TWI735860B - Method of manufacturing memory device - Google Patents

Method of manufacturing memory device Download PDF

Info

Publication number
TWI735860B
TWI735860B TW108112106A TW108112106A TWI735860B TW I735860 B TWI735860 B TW I735860B TW 108112106 A TW108112106 A TW 108112106A TW 108112106 A TW108112106 A TW 108112106A TW I735860 B TWI735860 B TW I735860B
Authority
TW
Taiwan
Prior art keywords
dielectric layer
layer
manufacturing
mask layer
dielectric
Prior art date
Application number
TW108112106A
Other languages
Chinese (zh)
Other versions
TW202038386A (en
Inventor
朴哲秀
陳明堂
柯順祥
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW108112106A priority Critical patent/TWI735860B/en
Publication of TW202038386A publication Critical patent/TW202038386A/en
Application granted granted Critical
Publication of TWI735860B publication Critical patent/TWI735860B/en

Links

Images

Abstract

A method of manufacturing a memory device includes following steps. A first dielectric layer is formed on the substrate between bit-line structures. First trenches are formed in the first dielectric layer. A second dielectric layer is formed to fill in the first trenches. A portion of the first dielectric layer is removed, so that a top surface of the first dielectric layer is lower than a top surface of the second dielectric layer. A first mask layer is formed to cover the top surfaces of the first and second dielectric layers. A first etching process is performed to form second trenches in the first dielectric layer. A third dielectric layer is formed to fill the second trenches. The first dielectric layer is removed to form contact openings between the second and third dielectric layers. A conductive material is formed to fill in the contact openings.

Description

記憶元件的製造方法Manufacturing method of memory element

本發明是有關於一種半導體元件的製造方法,且特別是有關於一種記憶元件的製造方法。The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a memory device.

動態隨機存取記憶體屬於一種揮發性記憶體,其是由多個記憶胞所構成。詳細地說,每一個記憶胞主要是由一個電晶體與一個由電晶體所操控的電容器所構成,且每一個記憶胞藉由字元線與位元線彼此電性連接。為提升動態隨機存取記憶體的積集度以加快元件的操作速度,並符合消費者對於小型化電子裝置的需求,近年來發展出埋入式字元線動態隨機存取記憶體(buried word line DRAM),以滿足上述種種需求。Dynamic random access memory is a type of volatile memory, which is composed of multiple memory cells. In detail, each memory cell is mainly composed of a transistor and a capacitor controlled by the transistor, and each memory cell is electrically connected to each other by a word line and a bit line. In order to increase the integration of dynamic random access memory to speed up the operation speed of components, and to meet consumer demand for miniaturized electronic devices, buried word line dynamic random access memory (buried word memory) has been developed in recent years. line DRAM) to meet the above-mentioned needs.

隨著科技的進步,各類電子產品皆朝向輕薄短小的趨勢發展。然而,在這趨勢之下,DRAM的臨界尺寸亦逐漸縮小,其導致DRAM的製程將面臨許多挑戰。With the advancement of technology, all kinds of electronic products are developing towards the trend of light, thin and short. However, under this trend, the critical size of DRAM is gradually shrinking, which leads to many challenges in the manufacturing process of DRAM.

本發明提供一種記憶元件的製造方法,其可精準地控制電容器接觸窗的臨界尺寸,進而提升記憶元件的可靠度。The present invention provides a method for manufacturing a memory element, which can accurately control the critical size of a capacitor contact window, thereby improving the reliability of the memory element.

本發明提供一種記憶元件的製造方法,其步驟如下。在基底中形成多個隔離結構,以將基底分隔成多個主動區。在基底中形成多個字元線組,字元線組沿著Y方向延伸並穿過隔離結構與主動區。在基底上形成多個位元線結構,位元線結構沿著X方向延伸並橫跨字元線組。在位元線結構之間的基底上形成第一介電層。在第一介電層中形成多個第一溝渠,其分別對應字元線組。將第二介電層填入第一溝渠中。移除部分第一介電層,使得第一介電層的頂面低於第二介電層的頂面。形成第一罩幕層,其地覆蓋第一介電層的頂面與第二介電層的頂面。以第一罩幕層為罩幕,進行第一蝕刻製程,以於第一介電層中形成多個第二溝渠。將第三介電層填入第二溝渠中。移除第一介電層,以於第二介電層與第三介電層之間形成多個接觸窗開口。將導體材料填入接觸窗開口中。The present invention provides a method for manufacturing a memory element, the steps of which are as follows. A plurality of isolation structures are formed in the substrate to separate the substrate into a plurality of active regions. A plurality of character line groups are formed in the substrate, and the character line groups extend along the Y direction and pass through the isolation structure and the active area. A plurality of bit line structures are formed on the substrate, and the bit line structures extend along the X direction and cross the word line group. A first dielectric layer is formed on the substrate between the bit line structures. A plurality of first trenches are formed in the first dielectric layer, which respectively correspond to the word line group. Fill the second dielectric layer into the first trench. A part of the first dielectric layer is removed so that the top surface of the first dielectric layer is lower than the top surface of the second dielectric layer. A first mask layer is formed to cover the top surface of the first dielectric layer and the top surface of the second dielectric layer. Using the first mask layer as a mask, a first etching process is performed to form a plurality of second trenches in the first dielectric layer. Fill the second trench with the third dielectric layer. The first dielectric layer is removed to form a plurality of contact openings between the second dielectric layer and the third dielectric layer. Fill the conductive material into the contact window opening.

基於上述,本發明藉由先形成第一介電層,再於第一介電層中形成第二介電層與第三介電層。之後移除第一介電層以形成多個接觸窗開口。接著將導體材料填入接觸窗開口中,以形成多個電容器接觸窗。也就是說,本發明藉由鑲嵌法來形成電容器接觸窗,其可簡化電容器接觸窗的製造方法並精準地控制電容器接觸窗的臨界尺寸。Based on the above, the present invention first forms the first dielectric layer, and then forms the second dielectric layer and the third dielectric layer in the first dielectric layer. Then, the first dielectric layer is removed to form a plurality of contact openings. Then, a conductive material is filled into the contact window opening to form a plurality of capacitor contact windows. In other words, the present invention uses the damascene method to form the capacitor contact window, which can simplify the manufacturing method of the capacitor contact window and accurately control the critical size of the capacitor contact window.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之標號表示相同或相似之元件,以下段落將不再一一贅述。The present invention will be explained more fully with reference to the drawings of this embodiment. However, the present invention can also be embodied in various different forms and should not be limited to the embodiments described herein. The thickness of the layers and regions in the drawing will be exaggerated for clarity. The same or similar reference numerals indicate the same or similar elements, and the following paragraphs will not repeat them one by one.

圖1是本發明之一實施例的記憶元件的上視示意圖。以下實施例所述的記憶元件是以動態隨機存取記憶體(DRAM)為例來進行說明,但本發明不以此為限。FIG. 1 is a schematic top view of a memory device according to an embodiment of the invention. The memory elements described in the following embodiments are described using dynamic random access memory (DRAM) as an example, but the invention is not limited thereto.

請參照圖1,本實施例提供一種記憶元件包括:基底100、多個隔離結構101、多個主動區AA、多個位元線結構102、多個字元線組202以及多個電容器接觸窗CC1、CC2。為圖面清楚起見,圖1僅顯示上述構件,其他構件可見於後續圖2A-2L與圖3A-3L的剖面圖。1, this embodiment provides a memory device including: a substrate 100, a plurality of isolation structures 101, a plurality of active areas AA, a plurality of bit line structures 102, a plurality of word line groups 202, and a plurality of capacitor contact windows CC1, CC2. For the sake of clarity of the drawing, FIG. 1 only shows the above-mentioned components, and other components can be seen in the sectional views of subsequent FIGS. 2A-2L and 3A-3L.

