TWI731561B - Dip the mouth - Google Patents
Dip the mouth Download PDFInfo
- Publication number
- TWI731561B TWI731561B TW109102107A TW109102107A TWI731561B TW I731561 B TWI731561 B TW I731561B TW 109102107 A TW109102107 A TW 109102107A TW 109102107 A TW109102107 A TW 109102107A TW I731561 B TWI731561 B TW I731561B
- Authority
- TW
- Taiwan
- Prior art keywords
- protrusion
- protrusions
- center
- inner hole
- dipping nozzle
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/0408—Moulds for casting thin slabs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D41/00—Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
- B22D41/50—Pouring-nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
Abstract
本發明之目的,是在扁平狀的浸嘴中,讓熔鋼吐出流穩定化,讓鑄模內熔液面穩定化,亦即將其變動減小。 在本發明,是在內孔的寬度(Wn)比內孔的厚度(Tn)更大之扁平狀的浸嘴中,在扁平部分的寬度方向之壁面上設置朝厚度方向突出之側方突出部(1)。該側方突出部(1),是在相對於寬度方向之壁面的縱方向中心軸為軸對稱的位置,朝寬度方向且下方向傾斜地成對配置,進而側方突出部(1)是在寬度方向的兩壁面上對置。The purpose of the present invention is to stabilize the molten steel ejection flow in the flat dip nozzle, stabilize the molten surface in the mold, that is, reduce its fluctuation. In the present invention, in a flat dip nozzle with a width (Wn) of the inner hole greater than the thickness (Tn) of the inner hole, a lateral protrusion protruding in the thickness direction is provided on the wall surface in the width direction of the flat portion (1). The side protrusions (1) are arranged in pairs at an axisymmetrical position with respect to the longitudinal center axis of the wall surface in the width direction, and are arranged in pairs obliquely in the width direction and downward direction. Furthermore, the side protrusions (1) are in the width direction. The two walls of the direction are opposed to each other.
Description
本發明是關於從餵槽往鑄模內澆注熔鋼之連續鑄造用的浸嘴,特別是關於作為鑄造薄扁胚、中厚扁胚等用之浸嘴之吐出孔附近的橫方向(與鉛直方向垂直的方向)剖面呈扁平狀的浸嘴。The present invention relates to a dipping nozzle for continuous casting for pouring molten steel from a feeding trough into a mold, and particularly relates to a dipping nozzle used as a dipping nozzle for casting thin flat blanks, medium-thick flat blanks, etc., in the horizontal direction (and the vertical direction). Vertical direction) A dip nozzle with a flat cross-section.
在讓熔鋼連續地冷卻凝固來形成既定形狀的鑄片之連續鑄造工序,是透過設置於餵槽的底部之連續鑄造用浸嘴(以下也簡稱為「浸嘴」)來往鑄模內澆注熔鋼。In the continuous casting process where molten steel is continuously cooled and solidified to form cast slabs of a predetermined shape, molten steel is poured into the mold through a continuous casting dipping nozzle (hereinafter also referred to as "dipping nozzle") installed at the bottom of the feed tank .
一般而言,浸嘴是由具有底部的管體所構成,該管體之上端部成為熔鋼導入口,且在內部形成有從該熔鋼導入口往下方延伸之熔鋼流路(內孔),在管體之下部側面,相對向地形成有與熔鋼流路(內孔)連通之一對的吐出孔。浸嘴是在其下部浸漬於鑄模內的熔鋼中的狀態下使用。如此,可防止澆注的熔鋼之飛濺,並將熔鋼與大氣之接觸予以阻隔而防止氧化。此外,藉由使用浸嘴,使鑄模內的熔鋼整流化,而避免浮游於熔液面之熔渣(slag)、非金屬夾雜物等的雜質被捲入熔鋼中。Generally speaking, the dipping nozzle is composed of a pipe body with a bottom. The upper end of the pipe body becomes a molten steel inlet, and a molten steel flow path (inner hole) extending downward from the molten steel inlet is formed inside. ), on the lower side of the tube body, a pair of discharge holes communicating with the molten steel flow path (inner hole) are formed oppositely. The dipping nozzle is used with its lower part immersed in molten steel in the mold. In this way, it can prevent the molten steel from splashing, and block the contact of molten steel with the atmosphere to prevent oxidation. In addition, by using the dipping nozzle, the molten steel in the mold is rectified, and impurities such as slag and non-metallic inclusions floating on the molten surface are prevented from being caught in the molten steel.
近年,在連續鑄造時,製造薄扁胚、中厚扁胚等之厚度較薄的鑄片的情形增多。為了對應於像這樣連續鑄造用的薄鑄模,浸嘴必須為扁平狀。例如,在專利文獻1揭示於短邊側側壁設置有吐出孔之扁平狀浸嘴;在專利文獻2揭示,進一步在下端面也設有吐出孔之扁平狀浸嘴。在這些扁平狀的浸嘴,一般而言,在從熔鋼導入口往鑄模的吐出孔之間,是讓其內孔的寬度擴大。In recent years, in continuous casting, the production of thin flat slabs, medium-thick flat slabs, and other thin cast slabs has increased. In order to correspond to such a thin mold for continuous casting, the dip nozzle must be flat. For example,
然而,像這樣讓內孔的寬度擴大的形狀且扁平形狀的情況,容易使浸嘴內的熔鋼流變得紊亂,且使其往鑄模的吐出流也變得紊亂。此熔鋼流的紊亂,也會成為引發以下問題的原因,即鑄模內之熔液面(熔鋼表面)的變動增大、鑄粉(powder)被捲入鑄片中、溫度不均一化等、鑄片品質不良、作業危險性增大等。因此必須讓浸嘴內及吐出的熔鋼流穩定化。However, in the case of a shape in which the width of the inner hole is enlarged and a flat shape, the flow of molten steel in the dip nozzle is likely to become turbulent, and the discharge flow to the mold is also turbulent. The turbulence of the molten steel flow can also be the cause of the following problems, that is, the fluctuation of the molten steel surface (the molten steel surface) in the mold increases, the powder is drawn into the cast sheet, and the temperature is not uniform. , Poor casting quality, increased risk of operation, etc. Therefore, it is necessary to stabilize the molten steel flow in and out of the dipping nozzle.
為了讓這些熔鋼流穩定化,例如在專利文獻3揭示一種浸嘴,其形成有從內孔的下方之平面上的點(中心)朝向吐出孔的下緣之至少2個彎折面(bending facet)。進而,在該專利文獻3揭示出,具備將熔鋼流分流為2條液流(stream)的分流器之浸嘴。相較於像專利文獻1及專利文獻2那樣之在內部空間未具備改變流動方向形態的手段之浸嘴,在該專利文獻3所揭示之扁平狀的浸嘴,浸嘴內之熔鋼流的穩定性變高。In order to stabilize these molten steel flows, for example,
然而,如此般分流為左右方向的熔鋼流之手段的情況,依然有左右的吐出孔間之熔鋼吐出流的變動變大,而導致鑄模內熔液面的變動變大的情形。However, in the case of such a means of dividing the molten steel flow into the left and right directions, the fluctuation of the molten steel ejection flow between the left and right ejection holes still increases, resulting in large fluctuations of the molten steel level in the mold.
