmW CC的CA/DC場景是尤其可能的。例如,具有小SCS的Sub6 CC可以跨載波排程在具有較大SCS的mmW CC上的傳輸。若針對兩個或更多個時槽使用單獨的容許,則每個時槽可以有其自己的搜尋空間。或者,儘管針對兩個或更多個時槽的容許可以共享相同的搜尋空間,但是針對聚合水平的解碼候選數量可能是有限的,並且甚至比時槽的數量更小。為了解決此種情況,在一些情況下,可以使用相同的搜尋空間,但是具有增加的解碼候選數量。搜尋空間/多個搜尋空間可以在相同的或者單獨的控制資源集合(CORESET,其中CORESET是指用於一個搜尋空間的時間和頻率資源集合)中。在一些情況下,可能需要對針對不同時槽的容許進行區分。在此種情況下,可以在DCI中提供跨時槽指示(例如,1位元,00:排程時槽2n ;01:排程時槽2n +1)。
圖13C圖示在與所排程的傳輸的CC2相比具有較小SCS的CC1中具有聯合容許的實例。一些資訊欄位可以是共享的,而其他欄位可以是分開的。例如,MCS/TBS大小可以是不同的,PDSCH/PUSCH起始及/或結束符號可以是不同的(半靜態及/或動態決定的)。在一些情況下,SRS/CSI觸發可以僅在第一時槽中、在所有時槽中,或者在時槽的某種其他組合中。
在一些情況下,若先前排程了時槽,則UE可以跳過監測控制區域中的DCI。例如,在圖13C的實例中,鑒於聯合容許(在時槽m 中)排程時槽2n +1中的傳輸,UE可以跳過監測時槽2n +1中的DCI。在此種情況下,控制區域及/或GP及/或UL共用短脈衝可以重用於PDSCH。在一些情況下,不是跳過監測整個控制區域,而是可以僅跳過(用於PDSCH的)音調集合。
圖14A和圖14B圖示根據本案內容的各態樣的群組共用實體下行鏈路控制通道(PDCCH)的實例。如圖中所示,群組共用PDCCH(GC-PDCCH),其可以用於向UE提供關於實體時槽格式(時槽格式資訊或SFI)的資訊,諸如時槽的長度、可用於下行鏈路傳輸的符號,以及可用於上行鏈路傳輸區域的符號。
類似於上文描述的排程PDSCH/PUSCH的PDCCH,群組共用PDCCH(PSFICH)亦可以具有兩種情況。例如,在圖14A中所示的第一種情況(其中在(與CC1相比)具有較大SCS的CC2中發送PSFICH)下,PSFICH針對具有較小SCS的CC1進行跨載波排程(提供實體時槽格式資訊)。在圖14B(其中在具有較小SCS的CC1中發送PSFICH)中,PSFICH針對具有較大SCS的CC2進行跨載波排程(提供實體時槽格式資訊)。該等情況可以如前述進行處理。
本案內容的各態樣提供了用於當使用具有不同數值方案的CC時處理UCI(例如,HARQ回饋)的技術。
例如,圖15圖示根據本案內容的某些態樣的用於由網路實體(例如,gNB)使用具有不同數值方案的CC進行無線通訊的示例性操作1500。
在1502處,操作1500經由以下操作開始:經由具有第一數值方案的第一分量載波(CC),將使用者設備(UE)排程用於第一CC中的至少一個下行鏈路傳輸和第二CC中的至少一個下行鏈路傳輸。在1504處,gNB在第一CC或第二CC中的一項中從UE接收上行鏈路控制資訊(UCI),其攜帶針對第一CC和第二CC兩者中的下行鏈路傳輸的回饋。
圖16圖示根據本案內容的某些態樣的用於由使用者設備(UE)進行無線通訊的示例性操作1600。例如,操作1600可以由與執行操作1500的gNB進行通訊的UE來執行。
在1602處,操作1600經由以下操作開始:經由具有第一數值方案的第一分量載波(CC)接收針對第一CC中的至少一個下行鏈路傳輸和第二CC中的至少一個下行鏈路傳輸的排程。在1604處,UE在第一CC或第二CC中的一項中傳輸上行鏈路控制資訊(UCI),其攜帶針對第一CC和第二CC兩者中的下行鏈路傳輸的回饋。
圖17圖示在具有較小SCS的CC1跨載波排程具有較大SCS的CC2(例如,DL TTI>=UL TTI)的情況下如何處理UCI的實例。在此種情況下,單個PUCCH可能需要針對具有不同數值方案的CC提供UCI(例如,ACK/NAK、SR、CSI),尤其是ACK/NAK回饋。
如圖所示,在一種替代方案(標記為ALT 1)中,可以在CC2上的兩個或更多個PUCCH中傳輸針對CC1的ACK/NACK(A/N)的回饋(例如,為了增強的可靠性)。在另一替代方案(標記為ALT 2)中,針對CC1的A/N的回饋僅在CC2上的某一時槽(一些時槽)(例如,在時槽2n +k +1中,而不是在時槽2n +k 中)中的PUCCH中。要攜帶針對在CC1的時槽m 中的PDSCH的HARQ的PUCCH可以被決定為攜帶針對CC2的時槽2n +1(該附隨中的最後一個)的HARQ的相同PUCCH,例如以便提供合理/足夠的時序來處理(例如,用於解多工/解碼)CC1上的傳輸。
圖18圖示在具有較大SCS的CC2跨載波排程具有較小SCS的CC1(例如,DL TTI<UL TTI)的情況下如何處理UCI的實例。此情形可能是例如針對Sub6加上mmW CC CA/DC的典型情況。如圖所示,一個PUCCH可以攜帶兩個或更多個PDSCH(例如,CC1上的時槽n +k 中的PUCCH攜帶針對CC2上的時槽2m 和2m +1 PDSCH傳輸的HARQ回應)。該等ACK/NAK可以單獨地進行報告,或者經由在不同的時槽上執行時域附隨來進行附隨(例如,附隨為每TB單個ACK/NAK)。