如圖1所示,基底100包括多個第一區R1與多個第二區R2。第一區R1與第二區R2沿著X方向交替排列。隔離結構101配置於基底100中,以將基底100定義出多個主動區(active areas)AA。換言之,相鄰兩個主動區AA之間具有隔離結構101。在一實施例中,一個主動區AA上只形成有一個記憶單元,且各記憶單元由隔離結構101分隔,以有效減少記憶單元之間的干擾問題。詳細地說,主動區AA被配置為帶狀且排列成一陣列。在本實施例中,主動區AA排列成3個主動區行(active area columns)AC1~AC3,且相鄰兩個主動區行呈鏡像配置。舉例來說,主動區行AC3的長邊方向與X方向呈現非正交而具有夾角θ,主動區行AC2的長邊方向與X方向呈現非正交而具有夾角(180º-θ)。在一實施例中,夾角θ可介於20度至22度之間。但本發明不以此為限,在其他實施例中,相鄰兩個主動區行亦可以是相同配置。As shown in FIG. 1, the substrate 100 includes a plurality of first regions R1 and a plurality of second regions R2. The first regions R1 and the second regions R2 are alternately arranged along the X direction. The isolation structure 101 is disposed in the substrate 100 to define the substrate 100 to define multiple active areas AA. In other words, there is an isolation structure 101 between two adjacent active areas AA. In one embodiment, only one memory cell is formed on one active area AA, and each memory cell is separated by the isolation structure 101 to effectively reduce the interference problem between the memory cells. In detail, the active area AA is configured in a strip shape and arranged in an array. In this embodiment, the active area AA is arranged into three active area columns (active area columns) AC1 to AC3, and two adjacent active area columns are in a mirror configuration. For example, the long side direction of the active area row AC3 is non-orthogonal to the X direction and has an included angle θ, and the long side direction of the active area row AC2 is non-orthogonal to the X direction and has an included angle (180°-θ). In one embodiment, the included angle θ may be between 20 degrees and 22 degrees. However, the present invention is not limited to this. In other embodiments, two adjacent active area rows may also have the same configuration.

位元線結構102位於基底100上,且橫越第一區R1與第二區R2。位元線結構102沿著X方向延伸,且沿著Y方向相互排列。字元線組202位於第一區R1的基底100中。字元線組202沿著Y方向延伸,且沿著X方向相互排列。每一字元線組202具有兩個埋入式字元線202a、202b。在一實施例中,X方向與Y方向實質上互相垂直。The bit line structure 102 is located on the substrate 100 and traverses the first region R1 and the second region R2. The bit line structures 102 extend along the X direction and are arranged with each other along the Y direction. The character line group 202 is located in the substrate 100 of the first region R1. The character line groups 202 extend along the Y direction and are arranged with each other along the X direction. Each character line group 202 has two buried character lines 202a, 202b. In one embodiment, the X direction and the Y direction are substantially perpendicular to each other.

在本實施例中,每一主動區AA具有長邊L1與短邊L2,且長邊L1橫越所對應的字元線組202(即兩個埋入式字元線202a、202b),且每一主動區AA與所對應的位元線結構102的重疊處具有位元線接觸窗BC。因此,每一位元線結構102在橫越所對應的字元線組202時,可利用位元線接觸窗BC來電性連接所對應的摻雜區(未繪示)。所述摻雜區位於兩個埋入式字元線202a、202b之間。In this embodiment, each active area AA has a long side L1 and a short side L2, and the long side L1 traverses the corresponding character line group 202 (that is, two embedded character lines 202a, 202b), and There is a bit line contact window BC at the overlap of each active area AA and the corresponding bit line structure 102. Therefore, when each bit line structure 102 traverses the corresponding word line group 202, the bit line contact window BC can be used to electrically connect the corresponding doped region (not shown). The doped region is located between the two buried word lines 202a, 202b.

電容器接觸窗CC1、CC2位於位元線結構102之間的基底100上。詳細地說,電容器接觸窗CC1、CC2分別配置在主動區AA的長邊L1的兩端點上,其可電性連接主動區AA與後續形成的電容器(未繪示)。另外,雖然電容器接觸窗CC1、CC2在圖1中顯示為矩形,但實際上形成的接觸窗會略呈圓形,且其大小可依製程需求來設計。The capacitor contact windows CC1 and CC2 are located on the substrate 100 between the bit line structures 102. In detail, the capacitor contact windows CC1 and CC2 are respectively disposed on the two ends of the long side L1 of the active area AA, and they can be electrically connected to the active area AA and subsequent capacitors (not shown). In addition, although the capacitor contact windows CC1 and CC2 are shown as rectangles in FIG. 1, the actual contact windows formed will be slightly circular, and the size of the contact windows can be designed according to the requirements of the manufacturing process.

圖2A至圖2L是沿著圖1之A-A’線段的記憶元件之製造流程的剖面示意圖。圖3A至圖3L是沿著圖1之B-B’線段的記憶元件之製造流程的剖面示意圖。2A to 2L are schematic cross-sectional views of the manufacturing process of the memory device along the line A-A' in FIG. 1. 3A to 3L are schematic cross-sectional views of the manufacturing process of the memory device along the line B-B' in FIG. 1.

請同時參照圖1、圖2A以及圖3A,本實施例提供一種記憶元件的製造方法,其步驟如下。首先,提供一初始結構,其包括基底100、多個隔離結構101、多個位元線結構102以及多個字元線組202。在一實施例中,基底100可例如為半導體基底、半導體化合物基底或是絕緣層上有半導體基底(Semiconductor Over Insulator,SOI)。在本實施例中,基底100為矽基底。Please refer to FIG. 1, FIG. 2A and FIG. 3A at the same time. The present embodiment provides a method for manufacturing a memory device. The steps are as follows. First, an initial structure is provided, which includes a substrate 100, a plurality of isolation structures 101, a plurality of bit line structures 102, and a plurality of word line groups 202. In one embodiment, the substrate 100 may be, for example, a semiconductor substrate, a semiconductor compound substrate, or a semiconductor substrate (Semiconductor Over Insulator, SOI) on an insulating layer. In this embodiment, the substrate 100 is a silicon substrate.

如圖1與圖3A所示,隔離結構101配置於基底100中,以將基底100分隔出多個主動區AA。在一實施例中,隔離結構101包括介電材料,所述介電材料可以是氧化矽。在另一實施例中,隔離結構101可例如是淺溝渠隔離結構(STI)。As shown in FIGS. 1 and 3A, the isolation structure 101 is disposed in the substrate 100 to separate the substrate 100 into a plurality of active areas AA. In an embodiment, the isolation structure 101 includes a dielectric material, and the dielectric material may be silicon oxide. In another embodiment, the isolation structure 101 may be, for example, a shallow trench isolation structure (STI).

如圖1與圖2A所示,多個字元線組202配置於第一區R1的基底100中。詳細地說,每一字元線組202包括兩個埋入式字元線202a、202b。每一埋入式字元線202a包括閘極204a以及閘介電層206a。閘介電層206a圍繞閘極204a,以電性隔離閘極204a與基底100。在一實施例中,閘極204a的材料包括導體材料,所述導體材料可例如是金屬材料、阻障金屬材料或其組合,其形成方法可以是化學氣相沈積法(CVD)或物理氣相沈積法(PVD)。閘介電層206a的材料可例如是氧化矽,其形成方法可以是化學氣相沉積法、熱氧化法或臨場蒸氣產生法(in situ steam generation,ISSG)等。相似地,另一埋入式字元線202b亦包括閘極204b以及閘介電層206b。閘介電層206b圍繞閘極204b,以電性隔離閘極204b與基底100。另外,所述初始結構更包括氮化矽層208。詳細地說,氮化矽層208配置於埋入式字元線202a、202b上並延伸覆蓋基底100與隔離結構101的頂面。在一實施例中,氮化矽層208的形成方法可以是化學氣相沈積法。As shown in FIGS. 1 and 2A, a plurality of character line groups 202 are arranged in the substrate 100 of the first region R1. In detail, each character line group 202 includes two buried character lines 202a and 202b. Each buried word line 202a includes a gate electrode 204a and a gate dielectric layer 206a. The gate dielectric layer 206a surrounds the gate electrode 204a to electrically isolate the gate electrode 204a from the substrate 100. In an embodiment, the material of the gate electrode 204a includes a conductive material, the conductive material may be, for example, a metal material, a barrier metal material, or a combination thereof, and the formation method thereof may be chemical vapor deposition (CVD) or physical vapor deposition. Deposition method (PVD). The material of the gate dielectric layer 206a may be, for example, silicon oxide, and its formation method may be a chemical vapor deposition method, a thermal oxidation method, or an in situ steam generation (ISSG) method. Similarly, the other buried word line 202b also includes a gate electrode 204b and a gate dielectric layer 206b. The gate dielectric layer 206b surrounds the gate electrode 204b to electrically isolate the gate electrode 204b from the substrate 100. In addition, the initial structure further includes a silicon nitride layer 208. In detail, the silicon nitride layer 208 is disposed on the buried word lines 202 a and 202 b and extends to cover the top surface of the substrate 100 and the isolation structure 101. In an embodiment, the formation method of the silicon nitride layer 208 may be a chemical vapor deposition method.