在前述背景下,本發明人等發明了專利文獻4所揭示之扁平狀的浸嘴,而有助於讓鑄模內熔液面等穩定化。
[先前技術文獻]
[專利文獻]Under the aforementioned background, the inventors of the present invention invented the flat dip nozzle disclosed in
[專利文獻1]日本特開平11-5145號公報 [專利文獻2]日本特開平11-47897號公報 [專利文獻3]日本特表2001-501132號公報 [專利文獻4]國際公開第2017/81934號[Patent Document 1] Japanese Patent Application Laid-Open No. 11-5145 [Patent Document 2] Japanese Patent Application Laid-Open No. 11-47897 [Patent Document 3] Japanese Special Publication No. 2001-501132 [Patent Document 4] International Publication No. 2017/81934
[發明所欲解決之問題][The problem to be solved by the invention]
然而,本發明人等發現,縱使是專利文獻4之扁平狀的浸嘴,在一定作業條件下,特別是在浸嘴上端附近的內孔橫方向剖面形狀為圓形的區域,以最小剖面積位置為基準,以熔鋼流量大致0.04(t/(min.・cm2
))以上等的條件進行的連續鑄造中,鑄模內熔液面的穩定化等的效果依然會有不足的情況。However, the inventors of the present invention found that even with the flat dip nozzle of
於是,本發明所欲解決的問題是為了提供一種浸嘴,在扁平狀的浸嘴的情況,讓鑄模內熔液面等穩定化、亦即將其變動減小。 [解決問題之技術手段]Therefore, the problem to be solved by the present invention is to provide a dip nozzle that stabilizes the melt level in the mold, that is, reduces its fluctuation in the case of a flat dip nozzle. [Technical means to solve the problem]
專利文獻4之扁平狀的浸嘴,主要是在內孔中央設置突出部,以此為基礎而為了將吐出流、形態等進行微調,在其側方也設置與前述中央相同或突出厚度較小的突出部。
相對於此,在本發明,是在側方設置對稱的突出部,在該側方突出部之間成為沒有突出部的空間,或以前述側方突出部基礎,而設置突出長度比前述側方突出部更小的突出部。The flat dip nozzle in
依專利文獻4之扁平狀的浸嘴之結構,是將內孔的熔鋼流,以往側方(指嘴扁平部分的寬度方向,以下相同)比往中央正下方向的流量更大的方式誘導。在此情況,有使來自吐出孔之熔鋼流速變大的傾向,在每單位時間、每單位面積之熔鋼流量較大的條件等的情況,有使鑄模內熔液面之變動變大的情形。
相對於此,依本發明的浸嘴之結構,是調整內孔的熔鋼流而使往中央正下方向的流量增大,藉此使往側方的流量相對減少地進行誘導。換言之,在本發明,比起專利文獻4的浸嘴之結構的情況,是將往中央正下方向的流量/往側方的流量之比例相對地增大。
又上述,基本上是在往中央正下方向的流量/往側方的流量之關係中調整其比例,並不一定成為往中央正下方向的流量>往側方的流量的關係。According to the structure of the flat dip nozzle in
為了獲得上述的流動形態之本發明係以下1至8之扁平狀的浸嘴。 1.一種浸嘴,形成為內孔的寬度Wn比內孔的厚度Tn更大之扁平狀,且在短邊側側壁的下部具備一對的吐出孔, 在扁平部分的寬度方向的壁面上,在相對於前述寬度方向的壁面之縱方向中心軸為軸對稱的位置,將朝前述寬度方向且下方向傾斜並朝厚度方向突出的部分(以下稱為「側方突出部」)成對地配置, 前述側方突出部是在前述寬度方向的兩壁面上對置, 將配置有該側方突出部的位置之內孔的厚度設定為1時之前述側方突出部之前述厚度方向的合計突出長度Ts,前述成對的2個側方突出部分別為0.18以上0.90以下且相同。 2.如前述1所述之浸嘴,其中, 在前述成對的2個側方突出部間之前述寬度方向壁面上,設置突出部(以下稱為「中央突出部」),該中央突出部之前述厚度方向的突出長度是比前述側方突出部之前述厚度方向的突出長度更小,且將配置有該側方突出部的位置之內孔的厚度設定為1時之前述厚度方向的合計突出長度Tp為0.40以下(不包括0)。 3.如前述2所述之浸嘴,其中, 前述中央突出部的上端面形成為,朝前述寬度方向呈水平形狀、以中央為頂點的曲面形狀、或是包含彎曲點而往上方突出的形狀。 4.如前述1至3中任一項所述之浸嘴,其中, 前述側方突出部及前述中央突出部的上端面形成為,朝內孔中心方向呈水平形狀、以平面或曲面往下方傾斜的形狀。 5.如前述1至4中任一項所述之浸嘴,其中, 前述側方突出部及前述中央突出部之任一方或兩方各個的突出長度,是分別相同、或朝向該寬度方向之壁面的中心方向直線或曲線或段狀地縮短的形狀。 6.如前述1至5中任一項所述之浸嘴,其中, 前述側方突出部及具備前述中央突出部之前述側方突出部之任一方或兩方,是在上下方向設置於複數處。 7.如前述1至6中任一項所述之浸嘴,其中, 在內孔之底部中央附近具有往上方向的突出部。 8.如前述1至7中任一項所述之浸嘴,其中, 前述浸嘴,是在該浸嘴上端附近之內孔橫方向剖面形狀為圓的區域,以最小剖面積位置為基準之熔鋼流量為0.04(t/(min.・cm2 ))以上的連續鑄造用。In order to obtain the above-mentioned flow form, the present invention is a flat dip nozzle of 1 to 8 below. 1. A dipping nozzle formed in a flat shape with an inner hole having a width Wn greater than a thickness Tn of the inner hole, and provided with a pair of discharge holes at the lower part of the short side side wall, and on the wall surface in the width direction of the flat part, At a position that is axisymmetric with respect to the longitudinal center axis of the wall surface in the width direction, the portions that are inclined in the width direction and the downward direction and protrude in the thickness direction (hereinafter referred to as "side protrusions") are arranged in pairs , The side protrusions are opposed to the two wall surfaces in the width direction, and the thickness of the inner hole at the position where the side protrusions are arranged is set to 1, the total protrusions in the thickness direction of the side protrusions The length Ts is equal to 0.18 or more and 0.90 or less for the two side protrusions of the aforementioned pair. 2. The dipping nozzle according to 1 above, wherein a protrusion (hereinafter referred to as a "central protrusion") is provided on the widthwise wall surface between the pair of two lateral protrusions, and the central protrusion The protrusion length in the thickness direction is the sum of the thickness direction when the thickness of the inner hole at the position where the side protrusion is arranged is set to be smaller than the protrusion length in the thickness direction of the side protrusion The protrusion length Tp is 0.40 or less (excluding 0). 3. The dipping nozzle according to the above 2, wherein the upper end surface of the central protrusion is formed in a horizontal shape in the width direction, a curved shape with the center as the apex, or a shape that includes a curved point and protrudes upward . 4. The dipping nozzle according to any one of 1 to 3 above, wherein the upper end surfaces of the side protrusions and the center protrusions are formed in a horizontal shape toward the center of the inner hole, and downward in a plane or curved surface Inclined shape. 5. The dipping nozzle according to any one of 1 to 4 above, wherein the protruding lengths of either or both of the lateral protrusions and the central protrusions are the same, or oriented toward the width direction A shape in which the center direction of the wall surface is shortened in a straight line, a curve or a segment. 6. The dipping nozzle according to any one of 1 to 5 above, wherein one or both of the side protrusions and the side protrusions provided with the center protrusions are provided in a plurality of Place. 7. The dipping nozzle according to any one of 1 to 6 above, wherein the inner hole has an upward protrusion near the center of the bottom. 8. The dipping nozzle according to any one of 1 to 7 above, wherein the dipping nozzle is an area in which the cross-sectional shape of the inner hole in the vicinity of the upper end of the dipping nozzle is circular, based on the position of the smallest cross-sectional area For continuous casting with a molten steel flow rate of 0.04 (t/(min.・cm 2 )) or more.
