JP5027625B2 - Immersion nozzle for continuous casting - Google Patents

Immersion nozzle for continuous casting Download PDF

Info

Publication number
JP5027625B2
JP5027625B2 JP2007299541A JP2007299541A JP5027625B2 JP 5027625 B2 JP5027625 B2 JP 5027625B2 JP 2007299541 A JP2007299541 A JP 2007299541A JP 2007299541 A JP2007299541 A JP 2007299541A JP 5027625 B2 JP5027625 B2 JP 5027625B2
Authority
JP
Japan
Prior art keywords
discharge hole
discharge
flow
nozzle
immersion nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007299541A
Other languages
Japanese (ja)
Other versions
JP2009125750A (en
Inventor
威博 中岡
圭一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007299541A priority Critical patent/JP5027625B2/en
Publication of JP2009125750A publication Critical patent/JP2009125750A/en
Application granted granted Critical
Publication of JP5027625B2 publication Critical patent/JP5027625B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、タンディシュから鋳型へ溶鋼を注湯するための連続鋳造用浸漬ノズルに関し、より詳しくは、鋳片の割れによる品質欠陥やブレークアウト等の操業トラブルを引き起こさない連続鋳造用浸漬ノズルに関する。   The present invention relates to an immersion nozzle for continuous casting for pouring molten steel from a tundish to a mold, and more particularly to an immersion nozzle for continuous casting that does not cause operational troubles such as quality defects and breakout due to cracking of a cast piece.

連続鋳造設備におけるタンディシュは、鋼殻内面に耐火物ライニングを施して溶鋼を受容するように構成され、その底部には、鋳型に対し溶鋼を注湯するための連続鋳造用浸漬ノズル(以下、単に浸漬ノズルともいう)が取り付けられている。この浸漬ノズルは、注湯中に溶鋼流が空気に暴露されて酸化することを防止する役目を有するものであり、鋳型に溶鋼を注湯する際には、その下端部を鋳型内の溶鋼中に浸漬して使用している。   The tundish in a continuous casting facility is configured to receive molten steel by applying a refractory lining to the inner surface of the steel shell. A so-called immersion nozzle) is attached. This immersion nozzle has a role of preventing the molten steel flow from being exposed to air during pouring and oxidizing, and when pouring molten steel into the mold, the lower end of the molten nozzle is placed in the molten steel in the mold. Soaked in

鋼の連続鋳造において、前記浸漬ノズルからの溶鋼の吐出流が鋳片の冷却能力が弱いコーナ部等に集中的に衝突すると、鋳片の抜熱能力が不足して局所的な凝固遅れが発生し、鋳片の割れによる品質欠陥や、ブレークアウト等の操業トラブルを引き起こす。そのため、浸漬ノズルからの溶鋼の吐出流は鋳片に到達する前に拡散させて、衝突流速を低減する必要がある。また、凝固の不均一を低減するためには、前記吐出流の流速の時間変動、空間変動を抑制する必要がある。   In continuous casting of steel, if the discharge flow of molten steel from the immersion nozzle collides intensively with a corner or the like where the cooling capacity of the slab is weak, the heat removal capacity of the slab is insufficient and a local solidification delay occurs. However, it causes quality defects due to cracks in the slab and operational troubles such as breakout. Therefore, it is necessary to reduce the collision flow velocity by diffusing the discharge flow of molten steel from the immersion nozzle before reaching the slab. In order to reduce non-uniformity of solidification, it is necessary to suppress temporal variation and spatial variation of the flow velocity of the discharge flow.

溶鋼の吐出流速を低減させるためには、吐出孔の断面積を大きくすれば良いが、断面積が大きくなり過ぎると、吐出孔流路内で流れの不均一が生じて、流速変動が発生し易くなる。また、スライドプレート開閉量の変化や吹込みAr流量の増減などの操業条件の変化や、浸漬ノズルの内部流路へのアルミナ等の付着物の堆積により、浸漬ノズル内部の流動状況が変動すると、同様に吐出流も変動し易くなる。そのため、浸漬ノズルの吐出孔から速度分布を均一にして、浸漬ノズル内の流れの変動を抑える技術が従来より提案されている。   In order to reduce the discharge flow rate of molten steel, it is sufficient to increase the cross-sectional area of the discharge hole, but if the cross-sectional area becomes too large, flow non-uniformity will occur in the discharge hole flow path and flow rate fluctuations will occur. It becomes easy. In addition, when the flow conditions inside the immersion nozzle fluctuate due to changes in operating conditions such as changes in the slide plate opening / closing amount, increase / decrease in the flow rate of blown Ar, and accumulation of deposits such as alumina in the internal flow path of the immersion nozzle, Similarly, the discharge flow is likely to fluctuate. For this reason, a technique has been proposed in which the velocity distribution is made uniform from the discharge holes of the immersion nozzle and the fluctuation of the flow in the immersion nozzle is suppressed.

この様な従来例に係る浸漬ノズルには、吐出孔の断面形状を凹形としたり、外側に向かって拡径する段差部を設ける等の吐出孔形状の改良(例えば、特許文献1,2参照)、ノズル内部の湯溜まり部底面に尾根状突起を設ける等の吐出孔周辺形状の改良(例えば、特許文献3参照)、内部流路に突起部や凹部を配設する等の内部流路の改良(例えば、特許文献4,5参照)、あるいは吐出孔や内部流路等の寸法、吐出流速等をある関係式を満たす様な構成とする(例えば、特許文献6,7参照)等多数の提案がなされている。   In the immersion nozzle according to such a conventional example, the shape of the discharge hole is improved such as making the cross-sectional shape of the discharge hole concave or providing a stepped portion whose diameter increases toward the outside (see, for example, Patent Documents 1 and 2). ) Improvement of the peripheral shape of the discharge hole, such as providing a ridge-like protrusion on the bottom surface of the hot water reservoir inside the nozzle (see, for example, Patent Document 3), Improvement (for example, see Patent Documents 4 and 5), or a configuration that satisfies a certain relational expression such as dimensions of discharge holes and internal flow paths, discharge flow velocity, etc. (see, for example, Patent Documents 6 and 7) Proposals have been made.

