TWI736491B - Low-noise power supply device - Google Patents
Low-noise power supply device Download PDFInfo
- Publication number
- TWI736491B TWI736491B TW109144656A TW109144656A TWI736491B TW I736491 B TWI736491 B TW I736491B TW 109144656 A TW109144656 A TW 109144656A TW 109144656 A TW109144656 A TW 109144656A TW I736491 B TWI736491 B TW I736491B
- Authority
- TW
- Taiwan
- Prior art keywords
- coupled
- potential
- node
- terminal
- output
- Prior art date
Links
Images
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
本發明係關於一種電源供應器,特別係關於一種低噪音之電源供應器。The present invention relates to a power supply, and particularly relates to a low-noise power supply.
隨著電腦科技之演進,電源供應器之所需功率將越來越大。然而,傳統電源供應器之風扇卻常常有噪音過大之問題。有鑑於此,勢必要提出一種全新之解決方案,以克服先前技術所面臨之困境。With the evolution of computer technology, the power required by the power supply will become larger and larger. However, the fan of the traditional power supply often has the problem of excessive noise. In view of this, it is necessary to propose a new solution to overcome the difficulties faced by the previous technology.
在較佳實施例中,本發明提出一種低噪音之電源供應器,包括:一橋式整流器,根據一第一輸入電位和一第二輸入電位來產生一整流電位;一升壓電感器,接收該整流電位,其中一第一電流係流過該升壓電感器;一直流轉換器,耦接至該升壓電感器,並產生一直流電位;一功率切換電路,根據該直流電位來產生一切換電位;一變壓器,包括一主線圈、一第一副線圈,以及一第二副線圈,其中該主線圈係用於接收該切換電位,該變壓器內建一激磁電感器,而一第二電流係流過該激磁電感器;一輸出級電路,耦接至該第一副線圈和該第二副線圈,並產生一輸出電位和一輸出電流;一回授電路,根據該輸出電流來產生一供應電位; 一偵測及控制電路,偵測該第一電流和該第二電流,並根據該第一電流和該第二電流來產生一控制脈衝寬度調變電位;以及一風扇元件;其中該風扇元件係由該供應電位來進行供電,而該風扇元件之轉速係根據該控制脈衝寬度調變電位之責任週期而決定。In a preferred embodiment, the present invention provides a low-noise power supply, including: a bridge rectifier that generates a rectified potential based on a first input potential and a second input potential; and a boost inductor that receives the A rectified potential, in which a first current flows through the boost inductor; a DC converter, coupled to the boost inductor, and generates a DC potential; a power switching circuit, which generates a switching according to the DC potential Potential; a transformer, including a main coil, a first auxiliary coil, and a second auxiliary coil, wherein the main coil is used to receive the switching potential, the transformer built-in an excitation inductor, and a second current system Flows through the magnetizing inductor; an output stage circuit, coupled to the first auxiliary coil and the second auxiliary coil, and generates an output potential and an output current; a feedback circuit generates a supply according to the output current Potential; a detection and control circuit that detects the first current and the second current, and generates a control pulse width modulation potential based on the first current and the second current; and a fan element; wherein the The fan element is powered by the supply potential, and the rotation speed of the fan element is determined according to the duty cycle of the control pulse width modulation potential.
為讓本發明之目的、特徵和優點能更明顯易懂,下文特舉出本發明之具體實施例,並配合所附圖式,作詳細說明如下。In order to make the purpose, features and advantages of the present invention more comprehensible, specific embodiments of the present invention are listed below, with the accompanying drawings, and detailed descriptions are as follows.
在說明書及申請專利範圍當中使用了某些詞彙來指稱特定的元件。本領域技術人員應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。本說明書及申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及申請專利範圍當中所提及的「包含」及「包括」一詞為開放式的用語,故應解釋成「包含但不僅限定於」。「大致」一詞則是指在可接受的誤差範圍內,本領域技術人員能夠在一定誤差範圍內解決所述技術問題,達到所述基本之技術效果。此外,「耦接」一詞在本說明書中包含任何直接及間接的電性連接手段。因此,若文中描述一第一裝置耦接至一第二裝置,則代表該第一裝置可直接電性連接至該第二裝置,或經由其它裝置或連接手段而間接地電性連接至該第二裝置。Certain vocabulary is used to refer to specific elements in the specification and the scope of the patent application. Those skilled in the art should understand that hardware manufacturers may use different terms to refer to the same component. This specification and the scope of the patent application do not use differences in names as a way to distinguish elements, but use differences in functions of elements as a criterion for distinguishing. The terms "including" and "including" mentioned in the entire specification and the scope of the patent application are open-ended terms and should be interpreted as "including but not limited to". The term "approximately" means that within an acceptable error range, those skilled in the art can solve the technical problem within a certain error range and achieve the basic technical effect. In addition, the term "coupling" includes any direct and indirect electrical connection means in this specification. Therefore, if it is described in the text that a first device is coupled to a second device, it means that the first device can be directly electrically connected to the second device, or indirectly electrically connected to the second device through other devices or connection means. Two devices.