又在本發明中,前述內孔的寬度Wn、厚度Tn是指,在設置於浸嘴的短邊側側壁部之一對的吐出孔之上端位置上之內孔的寬度(長邊方向的長度)、厚度(短邊方向的長度)。 [發明之效果]In the present invention, the width Wn and thickness Tn of the inner hole refer to the width of the inner hole (length in the longitudinal direction) at the upper end position of the pair of discharge holes provided on the short side side wall of the dip nozzle. ), thickness (length in the short-side direction). [Effects of Invention]
依據本發明之扁平狀的浸嘴,不致讓熔鋼流的方向從中央部到側方部固定或完全地分離,可將該熔鋼流控制成逐漸增減之連續的狀態,能夠確保浸嘴內的熔鋼流之適度的平衡。如此,縱使在一定作業條件下,特別是在浸嘴上端附近之橫方向剖面形狀為圓形的區域,以最小剖面積位置為基準,以熔鋼流量大致0.04(t/(min.・cm2 ))以上等的條件進行,而有在側方吐出孔側讓高速度或多量的熔鋼流產生的傾向之連續鑄造中,仍能將從吐出孔流出之熔鋼的流速或流量適度地抑制,而使鑄模內熔液面等穩定化,亦即可將其變動減小。 進而,因為抑制鑄模內熔液面變動,將鑄模內鑄粉等的捲入減少,可促進熔鋼內夾雜物之上浮等而使鑄片品質提高。此外,因為能抑制往鑄模側壁之過度的熔鋼流,還能減少鑄漏等的事故發生的危險性。According to the flat dipping nozzle of the present invention, the direction of the molten steel flow is not fixed or completely separated from the central part to the side part, and the molten steel flow can be controlled to a continuous state of increasing and decreasing gradually, which can ensure the immersion nozzle The flow of molten steel within is moderately balanced. In this way, even under certain operating conditions, especially in the area with a circular cross-sectional shape near the upper end of the dip nozzle, based on the minimum cross-sectional area position, the molten steel flow rate is approximately 0.04(t/(min.・cm 2) )) The above conditions are carried out, and in the continuous casting where there is a tendency to generate a high speed or a large amount of molten steel flow on the side of the side spit hole, the flow velocity or flow rate of the molten steel flowing out of the spit hole can still be moderately suppressed , And stabilize the melt level in the mold, which can reduce its fluctuation. Furthermore, since the fluctuation of the melt level in the mold is suppressed, the entrapment of powder and the like in the mold is reduced, and the floating of inclusions in the molten steel can be promoted to improve the quality of the cast slab. In addition, because the excessive molten steel flow to the side wall of the mold can be suppressed, the risk of accidents such as casting leakage can also be reduced.
藉由設置像前述專利文獻3那樣的分流手段,可某種程度形成往寬度方向端部側之熔鋼流。然而像那樣進行固定或完全的分流的情況,在內孔的每一部分、亦即每個單一的窄範圍產生分離的熔鋼流,容易按照內孔的場所而產生流動方向及流速不同的部分。特別是藉由熔鋼流量控制等而使流量、方向產生變動的情況,有熔鋼流朝任一方偏移,而在從浸嘴內往鑄模內的吐出流及熔液面等產生明顯紊亂的情形。By providing a shunting means like the
於是在本發明,例如圖1的第1形態所示般,首先在浸嘴10之扁平部分的寬度方向(長邊側)的壁面之側方部設置:相對於該寬度方向壁面的中心軸為軸對稱之一對的側方突出部1(參照圖1(a)等,以下也簡稱為「軸對稱的側方突出部」)。
一對的側方突出部1之上表面,是從該側方突出部1的中央側朝向扁平部分的寬度方向且下方向、亦即吐出孔4的方向傾斜。利用這樣的傾斜,讓內孔3內乃至來自吐出孔4的熔鋼的流速、流動形態,在抑制渦流等發生的狀態下穩定地變化,而能將其最佳化。Therefore, in the present invention, for example, as shown in the first form of FIG. 1, first, the flat portion of the
前述一對的軸對稱的側方突出部,在隔著內孔之另一方的寬度方向壁面上也是,對於扁平部分的厚度方向呈面對稱的關係對置(參照圖1(b)等,以下也將處於面對稱的關係之側方突出部簡稱為「面對稱的側方突出部」)。在本發明,例如圖6所示般,若將配置有面對稱的側方突出部1的位置之內孔的厚度Tn設為1,則將側方突出部1之前述厚度方向的合計長度Ts設為0.18以上0.90以下。亦即,在面對稱的側方突出部之間存在讓熔鋼通過的空間。
The aforementioned pair of axisymmetric side protrusions are also opposed to each other on the other widthwise wall surface of the inner hole in a plane symmetrical relationship with respect to the thickness direction of the flat portion (refer to Figure 1(b), etc., below The side protrusions in the relationship of surface symmetry are also simply referred to as "side protrusions of surface symmetry"). In the present invention, for example, as shown in FIG. 6, if the thickness Tn of the inner hole at the position where the plane-
藉由讓這樣的間隔的空間存在,在內孔的熔鋼流不致固定或完全地分流,而將熔鋼流所通過的部分之流動方向、流速平緩地控制。如此,可緩和熔鋼流在吐出孔側以明確的邊界流動的情形。 By allowing such a spaced space to exist, the molten steel flow in the inner hole is not fixed or completely divided, but the flow direction and flow rate of the part through which the molten steel flow passes are smoothly controlled. In this way, it is possible to alleviate the situation where the molten steel flow flows with a clear boundary on the side of the ejection hole.