特開平2−169160号公報JP-A-2-169160 特開2002−66729号公報JP 2002-66729 A 国際公開番号WO2005/070589International Publication Number WO2005 / 070589 特開2004−122226号公報JP 2004-122226 A 特開2005−296971号公報JP 2005-296971 A 特開2004−209512号公報JP 2004-209512 A 特開2005−28385号公報JP 2005-28385 A

しかしながら、吐出孔や湯溜まり部の形状を複雑化すれば、浸漬ノズルの加工が困難となりコストアップにつながる。また、突起部や凹部を多数設けると、浸漬ノズルの加工が困難でコストアップになる上、溶損や付着物により形状が変化し使用中に効果が低減し、更には突起部が剥離した場合に鋳片に捕捉されて製品欠陥になる可能性がある。また、吐出孔や内部流路等の寸法、吐出流速等をある関係式を満たす様な構成とする場合は、前記関係式が複雑であると設定が煩雑となる上、生産管理上も絶えず寸法変化に対する確認が必要等の問題が存在している。   However, if the shapes of the discharge holes and the hot water pool are complicated, it is difficult to process the immersion nozzle, leading to an increase in cost. Also, if a large number of protrusions and recesses are provided, it will be difficult to process the immersion nozzle and the cost will be increased, and the shape will change due to melting damage and deposits, which will reduce the effect during use. May be trapped by the slab and cause product defects. In addition, when the configuration is such that the dimensions of the discharge holes and the internal flow path, the discharge flow rate, etc. satisfy a certain relational expression, if the relational expression is complicated, the setting becomes complicated, and the dimensions are also constantly in production management. There are problems such as confirmation of changes.

一方向に進行する流れを安定させる手段としては、流れ方向を回転軸とする回転運動を付加する旋回流方式が燃焼ノズル等に用いられている。しかし、浸漬ノズルの内部流路における溶鋼流速は、燃焼ノズルにおける気体と比較して遅いため、旋回流の方向が安定せず、適用は困難である。   As a means for stabilizing a flow traveling in one direction, a swirling flow system that adds a rotational motion with the flow direction as a rotation axis is used for a combustion nozzle or the like. However, since the molten steel flow velocity in the internal flow path of the immersion nozzle is slower than the gas in the combustion nozzle, the direction of the swirl flow is not stable and it is difficult to apply.

従って、本発明の目的は、複雑な機構を有することなく、浸漬ノズルからの溶鋼流速及び溶鋼の流速変動を低減させることによって、鋳片の割れによる品質欠陥やブレークアウト等の操業トラブルを引き起こさない連続鋳造用浸漬ノズルを提供することにある。   Therefore, the object of the present invention is not to cause operational troubles such as quality defects and breakout due to cracking of the slab by reducing the molten steel flow velocity from the immersion nozzle and the molten steel flow velocity fluctuation without having a complicated mechanism. It is to provide an immersion nozzle for continuous casting.

本発明者らは、上記のような事情に鑑み、吐出流に反対方向に旋回する一対の旋回流(双子渦)を発生させると、渦が他の流体に与える誘導速度は常に一定方向を向くことになり、遅い流速でも旋回流は安定する上、流れ直進エネルギーを渦に変換することによって、流速も低減させることが可能なことを知見して本発明をなすに至ったものである。   In view of the above circumstances, when the inventors generate a pair of swirling flows (twin vortices) that swirl in opposite directions to the discharge flow, the induced speed that the vortices impart to other fluids always faces a certain direction. Thus, the present invention has been made based on the knowledge that the swirling flow is stabilized even at a low flow velocity, and that the flow velocity can be reduced by converting the straight flow energy into vortices.

前記目的を達成するために、本発明の請求項1に係る連続鋳造用浸漬ノズルが採用した手段は、上部に流量調節機構を有し、下部に対向する一対の吐出孔が形成され、流れ方向に直径の変化を許容する円形断面の内部流路を有する連続鋳造用浸漬ノズルにおいて、前記吐出孔の最外部における幅WSNと高さHSNの比WSN/HSNが次式(1)の条件を満たし、かつ、前記一対の吐出孔の最外部における吐出孔総断面積ASNと前記吐出孔直上の内部流路の断面積AINの比ASN /AINが次式(2)の条件を満たすと共に、更に、前記流量調節機構の下端から前記吐出孔の上端までの内部流路の長さLnozzle前記吐出孔直上の内部流路の直径DINの比Lnozzle / DINが次式(3)の条件を満たす様に構成されてなることを特徴とするものである。 In order to achieve the above object, the means employed by the continuous casting immersion nozzle according to claim 1 of the present invention has a flow rate adjusting mechanism in the upper part, a pair of discharge holes facing the lower part is formed, and the flow direction In a continuous casting immersion nozzle having a circular cross-section internal flow passage that permits a change in diameter, the ratio W SN / H SN of the width W SN to the height H SN at the outermost portion of the discharge hole is expressed by the following equation (1): And the ratio A SN / A IN between the discharge hole total cross-sectional area A SN at the outermost part of the pair of discharge holes and the cross-sectional area A IN of the internal flow path directly above the discharge hole is expressed by the following equation (2) Further, the ratio of the length L nozzle of the internal flow path from the lower end of the flow rate adjusting mechanism to the upper end of the discharge hole and the diameter D IN of the internal flow path directly above the discharge hole is L nozzle / D IN Is configured to satisfy the condition of the following expression (3).

1.6 < WSN/HSN < 2.3 …… (1)
SN /AIN < 2.6 …… (2)
nozzle / DIN> 6.0 …… (3)
1.6 <W SN / H SN <2.3 (1)
A SN / A IN <2.6 (2)
L nozzle / D IN > 6.0 …… (3)

本発明の請求項2に係る連続鋳造用浸漬ノズルが採用した手段は、請求項1に記載の連続鋳造用浸漬ノズルにおいて、前記吐出孔の流路下部における幅方向中央に、次式(5)の条件を満たす高さHtnozzleの第1突起部が設けられてなることを特徴とするものである。
Htnozzle /HSN > 0.15 …… (5)
The means employed by the continuous casting immersion nozzle according to claim 2 of the present invention is the continuous casting immersion nozzle according to claim 1, wherein the following formula (5) A first protrusion having a height Ht nozzle that satisfies the above condition is provided.
Ht nozzle / H SN> 0.15 ...... (5)

本発明の請求項3に係る連続鋳造用浸漬ノズルが採用した手段は、請求項1または2に記載の連続鋳造用浸漬ノズルにおいて、前記内部流路の吐出孔直上部における断面を平面視したとき、前記吐出孔中心線と直交する円周位置に、次式(6)の条件を満たし当該断面において内部流路壁面から突出する高さHの第2突起部が、対向して一対配置されてなることを特徴とするものである。
Ltop/H < 5.0 …… (6)
ここで、
Ltop:第2突起部の下端から吐出孔の上端までの距離
The means employed by the continuous casting immersion nozzle according to claim 3 of the present invention is the continuous casting immersion nozzle according to claim 1 or 2, when the cross section immediately above the discharge hole of the internal flow path is viewed in plan view. , the circumferential position perpendicular to the center line of the discharge hole, the second protrusion of the height H that protrudes from the internal flow path wall in conditions of less than Shi the cross section of the following formula (6), a pair disposed facing It is characterized by being made.
L top / H <5.0 (6)
here,
L top : Distance from the lower end of the second protrusion to the upper end of the discharge hole