在圖18中圖示的實例中,由於UL中的較長TTI,對於CC2上的時槽2m 而言,可能增加HARQ延遲。在一些情況下,可以增加用於CC2的HARQ過程的數量。例如,若CC2的HARQ回應由(與CC2上的PDSCH)相同TTI的PUCCH攜帶,則針對CC2可以支援8個HARQ過程,但是若(針對CC2傳輸的)HARQ回應由CC1(較長TTI)上的PUCCH攜帶,則針對CC2可以支援16個HARQ過程。在此種情況下,用於HARQ過程的位元數量可以分別為3和4。
本案內容的各態樣亦提供了用於在具有不同數值方案的CC的情況下處理下行鏈路指派索引(DAI)管理的技術。DAI通常是指由eNB傳輸給UE以指示具有要認可的PDCCH的下行鏈路TTI的數量的值(例如,DAI值指示要報告的DL HARQ-ACK的數量)。
當存在具有不同數值方案的CC時,可以根據用於給定參考時槽持續時間的各種替代方案來管理DAI的累加計數器。例如,如圖19A中所示,根據第一替代方案(ALT 1),DAI可以按照逐區塊(例如,其中區塊是指給定的時槽持續時間)時間優先、頻率其次的方式來遞增(例如,在時槽2n中,DAI=0;隨後,針對CC1的時槽2n+1,DAI=1,在移動到CC2之前在時槽m中,DAI=2)。如圖19B中所示,根據第二替代方案(ALT 2),可以按照逐區塊頻率優先、時間其次的方式來(遞增地)指派DAI(例如,CC1的時槽2n中,DAI=0;隨後針對CC2的時槽m中,DAI=1;隨後返回到CC1,對於時槽2n+1,DAI=2)。在一些情況下,第二替代方式(ALT 2)可以是較佳的,因為gNB在其正在排程時槽2n和時槽m時,不必預測時槽2n+1要被排程的位置。
在一些情況下,UE亦可能提供關於其正在傳輸的ACK/NAK位元的數量的回饋,此舉可以有助於使得UE和eNB之間關於ACK/NAK有效負荷大小的潛在未對準最小化。在此種情況下,gNB可以首先解碼關於UE正在傳輸的ACK/NAK位元的數量的資訊,並且基於該資訊來處理實際的ACK/NAK有效負荷。
本文所揭示的方法包括用於實現所描述的方法的一或多個步驟或動作。在不脫離請求項的範疇的情況下,該等方法步驟及/或動作可以彼此互換。換言之,除非指定了步驟或動作的特定次序,否則在不脫離請求項的範疇的情況下,可以對特定步驟及/或動作的次序及/或使用進行修改。
如本文所使用的,提及項目列表「中的至少一個」的短語代表彼等項目的任意組合,包括單個成員。舉例而言,「a、b或c中的至少一個」意欲涵蓋a、b、c、a-b、a-c、b-c和a-b-c,以及與相同元素的倍數的任意組合(例如,a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c和c-c-c或者a、b和c的任何其他排序)。
如本文所使用的,術語「決定」包含多種多樣的動作。例如,「決定」可以包括計算、運算、處理、推導、調查、檢視(例如,在表、資料庫或另一資料結構中檢視)、查明等等。此外,「決定」可以包括接收(例如,接收資訊)、存取(例如,存取記憶體中的資料)等等。此外,「決定」可以包括解析、選定、選擇、建立等等。
提供前面的描述以使任何熟習此項技術者能夠實施本文描述的各個態樣。對該等態樣的各種修改對於熟習此項技術者而言將是顯而易見的,以及本文所定義的整體原理可以應用到其他態樣。因此,請求項並不意欲限於本文所展示的態樣,而是被賦予與文字請求項相一致的全部範疇,其中除非特別聲明如此,否則對單數形式的元素的提及不意欲意指「一個且僅僅一個」,而是「一或多個」。除非另有特別聲明,否則術語「一些」代表一或多個。貫穿本案內容描述的各個態樣的元素的所有結構和功能均等物以引用方式明確地併入本文中,以及意欲由請求項來包含,該等結構和功能均等物對於一般技術者而言是已知的或者將要已知的。此外,本文中沒有任何所揭示的內容是想要奉獻給公眾的,不管此種揭示內容是否明確記載在請求項中。沒有請求項元素要根據專利法施行細則第18條第8項的規定來解釋,除非該元素是明確地使用短語「用於……的構件」來記載的,或者在方法請求項的情況下,該元素是使用短語「用於……的步驟」來記載的。
上文所描述的方法的各種操作可以由能夠執行相應功能的任何適當的構件來執行。該等構件可以包括各種硬體及/或軟體元件及/或模組,包括但不限於:電路、特殊應用積體電路(ASIC)或處理器。通常,在存在圖中所圖示的操作的情況下,彼等操作可以具有帶有類似編號的相應的配對構件加功能元件。
例如,用於傳輸的構件及/或用於接收的構件可以包括以下各項中的一項或多項:基地站110的傳輸處理器420、TX MIMO處理器430、接收處理器438或天線434,及/或使用者設備120的傳輸處理器464、TX MIMO處理器466、接收處理器458或天線452。另外,用於產生的構件、用於多工的構件及/或用於應用的構件可以包括一或多個處理器,例如,基地站110的控制器/處理器440及/或使用者設備120的控制器/處理器480。
結合本案內容所描述的各種說明性的邏輯區塊、模組和電路可以利用被設計成執行本文所描述的功能的通用處理器、數位信號處理器(DSP)、特殊應用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)或其他可程式設計邏輯設備(PLD)、個別閘門或電晶體邏輯、個別硬體元件,或者其任意組合來實現或執行。通用處理器可以是微處理器,但是在替代方案中,處理器可以是任何商業上可獲得的處理器、控制器、微控制器或狀態機。處理器亦可以實現為計算設備的組合,例如,DSP與微處理器的組合、複數個微處理器、一或多個微處理器結合DSP核,或者任何其他此種配置。