請回頭參照圖1與圖3A,多個位元線結構102形成在基底100上。在圖3A的剖面上,位元線結構102由下而上包括氧化矽層104、氮化矽層106、阻障層108、位元線110以及頂蓋層112。第一間隙壁114覆蓋氮化矽層106的側壁、阻障層108的側壁、位元線110的側壁以及頂蓋層112的側壁。第二間隙壁116覆蓋第一間隙壁114的側壁、氧化矽層104的側壁以及頂蓋層112的頂面。另一方面,在沿著主動區AA的剖面上,位元線結構102由下而上包括位元線接觸窗(未繪示)、阻障層108、位元線110以及頂蓋層112。位元線結構102可藉由位元線接觸窗(未繪示)來電性連接主動區AA(即源極/汲極摻雜區)。Referring back to FIGS. 1 and 3A, a plurality of bit line structures 102 are formed on the substrate 100. In the cross section of FIG. 3A, the bit line structure 102 includes a silicon oxide layer 104, a silicon nitride layer 106, a barrier layer 108, a bit line 110, and a cap layer 112 from bottom to top. The first spacer 114 covers the sidewalls of the silicon nitride layer 106, the sidewalls of the barrier layer 108, the sidewalls of the bit line 110, and the sidewalls of the cap layer 112. The second spacer 116 covers the sidewalls of the first spacer 114, the sidewalls of the silicon oxide layer 104 and the top surface of the cap layer 112. On the other hand, in the cross section along the active area AA, the bit line structure 102 includes a bit line contact window (not shown), a barrier layer 108, a bit line 110, and a cap layer 112 from bottom to top. The bit line structure 102 can be electrically connected to the active area AA (that is, the source/drain doped area) through a bit line contact window (not shown).

在一實施例中,位元線接觸窗(未繪示)的材料可以是多晶矽或矽鍺。阻障層108的材料包括阻障金屬材料,其可例如是TiN。位元線110的材料可以是金屬材料,其可例如是W。頂蓋層112的材料可以是氮化矽。另外,在位元線接觸窗(未繪示)與位元線110之間亦可包括金屬矽化物層(未繪示),其可例如是TiSi、CoSi、NiSi或其組合。In one embodiment, the material of the bit line contact window (not shown) may be polysilicon or silicon germanium. The material of the barrier layer 108 includes a barrier metal material, which may be TiN, for example. The material of the bit line 110 may be a metal material, which may be W, for example. The material of the cap layer 112 may be silicon nitride. In addition, a metal silicide layer (not shown) may also be included between the bit line contact window (not shown) and the bit line 110, which may be TiSi, CoSi, NiSi, or a combination thereof, for example.

需注意的是,第一間隙壁114與第二間隙壁116可以是沿著X方向延伸的條狀形式,其可保護位元線結構102的側壁,以電性隔離位元線結構102與後續形成的導體材料136(如圖3J所示)。另外,第一間隙壁114的材料可以是氮化矽,而第二間隙壁116的材料可以是氧化矽。第一間隙壁114與第二間隙壁116形成方法類似習知間隙壁的形成方法,於此便不再詳述。在一實施例中,由於第二間隙壁116為氧化矽,因此,相較於習知的氮化矽,本實施例之第二間隙壁116可有效地降低相鄰位元線結構102之間的寄生電容,進而提升記憶體的效能。但本發明不以此為限,第二間隙壁116的材料可以是其他低介電常數材料(亦即介電常數低於4的介電材料)。It should be noted that the first spacer 114 and the second spacer 116 may be in the form of strips extending along the X direction, which can protect the sidewalls of the bit line structure 102 to electrically isolate the bit line structure 102 from subsequent ones. The formed conductor material 136 (as shown in Figure 3J). In addition, the material of the first spacer 114 may be silicon nitride, and the material of the second spacer 116 may be silicon oxide. The method of forming the first spacer 114 and the second spacer 116 is similar to the conventional method of forming the spacer, and will not be described in detail here. In one embodiment, since the second spacer 116 is silicon oxide, compared to the conventional silicon nitride, the second spacer 116 of this embodiment can effectively reduce the distance between adjacent bit line structures 102. The parasitic capacitance, and then improve the performance of the memory. However, the present invention is not limited to this, and the material of the second spacer 116 may be other low dielectric constant materials (ie, dielectric materials with a dielectric constant lower than 4).

請同時參照圖2A與圖3A,在初始結構(或基底100)上形成第一介電層118。第一介電層118填入位元線結構102之間的空間中,並延伸覆蓋位元線結構102的頂面。在一實施例中,第一介電層118的材料可以是旋塗式介電材料(spin-on dielectric,SOD)。2A and 3A at the same time, a first dielectric layer 118 is formed on the initial structure (or the substrate 100). The first dielectric layer 118 fills the space between the bit line structure 102 and extends to cover the top surface of the bit line structure 102. In an embodiment, the material of the first dielectric layer 118 may be spin-on dielectric (SOD).

如圖2A與圖3A所示,在第一介電層118上依序形成氧化矽層120、碳層122以及氮氧化矽層124。在一實施例中,氧化矽層120、碳層122以及氮氧化矽層124的複合層可視為硬罩幕層HM。在另一實施例中,氧化矽層120的材料可例如是四乙氧基矽烷(tetraethoxysilane,TEOS)。As shown in FIGS. 2A and 3A, a silicon oxide layer 120, a carbon layer 122, and a silicon oxynitride layer 124 are sequentially formed on the first dielectric layer 118. In one embodiment, the composite layer of the silicon oxide layer 120, the carbon layer 122, and the silicon oxynitride layer 124 can be regarded as the hard mask layer HM. In another embodiment, the material of the silicon oxide layer 120 may be, for example, tetraethoxysilane (TEOS).

如圖2A與圖3A所示,在氮氧化矽層124(或硬罩幕層HM)上形成光阻圖案126。光阻圖案126具有多個開口12。開口12可以是條狀開口,其沿著Y方向延伸,並暴露出氮氧化矽層124的部分表面。另一方面來看,開口12僅位於第一區R1的基底100上,並對應字元線組202。As shown in FIGS. 2A and 3A, a photoresist pattern 126 is formed on the silicon oxynitride layer 124 (or the hard mask layer HM). The photoresist pattern 126 has a plurality of openings 12. The opening 12 may be a strip-shaped opening, which extends along the Y direction and exposes a part of the surface of the silicon oxynitride layer 124. On the other hand, the opening 12 is only located on the substrate 100 in the first region R1 and corresponds to the character line group 202.

請同時參照圖2B與圖3B,以光阻圖案126為罩幕,移除部分硬罩幕層HM與部分第一介電層118,以在剩餘的氧化矽層120與第一介電層118a中形成多個第一溝渠14。第一溝渠14沿著Y方向延伸,並暴露出第一區R1的氮化矽層208的頂面。也就是說,第一溝渠14分隔相鄰兩個第一介電層118a,使得第一介電層118a位於第二區R2的基底100上。2B and 3B at the same time, using the photoresist pattern 126 as a mask, remove a portion of the hard mask layer HM and a portion of the first dielectric layer 118, so that the remaining silicon oxide layer 120 and the first dielectric layer 118a A plurality of first trenches 14 are formed in the middle. The first trench 14 extends along the Y direction and exposes the top surface of the silicon nitride layer 208 in the first region R1. That is, the first trench 14 separates two adjacent first dielectric layers 118a, so that the first dielectric layer 118a is located on the substrate 100 in the second region R2.

請同時參照圖2B-2C與圖3B-3C,在移除光阻圖案126、氮氧化矽層124以及碳層122之後,在氧化矽層120上形成介電材料128。介電材料128填入第一溝渠14中並覆蓋氧化矽層120的頂面120t。在一實施例中,介電材料128可以是氮化物,例如是氮化矽。2B-2C and 3B-3C at the same time, after removing the photoresist pattern 126, the silicon oxynitride layer 124 and the carbon layer 122, a dielectric material 128 is formed on the silicon oxide layer 120. The dielectric material 128 is filled in the first trench 14 and covers the top surface 120t of the silicon oxide layer 120. In an embodiment, the dielectric material 128 may be a nitride, such as silicon nitride.