第1圖係顯示根據本發明一實施例所述之電源供應器100之示意圖。例如,電源供應器100可應用於桌上型電腦、筆記型電腦,或一體成形電腦。如第1圖所示,電源供應器100包括:一橋式整流器110、一升壓電感器LU、一直流轉換器120、一功率切換電路130、一變壓器140、一輸出級電路150、一回授電路160、一偵測及控制電路170,以及一風扇元件180。必須注意的是,雖然未顯示於第1圖中,但電源供應器100更可包括其他元件,例如:一穩壓器或(且)一負回授電路。FIG. 1 is a schematic diagram of a
橋式整流器110可根據一第一輸入電位VIN1和一第二輸入電位VIN2來產生一整流電位VR。第一輸入電位VIN1和第二輸入電位VIN2皆可來自一外部輸入電源,其中第一輸入電位VIN1和第二輸入電位VIN2之間可形成具有任意頻率和任意振幅之一交流電壓。例如,交流電壓之頻率可約為50Hz或60Hz,而交流電壓之方均根值可由90V至264V,但亦不僅限於此。升壓電感器LU可接收整流電位VR,其中一第一電流I1可流過升壓電感器LU。直流轉換器120係耦接至升壓電感器LU,並可產生一直流電位VE。功率切換電路130可根據直流電位VE來產生一切換電位VW。變壓器140包括一主線圈141、一第一副線圈142,以及一第二副線圈143,其中變壓器140內建一激磁電感器LM。主線圈141和激磁電感器LM皆可位於變壓器140之同一側,而第一副線圈142和第二副線圈143皆可位於變壓器140之相對另一側。主線圈141可接收切換電位VW,其中一第二電流I2可流過激磁電感器LM。輸出級電路150係耦接至第一副線圈142和第二副線圈143,並可產生一輸出電位VOUT和一輸出電流IOUT。例如,輸出電位VOUT可大致為一直流電位,其位準可約為19V,但亦不僅限於此。回授電路160可根據輸出電流IOUT來產生一供應電位VS。偵測及控制電路170可偵測第一電流I1和第二電流I2,並可根據第一電流I1和第二電流I2來產生一控制脈衝寬度調變電位VMC。風扇元件180之形狀和種類於本發明中並不特別作限制。風扇元件180可由供應電位VS來進行供電,其中風扇元件180之轉速係根據控制脈衝寬度調變電位VMC之責任週期而決定。在此設計下,風扇元件180可於電源供應器100之輸出功率相對較大時才被致能,且其轉速還可根據前述輸出功率進行微調。因此,風扇元件180之效率和使用壽命將可被最大化,而風扇元件180之噪音亦可被最小化。The
以下實施例將介紹電源供應器100之詳細結構及操作方式。必須理解的是,這些圖式和敘述僅為舉例,而非用於限制本發明之範圍。The following embodiments will introduce the detailed structure and operation of the
第2圖係顯示根據本發明一實施例所述之電源供應器200之示意圖。在第2圖之實施例中,電源供應器200具有一第一輸入節點NIN1、一第二輸入節點NIN2,以及一輸出節點NOUT,並包括:一橋式整流器210、一升壓電感器LU、一直流轉換器220、一功率切換電路230、一變壓器240、一輸出級電路250、一回授電路260、一偵測及控制電路270,以及一風扇元件280。電源供應器200之第一輸入節點NIN1和第二輸入節點NIN2可分別由一外部輸入電源處接收一第一輸入電位VIN1和一第二輸入電位VIN2,而電源供應器200之輸出節點NOUT可用於輸出一輸出電位VOUT至一電子裝置(未顯示)。FIG. 2 is a schematic diagram of the
橋式整流器210包括一第一二極體D1、一第二二極體D2、一第三二極體D3,以及一第四二極體D4。第一二極體D1之陽極係耦接至第一輸入節點NIN1,而第一二極體D1之陰極係耦接至一第一節點N1以輸出一整流電位VR。第二二極體D2之陽極係耦接至第二輸入節點NIN2,而第二二極體D2之陰極係耦接至第一節點N1。第三二極體D3之陽極係耦接至一接地電位VSS(例如:0V),而第三二極體D3之陰極係耦接至第一輸入節點NIN1。第四二極體D4之陽極係耦接至接地電位VSS,而第四二極體D4之陰極係耦接至第二輸入節點NIN2。The
升壓電感器LU之第一端係耦接至第一節點N1以接收整流電位VR,而升壓電感器LU之第二端係耦接至一第二節點N2。一第一電流I1可流過升壓電感器LU。The first end of the boost inductor LU is coupled to the first node N1 to receive the rectified potential VR, and the second end of the boost inductor LU is coupled to a second node N2. A first current I1 can flow through the boost inductor LU.