若用硬體來實現,則示例性硬體配置可以包括無線節點中的處理系統。處理系統可以利用匯流排架構來實現。根據處理系統的特定應用和整體設計約束,匯流排可以包括任意數量的互連匯流排和橋接。匯流排可以將包括處理器、機器可讀取媒體和匯流排介面的各種電路連接在一起。除此之外,匯流排介面亦可以用於將網路配接器經由匯流排連接至處理系統。網路配接器可以用於實現PHY層的信號處理功能。在使用者終端120(參見圖1)的情況下,使用者介面(例如,小鍵盤、顯示器、滑鼠、操縱桿等)亦可以連接至匯流排。匯流排亦可以連接諸如定時源、周邊設備、電壓調節器、功率管理電路等的各種其他電路,該等電路在本領域中是公知的,並且因此將不再進一步描述。處理器可以利用一或多個通用及/或專用處理器來實現。實例係包括微處理器、微控制器、DSP處理器和可以執行軟體的其他電路系統。熟習此項技術者將認識到,如何根據特定的應用和施加在整體系統上的整體設計約束,來最佳地實現針對處理系統所描述的功能。
若用軟體來實現,則該等功能可以作為一或多個指令或代碼儲存在電腦可讀取媒體上或經由其進行傳輸。無論是被稱為軟體、韌體、中間軟體、微代碼、硬體描述語言還是其他術語,軟體皆應當被廣義地解釋為意指指令、資料或其任意組合。電腦可讀取媒體包括電腦儲存媒體和通訊媒體兩者,通訊媒體包括促進將電腦程式從一個地方傳送到另一個地方的任何媒體。處理器可以負責管理匯流排和通用處理,其包括執行在機器可讀取儲存媒體上儲存的軟體模組。電腦可讀取儲存媒體可以耦合到處理器,以使得處理器可以從該儲存媒體讀取資訊以及向該儲存媒體寫入資訊。在替代方案中,儲存媒體可以是處理器的組成部分。舉例而言,機器可讀取媒體可以包括傳輸線、由資料調制的載波,及/或與無線節點分開的其上儲存有指令的電腦可讀取儲存媒體,所有該等項可以由處理器經由匯流排介面來存取。替代地或此外,機器可讀取媒體或其任何部分可以整合到處理器中,例如,該情況可以是快取記憶體及/或通用暫存器檔案。舉例而言,機器可讀取儲存媒體的實例可以包括RAM(隨機存取記憶體)、快閃記憶體、ROM(唯讀記憶體)、PROM(可程式設計唯讀記憶體)、EPROM(可抹除可程式設計唯讀記憶體)、EEPROM(電子可抹除可程式設計唯讀記憶體)、暫存器、磁碟、光碟、硬驅動器,或任何其他適當的儲存媒體,或其任意組合。機器可讀取媒體可以體現在電腦程式產品中。
軟體模組可以包括單個指令或許多指令,並且可以分佈在若干不同的程式碼片段上,分佈在不同的程式之中以及跨越多個儲存媒體而分佈。電腦可讀取媒體可以包括多個軟體模組。軟體模組包括指令,該等指令在由諸如處理器之類的裝置執行時使得處理系統執行各種功能。軟體模組可以包括傳輸模組和接收模組。每個軟體模組可以位於單個儲存設備中或跨越多個儲存設備而分佈。舉例而言,當觸發事件發生時,可以將軟體模組從硬驅動器載入到RAM中。在軟體模組的執行期間,處理器可以將指令中的一些指令載入到快取記憶體中以增加存取速度。隨後可以將一或多個快取列載入到通用暫存器檔案中以便由處理器執行。將理解的是,當在下文提及軟體模組的功能時,此種功能由處理器在執行來自該軟體模組的指令時實現。
此外,任何連接被適當地稱為電腦可讀取媒體。例如,若使用同軸電纜、光纖光纜、雙絞線、數位用戶線路(DSL)或者無線技術(例如,紅外線(IR)、無線電和微波)從網站、伺服器或其他遠端源傳輸軟體,則同軸電纜、光纖光纜、雙絞線、DSL或者無線技術(例如,紅外線、無線電和微波)被包括在媒體的定義中。如本文所使用的,磁碟(disk)和光碟(disc)包括壓縮光碟(CD)、鐳射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光®光碟,其中磁碟通常磁性地複製資料,而光碟則用鐳射來光學地複製資料。因此,在一些態樣中,電腦可讀取媒體可以包括非暫時性電腦可讀取媒體(例如,有形媒體)。此外,對於其他態樣而言,電腦可讀取媒體可以包括暫時性電腦可讀取媒體(例如,信號)。上文的組合亦應當包括在電腦可讀取媒體的範疇之內。
因此,某些態樣可以包括一種用於執行本文提供的操作的電腦程式產品。例如,此種電腦程式產品可以包括具有儲存(及/或編碼)在其上的指令的電腦可讀取媒體,該等指令可由一或多個處理器執行以執行本文所描述的操作。
此外,應當明白的是,用於執行本文所描述的方法和技術的模組及/或其他適當的構件可以由使用者終端及/或基地站在適用的情況下進行下載及/或以其他方式獲得。例如,此種設備可以耦合至伺服器,以便促進傳送用於執行本文所描述的方法的構件。或者,本文所描述的各種方法可以經由儲存構件(例如,RAM、ROM、諸如壓縮光碟(CD)或軟碟之類的實體儲存媒體等)來提供,以使得使用者終端及/或基地站在將儲存構件耦合至或提供給該設備之後,可以獲取各種方法。此外,可以使用用於向設備提供本文所描述的方法和技術的任何其他適當的技術。
應當理解的是,請求項並不限於上文說明的精確配置和元件。在不脫離請求項的範疇的情況下,可以在上文所描述的方法和裝置的佈置、操作和細節態樣進行各種修改、改變和變化。
100‧‧‧無線網路
102a‧‧‧巨集細胞
102b‧‧‧巨集細胞
102c‧‧‧巨集細胞
102x‧‧‧微微細胞
102y‧‧‧毫微微細胞
102z‧‧‧毫微微細胞
110‧‧‧BS
110a‧‧‧BS
110b‧‧‧BS
110c‧‧‧BS
110r‧‧‧中繼站
110x‧‧‧BS
110y‧‧‧BS