本発明の請求項1に係る連続鋳造用浸漬ノズルによれば、上部に流量調節機構を有し、下部に対向する一対の吐出孔が形成され、流れ方向に直径の変化を許容する円形断面の内部流路を有する連続鋳造用浸漬ノズルにおいて、前記吐出孔の最外部における幅WSNと高さHSNの比WSN/HSNが前式(1)の条件を満たし、かつ、前記一対の吐出孔の最外部における吐出孔総断面積ASNと前記吐出孔直上の内部流路の断面積AINの比ASN /AINが前式(2)の条件を満たすと共に、更に、前記流量調節機構の下端から前記吐出孔の上端までの内部流路の長さLnozzle前記吐出孔直上の内部流路の直径DINの比Lnozzle / DINが前式(3)の条件を満たす様に構成されてなる。 According to the continuous casting immersion nozzle of the first aspect of the present invention, the flow control mechanism is provided in the upper part, the pair of discharge holes facing the lower part is formed, and the circular cross section that allows a change in diameter in the flow direction is formed. In the continuous casting immersion nozzle having an internal flow path , the ratio W SN / H SN of the width W SN to the height H SN at the outermost part of the discharge hole satisfies the condition of the previous formula (1), and the pair of pairs The ratio A SN / A IN of the total cross sectional area A SN of the outermost discharge hole and the cross sectional area A IN of the internal flow path directly above the discharge hole satisfies the condition of the above formula (2), and further, the flow rate The ratio L nozzle / D IN between the length L nozzle of the internal flow path from the lower end of the adjusting mechanism to the upper end of the discharge hole and the diameter D IN of the internal flow path directly above the discharge hole satisfies the condition of the previous formula (3) It is structured like this.

その結果、内部の流速分布に変動が生じても、渦の発生するモードが2個に限定され、常に安定して双子渦が発生するので、浸漬ノズルからの溶鋼の吐出流の変動が抑制され、浸漬ノズルからの溶鋼の吐出流は鋳片に到達する前に良好に拡散されるので、鋳片の抜熱能力が不足して局所的な凝固遅れが発生し、鋳片の割れによる品質欠陥やブレークアウト等の操業トラブルを引き起こすことが無い。   As a result, even if fluctuations occur in the internal flow velocity distribution, the number of vortex generation modes is limited to two, and twin vortices are always generated stably, so fluctuations in the discharge flow of molten steel from the immersion nozzle are suppressed. Since the discharge flow of molten steel from the immersion nozzle is diffused well before reaching the slab, the heat removal capability of the slab is insufficient and local solidification delay occurs, resulting in quality defects due to cracking of the slab And troubles such as breakout will not occur.

また、本発明の請求項2に係る連続鋳造用浸漬ノズルによれば、請求項1に記載の連続鋳造用浸漬ノズルにおいて、前記吐出孔の流路下部における幅方向中央に、前式(5)の条件を満たす高さHtnozzleの第1突起部が設けられてなるので、旋回方向の流れが中央で分断されて、通常では1個の渦が生成される条件でも双子渦が生成され、更に安定した吐出流が形成される。 Further, according to the continuous casting immersion nozzle according to claim 2 of the present invention, in the continuous casting immersion nozzle according to claim 1, the above formula (5) Since the first protrusion of the height Ht nozzle satisfying the above condition is provided, the flow in the swirling direction is divided at the center, and twin vortices are generated even under the condition that normally one vortex is generated. A stable discharge flow is formed.

更に、本発明の請求項3に係る連続鋳造用浸漬ノズルによれば、請求項1または2に記載の連続鋳造用浸漬ノズルにおいて、前記内部流路の吐出孔直上部における断面を平面視したとき、前記吐出孔中心線と直交する円周位置に、次式(6)の条件を満たし当該断面において内部流路壁面から突出する高さHの第2突起部が、対向して一対配置されてなるので、溶鋼の流れは前記突起部を通過後に剥離して2個の後流渦を生成し、前記双子渦の成長を促進する効果を有する。 Furthermore, according to the continuous casting immersion nozzle according to claim 3 of the present invention, in the continuous casting immersion nozzle according to claim 1 or 2, when the cross section of the internal flow path immediately above the discharge hole is viewed in plan view. , the circumferential position perpendicular to the center line of the discharge hole, the second protrusion of the height H that protrudes from the internal flow path wall in conditions of less than Shi the cross section of the following formula (6), a pair disposed facing Thus, the flow of molten steel is separated after passing through the protrusions to generate two wake vortices, and has the effect of promoting the growth of the twin vortices.

本発明の実施の形態に係る連続鋳造用浸漬ノズルの基本構成について、以下添付図1〜4を参照しながら説明する。図1は本発明の実施の形態に係る浸漬ノズル全体を示す模式的立断面図である。図2は図1のX部詳細を示し、図(a)はX部の部分拡大図、図(b)は図(a)の矢視Y−Yを示す断面図、図(c)は図(a)の吐出孔を吐出孔中心線に沿って外側から正面視した図である。図3は吐出孔の幅と高さの比の違いによる吐出孔近傍の溶鋼の流れ状況を表す概念図であり、図(a)は吐出孔の最外部における幅と高さの比が1.0の場合、図(b)は吐出孔の最外部における幅と高さの比が2.0の場合を示す。図4は吐出孔の最外部における幅と高さの比を変化させた時の吐出流のモードの変化を表す概念図であり、図(a)は渦の発生状況、図(b)は偏流の程度を示す。   A basic configuration of an immersion nozzle for continuous casting according to an embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic elevational sectional view showing the entire immersion nozzle according to the embodiment of the present invention. 2 shows the details of the X part of FIG. 1, FIG. 2A is a partially enlarged view of the X part, FIG. 2B is a cross-sectional view taken along the line YY of FIG. 1A, and FIG. It is the figure which looked at the discharge hole of (a) from the outer side along the discharge hole centerline. FIG. 3 is a conceptual diagram showing the flow state of molten steel in the vicinity of the discharge hole due to the difference in the ratio between the width and height of the discharge hole. FIG. In the case of 0, FIG. (B) shows the case where the ratio of the width and height at the outermost part of the discharge hole is 2.0. 4A and 4B are conceptual diagrams showing a change in the mode of the discharge flow when the ratio of the width and height at the outermost portion of the discharge hole is changed. FIG. 4A is a vortex generation state, and FIG. Indicates the degree.