此外,藉由調整側方突出部的設置場所、長度、方向等,可避免讓熔鋼流往中心附近或側方側集中,能讓其往寬度方向端部側、亦即吐出孔側及中央側分散而使熔鋼流保持適度的平衡。而且,不僅是進行分散,由於在設置有側方突出部的區域也使空間連通,熔鋼流不致成為完全分裂的狀態而是形成平緩的邊界,被平緩地混合、均一化而成為分散的液流。 In addition, by adjusting the installation location, length, direction, etc. of the side protrusions, the molten steel can be prevented from flowing near the center or concentrated on the side, and it can be moved toward the end side in the width direction, that is, the side of the ejection hole and the center. Side dispersion keeps the molten steel flow in a proper balance. Moreover, not only the dispersion is carried out, but the space is connected in the area where the lateral protrusions are provided. The molten steel flow does not become a completely split state but forms a gentle boundary, which is gently mixed and homogenized to become a dispersed liquid. flow.
又如前述般,側方突出部的設置場所、長度、方向等可適宜地調整。例如在圖2所示的第2形態,是除了圖1的側方突出部(在圖2中,標註1a的符號,以下也稱為「下部側方突出部」)以外,還在上方設置一對的側方突出部(在圖2中,標註1b的符號,以下也稱為「上部側方突出部」)。
Also as described above, the installation location, length, direction, etc. of the side protrusions can be appropriately adjusted. For example, in the second form shown in FIG. 2, in addition to the side protrusion of FIG. 1 (in FIG. 2, the
進而,在本發明,在軸對稱的側方突出部間,像圖3及圖4所示之第3及第4形態那樣,可設置突出長度比前述軸對稱的側方突出部更小之突出部(中央突出部)。又在圖3所示的第3形態,是在圖1的軸對稱的側方突
出部1、1間設置中央突出部1p,在圖4所示的第4形態,是在圖2的軸對稱的下部側方突出部1a、1a間設置中央突出部1p。
Furthermore, in the present invention, between the axisymmetric side protrusions, like the third and fourth forms shown in FIGS. 3 and 4, protrusions with a protrusion length smaller than the aforementioned axisymmetric side protrusions can be provided Department (central protrusion). In the third form shown in Fig. 3, it is projected on the axisymmetric side of Fig. 1
The
此構造可獲得:將往前述軸對稱的側方突出部間(中央部)的熔鋼流/往側方的熔鋼流之比例增大的效果,該效果是與專利文獻4中的效果相反,在專利文獻4,是藉由設置突出長度比前述軸對稱的側方突出部更大的突出部,相較於往前述軸對稱的側方突出部間的熔鋼流,使往側方的熔鋼流增大。在熔鋼流量較大(大致0.04(t/(min..cm2)以上))的連續鑄造,將往前述軸對稱的側方突出部間(中央部)之熔鋼流/往側方的熔鋼流之比例增大是有效的情形很多。
This structure can obtain the effect of increasing the ratio of the molten steel flow between the aforementioned axially symmetrical side protrusions (central part)/the side molten steel flow, which is the opposite of the effect in
像這樣往中央部的熔鋼流和往側方的熔鋼流之平衡,可依據熔鋼流速(每單位時間、每單位剖面積的熔鋼流量)的大小、拉出速度、鑄模尺寸形狀、浸漬深度、吐出孔面積等的嘴結構等而進行最佳化。具體而言可採用:調整側方突出部之寬度方向乃至下方向的角度、寬度方向長度、突出長度等、成為沒有軸對稱的側方突出部間的中央突出部的構造、調整該中央突出部之突出高度、調整上端面形狀等的方法。 In this way, the balance between the molten steel flow toward the center and the sideward molten steel flow can be based on the molten steel flow rate (the molten steel flow rate per unit time and per unit cross-sectional area), the drawing speed, the size and shape of the mold, The nozzle structure, such as the depth of immersion and the area of the ejection hole, are optimized. Specifically, it can be adopted: adjusting the angle of the lateral protrusions in the width direction and the downward direction, the width direction length, the protrusion length, etc., the structure of the central protrusion between the side protrusions without axial symmetry, and the adjustment of the central protrusion The method of protruding height, adjusting the shape of the upper end surface, etc.
具體而言,關於中央突出部的突出長度,如圖6所例示般,將其突出長度Tp/2設定成比側方突出部1的突出長度Ts/2更小,且將配置有該側方突出部1的位置之內孔的厚度Tn設定為1時之合計突出長度Tp成為0.40以下。換言之設定成Tp<Ts,且Tp/Tn≦0.40。Specifically, regarding the protrusion length of the central protrusion, as illustrated in FIG. 6, the protrusion length Tp/2 is set to be smaller than the protrusion length Ts/2 of the
此外,中央突出部的上端面,可如圖8所示般朝寬度方向呈水平形狀,或如圖5及圖7所示般形成為:以中央為頂點的曲面、或是包含彎曲點之往上方突出的形狀。藉由這樣的形狀,能讓熔鋼的流速、流動形態進一步變化,還能進行最佳化。In addition, the upper end surface of the central protrusion may be horizontal in the width direction as shown in FIG. 8, or may be formed as a curved surface with the center as the vertex, or a curved surface including a curved point as shown in FIG. 5 and FIG. Shape protruding from above. With such a shape, the flow rate and flow pattern of molten steel can be further changed and optimized.
進而,側方突出部或中央突出部的上端面,也能如圖9所示般,以與浸嘴扁平部分之寬度方向(長邊側)壁面之邊界部為頂點,朝浸嘴扁平部分之厚度方向的中心方向、亦即內孔中心方向(空間側)且下方傾斜。藉由這樣的傾斜,能讓熔鋼的流速、流動形態進一步變化,還能進行最佳化。Furthermore, the upper end surface of the side protrusion or the center protrusion can also be apex with the boundary part of the width direction (long side) wall surface of the flat part of the dip nozzle as shown in Fig. 9 and face the flat part of the dip nozzle. The center direction in the thickness direction, that is, the inner hole center direction (space side), is inclined downward. With such an inclination, the flow rate and flow pattern of molten steel can be further changed and optimized.