110z‧‧‧BS
120‧‧‧UE
120r‧‧‧UE
120x‧‧‧UE
120y‧‧‧UE
130‧‧‧網路控制器
200‧‧‧分散式無線電存取網路(RAN)
202‧‧‧存取節點控制器(ANC)
204‧‧‧下一代核心網路(NG-CN)
206‧‧‧5G存取節點
208‧‧‧TRP
210‧‧‧下一代AN(NG-AN)
300‧‧‧分散式RAN
302‧‧‧集中式核心網路單元(C-CU)
304‧‧‧集中式RAN單元(C-RU)
306‧‧‧DU
412‧‧‧資料來源
420‧‧‧處理器
430‧‧‧傳輸(TX)多輸入多輸出(MIMO)處理器
432a‧‧‧調制器/解調器
432t‧‧‧調制器/解調器
434a‧‧‧天線
434t‧‧‧天線
436‧‧‧MIMO偵測器
438‧‧‧接收處理器
439‧‧‧資料槽
440‧‧‧控制器/處理器
442‧‧‧記憶體
444‧‧‧排程器
452a‧‧‧天線
452r‧‧‧天線
454a‧‧‧解調器/調制器
454r‧‧‧解調器/調制器
456‧‧‧MIMO偵測器
458‧‧‧接收處理器
460‧‧‧資料槽
462‧‧‧資料來源
464‧‧‧傳輸處理器
466‧‧‧TX MIMO處理器
480‧‧‧控制器/處理器
482‧‧‧記憶體
500‧‧‧圖
505-a‧‧‧第一選項
505-b‧‧‧第二選項
510‧‧‧RRC層
515‧‧‧PDCP層
520‧‧‧RLC層
525‧‧‧MAC層
530‧‧‧PHY層
600‧‧‧圖
602‧‧‧控制部分
604‧‧‧DL資料部分
606‧‧‧共用UL部分
700‧‧‧圖
702‧‧‧控制部分
704‧‧‧UL資料部分
706‧‧‧共用UL部分
1500‧‧‧操作
1502‧‧‧步驟
1504‧‧‧步驟
1600‧‧‧操作
1602‧‧‧步驟
1604‧‧‧步驟
為了可以詳細地理解本案內容的上述特徵,可以經由參照各態樣來獲得更加具體的描述(上文簡要概述的),其中一些態樣在附圖中圖示。然而,要注意的是,附圖僅圖示本案內容的某些典型的態樣並且因此不被認為限制其範疇,因為該描述可以容許其他同等有效的態樣。
圖1是概念性地圖示根據本案內容的某些態樣的示例性電信系統的方塊圖。
圖2是圖示根據本案內容的某些態樣的分散式RAN的示例性邏輯架構的方塊圖。
圖3是圖示根據本案內容的某些態樣的分散式RAN的示例性實體架構的圖。
圖4是概念性地圖示根據本案內容的某些態樣的示例性BS和使用者設備(UE)的設計的方塊圖。
圖5是圖示根據本案內容的某些態樣的用於實現通訊協定堆疊的實例的圖。
圖6圖示根據本案內容的某些態樣的以下行鏈路為中心(以DL為中心)的子訊框的實例。
圖7圖示根據本案內容的某些態樣的以上行鏈路為中心(以UL為中心)的子訊框的實例。
圖8和圖9圖示根據本案內容的各態樣的具有不同數值方案的分量載波(CC)的實例。
圖10圖示根據本案內容的各態樣的、用於上行鏈路控制資訊(UCI)時序的時序的實例。
圖11A和圖11B圖示根據本案內容的各態樣的時槽聚合的實例。
圖12圖示根據本案內容的各態樣的自排程的實例。
圖13A、圖13B和圖13C圖示根據本案內容的各態樣的跨載波排程的實例。
圖14A和圖14B圖示根據本案內容的各態樣的群組共用實體下行鏈路控制通道(PDCCH)的實例。
圖15圖示根據本案內容的某些態樣的用於由基地站(BS)進行的無線通訊的示例性操作。
圖16圖示根據本案內容的某些態樣的用於由使用者設備(UE)進行的無線通訊的示例性操作。
圖17和圖18圖示根據本案內容的各態樣的UCI回饋處理的實例。
圖19A和圖19B圖示根據本案內容的各態樣的下行鏈路指派索引(DAI)管理的實例。
為了促進理解,在可能的情況下,已經使用相同的元件符號來指定對於附圖而言是共同的相同元素。預期的是,在一個態樣中揭示的元素可以有益地用在其他態樣上,而不需要具體的記載。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無

Claims (36)

  1. 一種用於由一網路實體進行的無線通訊的方法,包括以下步驟: 經由具有一第一數值方案的一第一分量載波(CC),來將一使用者設備(UE)排程用於該第一CC中的至少一個下行鏈路傳輸和一第二CC中的至少一個下行鏈路傳輸;及在該第一CC或該第二CC中的一項中從該UE接收上行鏈路控制資訊(UCI),該UCI攜帶針對該第一CC和該第二CC兩者中的下行鏈路傳輸的回饋。
  2. 根據請求項1之方法,其中: 該第一數值方案由一第一次載波間隔和一第一傳輸時間間隔(TTI)定義;及該第二數值方案由一第二次載波間隔和一第二傳輸時間間隔(TTI)定義。
  3. 根據請求項1之方法,其中: 該第一數值方案具有大於該第二數值方案的一傳輸時間間隔(TTI)的一TTI;及該UCI是在該第二CC上的複數個PUCCH傳輸中提供的。
  4. 根據請求項1之方法,其中: 該第一數值方案具有大於該第二數值方案的一傳輸時間間隔(TTI)的一TTI;及該UCI是僅在該第二CC中的時槽的一子集中可獲得的。
  5. 根據請求項4之方法,其中該UCI是在一時槽附隨的一最後一個時槽中可獲得的。
  6. 根據請求項1之方法,其中: 該第一數值方案具有小於該第二數值方案的一傳輸時間間隔(TTI)的一TTI;及該UCI是在該第二CC上的包含針對複數個下行鏈路傳輸的UCI的一PUCCH中提供的。