請同時參照圖2C-2D與圖3C-3D,對介電材料128進行第一回蝕刻製程,移除部分介電材料128,以暴露出氧化矽層120的頂面120t。在此情況下,填入第一溝渠14的第二介電層128a的頂面128t與氧化矽層120的頂面120t實質上共平面。在替代實施例中,第一介電層118a與其上的氧化矽層120可視為一整個第一介電層。Referring to FIGS. 2C-2D and 3C-3D at the same time, a first etch-back process is performed on the dielectric material 128 to remove part of the dielectric material 128 to expose the top surface 120t of the silicon oxide layer 120. In this case, the top surface 128t of the second dielectric layer 128a filled in the first trench 14 and the top surface 120t of the silicon oxide layer 120 are substantially coplanar. In an alternative embodiment, the first dielectric layer 118a and the silicon oxide layer 120 thereon can be regarded as an entire first dielectric layer.

請同時參照圖2D-2E與圖3D-3E,移除氧化矽層120。如圖2E所示,第一介電層118a的頂面118t低於第二介電層128a的頂面128t。在一實施例中,第一介電層118a的頂面118t與第二介電層128a的頂面128t之間具有高度差H,所述高度差H可介於55 nm至65 nm之間。在替代實施例中,部分第一介電層118a亦被移除。Please refer to FIGS. 2D-2E and 3D-3E at the same time to remove the silicon oxide layer 120. As shown in FIG. 2E, the top surface 118t of the first dielectric layer 118a is lower than the top surface 128t of the second dielectric layer 128a. In one embodiment, there is a height difference H between the top surface 118t of the first dielectric layer 118a and the top surface 128t of the second dielectric layer 128a, and the height difference H may be between 55 nm and 65 nm. In an alternative embodiment, part of the first dielectric layer 118a is also removed.

請同時參照圖2F與圖3F,於基底100上形成第一罩幕層130。在一實施例中,第一罩幕層130的材料包括介電材料,其可例如是氧化物、氮化物、氮氧化物或其組合,其可由原子層沉積法(ALD)或類似方法所形成。在本實施例中,第一罩幕層130可以是超低溫氧化物(Ultra-Low Temperature Oxide,ULTO)。如圖2F所示,第一罩幕層130共形地覆蓋第一介電層118a的頂面118t與第二介電層128a的頂面128t的形貌,以形成凹凸不平的表面130t。在一些實施例中,第一罩幕層130可例如是具有相同厚度的連續凹凸結構。位於第一介電層118a上的第一罩幕層130為凹部;而位於第二介電層128a上的第一罩幕層130為凸部。在替代實施例中,第一罩幕層130的頂面130t具有多個第一凹口16,其分別對應第二區R2中的隔離結構101(或第一介電層118a的頂面118t)。2F and 3F at the same time, a first mask layer 130 is formed on the substrate 100. In an embodiment, the material of the first mask layer 130 includes a dielectric material, which can be, for example, oxide, nitride, oxynitride, or a combination thereof, which can be formed by atomic layer deposition (ALD) or similar methods . In this embodiment, the first mask layer 130 may be Ultra-Low Temperature Oxide (ULTO). As shown in FIG. 2F, the first mask layer 130 conformally covers the top surface 118t of the first dielectric layer 118a and the top surface 128t of the second dielectric layer 128a to form an uneven surface 130t. In some embodiments, the first mask layer 130 may be, for example, a continuous concave-convex structure having the same thickness. The first mask layer 130 on the first dielectric layer 118a is a concave portion; and the first mask layer 130 on the second dielectric layer 128a is a convex portion. In an alternative embodiment, the top surface 130t of the first mask layer 130 has a plurality of first notches 16, which respectively correspond to the isolation structure 101 in the second region R2 (or the top surface 118t of the first dielectric layer 118a) .

如圖2F與圖3F所示,在第一罩幕層130上形成第二罩幕層132。在一實施例中,第二罩幕層132的材料包括介電材料,其可例如是氧化物、氮化物、氮氧化物或其組合,其可由化學氣相沉積法或類似方法所形成。在本實施例中,第二罩幕層132可以是電漿增強型氮化矽(plasma-enhanced silicon nitride,PESIN)。具體來說,如圖2F所示,第二罩幕層132填入第一凹口16中,使得第二罩幕層132的頂面132t形成第二凹口18。位於第一介電層118a上的第二罩幕層132(或位於第一凹口16中的第二罩幕層132)具有第一厚度T1,而位於第二介電層128a上的第二罩幕層132具有第二厚度T2。在一實施例中,第二厚度T2大於第一厚度T1。在替代實施例中,第二罩幕層132為非共形(non-conformal)層,因此,第二凹口18的頂部會形成懸突(overhang)。在此情況下,如圖2F所示,第二凹口18的剖面輪廓呈一上窄下寬的形狀。也就是說,第二凹口18的底部寬度W2大於第二凹口18的頂部寬度W1。在本實施例中,第二罩幕層132有助於控制後續形成的第三介電層134a的寬度(如圖2H所示)。將於後續段落詳細說明,於此便不再詳述。As shown in FIG. 2F and FIG. 3F, a second mask layer 132 is formed on the first mask layer 130. In an embodiment, the material of the second mask layer 132 includes a dielectric material, which may be, for example, oxide, nitride, oxynitride, or a combination thereof, which may be formed by chemical vapor deposition or similar methods. In this embodiment, the second mask layer 132 may be plasma-enhanced silicon nitride (PESIN). Specifically, as shown in FIG. 2F, the second mask layer 132 is filled in the first recess 16, so that the top surface 132 t of the second mask layer 132 forms the second recess 18. The second mask layer 132 (or the second mask layer 132 in the first recess 16) located on the first dielectric layer 118a has a first thickness T1, and the second mask layer 132 located on the second dielectric layer 128a The mask layer 132 has a second thickness T2. In an embodiment, the second thickness T2 is greater than the first thickness T1. In an alternative embodiment, the second mask layer 132 is a non-conformal layer, and therefore, an overhang is formed on the top of the second recess 18. In this case, as shown in FIG. 2F, the cross-sectional profile of the second notch 18 is a shape with a narrow top and a wide bottom. That is, the bottom width W2 of the second notch 18 is greater than the top width W1 of the second notch 18. In this embodiment, the second mask layer 132 helps to control the width of the third dielectric layer 134a to be subsequently formed (as shown in FIG. 2H). It will be explained in detail in the subsequent paragraphs and will not be detailed here.

請同時參照圖2F-2G與圖3F-3G,以第二罩幕層132與第一罩幕層130為罩幕,進行全面性蝕刻製程(其可視為第一蝕刻製程),以於第一介電層118a中形成多個第二溝渠24。具體來說,第二溝渠24沿著第二凹口18,向下貫穿第二罩幕層132a、第一罩幕層130a以及第一介電層118b,以暴露出第二區R2中的氮化矽層208。在形成第二溝渠24的過程中,部分第二罩幕層132被移除,而使得第二罩幕層132a的厚度小於第二罩幕層132的厚度。在本實施例中,第二溝渠24是藉由第二罩幕層132與第一罩幕層130當作蝕刻罩幕所形成,且不需要額外的光罩即可對準第二區R2中的隔離結構101。因此,第二溝渠24可視為自對準溝渠(self-align trench)。在此情況下,本實施例可減少製程步驟及光罩的使用,進而降低製造成本。2F-2G and 3F-3G at the same time, the second mask layer 132 and the first mask layer 130 are used as masks to perform a full-scale etching process (which can be regarded as the first etching process). A plurality of second trenches 24 are formed in the dielectric layer 118a. Specifically, the second trench 24 runs through the second mask layer 132a, the first mask layer 130a, and the first dielectric layer 118b along the second recess 18 downward to expose the nitrogen in the second region R2. The silicon layer 208. In the process of forming the second trench 24, part of the second mask layer 132 is removed, so that the thickness of the second mask layer 132 a is smaller than the thickness of the second mask layer 132. In this embodiment, the second trench 24 is formed by using the second mask layer 132 and the first mask layer 130 as an etching mask, and can be aligned in the second region R2 without an additional mask. The isolation structure 101. Therefore, the second trench 24 can be regarded as a self-align trench. In this case, this embodiment can reduce the number of manufacturing steps and the use of photomasks, thereby reducing manufacturing costs.