進而,側方突出部或中央突出部之上端面的突出長度,除了能與圖10所示般成為同一以外,也能像圖11~圖13所示般,以朝向浸嘴扁平部分的寬度方向(長邊側)壁面的中心方向變短的方式傾斜。藉由這樣的傾斜,能讓熔鋼的流速、流動形態進一步變化,還能進行最佳化。Furthermore, the protruding length of the upper end surface of the side protrusion or the central protrusion can be the same as shown in Fig. 10, and can also be directed toward the width direction of the flat portion of the dip nozzle as shown in Figs. 11 to 13 (Long side) The wall surface is inclined so that the center direction becomes shorter. With such an inclination, the flow rate and flow pattern of molten steel can be further changed and optimized.
在扁平狀的浸嘴,短邊側側壁部之吐出孔成為在縱方向較長地開放的形態,在該吐出孔,有產生越往上方側吐出流速變得越小的部分的情形,特別是在上端部附近,還常常觀察到在浸嘴內吸入之逆流現象。於是,在本發明例如圖2及圖4所示般,除了前述的軸對稱及面對稱的下部側方突出部1a以外,可在其上方設置一個或複數個軸對稱及面對稱的側方突出部1b(上方側方突出部)。該上方側方突出部1b,可成為和前述的下方側方突出部1a同樣的最佳化構造。In a flat dip nozzle, the ejection hole of the side wall on the short side becomes a form that is long and open in the longitudinal direction. In this ejection hole, there may be a part where the ejection flow rate becomes smaller as you go upward, especially In the vicinity of the upper end, the reverse flow phenomenon of inhalation in the dip nozzle is often observed. Therefore, in the present invention, as shown in Figs. 2 and 4, in addition to the aforementioned axisymmetric and plane symmetric
該上方側方突出部1b,特別是抑制在吐出孔上方之流速降低、在上端部附近之逆流等的熔鋼流之紊亂而增補將吐出孔之縱方向的每個位置的流速分布均一化的功能,還具有調整在上下方向的流量平衡之功能。
在該上部側方突出部1b、1b間也是,與前述的下方側方突出部1a、1a間同樣地可設置中央突出部。The
又浸嘴內部的底部5,亦可像圖14那樣在中央附近沒有形成吐出孔,而僅是作為與鑄模的分隔壁之壁面,或亦可像圖1~圖5、圖7、圖8、圖15、圖16等那樣,讓中央部往上方突出而成為包含底部突出部的構造。進而像圖17那樣,在底部5設置吐出孔6亦可。像這樣的底部之突出構造,在往中央部的熔鋼流朝吐出孔方向轉換時,有助於讓其流動方向、形態、流速等變化。In addition, the
接下來,將本發明連同實施例一起做說明。Next, the present invention will be explained together with the embodiments.
[實施例A]
實施例A是針對圖2所示之本發明的第2形態,亦即作為突出部是設置軸對稱且面對稱的側方突出部2段1a、1b,在下部側方突出部1a、1a間未設置中央突出部的形態之浸嘴,及針對圖4所示之本發明的第4形態,亦即作為突出部是設置軸對稱且面對稱的側方突出部2段1a、1b,在下方側方突出部1a、1a間設置了中央突出部1p的形態之浸嘴,顯示下方側方突出部1a及中央突出部1p往浸嘴內孔空間方向之突出長度(面對稱一對的突出部之合計長度)Ts、Tp相對於浸嘴內孔的厚度(短邊方向的長度)Tn之比Ts/Tn、Tp/Tn、與鑄模內熔液面變動程度(鑄模內偏流指數及鑄模內熔液面變動高度)的關係之水模型實驗結果。[Example A]
Example A is directed to the second form of the present invention shown in FIG. 2, that is, as the protrusions, two axial and plane
浸嘴的規格如下。 ・全長 :1165mm ・熔鋼導入口 :φ86mm ・吐出孔上端位置的內孔寬度(Wn) :255mm ・吐出孔上端位置的內孔厚度(Tn) :34mm ・吐出孔上端位置之從嘴下端面起算的高度 :146.5mm ・中央突出部的高度(從嘴下端面起算的高度) :155mm ・浸嘴的壁厚度 :約25mm ・浸嘴之底部的厚度(中央部頂點) :高度100mm ・上方側方突出部(1b): 浸嘴寬度方向的長度(左右分別)為25mm、 Ts/Tn比=0.74、 往吐出孔方向的傾斜角度為45度、 上端面的浸嘴寬度方向及厚度方向為水平、 側方突出部間為100mm、 中央突出部無 ・下方側方突出部(1a):浸嘴寬度方向的長度(左右分別)為40mm、 Ts/Tn比=0.1~1.0(無空間)、 往吐出孔方向的傾斜角度為45度、 上端面之浸嘴寬度方向及厚度方向為水平、 側方突出部間為60mm、 中央突出部Tp/Tn比=0(無)~0.7The specifications of the dip nozzle are as follows. ・Full length: 1165mm ・Melting steel import port: φ86mm ・Width of the inner hole at the upper end of the spit hole (Wn): 255mm ・The thickness of the inner hole at the upper end of the spit hole (Tn): 34mm ・The height of the upper end of the spit hole from the lower end of the mouth: 146.5mm ・The height of the central protrusion (the height from the lower end of the mouth): 155mm ・The thickness of the wall of the immersion nozzle: about 25mm ・The thickness of the bottom of the immersion nozzle (the apex of the central part): height 100mm ・Upper side protrusion (1b): The length in the width direction of the nozzle (left and right) is 25mm, Ts/Tn ratio=0.74, The inclination angle to the direction of the discharge hole is 45 degrees, The width direction and thickness direction of the dipping nozzle on the upper end surface are horizontal, The distance between the side protrusions is 100mm, No central protrusion ・Lower side protrusions (1a): The length in the width direction of the nozzle (left and right) is 40mm, Ts/Tn ratio=0.1~1.0 (no space), The inclination angle to the direction of the discharge hole is 45 degrees, The width direction and thickness direction of the dipping nozzle on the upper end surface are horizontal, Between the side protrusions is 60mm, Central protrusion Tp/Tn ratio = 0 (none) ~ 0.7
鑄模、流體的條件如下。 ・鑄模的寬度 :1650mm ・鑄模的厚度 :65mm(中央上端部185mm) ・浸漬深度(從吐出孔上端到水面) :83mm ・流體的供給速度 :0.065t/(min・cm2 ) ※換算成熔鋼的值The conditions of the mold and fluid are as follows. ・Width of the mold: 1650mm ・Thickness of the mold: 65mm (185mm at the upper end of the center) ・Dip depth (from the top of the discharge hole to the water surface): 83mm ・Supply rate of fluid: 0.065t/(min・cm 2 ) ※Converted to melting Steel value
在此,將鑄模內偏流指數在無偏流的情況設為1.0,評價基準設定成:0.8≦鑄模內偏流指數≦1.2、鑄模內熔液面變動高度(mm)≦15mm視為獲得了解決本發明的問題之效果。 又鑄模內偏流指數是指,利用水模型實驗測定鑄模內的浸嘴吐出孔側左右各個的設定熔液面(離設定水位上端面30mm的水中位置)之流速,將前述左右的流速以比值表示時的絕對值,亦即左流速/右流速(或右流速/左流速)的值,鑄模內熔液面變動高度是指圖18中的Sw之最大值。Here, the drift index in the mold is set to 1.0 when there is no drift, and the evaluation criteria are set as: 0.8≦the drift index in the mold≦1.2, and the molten surface fluctuation height in the mold (mm)≦15mm is regarded as a solution to the present invention The effect of the problem. In addition, the drift index in the mold refers to the flow rate of the set melt surface (30mm in the water from the upper end surface of the set water level) on the left and right sides of the ejection hole of the dipping nozzle in the mold measured by a water model experiment, and the above-mentioned left and right flow rates are expressed as a ratio. The absolute value of the time, that is, the value of left flow rate/right flow rate (or right flow rate/left flow rate), and the height of melt level fluctuation in the mold refers to the maximum value of Sw in FIG. 18.