  7. 根據請求項6之方法,其中該UCI包括以下各項中的至少一項: 針對該等下行鏈路傳輸單獨地報告的認可資訊;或者在多個時槽上被附隨為每個傳輸塊的一單個認可或否定認可的認可資訊。
  8. 根據請求項6之方法,其中在該第一CC或該第二CC中的至少一項上支援的混合認可重傳請求(HARQ)過程的一數量取決於該第一CC或該第二CC中的何者項用於HARQ回饋。
  9. 根據請求項1之方法,亦包括以下步驟:提供用於每個下行鏈路傳輸的一下行鏈路指派索引(DAI)。
  10. 根據請求項9之方法,其中DAI是以一時間優先、頻率其次的方式被指派給每個下行鏈路傳輸的。
  11. 根據請求項9之方法,其中DAI是以一頻率優先、時間其次的方式被指派給每個下行鏈路傳輸的。
  12. 一種用於由一使用者設備(UE)進行的無線通訊的方法,包括以下步驟: 經由具有一第一數值方案的一第一分量載波(CC),來接收針對該第一CC中的至少一個下行鏈路傳輸和一第二CC中的至少一個下行鏈路傳輸的排程;及在該第一CC或該第二CC中的一項中傳輸上行鏈路控制資訊(UCI),該UCI攜帶針對該第一CC和該第二CC兩者中的下行鏈路傳輸的回饋。
  13. 根據請求項12之方法,其中: 該第一數值方案由一第一次載波間隔和一第一傳輸時間間隔(TTI)定義;及該第二數值方案由一第二次載波間隔和一第二傳輸時間間隔(TTI)定義。
  14. 根據請求項12之方法,其中: 該第一數值方案具有大於該第二數值方案的一傳輸時間間隔(TTI)的一TTI;及該UCI是在該第二CC上的複數個PUCCH傳輸中提供的。
  15. 根據請求項12之方法,其中: 該第一數值方案具有大於該第二數值方案的一傳輸時間間隔(TTI)的一TTI;及該UCI是僅在該第二CC中的時槽的一子集中可獲得的。
  16. 根據請求項15之方法,其中該UCI是在一時槽附隨的一最後一個時槽中可獲得的。
  17. 根據請求項12之方法,其中: 該第一數值方案具有小於該第二數值方案的一傳輸時間間隔(TTI)的一TTI;及該UCI是在該第二CC上的包含針對複數個下行鏈路傳輸的UCI的一PUCCH中提供的。
  18. 根據請求項17之方法,其中該UCI包括以下各項中的至少一項: 針對該等下行鏈路傳輸單獨地報告的認可資訊;或者在多個時槽上被附隨為每個傳輸塊的一單個認可或否定認可的認可資訊。
  19. 根據請求項17之方法,其中在該第一CC或該第二CC中的至少一項上支援的混合認可重傳請求(HARQ)過程的一數量取決於該第一CC或該第二CC中的何者項用於HARQ回饋。
  20. 根據請求項12之方法,亦包括以下步驟:接收用於每個下行鏈路傳輸的一下行鏈路指派索引(DAI)。
  21. 一種用於由一網路實體進行的無線通訊的方法,包括以下步驟: 產生關於在具有一第一數值方案的一第一分量載波(CC)中使用的一第一時槽格式以及在具有一第二數值方案的一第二CC中使用的一第二時槽格式的資訊;及經由該第一CC中的一實體通道傳輸,來將該資訊提供給一或多個使用者設備(UE)。
  22. 根據請求項21之方法,其中: 針對該第一時槽格式和該第二時槽格式中的每種時槽格式,該資訊包括以下各項中的至少一項:一時槽的一長度、在該時槽中可用於下行鏈路傳輸的符號,或可用於上行鏈路傳輸的符號。
  23. 根據請求項21之方法,其中: 該第一數值方案具有小於該第二數值方案的一傳輸時間間隔(TTI)的一TTI;及該資訊是在該第一CC上的複數個實體通道傳輸中提供的。
  24. 根據請求項21之方法,其中: 該第一數值方案具有大於該第二數值方案的一傳輸時間間隔(TTI)的一TTI;及該實體通道傳輸提供關於用於該第二CC上的至少兩個時槽的一時槽格式的資訊。
  25. 一種用於由一使用者設備(UE)進行的無線通訊的方法,包括以下步驟: 經由具有一第一數值方案的一第一分量載波(CC)中的一實體通道傳輸,來接收關於在該第一CC中使用的一第一時槽格式和在具有一第二數值方案的一第二CC中使用的一第二時槽格式的資訊;及根據該資訊來與該基地站進行通訊。
  26. 根據請求項25之方法,其中: 針對該第一時槽格式和該第二時槽格式中的每種時槽格式,該資訊包括以下各項中的至少一項:一時槽的一長度、在該時槽中可用於下行鏈路傳輸的符號,或可用於上行鏈路傳輸的符號。
  27. 根據請求項25之方法,其中: 該第一數值方案具有小於該第二數值方案的一傳輸時間間隔(TTI)的一TTI;及該資訊是在該第一CC上的複數個實體通道傳輸中提供的。
  28. 根據請求項25之方法,其中: 該第一數值方案具有大於該第二數值方案的一傳輸時間間隔(TTI)的一TTI;及該實體通道傳輸提供關於用於該第二CC上的至少兩個時槽的一時槽格式的資訊。
  29. 一種用於由一網路實體進行的無線通訊的方法,包括以下步驟: 經由具有一第一數值方案的一第一分量載波(CC)來傳輸一單個下行鏈路控制資訊(DCI),以將一使用者設備(UE)排程用於一第二CC中的至少兩個傳輸;及根據由該DCI排程的該等傳輸來與該UE進行通訊。
  30. 根據請求項29之方法,其中該DCI排程該第二CC中的至少兩個實體下行鏈路共享通道(PDSCH)傳輸。
  31. 一種用於由一使用者設備(UE)進行的無線通訊的方法,包括以下步驟: 經由具有一第一數值方案的一第一分量載波(CC)來從一基地站接收一單個下行鏈路控制資訊(DCI),該DCI將該UE排程用於一第二CC中的至少兩個傳輸;及根據由該DCI排程的該等傳輸來與該基地站進行通訊。