先ず、本発明の実施の形態に係る浸漬ノズル1は、図1,2に示す様に、上部にスライドプレート(流量調節機構)2を、下部に浸漬ノズル1の中心に対して対向する一対の吐出孔3を有している。そして、溶鋼Mの出鋼量を制御する前記スライドプレート2を介して、図示しないタンデッシュに垂直方向に取り付けられ、鋳造時はその下部に設けられた一対の吐出孔3から、鋳型に対し溶鋼Mを注湯するよう構成されている。   First, as shown in FIGS. 1 and 2, an immersion nozzle 1 according to an embodiment of the present invention has a pair of a slide plate (flow rate adjusting mechanism) 2 at the top and a pair of opposed nozzles 1 facing the center of the immersion nozzle 1 at the bottom. A discharge hole 3 is provided. Then, the molten steel M is attached to the tundish (not shown) in the vertical direction via the slide plate 2 for controlling the amount of the molten steel M to be discharged, and from the pair of discharge holes 3 provided in the lower part of the molten steel M to the mold during casting. It is configured to pour hot water.

そして、スライドプレート2を介してこの浸漬ノズル1の内部流路4に流れ込んで来た溶鋼Mは、上流側では、内部流路4の内壁面近傍を除き流速が流れ方向にほぼ均一な境界層が未発達な流れF1を形成する一方、下流側では、境界層が発達した流れF2を形成しながら流下し、湯溜まり部4aに衝突した後吐出孔3から鋳型に排出される。   The molten steel M that has flowed into the internal flow path 4 of the immersion nozzle 1 via the slide plate 2 has a boundary layer in which the flow velocity is substantially uniform in the flow direction on the upstream side except for the vicinity of the inner wall surface of the internal flow path 4. Forms an undeveloped flow F1, while on the downstream side, it flows down while forming a flow F2 in which a boundary layer is developed, and after colliding with the pool 4a, it is discharged from the discharge hole 3 to the mold.

前記吐出孔3は、湯溜まり部4aの上側に、図2(a),(b)に示す如く、浸漬ノズル1の中心線に直交する水平位置に対向して一対配置されると共に、浸漬ノズル1の中心線に直交する水平面より下向きの吐出角度θを有して夫々形成されている。また、これらの吐出孔3の幅や高さは、吐出孔3の中心線に直交する任意の切断面において必ずしも一定ではなく、例えば図2(b),(c)に示す如く、幅は内側から外側に行くに従って大きくなる一方、高さは一定という様な構成をなしている。   As shown in FIGS. 2A and 2B, a pair of the discharge holes 3 are disposed on the upper side of the hot water reservoir 4 a so as to face a horizontal position orthogonal to the center line of the immersion nozzle 1. Each of them is formed so as to have a discharge angle θ downward from a horizontal plane perpendicular to the center line of 1. Further, the width and height of these discharge holes 3 are not necessarily constant at an arbitrary cut surface perpendicular to the center line of the discharge holes 3. For example, as shown in FIGS. While increasing from the outside to the outside, the height is constant.

次に、この様な本発明の実施の形態に係る浸漬ノズル1の構成において、前記吐出孔3の幅と高さの比を変えた時の吐出孔3近傍における溶鋼の流れ状況について、数値解析した結果を基に、以下添付図3,4を参照しながら説明する。   Next, in the configuration of the immersion nozzle 1 according to the embodiment of the present invention, numerical analysis is performed on the flow state of the molten steel in the vicinity of the discharge hole 3 when the ratio of the width and height of the discharge hole 3 is changed. Based on the result, it demonstrates below, referring attached FIG.

浸漬ノズル1の下流側の内部流路4においては、上述した様に境界層の発達した溶鋼の流れF2が形成され、この流れF2の幅方向中央近傍の溶鋼は、内部流路4の底面である湯溜まり部4aに衝突することなく吐出孔3より吐出される直行流F3aを形成する一方、前記境界層流れF2の幅方向両端近傍の溶鋼は、内部流路4の底面である湯溜まり部4aに衝突した後、この湯溜まり部4aの上部に配置された吐出孔3に向かって上昇流F3bを形成して吐出される。そして、前記直行流F3aと上昇流F3bとが合体すると、吐出流内に渦Vが形成される。   In the internal flow path 4 on the downstream side of the immersion nozzle 1, a molten steel flow F <b> 2 with a developed boundary layer is formed as described above, and the molten steel near the center in the width direction of the flow F <b> 2 is formed on the bottom surface of the internal flow path 4. While forming the orthogonal flow F3a discharged from the discharge hole 3 without colliding with a certain hot water reservoir 4a, the molten steel near both ends in the width direction of the boundary layer flow F2 is the hot water reservoir that is the bottom surface of the internal flow path 4 After colliding with 4a, the upward flow F3b is formed and discharged toward the discharge hole 3 arranged at the upper part of the hot water reservoir 4a. When the direct flow F3a and the upward flow F3b are combined, a vortex V is formed in the discharge flow.

渦Vは円形になる状態が安定なため、前記吐出孔3最外部における幅WSNと高さHSNの比WSN/HSNが1.0に近くなると、図3(a)に示す如く、前記上昇流F3bが未発達であるため、前記直行流F3aが支配的となって形成されるが、この様な渦Vは、図4(a)に示す様に、右向き1個、左向き1個あるいは下部に2個等浸漬ノズル1内部の流動の変動に影響を受けて様々なモードを取るため、吐出流は安定しなくなる。 Since the vortex V is stable in a circular state, when the ratio W SN / H SN of the width W SN to the height H SN at the outermost part of the discharge hole 3 is close to 1.0, as shown in FIG. Since the upward flow F3b is undeveloped, the direct flow F3a is dominantly formed. However, as shown in FIG. 4A, such a vortex V has one rightward direction and one leftward direction. Since various modes are taken under the influence of the flow fluctuations inside the immersion nozzle 1 such as two or two at the bottom, the discharge flow becomes unstable.