結果如表1所示。 The results are shown in Table 1.
鑄模內偏流指數及鑄模內熔液面變動高度,關於側方突出部,可知相對於Tn之Ts比率(Ts/Tn)為0.18以上0.90以下,能滿足基準。 此外,關於設置有中央突出部的情況,可知當其突出長度比側方突出部的突出長度更小(Tp<Ts)、且相對於Tn之Tp比率(Tp/Tn)為0.4以下的情況,能滿足基準。The deviation index in the mold and the height of the molten surface fluctuation in the mold, as for the side protrusions, show that the Ts ratio (Ts/Tn) to Tn is 0.18 or more and 0.90 or less, which can meet the standard. In addition, regarding the case where the central protrusion is provided, it can be seen that when the protrusion length is smaller than the protrusion length of the lateral protrusion (Tp<Ts), and the Tp ratio to Tn (Tp/Tn) is 0.4 or less, Can meet the benchmark.
[實施例B]
實施例B表示以下的水模型實驗結果,亦即,在圖4所示之本發明的第4形態中,將下方側方突出部1a及中央突出部1p的上端面如圖9所示般形成為往內孔中心方向平面朝下方傾斜的形狀的情況之鑄模內熔液面變動程度。[Example B]
Example B shows the results of the following water model experiment. That is, in the fourth form of the present invention shown in FIG. 4, the upper end surfaces of the lower
在此,設定成下方側方突出部的Ts/Tn比=0.74、中央突出部的Tp/Tn比=0.18,將下段側方突出部及中央突出部往內孔方向的傾斜角度(圖9的θ)為0度(水平)的情況和45度的情況做比較。其他條件是與實施例A相同。Here, set the Ts/Tn ratio of the lower lateral projection=0.74, and the Tp/Tn ratio of the central projection=0.18, and the inclination angle of the lower lateral projection and the central projection in the direction of the inner hole (Figure 9 Compare the case where θ) is 0 degrees (horizontal) and the case of 45 degrees. The other conditions are the same as in Example A.
結果如圖19所示。圖19的縱軸,在傾斜角度θ為0度、45度任一者的情況都是將吐出孔左右方向的最大熔液面變動值Sw(mm)平均後的值。The result is shown in Figure 19. The vertical axis of FIG. 19 is a value obtained by averaging the maximum melt surface fluctuation value Sw (mm) in the left-right direction of the ejection hole when the inclination angle θ is either 0 degrees or 45 degrees.
如圖19所示般可知,傾斜角度θ為0度、45度任一者的情況都成為比基準的15mm顯著小的值,進而在45度的情況為2.0(mm),降低到0度的情況的3.75(mm)之約1/2左右。As shown in Fig. 19, it can be seen that when the inclination angle θ is either 0 degrees or 45 degrees, it becomes a value significantly smaller than the reference 15mm, and furthermore, it is 2.0 (mm) at 45 degrees, which is reduced to 0 degrees. The case is about 1/2 of 3.75 (mm).
10:浸嘴
1:側方突出部
1a:下部側方突出部
1b:上部側方突出部
1p:中央突出部
2:熔鋼導入口
3:內孔(熔鋼流路)
4:吐出孔(短邊側的壁側)
5:底部
6:吐出孔(底部)
7:熔液面
20:鑄模
Wn:浸嘴之內孔的寬度(長邊方向的長度)
Wp:側方突出部之兩端部間的寬度
Wc:中央突出部的寬度
Tn:浸嘴之內孔的厚度(短邊方向的長度)
Ts:側方突出部往空間方向的突出長度(一對的合計長度)
Tp:中央突出部往空間方向的突出長度(一對的合計長度)
ML:鑄模寬度(長邊)
Ms:鑄模厚度(短邊、側部)
Mc:鑄模厚度(短邊、中央部)
Sw:鑄模內之熔液面變動程度(上端、下端間的尺寸)10: Dipping mouth
1:
[圖1]係顯示設置有側方突出部之本發明的浸嘴的例子(本發明的第1形態)之示意圖,圖1(a)係通過短邊側中心的剖面圖,圖1(b)係通過長邊側中心的剖面圖(A-A視圖)。 [圖2]係顯示除圖1的側方突出部以外,還在上方設有一對的側方突出部之本發明的浸嘴的例子(本發明的第2形態)之示意圖,圖2(a)係通過短邊側中心的剖面圖,圖2(b)係通過長邊側中心的剖面圖(A-A視圖)。 [圖3]係顯示在圖1的側方突出部間設置有中央突出部之本發明的浸嘴的例子(本發明的第3形態)之示意圖,圖3(a)係通過短邊側中心的剖面圖,圖3(b)係通過長邊側中心的剖面圖(A-A視圖)。 [圖4]係顯示除了圖3的側方突出部及側方突出部間之中央突出部以外,還在上方設有一對的側方突出部之本發明的浸嘴的例子(本發明的第4形態)之示意圖,圖4(a)係通過短邊側中心的剖面圖,圖4(b)係通過長邊側中心的剖面圖(A-A視圖)。 [圖5]係圖3或圖4之在側方突出部間設置有中央突出部的部分附近之放大圖,中央突出部的中央部是往上方向直線地形成山形且底部突出部的中央部是往上方向直線地形成山形的例子,是通過短邊側中心的剖面圖。 [圖6]係圖5的浸嘴之內孔俯視圖,是顯示側方突出部及中央突出部的關係之示意圖。 [圖7]係圖5之中央突出部的上端部為曲面的例子,是顯示通過浸嘴的短邊側中心的剖面之示意圖。 [圖8]係圖5之中央突出部的上端部為平面的例子,是顯示通過浸嘴的短邊側中心的剖面之示意圖。 [圖9]係側方突出部或中央突出部的上表面朝內孔中心方向傾斜的形狀的例子,是顯示通過浸嘴之長邊側中心的剖面之示意圖。 [圖10]係圖5的側方突出部、中央突出部之各上表面的突出長度為一定(內孔側端部與寬度方向壁面平行)的例子,是俯視示意圖。 [圖11]係圖5的中央突出部之上表面的突出長度朝中央方向直線地縮短的例子,是俯視示意圖。 [圖12]係圖5的中央突出部之上表面的突出長度朝中央方向曲線地縮短的例子,是俯視示意圖。 [圖13]係圖5的側方突出部、中央突出部之各上表面的突出長度直線地、且一體化連續地縮短的例子,是俯視示意圖。 [圖14]係圖5之浸嘴的底部突出部之上表面為平面的例子,是顯示通過短邊側中心的剖面之示意圖。 [圖15]係圖5之浸嘴的底部突出部之上表面為曲面的例子,是顯示通過短邊側中心的剖面之示意圖。 [圖16]係圖5之浸嘴的底部突出部之上表面是在中央具備凸狀部且朝底方向擴徑的例子,是顯示通過短邊側中心的剖面之示意圖。 [圖17]係顯示在圖5之浸嘴的底部突出部也具備熔鋼排出用的孔的例子,是顯示通過短邊側中心的剖面之示意圖。 [圖18]係顯示鑄模及鑄模內的熔液面(熔鋼面)之變動的示意圖,圖18(a)係鑄模熔液面附近(內面)的俯視示意圖,圖18(b)係通過鑄模熔液面附近(內面)的短邊側中心之剖面視(縱方向一半)的示意圖。 [圖19]係顯示表1的實施例3之鑄模內的熔液面(熔鋼面)之變動(最大值、左右平均)之圖。[Figure 1] is a schematic diagram showing an example of the dip nozzle of the present invention provided with side protrusions (the first form of the present invention), Figure 1 (a) is a cross-sectional view through the center of the short side, Figure 1 (b) ) Is a cross-sectional view (view AA) through the center of the long side. [Fig. 2] is a schematic diagram showing an example of the dip nozzle of the present invention (the second form of the present invention) provided with a pair of side protrusions in addition to the side protrusions of Fig. 1, Fig. 2(a ) Is a cross-sectional view through the center of the short side, and Figure 2(b) is a cross-sectional view (view AA) through the center of the long side. [Fig. 3] A schematic diagram