  32. 根據請求項31之方法,其中該DCI排程該第二CC中的至少兩個實體下行鏈路共享通道(PDSCH)傳輸。
  33. 一種用於由一網路實體進行的無線通訊的方法,包括以下步驟: 經由具有一第一數值方案的一第一分量載波(CC),來傳輸至少兩個下行鏈路控制資訊(DCI),其中每個DCI將一使用者設備(UE)排程用於一第二CC的一不同時槽中的一傳輸,以及每個DCI包括用於指示該第二CC上的在其中其排程一傳輸的該不同時槽的一時槽指示符;及根據由該至少兩個DCI排程的該等傳輸來與該UE進行通訊。
  34. 根據請求項33之方法,其中每個DCI排程該第二CC的一不同時槽中的一實體下行鏈路共享通道(PDSCH)或一實體上行鏈路共享通道(PUSCH)傳輸。
  35. 一種用於由一使用者設備(UE)進行的無線通訊的方法,包括以下步驟: 經由具有一第一數值方案的一第一分量載波(CC)來接收至少兩個下行鏈路控制資訊(DCI),其中每個DCI將該UE排程用於一第二CC的一不同時槽中的一傳輸,以及每個DCI包括用於指示該第二CC上的在其中其排程一傳輸的該不同時槽的一時槽指示符;及根據由該至少兩個DCI排程的該等傳輸來與該基地站進行通訊。
  36. 根據請求項35之方法,其中每個DCI排程該第二CC的一不同時槽中的一實體下行鏈路共享通道(PDSCH)或一實體上行鏈路共享通道(PUSCH)傳輸。
TW107128154A 2017-08-11 2018-08-13 用於混合數值方案的載波聚合(ca)的方法 TWI756461B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762544689P 2017-08-11 2017-08-11
US62/544,689 2017-08-11
US16/101,255 2018-08-10
US16/101,255 US11032036B2 (en) 2017-08-11 2018-08-10 Carrier aggregation (CA) of mixed numerologies

Publications (2)

Publication Number Publication Date
TW201921981A true TW201921981A (zh) 2019-06-01
TWI756461B TWI756461B (zh) 2022-03-01

Family

ID=63405464

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107128154A TWI756461B (zh) 2017-08-11 2018-08-13 用於混合數值方案的載波聚合(ca)的方法

Country Status (5)

Country Link
US (1) US11032036B2 (zh)
EP (1) EP3665839B1 (zh)
CN (1) CN110999174B (zh)
TW (1) TWI756461B (zh)
WO (1) WO2019033085A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10524266B2 (en) 2017-10-20 2019-12-31 Google Llc Switching transmission technologies within a spectrum based on network load
US20190173626A1 (en) * 2017-12-05 2019-06-06 Google Llc Inter-Radio Access Technology Carrier Aggregation
US11006413B2 (en) 2017-12-06 2021-05-11 Google Llc Narrow-band communication
US10779303B2 (en) 2017-12-12 2020-09-15 Google Llc Inter-radio access technology carrier aggregation
US10608721B2 (en) 2017-12-14 2020-03-31 Google Llc Opportunistic beamforming
EP3676972B1 (en) 2017-12-15 2022-02-09 Google LLC Satellite-based narrow-band communication
US10868654B2 (en) 2017-12-15 2020-12-15 Google Llc Customizing transmission of a system information message
US11246143B2 (en) 2017-12-15 2022-02-08 Google Llc Beamforming enhancement via strategic resource utilization
US10375671B2 (en) 2017-12-22 2019-08-06 Google Llc Paging with enhanced beamforming
US11251847B2 (en) 2018-03-28 2022-02-15 Google Llc User device beamforming