また、吐出孔3最外部における幅WSNが高さHSNの3倍に近づくと、図4(a)に示す如く、3個の渦が発生するモードがあるため、吐出流は上記と同様に安定しない。一方、浸漬ノズル1の吐出孔3最外部の幅WSNを高さHSNの2倍近傍にすると、図3(b)や図4(a)に示す如く、前記上昇流F3bが発達し、一対の吐出孔3からの吐出流は夫々一対の反対方向に回る双子渦V1,V2を形成した流れとなる。 Further, when the width W SN at the outermost part of the discharge hole 3 approaches three times the height H SN , there is a mode in which three vortices are generated as shown in FIG. Is not stable. On the other hand, when the width W SN discharge holes 3 outermost immersion nozzle 1 to 2 times the vicinity of the height H SN, as shown in FIG. 3 (b) and FIG. 4 (a), the said upflow F3b develops, The discharge flow from the pair of discharge holes 3 is a flow in which twin vortices V1 and V2 that rotate in a pair of opposite directions are formed.

即ち、本発明に係る浸漬ノズル1は、吐出孔3最外部における幅WSNと高さHSNの比WSN/HSNが、次式(1)の条件を満たすのが好ましい。この比WSN/HSNが、1.6以下であると渦Vの発生が不安定となり、前記比WSN/HSNが2.3以上であると3個の渦が発生するが、旋回方向が一定せず、何れも図4(b)に示す如く偏流が発生し易くなり、吐出流が不安定となる。 That is, in the immersion nozzle 1 according to the present invention, the ratio W SN / H SN of the width W SN to the height H SN at the outermost part of the discharge hole 3 preferably satisfies the condition of the following formula (1). If the ratio W SN / HSN is 1.6 or less, the generation of the vortex V becomes unstable, and if the ratio WSN / HSN is 2.3 or more, three vortices are generated. The direction is not constant, and in any case, as shown in FIG. 4 (b), the drift tends to occur, and the discharge flow becomes unstable.

以上の結果から、吐出流の夫々に一対の双子渦V1,V2を安定して形成させるためには、吐出孔3最外部における幅WSNを高さHSNの2倍に近づける必要があり、その状態では、内部の流速分布に変動が生じても、渦の発生するモードが夫々の吐出流で2個に限定されるため、常に双子渦V1,V2が各吐出流で発生し、吐出流の変動が抑制される。
1.6 < WSN/HSN < 2.3 …… (1)
From the above results, in order to stably form the pair of twin vortices V1 and V2 in each discharge flow, the width W SN at the outermost part of the discharge hole 3 needs to be close to twice the height H SN . In this state, even if the internal flow velocity distribution fluctuates, the number of vortex generation modes is limited to two in each discharge flow, so twin vortices V1 and V2 are always generated in each discharge flow. Fluctuations are suppressed.
1.6 <W SN / H SN <2.3 (1)

同時に、前記一対の吐出孔3最外部における吐出孔総断面積ASNと前記吐出孔3直上の内部流路4の断面積AINの比ASN /AINが次式(2)の条件を満たすと共に、浸漬ノズル1上部に設けられたスライドプレート2下端から前記吐出孔3上端までの内部流路4の長さLnozzleと内部流路4の直径DINの比Lnozzle / DINが次式(3)の条件を満たす様に構成されるのが好ましい。前記比ASN /AINを2.6以上とし、吐出孔3の全断面積ASNをノズル1の内部流路4の断面積AINより急激に大きくしたり、前記比Lnozzle / DINを6.0以下として内部流路4の長さを短かくすると、溶鋼の流速分布が境界層形から偏倚し渦が生成され難くなるため好ましくない。
SN /AIN < 2.6 …… (2)
nozzle / DIN> 6.0 …… (3)
At the same time, the ratio A SN / A IN between the total cross sectional area A SN of the outermost pair of the discharge holes 3 and the cross sectional area A IN of the internal flow path 4 immediately above the discharge holes 3 satisfies the condition of the following equation (2): The ratio L nozzle / D IN of the length L nozzle of the internal flow path 4 from the lower end of the slide plate 2 provided at the upper part of the immersion nozzle 1 to the upper end of the discharge hole 3 and the diameter D IN of the internal flow path 4 is as follows: It is preferable to be configured so as to satisfy the condition of Expression (3). The ratio A SN / A IN is set to 2.6 or more, and the total cross-sectional area A SN of the discharge hole 3 is abruptly larger than the cross-sectional area A IN of the internal flow path 4 of the nozzle 1 or the ratio L nozzle / D IN If the length of the internal flow path 4 is shortened to 6.0 or less, the flow velocity distribution of the molten steel deviates from the boundary layer shape, and it is difficult to generate vortices.
A SN / A IN <2.6 (2)
L nozzle / D IN > 6.0 …… (3)

次に、本発明の実施の形態に係る浸漬ノズルの構成において、浸漬ノズルの吐出孔近傍に突起部を設けた場合について、吐出孔近傍における溶鋼の流れ状況を数値解析した結果を基に、以下添付図5,6を参照しながら説明する。図5(a)は吐出孔の流路下部における幅方向中央に第1突起部を設けた場合の吐出孔内の溶鋼の流れ状況を表す概念図であり、図(b)は図(a)の矢視Z−Zを示す断面図である。図6(a)は吐出孔の直上部の内部流路に第2突起部を設けた場合の吐出孔近傍の溶鋼の流れ状況を表す概念図であり、図(b)は図(a)の矢視W−Wを示す断面図である。   Next, in the configuration of the immersion nozzle according to the embodiment of the present invention, in the case where a protrusion is provided in the vicinity of the discharge hole of the immersion nozzle, based on the result of numerical analysis of the flow state of the molten steel in the vicinity of the discharge hole, the following This will be described with reference to FIGS. Fig.5 (a) is a conceptual diagram showing the flow condition of the molten steel in a discharge hole at the time of providing the 1st protrusion part in the center of the width direction in the flow path lower part of a discharge hole, FIG.5 (b) is a figure (a). It is sectional drawing which shows arrow ZZ. FIG. 6A is a conceptual diagram showing a flow state of the molten steel in the vicinity of the discharge hole when the second protrusion is provided in the internal flow path immediately above the discharge hole, and FIG. 6B is a view of FIG. It is sectional drawing which shows arrow WW.