偵測及控制電路270包括一第一電阻器R1、一第一斜率偵測器271,以及一第一峰值偵測器272。第一電阻器R1之第一端係耦接至第二節點N2,而第一電阻器R1之第二端係耦接至一第三節點N3。第一斜率偵測器271可偵測第一電流I1之斜率(亦即,第一電流I1對時間之微分值),再據以產生一第一斜率電位VL1。例如,第一斜率電位VL1可與第一電流I1之斜率兩者成正比關係。第一峰值偵測器272可偵測第一電流I1之最大值(亦即,第一電流I1於一既定時間區間內之峰值),再據以產生一第一峰值電位VP1。例如,第一峰值電位VP1可與第一電流I1之最大值兩者成正比關係。The detection and control circuit 270 includes a first resistor R1, a
直流轉換器220包括一第五二極體D5和一第一電容器C1。第五二極體D5之陽極係耦接至第三節點N3,而第五二極體D5之陰極係耦接至一第四節點N4以輸出一直流電位VE。第一電容器C1之第一端係耦接至第四節點N4,而第一電容器C1之第二端係耦接至接地電位VSS。The
功率切換電路230包括一第一脈衝寬度調變積體電路231、一第二脈衝寬度調變積體電路232、一第一電晶體M1、一第二電晶體M2,以及一第三電晶體M3。第一脈衝寬度調變積體電路231可產生一第一脈衝寬度調變電位VM1。第二脈衝寬度調變積體電路232可產生一第二脈衝寬度調變電位VM2和一第三脈衝寬度調變電位VM3。例如,第二脈衝寬度調變電位VM2和第三脈衝寬度調變電位VM3可具有互補之邏輯位準,而第一脈衝寬度調變電位VM1可與第二脈衝寬度調變電位VM2和第三脈衝寬度調變電位VM3其中之一者具有相同之邏輯位準。第一電晶體M1、第二電晶體M2,以及第三電晶體M3可各自為一N型金氧半場效電晶體。第一電晶體M1具有一控制端(例如:一閘極)、一第一端(例如:一源極),以及一第二端(例如:一汲極),其中第一電晶體M1之控制端可接收第一脈衝寬度調變電位VM1,第一電晶體M1之第一端係耦接至接地電位VSS,而第一電晶體M1之第二端係耦接至第三節點N3。第二電晶體M2之控制端可接收第二脈衝寬度調變電位VM2,第二電晶體M2之第一端係耦接至一第五節點N5以輸出一切換電位VW,而第二電晶體M2之第二端係耦接至第四節點N4以接收直流電位VE。第三電晶體M3之控制端可接收第三脈衝寬度調變電位VM3,第三電晶體M3之第一端係耦接至接地電位VSS,而第三電晶體M3之第二端係耦接至第五節點N5。The
變壓器240包括一主線圈241、一第一副線圈242,以及一第二副線圈243,其中變壓器240更內建一漏電感器LR和一激磁電感器LM。漏電感器LR和激磁電感器LM皆可為變壓器240製造時所附帶產生之固有元件,其並非外部獨立元件。主線圈241、漏電感器LR,以及激磁電感器LM皆可位於變壓器240之同一側,而第一副線圈242和第二副線圈243皆可位於變壓器240之相對另一側。一第二電流I2可流過激磁電感器LM。在一些實施例中,激磁電感器LM之電感值係大致等同於升壓電感器LU之電感值。漏電感器LR之第一端係耦接至第五節點N5以接收切換電位VW,而漏電感器LR之第二端係耦接至一第六節點N6。激磁電感器LM之第一端係耦接至第六節點N6,而激磁電感器LM之第二端係耦接至一第七節點N7。主線圈241之第一端係耦接至第六節點N6,而主線圈241之第二端係耦接至一第八節點N8。第一副線圈242之第一端係耦接至一第九節點N9,而第一副線圈242之第二端係耦接至一共同節點NCM。共同節點NCM可視為電源供應器200之另一接地電位,其可與前述之接地電位VSS相同或相異。第二副線圈243之第一端係耦接至共同節點NCM,而第二副線圈243之第二端係耦接至一第十節點N10。The
偵測及控制電路270更可包括一第二電阻器R2、一第二電容器C2、一第二斜率偵測器273,以及一第二峰值偵測器274。第二電阻器R2之第一端係耦接至第七節點N7,而第二電阻器R2之第二端係耦接至第八節點N8。第二電容器C2之第一端係耦接至接地電位VSS,而第二電容器C2之第二端係耦接至第八節點N8。第二斜率偵測器273可偵測第二電流I2之斜率(亦即,第二電流I2對時間之微分值),再據以產生一第二斜率電位VL2。例如,第二斜率電位VL2可與第二電流I2之斜率兩者成正比關係。第二峰值偵測器274可偵測第二電流I2之最大值(亦即,第二電流I2於一既定時間區間內之峰值),再據以產生一第二峰值電位VP2。例如,第二峰值電位VP2可與第二電流I2之最大值兩者成正比關係。The detection and control circuit 270 can further include a second resistor R2, a second capacitor C2, a