US11233548B2 (en) 2018-09-10 2022-01-25 Google Llc Fast beam tracking
US11800452B2 (en) 2019-11-04 2023-10-24 Qualcomm Incorporated Simultaneous power saving behavior update across multiple frequency resource sets
GB2588811B (en) * 2019-11-08 2022-07-06 Vodafone Ip Licensing Ltd Methods and systems for exchanging periodic data in a mobile telecommunications network
US11611985B2 (en) * 2020-03-18 2023-03-21 Qualcomm Incorporated Grant of resources for downlink and uplink communication via one or more relay user equipment
CN113541879B (zh) * 2020-04-16 2022-09-02 维沃移动通信有限公司 信息传输方法及设备
EP4221390A4 (en) * 2020-10-12 2023-10-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. RESOURCE SCHEDULING METHOD, TERMINAL DEVICE AND NETWORK DEVICE

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101720122B (zh) * 2009-12-28 2015-05-20 中兴通讯股份有限公司 一种物理上行控制信道的功率控制方法及基站和终端
CN101820672B (zh) * 2010-03-26 2015-04-01 中兴通讯股份有限公司 物理上行控制信道的功率控制方法和装置
US8982743B2 (en) * 2010-05-14 2015-03-17 Qualcomm Incorporated DAI designs for FDD carrier aggregation
CA2809663A1 (en) * 2010-06-18 2011-12-22 Research In Motion Limited System and method for uplink control information transmission in carrier aggregation
US9112692B2 (en) * 2010-08-16 2015-08-18 Qualcomm Incorporated ACK/NACK transmission for multi-carrier operation
US9674855B2 (en) * 2012-03-29 2017-06-06 Qualcomm Incorporated H-ARQ timing determination under cross-carrier scheduling in LTE
US10420094B2 (en) * 2013-01-17 2019-09-17 Qualcomm Incorporated Methods and system for resource management in TTI (transmission time interval) bundling for improved phase continuity
KR101566943B1 (ko) * 2013-03-28 2015-11-06 주식회사 케이티 복수의 서빙 셀에서 상향 링크 제어 정보의 전송을 제어하는 방법 및 그 장치
KR101615803B1 (ko) * 2013-07-25 2016-04-26 주식회사 케이티 캐리어 병합을 제어 및 설정하는 방법과 그 장치
WO2015060631A1 (ko) * 2013-10-25 2015-04-30 주식회사 케이티 하향링크 제어정보 송수신 방법 및 장치
WO2016047975A1 (ko) * 2014-09-24 2016-03-31 엘지전자 주식회사 비면허 대역의 센싱을 위한 방법 및 이를 위한 장치
JP6592448B2 (ja) * 2014-10-17 2019-10-16 シャープ株式会社 端末装置、通信方法、および、集積回路
EP3070870B1 (en) * 2015-03-18 2018-02-21 Panasonic Intellectual Property Corporation of America Improved HARQ feedback mechanism for carrier aggregation beyond 5 carriers
EP3281464A4 (en) * 2015-04-09 2018-12-05 Nokia Technologies Oy Dynamic codebook adaptation for enhanced carrier aggregation