在一實施例中,上述全面性蝕刻製程對於第二罩幕層132與第一罩幕層130具有高蝕刻選擇性。也就是說,此全面性蝕刻製程對於第一罩幕層130的蝕刻速率大於對於第二罩幕層132的蝕刻速率。另外,由於第二罩幕層132的第一厚度T1小於其第二厚度T2,因此,在進行全面性蝕刻製程時,位於第一凹口16中較薄的第二罩幕層132較快被移除,進而暴露出下方的第一罩幕層130。另一方面,位於第二介電層128a上較厚的第二罩幕層132可用以當作蝕刻罩幕,以避免第一罩幕層130遭受過度蝕刻。In one embodiment, the above-mentioned comprehensive etching process has high etching selectivity for the second mask layer 132 and the first mask layer 130. In other words, the etching rate for the first mask layer 130 in this comprehensive etching process is greater than the etching rate for the second mask layer 132. In addition, since the first thickness T1 of the second mask layer 132 is smaller than the second thickness T2, the thinner second mask layer 132 located in the first recess 16 is quickly removed during the full-scale etching process. It is removed, thereby exposing the first mask layer 130 below. On the other hand, the thicker second mask layer 132 on the second dielectric layer 128a can be used as an etching mask to prevent the first mask layer 130 from being over-etched.

此外,在一實施例中,上述全面性蝕刻製程對於第二罩幕層132與第一介電層118a具有高蝕刻選擇性。也就是說,此全面性蝕刻製程對於第一介電層118a的蝕刻速率大於對於第二罩幕層132的蝕刻速率。在此情況下,第二罩幕層132可用以當作蝕刻罩幕,以於第一介電層118a中形成第二溝渠24。In addition, in one embodiment, the above-mentioned comprehensive etching process has high etching selectivity for the second mask layer 132 and the first dielectric layer 118a. That is to say, the etching rate for the first dielectric layer 118a of this comprehensive etching process is greater than the etching rate for the second mask layer 132. In this case, the second mask layer 132 can be used as an etching mask to form the second trench 24 in the first dielectric layer 118a.

值得注意的是,若是在未形成第二罩幕層132的情況下直接進行全面性蝕刻製程,則全面性蝕刻製程將過度蝕刻第一罩幕層130,並加寬第二溝渠24的寬度,使其大於第一凹口16的寬度。在此情況下,後續填入第二溝渠24中的第三介電層134a(如圖2H所示)的寬度則會增加,進而減少後續形成的電容器接觸窗CC1、CC2(如圖2L所示)的寬度。也就是說,主動區AA與電容器接觸窗CC1、CC2之間的接觸面積會減少,其將導致主動區AA與電容器接觸窗CC1、CC2之間的阻抗增加,進而導致記憶元件的操作速度與效能降低。另一方面,若第二溝渠24的寬度過大,亦不利於降低記憶元件的臨界尺寸。It is worth noting that if the full-scale etching process is directly performed without forming the second mask layer 132, the full-scale etching process will over-etch the first mask layer 130 and widen the width of the second trench 24. Make it larger than the width of the first recess 16. In this case, the width of the third dielectric layer 134a (as shown in FIG. 2H) subsequently filled in the second trench 24 will increase, thereby reducing the capacitor contact windows CC1 and CC2 (as shown in FIG. 2L) to be subsequently formed. ) Width. That is to say, the contact area between the active area AA and the capacitor contact windows CC1, CC2 will decrease, which will cause the impedance between the active area AA and the capacitor contact windows CC1, CC2 to increase, thereby leading to the operating speed and performance of the memory device. reduce. On the other hand, if the width of the second trench 24 is too large, it is not conducive to reducing the critical size of the memory device.

如圖2G所示,在形成第二溝渠24之後,於基底100上形成介電材料134。介電材料134填入第二溝渠24中且延伸覆蓋第二罩幕層132a的頂面。在一實施例中,介電材料134可例如是氧化物、氮化物、氮氧化物或其組合,其可由ALD、CVD或類似方法所形成。在本實施例中,介電材料134可以是氮化物,例如是氮化矽。As shown in FIG. 2G, after forming the second trench 24, a dielectric material 134 is formed on the substrate 100. The dielectric material 134 is filled in the second trench 24 and extends to cover the top surface of the second mask layer 132a. In an embodiment, the dielectric material 134 may be, for example, an oxide, a nitride, an oxynitride, or a combination thereof, and it may be formed by ALD, CVD or similar methods. In this embodiment, the dielectric material 134 may be nitride, such as silicon nitride.

請同時參照圖2G-2H與圖3G-3H,進行第二回蝕刻製程,移除部分介電材料134、第二罩幕層132a、第一罩幕層130a以及部分第二介電層128a,以暴露出第一介電層118b的頂面118t。在此情況下,填入第二溝渠24中的介電材料134可視為第三介電層134a,其分隔相鄰兩個第一介電層118b。在另一實施例中,如圖3H所示,部分第二間隙壁116亦被移除,以暴露出位元線結構102的頂面102t。2G-2H and 3G-3H at the same time, perform a second etch-back process to remove part of the dielectric material 134, the second mask layer 132a, the first mask layer 130a, and a part of the second dielectric layer 128a, To expose the top surface 118t of the first dielectric layer 118b. In this case, the dielectric material 134 filled in the second trench 24 can be regarded as a third dielectric layer 134a, which separates two adjacent first dielectric layers 118b. In another embodiment, as shown in FIG. 3H, part of the second spacer 116 is also removed to expose the top surface 102t of the bit line structure 102.

請同時參照圖2H-2I與圖3H-3I,進行蝕刻製程(其可視為第二蝕刻製程),移除第一介電層118b,以於第二介電層128b與第三介電層134a之間形成多個接觸窗開口26。在一實施例中,所述蝕刻製程包括乾式蝕刻製程、濕式蝕刻製程或其組合。舉例來說,可僅進行乾式蝕刻製程。另一方面,亦可先進行乾式蝕刻製程,再進行濕式蝕刻製程,以避免損傷基底100的頂面。在本實施例中,蝕刻製程對於第一介電層118b的蝕刻速率大於對於第二介電層128b的蝕刻速率與第三介電層134a的蝕刻速率。也就是說,在蝕刻製程期間,會完全移除第一介電層118b,而不會移除或些微移除第二介電層128b與第三介電層134a。此外,雖然圖2I與圖3I所繪示的接觸窗開口26暴露出氮化矽層208的頂面,但本發明不以此為限。在其他實施例中,上述蝕刻製程亦可移除部分氮化矽層208,以暴露出第二區R2的基底100。在替代實施例中,在進行蝕刻製程之後,亦可進行額外蝕刻製程以移除部分氮化矽層208,以暴露出第二區R2的基底100。2H-2I and 3H-3I at the same time, an etching process (which can be regarded as a second etching process) is performed, and the first dielectric layer 118b is removed, so that the second dielectric layer 128b and the third dielectric layer 134a A plurality of contact window openings 26 are formed therebetween. In one embodiment, the etching process includes a dry etching process, a wet etching process, or a combination thereof. For example, only the dry etching process can be performed. On the other hand, it is also possible to perform a dry etching process first, and then perform a wet etching process to avoid damage to the top surface of the substrate 100. In this embodiment, the etching rate for the first dielectric layer 118b in the etching process is greater than the etching rate for the second dielectric layer 128b and the etching rate for the third dielectric layer 134a. That is, during the etching process, the first dielectric layer 118b is completely removed, but the second dielectric layer 128b and the third dielectric layer 134a are not removed or slightly removed. In addition, although the contact opening 26 shown in FIG. 2I and FIG. 3I exposes the top surface of the silicon nitride layer 208, the present invention is not limited to this. In other embodiments, the above-mentioned etching process can also remove part of the silicon nitride layer 208 to expose the substrate 100 in the second region R2. In an alternative embodiment, after the etching process is performed, an additional etching process may also be performed to remove a part of the silicon nitride layer 208 to expose the substrate 100 in the second region R2.