輸出級電路250包括一第六二極體D6、一第七二極體D7、一第三電容器C3,以及一第四電容器C4。第六二極體D6之陽極係耦接至第九節點N9,而第六二極體D6之陰極係耦接至輸出節點NOUT。第七二極體D7之陽極係耦接至第十節點N10,而第七二極體D7之陰極係耦接至輸出節點NOUT。第三電容器C3之第一端係耦接至輸出節點NOUT,而第三電容器C3之第二端係耦接至共同節點NCM。第四電容器C4之第一端係耦接至輸出節點NOUT,而第四電容器C4之第二端係耦接至一第十一節點N11以輸出一輸出電流IOUT。The
回授電路260包括一第三電阻器R3、一第四電阻器R4、一第五電阻器R5、一線性光耦合器261,以及一放大器262。第三電阻器R3之第一端係耦接至共同節點NCM,而第三電阻器R3之第二端係耦接至第十一節點N11以接收輸出電流IOUT。第四電阻器R4具有一第一端和一第二端,其中第四電阻器R4之第一端係耦接至一第十二節點N12,而第四電阻器R4之第二端係耦接至第十一節點N11。在一些實施例中,線性光耦合器261係由一PC817電子元件來實施。線性光耦合器261包括一發光二極體DL和一雙載子接面電晶體Q4。發光二極體DL之陽極係耦接至第十二節點N12,而發光二極體DL之陰極係耦接至共同節點NCM。雙載子接面電晶體Q4之集極係用於輸出一回授電位VF,而雙載子接面電晶體Q4之射極係耦接至一第十三節點N13。第五電阻器R5之第一端係耦接至第十三節點N13,而第五電阻器R5之第二端係耦接至接地電位VSS。放大器262可用於放大回授電位VF一正增益倍率,再據以產生一供應電位VS。The
偵測及控制電路270更可包括一第一誤差放大器275、一第二誤差放大器276、一及閘(AND Gate)277、一微控制器278、一第五電容器C5,以及一第六電阻器R6。The detection and control circuit 270 may further include a
第一誤差放大器275之第一輸入端係耦接至一第十四節點N14以接收第一斜率電位VL1,第一誤差放大器275之第二輸入端係耦接至一第十五節點N15以接收第二斜率電位VL2,而第一誤差放大器275之輸出端係用於輸出一第一控制電位VC1。例如,若第二斜率電位VL2恰等於第一斜率電位VL1,則第一控制電位VC1將可為高邏輯位準(亦即,邏輯「1」);反之,若第二斜率電位VL2不等於第一斜率電位VL1,則第一控制電位VC1將可為低邏輯位準(亦即,邏輯「0」)。第五電容器C5之第一端係耦接至第十四節點N14,而第五電容器C5之第二端係耦接至第十五節點N15。第五電容器C5之加入有助於消除第一誤差放大器275之微分誤差。The first input terminal of the
第二誤差放大器276之第一輸入端係耦接至一第十六節點N16以接收第一峰值電位VP1,第二誤差放大器276之第二輸入端係耦接至一第十七節點N17以接收第二峰值電位VP2,而第二誤差放大器276之輸出端係用於輸出一第二控制電位VC2。例如,若第二峰值電位VP2恰等於第一峰值電位VP1,則第二控制電位VC2將可為高邏輯位準;反之,若第二峰值電位VP2不等於第一峰值電位VP1,則第二控制電位VC2將可為低邏輯位準。第六電阻器R6之第一端係耦接至第十六節點N16,而第六電阻器R6之第二端係耦接至第十七節點N17。第六電阻器R6之加入有助於消除第二誤差放大器276之積分誤差。The first input terminal of the
及閘277之第一輸入端係用於接收第一控制電位VC1,及閘277之第二輸入端係用於接收第二控制電位VC2,而及閘277之輸出端係用於輸出一整合控制電位VCM。例如,若第一控制電位VC1和第二控制電位VC2兩者皆為高邏輯位準,則整合控制電位VCM將可為高邏輯位準;否則在其他情況下(例如,第一控制電位VC1和第二控制電位VC2之任一者為低邏輯位準),整合控制電位VCM皆為低邏輯位準。The first input terminal of the
微控制器278可根據整合控制電位VCM來產生一控制脈衝寬度調變電位VMC。例如,若整合控制電位VCM為低邏輯位準,則微控制器278將可維持控制脈衝寬度調變電位VMC之責任週期(Duty Cycle)不變;反之,若整合控制電位VCM為高邏輯位準,則微控制器278將可更新控制脈衝寬度調變電位VMC之責任週期。易言之,只有當第二電流I2之最大值恰等於第一電流I1之最大值且第二電流I2之斜率恰等於第一電流I1之斜率時,控制脈衝寬度調變電位VMC之責任週期才會被更新及調整。詳細而言,當整合控制電位VCM為高邏輯位準時,控制脈衝寬度調變電位VMC之責任週期可根據第一峰值電位VP1和第二峰值電位VP2而進行調整。例如,若第一峰值電位VP1和第二峰值電位VP2變高,則脈衝寬度調變電位VMC之責任週期將可變大;反之,若第一峰值電位VP1和第二峰值電位VP2變低,則脈衝寬度調變電位VMC之責任週期將可變小。The