WO2016162090A1 (en) * 2015-04-10 2016-10-13 Nokia Solutions And Networks Oy Enhanced carrier aggregation in communications
US9949169B2 (en) * 2015-05-22 2018-04-17 Qualcomm Incorporated Control flow enhancements for LTE-unlicensed
TWI720052B (zh) * 2015-11-10 2021-03-01 美商Idac控股公司 無線傳輸/接收單元和無線通訊方法
WO2017197125A1 (en) * 2016-05-11 2017-11-16 Convida Wireless, Llc New radio downlink control channel
CN110431770B (zh) * 2017-05-03 2021-09-10 Lg电子株式会社 在无线通信系统中发送或接收信号的方法和用于其的设备
CN109152024B (zh) * 2017-06-16 2023-06-23 华为技术有限公司 一种指示方法、处理方法及装置
US10660091B2 (en) * 2017-08-10 2020-05-19 Asustek Computer Inc. Method and apparatus for handling SFI (slot format information) collision in a wireless communication system

Also Published As

Publication number Publication date
CN110999174B (zh) 2022-05-13
WO2019033085A1 (en) 2019-02-14
US11032036B2 (en) 2021-06-08
TWI756461B (zh) 2022-03-01
CN110999174A (zh) 2020-04-10
EP3665839A1 (en) 2020-06-17
EP3665839B1 (en) 2023-02-22
US20190052419A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
TWI756461B (zh) 用於混合數值方案的載波聚合(ca)的方法
US11804927B2 (en) Feedback mode indication for coordinated transmission
TWI805689B (zh) 上行鏈路和下行鏈路搶佔指示
US20190349917A1 (en) Uplink control information multiplexing on physical uplink shared channels in new radio
TW201840157A (zh) 組共用pdcch中的時槽格式指示符(sfi)和時槽聚合水平指示以及sfi衝突處理
TW201838369A (zh) 用於單載波波形的控制資源集合
TWI805718B (zh) 針對超可靠低潛時通訊(urllc)的提高的實體下行鏈路控制通道(pdcch)可靠性
TW201931906A (zh) 用於具有不同的數位方案的上行鏈路的時序提前粒度
TW201933932A (zh) 用於時槽聚合的信號傳遞
TW201921879A (zh) 用於實體上行鏈路共享通道(pusch)上的上行鏈路控制資訊(uci)馱載的資源(re)映射規則
TW201921866A (zh) 用於載波聚合中的srs天線切換的方法和裝置
TWI745545B (zh) 用於無線通訊的方法和裝置
US11632686B2 (en) Collision handling for CSI reporting on PUSCH
CN111615806A (zh) 用于超可靠低等待时间通信(urllc)的物理下行链路控制信道(pdcch)重复和解码
TW201832524A (zh) 對於實體上行鏈路控制通道(pucch)的資源分配
TW201941560A (zh) 針對超可靠度低延遲通訊(urllc)的頻寬部分(bwp)管理上的考量
US20200029317A1 (en) Multi-carrier scheduling and search space activation
TWI816894B (zh) 對處理的下行鏈路控制資訊(dci)的數量的限制
TW201914351A (zh) 用於多種無線電存取技術的緩衝器管理
TW201843973A (zh) 經由不同模式中的dmrs/pbch的時序指示
JP2021505059A (ja) 物理アップリンク制御チャネル(pucch)リソース割振り
JP2021511742A (ja) アップリンク電力制御構成
TW201909676A (zh) 在新無線電中將解調參考信號和同步信號進行多工處理
JP2021505061A (ja) 物理アップリンク共有チャネル(pusch)上のアップリンク制御情報(uci)とデータの多重化のためのリソース割振り
JP2020537407A (ja) キャリア依存ランダムアクセスチャネル(rach)応答探索空間