本発明に係る浸漬ノズル1は、前記吐出孔3の流路下部3aにおける幅方向中央に、次式(5)の条件を満たす高さHtnozzleの第1突起部5が設けられるのが好ましい。吐出孔3の流路下部3aにおける幅方向中央に(5)式を満足する第1突起部5を設けると、旋回方向の流れが中央で分断されて、通常では1個に渦が生成される条件でも、双子渦V1,V2が各吐出孔に生成される。次式(5)の比Htnozzle /HSNが0.15以下であると、第1突起部5の高さが不足するため、通常では1個の渦が生成される条件に対して、安定して双子渦V1,V2を各吐出孔に生成させることが出来ない。
Htnozzle /HSN > 0.15 …… (5)
In the immersion nozzle 1 according to the present invention, it is preferable that a first protrusion 5 having a height Ht nozzle satisfying the following expression (5) is provided at the center in the width direction of the flow path lower part 3 a of the discharge hole 3. If the first protrusion 5 satisfying the equation (5) is provided at the center in the width direction of the flow path lower part 3a of the discharge hole 3, the flow in the swirling direction is divided at the center, and normally one vortex is generated. Even under the conditions, twin vortices V1 and V2 are generated in each discharge hole. If the ratio Ht nozzle / H SN of the formula (5) is 0.15 or less, the height of the first protrusion 5 is insufficient, under normal to the conditions in which one vortex is generated, stable Thus, the twin vortices V1 and V2 cannot be generated in each discharge hole.
Ht nozzle / H SN> 0.15 ...... (5)

更に、本発明に係る浸漬ノズル1において、次式(6)の条件を満たす高さHの第2突起部6が、内部流路4の吐出孔3の直上部に、吐出孔3の中心線と直交する位置に一対対向して配置されるのが好ましい。ここで、Ltopは、流路内の第2突起部6の下端から吐出孔3の上端までの距離である。浸漬ノズル1内の内部流路4の吐出孔3の直上部に、この様に配置された第2突起部6を設けると、溶鋼の流れは第2突起部6を通過後に剥離して2個の後流渦V3,V4を生成する。
Ltop/H < 5.0 …… (6)
Furthermore, in the immersion nozzle 1 according to the present invention, the second protrusion 6 having a height H that satisfies the condition of the following expression (6) is located directly above the discharge hole 3 of the internal flow path 4, and the center line of the discharge hole 3. It is preferable that a pair of them be arranged at positions orthogonal to each other. Here, L top is the distance from the lower end of the second protrusion 6 in the flow path to the upper end of the discharge hole 3. When the second protrusion 6 arranged in this way is provided immediately above the discharge hole 3 of the internal flow path 4 in the immersion nozzle 1, the flow of the molten steel is separated after passing through the second protrusion 6 and is separated into two pieces. The wake vortices V3 and V4 are generated.
L top / H <5.0 (6)

生成した前記後流渦V3,V4の中心が吐出孔3に流入すると、上述した双子渦V1,V2と同じ渦の旋回方向を持つことになり、吐出流の渦生成を助長することになる。上式(6)の比Ltop/Hが5.0以下であると、第2突起部6の高さが不足するため、吐出流の双子渦V1,V2の生成を助長することが不十分となる。 When the center of the generated wake vortex V3, V4 flows into the discharge hole 3, it has the same swirling direction as the twin vortices V1, V2, and facilitates the vortex generation of the discharge flow. If the ratio L top / H of the above equation (6) is 5.0 or less, the height of the second protrusion 6 is insufficient, and therefore it is insufficient to promote the generation of the twin vortices V1 and V2 of the discharge flow. It becomes.

上記説明の通り、前記浸漬ノズル1において、吐出孔3の流路下部3aにおける幅方向中央に、前式(5)の条件を満たす高さHtnozzleの第1突起部5を設けたり、内部流路4の吐出孔3の直上部において、前式(6)の条件を満たす高さHの第2突起部6を、吐出孔3の中心線と直交する位置に一対対向して配置することによって、双子渦V1,V2の生成を助長させることが可能となる。 As described above, in the immersion nozzle 1, the first protrusion 5 having a height Ht nozzle that satisfies the condition of the previous formula (5) is provided at the center in the width direction of the flow path lower part 3 a of the discharge hole 3, or the internal flow By directly placing the second protrusion 6 having a height H that satisfies the condition of the above equation (6) in a position directly above the discharge hole 3 in the path 4, the position is perpendicular to the center line of the discharge hole 3. The generation of twin vortices V1 and V2 can be facilitated.

<実施例>
本発明に係る連続鋳造用浸漬ノズルの有効性を検証するため、流動シミュレーションによる数値実験を行った実施例について、以下添付図7〜9を参照しながら説明する。図7はブルーム連鋳機における溶鋼の吐出流の流跡線を示す斜視図であり、図(a)は本発明に係る実施例(WSN/HSN=2)の場合、図(b)は比較例(WSN/HSN=1)の場合を示す。
<Example>
In order to verify the effectiveness of the immersion nozzle for continuous casting according to the present invention, an example in which a numerical experiment by flow simulation is performed will be described below with reference to FIGS. FIG. 7 is a perspective view showing a trajectory line of a discharge flow of molten steel in a bloom continuous caster, and FIG. 7A is a diagram in the case of the embodiment according to the present invention (W SN / H SN = 2). Indicates a comparative example (W SN / H SN = 1).

比較例の場合では、吐出流は1つの吐出孔に対して1つの渦を形成しているが、鋳型側壁に衝突する速い流れと、湯面方向に向かう不安定な流れが存在する。また左右の吐出流の分布形状も異なっている。一方、実施例の場合には、吐出流は1つの吐出孔に対して一対の双子渦が発生し、左右ともに安定した流れとなっていることが確認された。   In the case of the comparative example, the discharge flow forms one vortex with respect to one discharge hole, but there is a fast flow that collides with the mold side wall and an unstable flow toward the molten metal surface. The distribution shapes of the left and right discharge flows are also different. On the other hand, in the case of the example, it was confirmed that a pair of twin vortices were generated for one discharge hole in the discharge flow, and the flow was stable on the left and right.

次に、図8は、吐出孔最外部の幅WSNと高さHSNの比WSN/HSNを変更してシミュレーションした結果を示す図であり、吐出孔から外側に200mm離れた位置での吐出流の最大値及び、左右2方向へ分かれて出る各々の吐出流の最大値の差を示す。流速の最大値は、前記比WSN/HSN=2近傍で、比WSN/HSN=1の場合の約60%程度となっており、吐出流が大幅に減速されていることが分かる。以上の結果から、前記比WSN/HSNは1.6<WSN/HSN<2.3の範囲が望ましく、1.8<WSN/HSN<2.2の範囲がより望ましいことが確認された。 Next, FIG. 8 is a diagram showing a simulation result by changing the ratio W SN / H SN of the width W SN and the height H SN at the outermost portion of the discharge hole, at a position 200 mm away from the discharge hole. The difference between the maximum value of the discharge flow and the maximum value of each discharge flow separated in the left and right directions is shown. The maximum value of the flow velocity is about 60% in the vicinity of the ratio W SN / H SN = 2 and the ratio W SN / H SN = 1, and it can be seen that the discharge flow is greatly decelerated. . From the above results, the ratio W SN / H SN is preferably in the range of 1.6 <W SN / H SN <2.3, and more preferably in the range of 1.8 <W SN / H SN <2.2. Was confirmed.