風扇元件280係由回授電路260之供應電位VS來進行供電。例如,若供應電位VS高於或等於一臨界電位,則風扇元件280將可被致能;反之,若供應電位VS低於前述之臨界電位,則風扇元件280將可被禁能。在一些實施例中,若電源供應器200之輸出功率高於或等於一臨界功率,則風扇元件280將可被致能;反之,若電源供應器200之輸出功率低於前述之臨界功率,則風扇元件280將可被禁能。因此,風扇元件280於電源供應器200之輸出功率相對較低時將停止運作,以降低整體噪音值。當風扇元件280被致能時,風扇元件280之轉速可根據控制脈衝寬度調變電位VMC之責任週期而決定。例如,若控制脈衝寬度調變電位VMC之責任週期變大,則風扇元件280之轉速將可加快;反之,若控制脈衝寬度調變電位VMC之責任週期變小,則風扇元件280之轉速將可變慢。易言之,風扇元件280之轉速可依電源供應器200之輸出功率作動態調整,以提升整體操作效率。The
第3圖係顯示根據本發明一實施例所述之電源供應器200之信號波形圖,其中橫軸代表時間,而縱軸代表各個信號之電位位準或電流值。根據第3圖之量測結果可知,當第一電流I1和第二電流I2變大時,控制脈衝寬度調變電位VMC之責任週期亦可隨之變大;反之,當第一電流I1和第二電流I2變小時,控制脈衝寬度調變電位VMC之責任週期亦可隨之變小。Fig. 3 shows a signal waveform diagram of the
第4圖係顯示根據本發明一實施例所述之電源供應器200之操作特性圖,其中橫軸代表控制脈衝寬度調變電位VMC之責任週期(%),而縱軸代表風扇元件280之轉速(每分鐘轉數,RPM)。在第4圖之實施例中,控制脈衝寬度調變電位VMC之責任週期係介於20%至80%之間,而風扇元件280之每分鐘轉數係介於1200至1800之間。例如,每次當控制脈衝寬度調變電位VMC之責任週期增加10%時,風扇元件280之每分鐘轉數將可提高100。必須理解的是,以上數值範圍還可根據不同需求進行調整。Figure 4 is a diagram showing the operating characteristics of the
在一些實施例中,電源供應器200之元件參數可如下列所述。升壓電感器LU之電感值可介於324μH至396μH之間,較佳可為360μH。漏電感器LR之電感值可介於43.2μH至52.8μH之間,較佳可為48μH。激磁電感器LM之電感值可介於324μH至396μH之間,較佳可為360μH。第一電容器C1之電容值可介於544μF至816μF之間,較佳可為680μF。第二電容器C2之電容值可介於42.3nF至51.7nF之間,較佳可為47nF。第三電容器C3之電容值可介於376μF至564μF之間,較佳可為470μF。第四電容器C4之電容值可介於376μF至564μF之間,較佳可為470μF。第五電容器C5之電容值可介於1.425nF至1.575nF之間,較佳可為1.5nF。第一電阻器R1之電阻值可介於0.99Ω至1.01Ω之間,較佳可為1Ω。第二電阻器R2之電阻值可介於0.99Ω至1.01Ω之間,較佳可為1Ω。第三電阻器R3之電阻值可介於4.95Ω至5.05Ω之間,較佳可為5Ω。第四電阻器R4之電阻值可介於19Ω至21Ω之間,較佳可為20Ω。第五電阻器R5之電阻值可介於9.5KΩ至10.5KΩ之間,較佳可為10KΩ。第六電阻器R6之電阻值可介於7.2Ω至8.8Ω之間,較佳可為8Ω。主線圈241對第一副線圈242之匝數比值可介於1至100之間,較佳可為20。主線圈241對第二副線圈243之匝數比值可介於1至100之間,較佳可為20。電源供應器200之最大輸出功率可大於500W。電源供應器200之臨界功率可設定為60W。亦即,當電源供應器200之輸出功率小於60W時,風扇元件280將可被禁能。以上參數範圍係根據多次實驗結果而得出,其有助於最小化電源供應器200之風扇元件280之整體噪音。In some embodiments, the component parameters of the