showing an example of the dip nozzle of the present invention (the third aspect of the present invention) in which a central protrusion is provided between the side protrusions in Fig. 1, and Fig. 3(a) passes through the center of the short side Figure 3(b) is a cross-sectional view through the center of the long side (view AA). [FIG. 4] In addition to the side protrusions and the central protrusion between the side protrusions in FIG. 3, an example of the dip nozzle of the present invention is provided with a pair of side protrusions on the upper side (the first of the present invention). Fig. 4(a) is a cross-sectional view through the center of the short side, and Fig. 4(b) is a cross-sectional view (view AA) through the center of the long side. [Figure 5] is an enlarged view of the vicinity of the part where the central projection is provided between the side projections in Figure 3 or Figure 4, the central part of the central projection is the central part of the bottom projection which is linearly formed in a mountain shape in the upward direction This is an example where the mountain shape is formed linearly in the upward direction, and it is a cross-sectional view passing through the center of the short side. [Fig. 6] is a plan view of the inner hole of the dipping nozzle of Fig. 5, which is a schematic diagram showing the relationship between the lateral protrusions and the central protrusion. [Fig. 7] is an example of the upper end of the central protrusion in Fig. 5 being a curved surface, and is a schematic diagram showing a cross-section passing through the center of the short side of the dipping nozzle. [Fig. 8] is an example in which the upper end of the central protrusion in Fig. 5 is flat, and is a schematic diagram showing a cross-section passing through the center of the short side of the dip nozzle. [Fig. 9] An example of a shape in which the upper surface of the side protrusion or the central protrusion is inclined toward the center of the inner hole, and is a schematic diagram showing a cross section passing through the center of the long side of the dipping nozzle. Fig. 10 is an example in which the protruding length of each upper surface of the side protrusion and the center protrusion of Fig. 5 is constant (the end of the inner hole is parallel to the wall surface in the width direction), and is a schematic plan view. Fig. 11 is an example in which the protruding length of the upper surface of the central protruding portion of Fig. 5 is linearly shortened in the central direction, and is a schematic plan view. Fig. 12 is an example in which the protruding length of the upper surface of the central protruding portion of Fig. 5 is curvilinearly shortened toward the center, and is a schematic plan view. Fig. 13 is an example in which the protruding lengths of the upper surfaces of the side protrusions and the center protrusions of Fig. 5 are linearly and integratedly continuously shortened, and are schematic plan views. [Fig. 14] is an example in which the upper surface of the bottom protrusion of the dip nozzle of Fig. 5 is flat, and is a schematic diagram showing a cross section passing through the center of the short side. [Fig. 15] It is an example of the upper surface of the bottom protrusion of the dipping nozzle in Fig. 5 being a curved surface, and is a schematic diagram showing a cross section passing through the center of the short side. Fig. 16 is an example in which the upper surface of the bottom protrusion of the dip nozzle of Fig. 5 is provided with a convex portion in the center and has a diameter enlarged toward the bottom. [Fig. 17] is an example showing that the bottom protrusion of the dip nozzle of Fig. 5 is also provided with a hole for discharging molten steel, and is a schematic diagram showing a cross section passing through the center of the short side. [Figure 18] is a schematic diagram showing the mold and the change of the molten steel surface (melting steel surface) in the mold, Figure 18 (a) is a schematic plan view of the vicinity of the molten metal surface (inner surface) of the mold, and Figure 18 (b) is through A schematic view of a cross-sectional view (half in the longitudinal direction) of the center of the short side near the molten surface of the mold (inner surface). Fig. 19 is a graph showing the variation (maximum value, left and right average) of the melt surface (melting steel surface) in the mold of Example 3 in Table 1.