図9は、吐出孔最外部の幅WSNと高さHSNの比WSN/HSN=1.8の一定条件において、前記一対の吐出孔最外部における吐出孔総断面積ASNと前記吐出孔直上の内部流路の断面積AINの比ASN/AINを変更してシミュレーションを実施した結果を示す図であり、図8と同様に吐出流の最大値と左右の吐出流の最大値の差を示す。前記比ASN/AINが2.6を越えると、最大流速は急激に大きくなり吐出孔の比WSN/HSNを特定する効果は無くなる。従って、前記比ASN/AIN < 2.6の範囲が望ましいことが確認された。 FIG. 9 shows the discharge hole total cross-sectional area A SN at the outermost pair of discharge holes and the above-mentioned ratio of the width W SN at the outermost part of the discharge holes and the ratio W SN / H SN = 1.8 of the height H SN. discharge hole is a graph showing a result of simulation by changing the ratio a SN / a iN of the cross-sectional area a iN of the internal flow path immediately above, the discharge flow of the left and right maximum similarly discharge flow and FIG. 8 Indicates the difference between the maximum values. When the ratio A SN / A IN exceeds 2.6, the maximum flow rate increases rapidly, and the effect of specifying the discharge hole ratio W SN / H SN is lost. Therefore, it was confirmed that the range of the ratio A SN / A IN <2.6 was desirable.

以上の様に、本発明に係る連続鋳造用浸漬ノズルによれば、対向する一対の吐出孔を有する連続鋳造用浸漬ノズルにおいて、比WSN/HSNが前式(1)の条件を満たし、かつ、比ASN/AINが前式(2)の条件を満たすと共に、更に、比Lnozzle / DINが前式(3)の条件を満たす様に構成されてなるので、内部の流速分布に変動が生じても、渦の発生するモードが2個に限定されるため、常に双子渦Va,Vbが発生し、吐出流の変動が抑制される。更に、吐出孔下部の流路における幅方向中央へ第1突起部を設けたり、内部流路の吐出孔の直上部に第2突起部を設けることによって、双子渦の生成を助長させることが可能である。 As described above, according to the continuous casting immersion nozzle according to the present invention, in the continuous casting immersion nozzle having a pair of opposed discharge holes, the ratio W SN / HS N satisfies the condition of the previous formula (1), In addition, the ratio A SN / A IN satisfies the condition of the previous formula (2), and the ratio L nozzle / D IN further satisfies the condition of the previous formula (3). Even if the fluctuation occurs, the number of vortex generation modes is limited to two, so twin vortices Va and Vb are always generated, and fluctuations in the discharge flow are suppressed. Furthermore, it is possible to promote the generation of twin vortices by providing a first protrusion at the center in the width direction of the flow path below the discharge hole, or by providing a second protrusion directly above the discharge hole of the internal flow path. It is.

そのため、
内部の流速分布に変動が生じても、常に安定して双子渦が発生するので、浸漬ノズルからの溶鋼の吐出流の変動が抑制され、浸漬ノズルからの溶鋼の吐出流は鋳片に到達する前に良好に拡散されるので、鋳片の抜熱能力が不足して局所的な凝固遅れが発生して、鋳片の割れによる品質欠陥やブレークアウト等の操業トラブルを引き起こすことが無い。
for that reason,
Even if fluctuations occur in the internal flow velocity distribution, twin vortices are always generated stably, so fluctuations in the molten steel discharge flow from the immersion nozzle are suppressed, and the molten steel discharge flow from the immersion nozzle reaches the slab. Since it diffuses well before, the heat removal capability of the slab is insufficient and a local solidification delay occurs, causing no operational defects such as quality defects and breakout due to cracking of the slab.

本発明の実施の形態に係る浸漬ノズル全体を示す模式的立断面図である。It is a typical elevation sectional view showing the whole immersion nozzle concerning an embodiment of the invention. 図1のX部詳細を示し、図(a)はX部の部分拡大図、図(b)は図(a)の矢視Y−Yを示す断面図、図(c)は図(a)の吐出孔を吐出孔中心線に沿って外側から正面視した図である。FIG. 1 shows the details of the X part in FIG. 1, FIG. 1 (a) is a partially enlarged view of the X part, FIG. 2 (b) is a sectional view showing the arrow Y-Y in FIG. 1 (a), and FIG. It is the figure which looked at this discharge hole from the outer side along the discharge hole centerline. 吐出孔の幅と高さの比の違いによる吐出孔近傍の溶鋼の流れ状況を表す概念図であり、図(a)は吐出孔の最外部における幅と高さの比が1.0の場合、図(b)は吐出孔の最外部における幅と高さの比が2.0の場合を示す。It is a conceptual diagram showing the flow situation of the molten steel near the discharge hole due to the difference in the ratio between the width and height of the discharge hole. FIG. (A) is a case where the ratio of the width and height at the outermost part of the discharge hole is 1.0 FIG. 5B shows a case where the ratio of the width and height at the outermost part of the discharge hole is 2.0. 吐出孔の最外部における幅と高さの比を変化させた時の吐出流のモードの変化を表す概念図であり、図(a)は渦の発生状況、図(b)は偏流の程度を示す。It is a conceptual diagram showing the change of the mode of the discharge flow when the ratio of the width and height at the outermost part of the discharge hole is changed. FIG. (A) shows the vortex generation state, and FIG. Show. 図(a)は吐出孔の流路下部における幅方向中央に第1突起部を設けた場合の吐出孔内の溶鋼の流れ状況を表す概念図であり、図(b)は図(a)の矢視Z−Zを示す断面図である。Fig. (A) is a conceptual diagram showing the flow state of molten steel in the discharge hole when the first protrusion is provided at the center in the width direction at the lower part of the flow path of the discharge hole, and Fig. (B) is a diagram of Fig. (A). It is sectional drawing which shows arrow ZZ. 図(a)は吐出孔の直上部の内部流路に第2突起部を設けた場合の吐出孔近傍の溶鋼の流れ状況を表す概念図であり、図(b)は図(a)の矢視W−Wを示す断面図である。Fig. (A) is a conceptual diagram showing the flow of molten steel in the vicinity of the discharge hole when the second protrusion is provided in the internal flow path directly above the discharge hole, and Fig. (B) is an arrow in Fig. (A). It is sectional drawing which shows view WW. ブルーム連鋳機における溶鋼の吐出流の流跡線を示す斜視図であり、図(a)は本発明に係る実施例(WSN/HSN=2)の場合、図(b)は比較例(WSN/HSN=1)の場合を示す。It is a perspective view which shows the trajectory line of the discharge flow of the molten steel in a bloom caster, The figure (a) is an Example ( WSN / HSN = 2) based on this invention, A figure (b) is a comparative example The case of (W SN / H SN = 1) is shown. 吐出孔最外部の幅WSNと高さHSNの比WSN/HSNを変更してシミュレーションした結果を示す図であり、吐出孔から外側に200mm離れた位置での吐出流の最大値及び、左右2方向へ分かれて出る各々の吐出流の最大値の差を示す。The ratio W SN / H SN width W SN and height H SN discharge holes outermost change shows the results of simulation, the maximum value of the discharge flow at a position away 200mm outwardly from the discharge hole and The difference in the maximum value of each discharge flow that separates in the left and right directions is shown. 吐出孔最外部の幅WSNと高さHSNの比WSN/HSN=1.8の一定条件において、前記一対の吐出孔最外部における吐出孔総断面積ASNと前記吐出孔直上の内部流路の断面積AINの比ASN/AINを変更してシミュレーションを実施した結果を示す図であり、図8と同様に吐出流の最大値と左右の吐出流の最大値の差を示す。The ratio of the outermost width W SN of the discharge holes to the height H SN is a constant ratio W SN / H SN = 1.8, and the discharge hole total cross sectional area A SN at the outermost pair of discharge holes and immediately above the discharge holes is a diagram showing a result of simulation by changing the ratio a SN / a iN of the cross-sectional area a iN of the internal flow channel, the difference between the maximum value of the discharge flow of the left and right maximum value similarly discharge flow and FIG. 8 Indicates.