本發明提出一種新穎之電源供應器。根據實際量測結果,使用前述設計之電源供應器可大幅降低風扇元件之噪音,同時有效提高風扇元件之效率及使用壽命,故其很適合應用於各種各式之裝置當中。The present invention proposes a novel power supply. According to the actual measurement results, the use of the aforementioned power supply design can greatly reduce the noise of the fan component, while effectively improving the efficiency and service life of the fan component, so it is very suitable for use in various types of devices.
值得注意的是,以上所述之電位、電流、電阻值、電感值、電容值,以及其餘元件參數均非為本發明之限制條件。設計者可以根據不同需要調整這些設定值。本發明之電源供應器並不僅限於第1-4圖所圖示之狀態。本發明可以僅包括第1-4圖之任何一或複數個實施例之任何一或複數項特徵。換言之,並非所有圖示之特徵均須同時實施於本發明之電源供應器當中。雖然本發明之實施例係使用金氧半場效電晶體為例,但本發明並不僅限於此,本技術領域人士可改用其他種類之電晶體,例如:接面場效電晶體,或是鰭式場效電晶體等等,而不致於影響本發明之效果。It is worth noting that the above-mentioned potential, current, resistance value, inductance value, capacitance value, and other component parameters are not limitations of the present invention. The designer can adjust these settings according to different needs. The power supply of the present invention is not limited to the state shown in Figures 1-4. The present invention may only include any one or more of the features of any one or more of the embodiments in FIGS. 1-4. In other words, not all the features shown in the figures need to be implemented in the power supply of the present invention at the same time. Although the embodiment of the present invention uses metal oxide half field effect transistors as an example, the present invention is not limited to this. Those skilled in the art can use other types of transistors, such as junction field effect transistors or fins. Type field effect transistors, etc., without affecting the effect of the present invention.
本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention is disclosed as above in the preferred embodiment, it is not intended to limit the scope of the present invention. Anyone who is familiar with the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The scope of protection of the present invention shall be subject to those defined by the attached patent scope.