請同時參照圖2J與圖3J,將導體材料136填入接觸窗開口26中。在一實施例中,導體材料136可例如是多晶矽,其形成方法可以是先進行CVD,而後進行化學機械研磨製程(CMP)。2J and 3J at the same time, the conductive material 136 is filled into the contact opening 26. In one embodiment, the conductive material 136 may be, for example, polysilicon, and its formation method may be CVD first, and then chemical mechanical polishing (CMP).

請同時參照圖2J-2K與圖3J-3K,移除部分導體材料136,以於導體材料136a上形成多個開口28。如圖2K所示,開口28位於第二介電層128b與第三介電層134a之間。如圖3K所示,開口28位於位元線結構102之間。Referring to FIGS. 2J-2K and 3J-3K at the same time, part of the conductive material 136 is removed to form a plurality of openings 28 on the conductive material 136a. As shown in FIG. 2K, the opening 28 is located between the second dielectric layer 128b and the third dielectric layer 134a. As shown in FIG. 3K, the opening 28 is located between the bit line structures 102.

如圖2L與圖3L所示,於導體材料136a上分別形成金屬矽化物層138與金屬層140。在一實施例中,金屬矽化物層138可例如是TiSi、CoSi、NiSi或其組合。在一實施例中,金屬層140可例如是W。如圖2L所示,導體材料136a、金屬矽化物層138以及金屬層140的複合結構可視為電容器接觸窗CC1或CC2。電容器接觸窗CC1、CC2分別配置在主動區AA的兩端,以電性連接主動區AA與後續形成的電容器144。As shown in FIGS. 2L and 3L, a metal silicide layer 138 and a metal layer 140 are respectively formed on the conductive material 136a. In an embodiment, the metal silicide layer 138 may be TiSi, CoSi, NiSi, or a combination thereof, for example. In an embodiment, the metal layer 140 may be W, for example. As shown in FIG. 2L, the composite structure of the conductive material 136a, the metal silicide layer 138, and the metal layer 140 can be regarded as the capacitor contact window CC1 or CC2. The capacitor contact windows CC1 and CC2 are respectively disposed at both ends of the active area AA to electrically connect the active area AA and the capacitor 144 formed subsequently.

在一實施例中,如圖2L所示,電容器接觸窗CC1、CC2不僅覆蓋主動區AA的表面,還覆蓋部分埋入式字元線202a的頂面。具體來說,本實施例是以鑲嵌法(damascene method)來形成電容器接觸窗CC1、CC2。因此,電容器接觸窗CC1、CC2可以是矩形結構。也就是說,電容器接觸窗CC1、CC2的側壁實質上垂直於基底100的頂面。另外,電容器接觸窗CC1、CC2是將導體材料136填入第二溝渠24所形成的。在此情況下,相較於圖案化導體材料的步驟,本實施例的製造方法可精準地控制電容器接觸窗CC1、CC2的寬度或臨界尺寸,進而提升記憶元件的可靠度。In one embodiment, as shown in FIG. 2L, the capacitor contact windows CC1 and CC2 not only cover the surface of the active area AA, but also cover the top surface of the partially embedded character line 202a. Specifically, this embodiment uses a damascene method to form the capacitor contact windows CC1 and CC2. Therefore, the capacitor contact windows CC1 and CC2 may have a rectangular structure. In other words, the sidewalls of the capacitor contact windows CC1 and CC2 are substantially perpendicular to the top surface of the substrate 100. In addition, the capacitor contact windows CC1 and CC2 are formed by filling the conductive material 136 into the second trench 24. In this case, compared with the step of patterning the conductive material, the manufacturing method of this embodiment can accurately control the width or critical size of the capacitor contact windows CC1 and CC2, thereby improving the reliability of the memory device.

另外,在此情況下,第三介電層134a分別對應第二區R2的基底100中的隔離結構101,以電性隔絕相鄰兩個電容器接觸窗CC1、CC2。In addition, in this case, the third dielectric layer 134a respectively corresponds to the isolation structure 101 in the substrate 100 of the second region R2 to electrically isolate the two adjacent capacitor contact windows CC1 and CC2.

請同時參照圖2L與圖3L,在基底100上形成介電層142。接著,在介電層142中形成多個電容器開口40,並在電容器開口40中分別形成多個電容器144。電容器144藉由電容器接觸窗CC1、CC2分別與主動區AA電性連接。具體來說,電容器144包括下電極144a、上電極144c及介電層144b。介電層144b位於下電極144a與上電極144c之間。下電極144a分別與電容器接觸窗CC1、CC2電性連接。在一實施例中,介電層142的材料可例如是氧化矽。下電極144a與上電極144c的材料例如是氮化鈦、氮化鉭、鎢、鈦鎢、鋁、銅或金屬矽化物。介電層144b可包括高介電常數材料層(即介電常數高於4的介電材料),其材料例如是下述元素的氧化物,如:鉿、鋯、鋁、鈦、鑭、釔、釓或鉭,又或是氮化鋁,或是上述任意組合。2L and 3L at the same time, a dielectric layer 142 is formed on the substrate 100. Next, a plurality of capacitor openings 40 are formed in the dielectric layer 142, and a plurality of capacitors 144 are formed in the capacitor openings 40, respectively. The capacitor 144 is electrically connected to the active area AA through the capacitor contact windows CC1 and CC2, respectively. Specifically, the capacitor 144 includes a lower electrode 144a, an upper electrode 144c, and a dielectric layer 144b. The dielectric layer 144b is located between the lower electrode 144a and the upper electrode 144c. The bottom electrode 144a is electrically connected to the capacitor contact windows CC1 and CC2, respectively. In an embodiment, the material of the dielectric layer 142 may be silicon oxide, for example. The material of the lower electrode 144a and the upper electrode 144c is, for example, titanium nitride, tantalum nitride, tungsten, titanium tungsten, aluminum, copper, or metal silicide. The dielectric layer 144b may include a high dielectric constant material layer (ie, a dielectric material with a dielectric constant higher than 4), the material of which is, for example, oxides of the following elements, such as hafnium, zirconium, aluminum, titanium, lanthanum, and yttrium , Gamma or tantalum, or aluminum nitride, or any combination of the above.

值得注意的是,由於第二介電層128b與第三介電層134a的材料皆為氮化矽,因此,在介電層142中形成電容器開口40時,第二介電層128b與第三介電層134a可用以當作蝕刻停止層。所述蝕刻停止層可避免在形成電容器開口40時的過度蝕刻,而導致相鄰兩個電容器接觸窗CC1、CC2電性連接所造成的短路問題。另一方面,即使電容器開口40的形成過程中有重疊偏移(overlay shift)或是對準失誤(misalignment),由氮化矽所構成的第二介電層128b與第三介電層134a亦可防止電容器開口40形成的過度蝕刻,以防止相鄰兩個電容器接觸窗CC1、CC2短路問題。因此,本實施例之電容器接觸窗CC1、CC2可保持柱狀結構,而不會在電容器接觸窗CC1、CC2的底部產生尖角。It is worth noting that since the materials of the second dielectric layer 128b and the third dielectric layer 134a are both silicon nitride, when the capacitor opening 40 is formed in the dielectric layer 142, the second dielectric layer 128b and the third dielectric layer 134a The dielectric layer 134a can be used as an etch stop layer. The etch stop layer can avoid excessive etching when forming the capacitor opening 40, which may cause a short circuit problem caused by the electrical connection of two adjacent capacitor contact windows CC1 and CC2. On the other hand, even if there is an overlap shift or misalignment during the formation of the capacitor opening 40, the second dielectric layer 128b and the third dielectric layer 134a made of silicon nitride are not the same. The over-etching formed by the capacitor opening 40 can be prevented, so as to prevent the short circuit problem of two adjacent capacitor contact windows CC1 and CC2. Therefore, the capacitor contact windows CC1 and CC2 of this embodiment can maintain a columnar structure without sharp corners at the bottom of the capacitor contact windows CC1 and CC2.