1:側方突出部 1: Side protrusion
2:熔鋼導入口 2: molten steel inlet
3:內孔(熔鋼流路) 3: Inner hole (melting steel flow path)
4:吐出孔(短邊側的壁側) 4: Discharge hole (wall side on the short side)
5:底部 5: bottom
10:浸嘴 10: Dipping mouth
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019007948A JP7134105B2 (en) | 2019-01-21 | 2019-01-21 | immersion nozzle |
JP2019-007948 | 2019-01-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202035036A TW202035036A (en) | 2020-10-01 |
TWI731561B true TWI731561B (en) | 2021-06-21 |
Family
ID=71736051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109102107A TWI731561B (en) | 2019-01-21 | 2020-01-21 | Dip the mouth |
Country Status (9)
Country | Link |
---|---|
US (1) | US20220134420A1 (en) |
EP (1) | EP3915696A4 (en) |
JP (1) | JP7134105B2 (en) |
CN (1) | CN113226594B (en) |
BR (1) | BR112021010225A2 (en) |
CA (1) | CA3121954A1 (en) |
TW (1) | TWI731561B (en) |
WO (1) | WO2020153195A1 (en) |
ZA (1) | ZA202103504B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012183544A (en) * | 2011-03-03 | 2012-09-27 | Kurosaki Harima Corp | Immersion nozzle |
CN108025352A (en) * | 2015-11-10 | 2018-05-11 | 黑崎播磨株式会社 | Dipping spray nozzle |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
UA51734C2 (en) | 1996-10-03 | 2002-12-16 | Візувіус Крусібл Компані | Immersed cup for liquid metal passing and method for letting liquid metal to path through it |
JPH115145A (en) | 1997-04-22 | 1999-01-12 | Toshiba Ceramics Co Ltd | Integrated soak nozzle and manufacturing method thereof |
JPH1147897A (en) | 1997-07-31 | 1999-02-23 | Nippon Steel Corp | Immersion nozzle for continuously casting thin and wide cast slab |
KR100423947B1 (en) * | 2001-09-21 | 2004-03-22 | 조선내화 주식회사 | submerged entry nozzle for continous casting |
JP4076516B2 (en) * | 2004-04-07 | 2008-04-16 | 品川白煉瓦株式会社 | Immersion nozzle for continuous casting of steel |
CN2810819Y (en) * | 2005-07-01 | 2006-08-30 | 鞍山钢铁集团公司 | Submerged nozzle of medium-thin plate continuous-casting mold |
JP5047854B2 (en) * | 2008-03-27 | 2012-10-10 | 黒崎播磨株式会社 | Immersion nozzle for continuous casting |
CN201329417Y (en) * | 2008-11-27 | 2009-10-21 | 中钢集团洛阳耐火材料研究院有限公司 | Multi-port submerged nozzle for sheet billet continuous casting |
CN101733373A (en) * | 2009-12-23 | 2010-06-16 | 重庆大学 | Submerged nozzle for sheet billet continuous casting crystallizer |
CN201823911U (en) * | 2010-10-19 | 2011-05-11 | 维苏威高级陶瓷(苏州)有限公司 | Submerged nozzle of thin blank plate |
CN201979058U (en) * | 2011-01-29 | 2011-09-21 | 中钢集团洛阳耐火材料研究院有限公司 | Submerged entry nozzle for thin slab billet continuous casting |
JP5645736B2 (en) * | 2011-03-31 | 2014-12-24 | 黒崎播磨株式会社 | Immersion nozzle for continuous casting |
BR112013032763B1 (en) * | 2011-07-06 | 2023-09-26 | Refractory Intellectual Property Gmbh & Co. Kg | NOZZLE FOR GUIDING A CAST METAL |
ES2609983T3 (en) * | 2013-06-20 | 2017-04-25 | Refractory Intellectual Property Gmbh & Co. Kg | Submerged refractory inlet nozzle |
-
2019
- 2019-01-21 JP JP2019007948A patent/JP7134105B2/en active Active
-
2020
- 2020-01-15 BR BR112021010225-6A patent/BR112021010225A2/en unknown
- 2020-01-15 EP EP20744229.4A patent/EP3915696A4/en active Pending
- 2020-01-15 WO PCT/JP2020/001078 patent/WO2020153195A1/en unknown
- 2020-01-15 US US17/424,301 patent/US20220134420A1/en active Pending
- 2020-01-15 CN CN202080007527.0A patent/CN113226594B/en active Active
- 2020-01-15 CA CA3121954A patent/CA3121954A1/en active Pending
- 2020-01-21 TW TW109102107A patent/TWI731561B/en active
-
2021
- 2021-05-24 ZA ZA2021/03504A patent/ZA202103504B/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012183544A (en) * | 2011-03-03 | 2012-09-27 | Kurosaki Harima Corp | Immersion nozzle |
CN108025352A (en) * | 2015-11-10 | 2018-05-11 | 黑崎播磨株式会社 | Dipping spray nozzle |
Also Published As
Publication number | Publication date |
---|---|
EP3915696A1 (en) | 2021-12-01 |
JP2020116591A (en) | 2020-08-06 |
EP3915696A4 (en) | 2022-09-14 |
CN113226594B (en) | 2023-03-14 |
US20220134420A1 (en) | 2022-05-05 |
CA3121954A1 (en) | 2020-07-30 |
WO2020153195A1 (en) | 2020-07-30 |
BR112021010225A2 (en) | 2021-08-24 |
TW202035036A (en) | 2020-10-01 |
ZA202103504B (en) | 2022-07-27 |
CN113226594A (en) | 2021-08-06 |
JP7134105B2 (en) | 2022-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011212725A (en) | Immersion nozzle | |
RU2679664C2 (en) | Nozzle for molding thin slabs for distributing molten metal at high mass-flow rate | |
KR102091575B1 (en) | Immersion nozzle | |
TWI731561B (en) | Dip the mouth | |
KR20110084628A (en) | Immersion nozzle for casting and continuous casting apparatus including the same | |
CN214161385U (en) | Pouring gate | |
CN105163883A (en) | Refractory submerged entry nozzle | |
EP1854571B1 (en) | Refractory nozzle for the continous casting of steel | |
EP3743231B1 (en) | Submerged entry nozzle for continuous casting | |
CN108495727B (en) | Continuous casting water gap with flow guide block | |
KR100551997B1 (en) | submerged entry nozzle for continuous casting | |
US10682689B2 (en) | Continuous casting nozzle deflector | |
JP5027625B2 (en) | Immersion nozzle for continuous casting | |
JP2004283857A (en) | Nozzle for continuously casting steel | |
JP5673162B2 (en) | Continuous casting method and continuous casting apparatus | |
JP4564774B2 (en) | Nozzle for continuous casting of steel | |
WO2005021187A1 (en) | Submerged entry nozzle for continuous casting | |
KR20040055973A (en) | Apparatus for improving the clogging near the nozzle exit in the continuous casting | |
KR20000016735A (en) | Submergence nozzle for continuously casting thin slab | |
JPH10193052A (en) | Immersion nozzle for continuously casting thin and wide cast slab | |
JP2016209924A (en) | Immersion nozzle for continuous casting and continuous casting method using immersion nozzle |