100,200:電源供應器 110,210:橋式整流器 120,220:直流轉換器 130,230:功率切換電路 140,240:變壓器 141,241:主線圈 142,242:第一副線圈 143,243:第二副線圈 150,250:輸出級電路 160,260:回授電路 170,270:偵測及控制電路 180,280:風扇元件 231:第一脈衝寬度調變積體電路 232:第二脈衝寬度調變積體電路 261:線性光耦合器 262:放大器 271:第一斜率偵測器 272:第一峰值偵測器 273:第二斜率偵測器 274:第二峰值偵測器 275:第一誤差放大器 276:第二誤差放大器 277:及閘 278:微控制器 C1:第一電容器 C2:第二電容器 C3:第三電容器 C4:第四電容器 C5:第五電容器 D1:第一二極體 D2:第二二極體 D3:第三二極體 D4:第四二極體 D5:第五二極體 D6:第六二極體 D7:第七二極體 DL:發光二極體 I1:第一電流 I2:第二電流 IOUT:輸出電流 LM:激磁電感器 LR:漏電感器 LU:升壓電感器 M1:第一電晶體 M2:第二電晶體 M3:第三電晶體 N1:第一節點 N2:第二節點 N3:第三節點 N4:第四節點 N5:第五節點 N6:第六節點 N7:第七節點 N8:第八節點 N9:第九節點 N10:第十節點 N11:第十一節點 N12:第十二節點 N13:第十三節點 N14:第十四節點 N15:第十五節點 N16:第十六節點 N17:第十七節點 NCM:共同節點 NIN1:第一輸入節點 NIN2:第二輸入節點 NOUT:輸出節點 Q4:雙載子接面電晶體 R1:第一電阻器 R2:第二電阻器 R3:第三電阻器 R4:第四電阻器 R5:第五電阻器 R6:第六電阻器 VC1:第一控制電位 VC2:第二控制電位 VCM:整合控制電位 VE:直流電位 VF:回授電位 VIN1:第一輸入電位 VIN2:第二輸入電位 VL1:第一斜率電位 VL2:第二斜率電位 VM1:第一脈衝寬度調變電位 VM2:第二脈衝寬度調變電位 VM3:第三脈衝寬度調變電位 VMC:控制脈衝寬度調變電位 VOUT:輸出電位 VP1:第一峰值電位 VP2:第二峰值電位 VR:整流電位 VS:供應電位 VSS:接地電位 VW:切換電位100,200: power supply 110, 210: Bridge rectifier 120, 220: DC converter 130, 230: Power switching circuit 140,240: Transformer 141,241: main coil 142,242: The first secondary coil 143,243: The second secondary coil 150, 250: output stage circuit 160,260: feedback circuit 170,270: detection and control circuit 180,280: Fan element 231: The first pulse width modulation integrated circuit 232: Second pulse width modulation integrated circuit 261: Linear Optocoupler 262: Amplifier 271: The first slope detector 272: The first peak detector 273: The second slope detector 274: Second Peak Detector 275: first error amplifier 276: second error amplifier 277: and the gate 278: Microcontroller C1: The first capacitor C2: second capacitor C3: third capacitor C4: The fourth capacitor C5: Fifth capacitor D1: The first diode D2: The second diode D3: The third diode D4: The fourth diode D5: Fifth diode D6: The sixth diode D7: seventh diode DL: Light-emitting diode I1: first current I2: second current IOUT: output current LM: Magnetizing inductor LR: Leakage inductor LU: Boost inductor M1: The first transistor M2: second transistor M3: third transistor N1: the first node N2: second node N3: third node N4: Fourth node N5: fifth node N6: sixth node N7: seventh node N8: The eighth node N9: Ninth node N10: Tenth node N11: The eleventh node N12: Twelfth node N13: Thirteenth node N14: Fourteenth node N15: Fifteenth node N16: Sixteenth node N17: Seventeenth node NCM: Common Node NIN1: the first input node NIN2: second input node NOUT: output node Q4: Two-carrier junction transistor R1: first resistor R2: second resistor R3: third resistor R4: Fourth resistor R5: fifth resistor R6: sixth resistor VC1: The first control potential VC2: second control potential VCM: Integrated control potential VE: DC potential VF: feedback potential VIN1: the first input potential VIN2: second input potential VL1: first slope potential VL2: second slope potential VM1: first pulse width modulation potential VM2: second pulse width modulation potential VM3: third pulse width modulation potential VMC: control pulse width modulation potential VOUT: output potential VP1: first peak potential VP2: second peak potential VR: Rectified potential VS: supply potential VSS: Ground potential VW: Switching potential
第1圖係顯示根據本發明一實施例所述之電源供應器之示意圖。 第2圖係顯示根據本發明一實施例所述之電源供應器之示意圖。 第3圖係顯示根據本發明一實施例所述之電源供應器之信號波形圖。 第4圖係顯示根據本發明一實施例所述之電源供應器之操作特性圖。 Fig. 1 is a schematic diagram of a power supply according to an embodiment of the invention. FIG. 2 is a schematic diagram of the power supply according to an embodiment of the invention. Fig. 3 shows a signal waveform diagram of the power supply according to an embodiment of the present invention. Figure 4 is a diagram showing the operating characteristics of the power supply according to an embodiment of the present invention.