綜上所述,本發明藉由先形成第一介電層,再於第一介電層中形成第二介電層與第三介電層。之後,移除第一介電層以形成多個接觸窗開口。接著,將導體材料填入接觸窗開口中,以形成多個電容器接觸窗。也就是說,本發明藉由鑲嵌法來形成電容器接觸窗,其可簡化電容器接觸窗的製造方法並精準地控制電容器接觸窗的臨界尺寸,進而提升記憶元件的可靠度。另外,本發明將電容器接觸窗旁的介電層的材料皆為氮化矽,其可避免過度蝕刻而導致相鄰兩個電容器接觸窗短路的問題。In summary, in the present invention, the first dielectric layer is formed first, and then the second dielectric layer and the third dielectric layer are formed in the first dielectric layer. Afterwards, the first dielectric layer is removed to form a plurality of contact window openings. Then, a conductive material is filled into the contact window opening to form a plurality of capacitor contact windows. That is to say, the present invention uses the damascene method to form the capacitor contact window, which can simplify the manufacturing method of the capacitor contact window and accurately control the critical size of the capacitor contact window, thereby improving the reliability of the memory element. In addition, in the present invention, the material of the dielectric layer next to the capacitor contact window is all silicon nitride, which can avoid the problem of short circuit of two adjacent capacitor contact windows caused by excessive etching.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The protection scope of the present invention shall be subject to those defined by the attached patent application scope.

12:開口 14:第一溝渠 16:第一凹口 18:第二凹口 24:第二溝渠 26、28:接觸窗開口 40:電容器開口 100:基底 101:隔離結構 102:位元線結構 102t:位元線結構的頂面 104:氧化矽層 106:氮化矽層 108:阻障層 110:位元線 112:頂蓋層 114:第一間隙壁 116:第二間隙壁 118、118a、118b:第一介電層 118t:第一介電層的頂面 120:氧化矽層 120t:氧化矽層的頂面 122:碳層 124:氮氧化矽層 126:光阻圖案 128:介電材料 128a、128b:第二介電層 128t:第二介電層的頂面 130、130a:第一罩幕層 130t:第一罩幕層的頂面 132、132a:第二罩幕層 132t:第二罩幕層的頂面 134、134a:第三介電層 136、136a:導體材料 138:金屬矽化物層 140:金屬層 142:介電層 144:電容器 144a:下電極 144b:介電層 144c:上電極 202:字元線組 202a、202b:埋入式字元線 204a、204b:閘極 206a、206b:閘介電層 208:氮化矽層 AA:主動區 AC1、AC2、AC3:主動區行 BC:位元線接觸窗 CC1、CC2:電容器接觸窗 H:高度差 HM:硬罩幕層 L1:長邊 L2:短邊 R1:第一區 R2:第二區 T1:第一厚度 T2:第二厚度 W1:第二凹口的頂部寬度 W2:第二凹口的底部寬度 θ:夾角12: opening 14: The first ditch 16: first notch 18: second notch 24: The second ditch 26, 28: contact window opening 40: Capacitor opening 100: base 101: Isolation structure 102: bit line structure 102t: the top surface of the bit line structure 104: silicon oxide layer 106: silicon nitride layer 108: barrier layer 110: bit line 112: roof layer 114: first gap 116: second spacer 118, 118a, 118b: first dielectric layer 118t: the top surface of the first dielectric layer 120: silicon oxide layer 120t: The top surface of the silicon oxide layer 122: Carbon layer 124: Silicon oxynitride layer 126: photoresist pattern 128: Dielectric material 128a, 128b: second dielectric layer 128t: the top surface of the second dielectric layer 130, 130a: the first mask layer 130t: the top surface of the first mask layer 132, 132a: second mask layer 132t: The top surface of the second mask layer 134, 134a: third dielectric layer 136, 136a: Conductor material 138: metal silicide layer 140: Metal layer 142: Dielectric layer 144: Capacitor 144a: lower electrode 144b: Dielectric layer 144c: upper electrode 202: character line group 202a, 202b: buried character line 204a, 204b: gate 206a, 206b: gate dielectric layer 208: silicon nitride layer AA: active area AC1, AC2, AC3: active area line BC: bit line contact window CC1, CC2: capacitor contact window H: height difference HM: Hard mask layer L1: Long side L2: Short side R1: Zone 1 R2: Zone 2 T1: first thickness T2: second thickness W1: The top width of the second notch W2: the bottom width of the second notch θ: included angle

圖1是本發明之一實施例的記憶元件的上視示意圖。 圖2A至圖2L是沿著圖1之A-A’線段的記憶元件之製造流程的剖面示意圖。 圖3A至圖3L是沿著圖1之B-B’線段的記憶元件之製造流程的剖面示意圖。FIG. 1 is a schematic top view of a memory device according to an embodiment of the invention. 2A to 2L are schematic cross-sectional views of the manufacturing process of the memory device along the line A-A' in FIG. 1. 3A to 3L are schematic cross-sectional views of the manufacturing process of the memory device along the line B-B' in FIG. 1.

40:電容器開口 40: Capacitor opening

100:基底 100: base

101:隔離結構 101: Isolation structure

128b:第二介電層 128b: second dielectric layer

134a:第三介電層 134a: third dielectric layer

136a:導體材料 136a: Conductor material

138:金屬矽化物層 138: metal silicide layer

140:金屬層 140: Metal layer

142:介電層 142: Dielectric layer

144:電容器 144: Capacitor

144a:下電極 144a: lower electrode

144b:介電層 144b: Dielectric layer

144c:上電極 144c: upper electrode

202:字元線組 202: character line group

202a、202b:埋入式字元線 202a, 202b: buried character line

204a、204b:閘極 204a, 204b: gate

206a、206b:閘介電層 206a, 206b: gate dielectric layer

208:氮化矽層 208: silicon nitride layer

AA:主動區 AA: active area

CC1、CC2:電容器接觸窗 CC1, CC2: capacitor contact window

R1:第一區 R1: Zone 1

R2:第二區 R2: Zone 2

Claims (13)