100:電源供應器 100: power supply
110:橋式整流器 110: Bridge rectifier
120:直流轉換器 120: DC converter
130:功率切換電路 130: Power switching circuit
140:變壓器 140: Transformer
141:主線圈 141: main coil
142:第一副線圈 142: The first secondary coil
143:第二副線圈 143: The second secondary coil
150:輸出級電路 150: output stage circuit
160:回授電路 160: feedback circuit
170:偵測及控制電路 170: Detection and control circuit
180:風扇元件 180: fan element
I1:第一電流 I1: first current
I2:第二電流 I2: second current
IOUT:輸出電流 IOUT: output current
LM:激磁電感器 LM: Magnetizing inductor
LU:升壓電感器 LU: Boost inductor
VE:直流電位 VE: DC potential
VIN1:第一輸入電位 VIN1: the first input potential
VIN2:第二輸入電位 VIN2: second input potential
VMC:控制脈衝寬度調變電位 VMC: control pulse width modulation potential
VOUT:輸出電位 VOUT: output potential
VR:整流電位 VR: Rectified potential
VS:供應電位 VS: supply potential
VW:切換電位 VW: Switching potential
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109144656A TWI736491B (en) | 2020-12-17 | 2020-12-17 | Low-noise power supply device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109144656A TWI736491B (en) | 2020-12-17 | 2020-12-17 | Low-noise power supply device |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI736491B true TWI736491B (en) | 2021-08-11 |
TW202226726A TW202226726A (en) | 2022-07-01 |
Family
ID=78283493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109144656A TWI736491B (en) | 2020-12-17 | 2020-12-17 | Low-noise power supply device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI736491B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW589440B (en) * | 2001-04-20 | 2004-06-01 | Sharp Kk | Ion generator and air conditioning apparatus |
US20040108834A1 (en) * | 2002-11-29 | 2004-06-10 | Nobuhiro Takano | Universal battery charger |
US20040120163A1 (en) * | 2001-05-10 | 2004-06-24 | Fidelix Y.K. | Switching power supply apparatus |
TW201417472A (en) * | 2012-10-19 | 2014-05-01 | Lite On Technology Corp | Power converting device |
WO2014170976A1 (en) * | 2013-04-17 | 2014-10-23 | 三菱電機株式会社 | Switching power supply circuit and control method therefor |
US20200343818A1 (en) * | 2019-04-26 | 2020-10-29 | Fsp Technology Inc. | Power converter and control circuit thereof |
-
2020
- 2020-12-17 TW TW109144656A patent/TWI736491B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW589440B (en) * | 2001-04-20 | 2004-06-01 | Sharp Kk | Ion generator and air conditioning apparatus |
US20040120163A1 (en) * | 2001-05-10 | 2004-06-24 | Fidelix Y.K. | Switching power supply apparatus |
US20040108834A1 (en) * | 2002-11-29 | 2004-06-10 | Nobuhiro Takano | Universal battery charger |
TW201417472A (en) * | 2012-10-19 | 2014-05-01 | Lite On Technology Corp | Power converting device |
WO2014170976A1 (en) * | 2013-04-17 | 2014-10-23 | 三菱電機株式会社 | Switching power supply circuit and control method therefor |
US20200343818A1 (en) * | 2019-04-26 | 2020-10-29 | Fsp Technology Inc. | Power converter and control circuit thereof |
Also Published As
Publication number | Publication date |
---|---|
TW202226726A (en) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI710885B (en) | Power supply device | |
CN113972848A (en) | Boost converter with high power factor | |
TWI790937B (en) | Power supply device for suppressing magnetic saturation | |
TWI692185B (en) | Boost converter | |
TWI740686B (en) | Boost converter for reducing total harmonic distortion | |
TWI726758B (en) | Power supply device for eliminating ringing effect | |
TWI779440B (en) | Power supply device with heat dissipation mechanism | |
TWI736491B (en) | Low-noise power supply device | |
TWI751644B (en) | Power supply device with tunable gain | |
TWI704757B (en) | Boost converter | |
TWI817586B (en) | Power supply device with tunable heat dissipation function | |
TW202143614A (en) | Power supply device for eliminating ringing effect | |
TW202122948A (en) | Boost converter | |
TWI832742B (en) | Boost converter for suppressing magnetic saturation | |
TWI844370B (en) | Power supply device supporting power delivery | |
TWI838133B (en) | Power supply device with high output stability | |
TWI806548B (en) | Boost converter | |
TWI844324B (en) | Boost converter with high conversion efficiency | |
TWI751658B (en) | Boost converter with low loss | |
TWI857710B (en) | Boost converter with function of temperature adjustment | |
TWI825945B (en) | Power supply device with high conversion efficiency | |
TWI817491B (en) | Boost converter with high efficiency | |
TWI715468B (en) | Buck converter | |
TWI711338B (en) | Driving device | |
TWI812407B (en) | Power supply device with high output stability |