一種記憶元件的製造方法,包括: 在基底中形成多個隔離結構,以將所述基底分隔成多個主動區; 在所述基底中形成多個字元線組,所述字元線組沿著Y方向延伸並穿過所述隔離結構與所述主動區; 在所述基底上形成多個位元線結構,所述位元線結構沿著X方向延伸並橫跨所述字元線組; 在所述位元線結構之間的所述基底上形成第一介電層; 在所述第一介電層中形成多個第一溝渠,其分別對應所述字元線組; 將第二介電層填入所述第一溝渠中; 移除部分所述第一介電層,使得所述第一介電層的頂面低於所述第二介電層的頂面; 形成第一罩幕層,以覆蓋所述第一介電層的所述頂面與所述第二介電層的所述頂面; 以所述第一罩幕層為罩幕,進行第一蝕刻製程,以於所述第一介電層中形成多個第二溝渠; 將第三介電層填入所述第二溝渠中; 移除所述第一介電層,以於所述第二介電層與所述第三介電層之間形成多個接觸窗開口;以及 將導體材料填入所述接觸窗開口中。A method for manufacturing a memory element includes: Forming a plurality of isolation structures in the substrate to separate the substrate into a plurality of active regions; Forming a plurality of character line groups in the substrate, the character line groups extending along the Y direction and passing through the isolation structure and the active area; Forming a plurality of bit line structures on the substrate, the bit line structures extending along the X direction and across the character line group; Forming a first dielectric layer on the substrate between the bit line structures; Forming a plurality of first trenches in the first dielectric layer, which respectively correspond to the character line group; Filling a second dielectric layer into the first trench; Removing part of the first dielectric layer so that the top surface of the first dielectric layer is lower than the top surface of the second dielectric layer; Forming a first mask layer to cover the top surface of the first dielectric layer and the top surface of the second dielectric layer; Using the first mask layer as a mask, performing a first etching process to form a plurality of second trenches in the first dielectric layer; Filling a third dielectric layer into the second trench; Removing the first dielectric layer to form a plurality of contact openings between the second dielectric layer and the third dielectric layer; and Fill the conductive material into the contact window opening. 如申請專利範圍第1項所述的記憶元件的製造方法,其中所述第一罩幕層的頂面具有多個第一凹口,其對應於所述隔離結構。According to the manufacturing method of the memory element described in the first item of the scope of patent application, the top surface of the first mask layer has a plurality of first notches corresponding to the isolation structure. 如申請專利範圍第2項所述的記憶元件的製造方法,更包括在所述第一罩幕層上形成第二罩幕層,其中所述第二罩幕層填入所述第一凹口中,使得所述第二罩幕層的頂面處形成多個第二凹口。The method for manufacturing a memory element as described in item 2 of the scope of the patent application further includes forming a second mask layer on the first mask layer, wherein the second mask layer is filled in the first recess , So that a plurality of second notches are formed on the top surface of the second mask layer. 如申請專利範圍第3項所述的記憶元件的製造方法,其中各所述第二凹口的底部寬度大於其頂部寬度。According to the manufacturing method of the memory element described in the scope of patent application 3, the width of the bottom of each of the second recesses is greater than the width of the top. 如申請專利範圍第3項所述的記憶元件的製造方法,其中位於所述第一介電層上的所述第二罩幕層具有第一厚度,位於所述第二介電層上的所述第二罩幕層具有第二厚度,所述第二厚度大於所述第一厚度。The method for manufacturing a memory device as described in the scope of patent application 3, wherein the second mask layer located on the first dielectric layer has a first thickness, and all areas located on the second dielectric layer have a first thickness. The second mask layer has a second thickness, and the second thickness is greater than the first thickness. 如申請專利範圍第3項所述的記憶元件的製造方法,其中所述第一罩幕層包括超低溫氧化物、原子層氧化物或其組合,所述第二罩幕層包括氮化物。According to the manufacturing method of the memory device according to the third item of the patent application, the first mask layer includes ultra-low temperature oxide, atomic layer oxide or a combination thereof, and the second mask layer includes nitride. 如申請專利範圍第3項所述的記憶元件的製造方法,其中所述第一蝕刻製程對所述第一罩幕層的蝕刻速率大於對所述第二罩幕層的蝕刻速率。According to the manufacturing method of the memory device according to the third item of the scope of patent application, the etching rate of the first mask layer in the first etching process is greater than the etching rate of the second mask layer. 如申請專利範圍第3項所述的記憶元件的製造方法,其中所述第一蝕刻製程對所述第一介電層的蝕刻速率大於對所述第二罩幕層的蝕刻速率。According to the manufacturing method of the memory device described in the scope of patent application 3, the etching rate of the first dielectric layer in the first etching process is greater than the etching rate of the second mask layer. 如申請專利範圍第3項所述的記憶元件的製造方法,其中所述移除所述第一介電層以形成所述接觸窗開口的步驟包括進行第二蝕刻製程,其包括乾式蝕刻製程、濕式蝕刻製程或其組合。According to the method of manufacturing a memory device according to claim 3, wherein the step of removing the first dielectric layer to form the contact window opening includes performing a second etching process, which includes a dry etching process, Wet etching process or a combination thereof. 如申請專利範圍第9項所述的記憶元件的製造方法,其中所述第二蝕刻製程對所述第一介電層的蝕刻速率大於對所述第二介電層、所述第三介電層的蝕刻速率。According to the manufacturing method of the memory element described in the scope of patent application, the etching rate of the first dielectric layer by the second etching process is greater than that of the second dielectric layer and the third dielectric layer. The etching rate of the layer. 如申請專利範圍第1項所述的記憶元件的製造方法,其中所述第一介電層的材料包括旋塗式介電材料,所述第二介電層包括氮化物,所述第三介電層包括氮化物。The method for manufacturing a memory element according to the first item of the patent application, wherein the material of the first dielectric layer includes a spin-on dielectric material, the second dielectric layer includes a nitride, and the third dielectric layer The electrical layer includes nitride. 如申請專利範圍第1項所述的記憶元件的製造方法,其中將所述導體材料填入所述接觸窗開口中之後,所述方法更包括: 回蝕所述導體材料; 在所述導體材料上形成金屬矽化物層;以及 在所述金屬矽化物層上形成金屬層。According to the manufacturing method of the memory element described in the first item of the scope of patent application, after filling the conductive material into the contact window opening, the method further includes: Etch back the conductor material; Forming a metal silicide layer on the conductive material; and A metal layer is formed on the metal silicide layer. 如申請專利範圍第1項所述的記憶元件的製造方法,更包括在所述導體材料上形成多個電容器,其中所述電容器中的一者包括:下電極、上電極以及配置在所述上電極與所述下電極之間的介電層。The method of manufacturing a memory element as described in the first item of the patent application further includes forming a plurality of capacitors on the conductor material, wherein one of the capacitors includes: a lower electrode, an upper electrode, and an upper electrode arranged on the upper electrode. The dielectric layer between the electrode and the lower electrode.
TW108112106A 2019-04-08 2019-04-08 Method of manufacturing memory device TWI735860B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108112106A TWI735860B (en) 2019-04-08 2019-04-08 Method of manufacturing memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108112106A TWI735860B (en) 2019-04-08 2019-04-08 Method of manufacturing memory device

Publications (2)

Publication Number Publication Date
TW202038386A TW202038386A (en) 2020-10-16
TWI735860B true TWI735860B (en) 2021-08-11

Family

ID=74090934

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108112106A TWI735860B (en) 2019-04-08 2019-04-08 Method of manufacturing memory device

Country Status (1)

Country Link
TW (1) TWI735860B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762252B (en) * 2021-03-24 2022-04-21 華邦電子股份有限公司 Memory sturcture and manufacturing method therefore
US11527537B2 (en) 2021-05-03 2022-12-13 Winbond Electronics Corp. Memory structure and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755249B (en) * 2021-01-11 2022-02-11 華邦電子股份有限公司 Seniconductor structure and method of manufacturing the same
KR20220118742A (en) * 2021-02-19 2022-08-26 삼성전자주식회사 Semiconductor device
TWI792300B (en) * 2021-05-06 2023-02-11 華邦電子股份有限公司 Memory device and method of forming the same
TWI825725B (en) * 2022-03-03 2023-12-11 南亞科技股份有限公司 Method of manufacturing memory device having active area in strip
TWI830539B (en) * 2022-12-15 2024-01-21 華邦電子股份有限公司 Semiconductor structure and method of forming the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263116B2 (en) * 2010-09-13 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Memory device
US9412752B1 (en) * 2015-09-22 2016-08-09 Macronix International Co., Ltd. Reference line and bit line structure for 3D memory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263116B2 (en) * 2010-09-13 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Memory device
US9412752B1 (en) * 2015-09-22 2016-08-09 Macronix International Co., Ltd. Reference line and bit line structure for 3D memory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI762252B (en) * 2021-03-24 2022-04-21 華邦電子股份有限公司 Memory sturcture and manufacturing method therefore
US11527537B2 (en) 2021-05-03 2022-12-13 Winbond Electronics Corp. Memory structure and manufacturing method thereof

Also Published As

Publication number Publication date
TW202038386A (en) 2020-10-16

Similar Documents

Publication Publication Date Title
TWI735860B (en) Method of manufacturing memory device
CN109256382B (en) Dynamic random access memory and manufacturing method thereof
KR100352909B1 (en) Method of forming self-aligned contact structure in semiconductor device and self-aligned contact structure fabricated thereby
KR100688576B1 (en) Semiconductor device having vertical channel transistor and method for fabricating the same device
JP4086926B2 (en) Semiconductor device and manufacturing method thereof
TWI640064B (en) Dynamic random access memory and method of manufacturing the same
TWI773243B (en) Structure of memory device
KR20040067315A (en) Semiconductor device and Method of manufacturing the same
KR100693879B1 (en) Semiconductor device having asymmetric bit lines and method of manufacturing the same
US10734390B1 (en) Method of manufacturing memory device
TWI749727B (en) Dynamic random access memory and method of forming the same
CN111834301B (en) Method for manufacturing memory element
TW202030861A (en) Memeory device and method of manufacturing the same
KR20210121848A (en) Semiconductor device and method for fabricating the same
TWI783212B (en) Word-line structure, memory and method of manufacturing the same
KR100699915B1 (en) Semiconductor device and method for manufacturing the same
US6903022B2 (en) Method of forming contact hole
TWI718806B (en) Memory device and method of manufacturing the same
KR20210032906A (en) Semiconductor device
CN216563127U (en) Semiconductor memory device with a plurality of memory cells
KR100576083B1 (en) Semiconductor device and method of manufacturing semiconductor device
CN219437502U (en) Semiconductor device with a semiconductor layer having a plurality of semiconductor layers
TW201909341A (en) Memory device and method of manufacturing the same
US20240130116A1 (en) Semiconductor device
CN113284896A (en) Word line structure, memory element and manufacturing method thereof