符号の説明Explanation of symbols

M:溶鋼,
F1:境界層が未発達な溶鋼の流れ, F2:境界層が発達した溶鋼の流れ,
F3a:直行流, F3b:上昇流,
V:渦, V1,V2:双子渦, V3,V4:後流渦,
1:浸漬ノズル, 2:スライドプレート(流量調節機構),
3:吐出孔, 3a:吐出孔の流路下部,
4:内部流路, 4a:湯溜まり部,
5:第1突起部, 6:第2突起部
M: Molten steel,
F1: Flow of molten steel with undeveloped boundary layer, F2: Flow of molten steel with developed boundary layer,
F3a: Direct flow, F3b: Upflow,
V: Vortex, V1, V2: Twin vortex, V3, V4: Wake vortex,
1: immersion nozzle, 2: slide plate (flow rate adjusting mechanism),
3: discharge hole, 3a: lower part of flow path of discharge hole,
4: Internal flow path, 4a: Hot water reservoir,
5: First protrusion, 6: Second protrusion

Claims (3)

上部に流量調節機構を有し、下部に対向する一対の吐出孔が形成され、流れ方向に直径の変化を許容する円形断面の内部流路を有する連続鋳造用浸漬ノズルにおいて、前記吐出孔の最外部における幅WSNと高さHSNの比WSN/HSNが次式(1)の条件を満たし、かつ、前記一対の吐出孔の最外部における吐出孔総断面積ASNと前記吐出孔直上の内部流路の断面積AINの比ASN /AINが次式(2)の条件を満たすと共に、更に、前記流量調節機構の下端から前記吐出孔の上端までの内部流路の長さLnozzle前記吐出孔直上の内部流路の直径DINの比Lnozzle / DINが次式(3)の条件を満たす様に構成されてなることを特徴とする連続鋳造用浸漬ノズル。
1.6 < WSN/HSN < 2.3 …… (1)
SN /AIN < 2.6 …… (2)
nozzle / DIN> 6.0 …… (3)
In a continuous casting immersion nozzle having a flow rate adjusting mechanism in the upper part and a pair of discharge holes facing the lower part, and having a circular cross-section internal flow passage that allows a change in diameter in the flow direction, the outermost of the discharge holes. The ratio W SN / H SN of the width W SN to the height H SN at the outside satisfies the condition of the following expression (1), and the discharge hole total sectional area A SN at the outermost part of the pair of discharge holes and the discharge holes The ratio A SN / A IN of the sectional area A IN of the internal flow path directly above satisfies the condition of the following equation (2), and the length of the internal flow path from the lower end of the flow rate adjusting mechanism to the upper end of the discharge hole An immersion nozzle for continuous casting, characterized in that the ratio L nozzle / D IN between the diameter L nozzle and the diameter D IN of the internal flow path directly above the discharge hole satisfies the condition of the following formula (3).
1.6 <W SN / H SN <2.3 (1)
A SN / A IN <2.6 (2)
L nozzle / D IN > 6.0 …… (3)
前記吐出孔の流路下部における幅方向中央に、次式(5)の条件を満たす高さHtnozzleの第1突起部が設けられてなることを特徴とする請求項1に記載の連続鋳造用浸漬ノズル。
Htnozzle/HSN> 0.15 ……(5)
2. The continuous casting according to claim 1, wherein a first protrusion having a height of Ht nozzle that satisfies the following expression (5) is provided at the center in the width direction at the lower portion of the flow path of the discharge hole. Immersion nozzle.
Ht nozzle / H SN> 0.15 ...... (5)
前記内部流路の吐出孔直上部における断面を平面視したとき、前記吐出孔中心線と直交する円周位置に、次式(6)の条件を満たし当該断面において内部流路壁面から突出する高さHの第2突起部が、対向して一対配置されてなることを特徴とする請求項1または2に記載の連続鋳造用浸漬ノズル。
Ltop/H < 5.0 …… (6)
ここで、
Ltop:第2突起部の下端から吐出孔の上端までの距離
A plan view of the cross section in the discharge holes directly above the internal channel projecting, circumferentially positioned perpendicular to the center line of the discharge hole, from the internal flow path wall in the cross-sectional Shi meet the condition of the following formula (6) The continuous casting immersion nozzle according to claim 1, wherein a pair of second protrusions having a height H to be arranged are arranged to face each other.
L top / H <5.0 (6)
here,
L top : Distance from the lower end of the second protrusion to the upper end of the discharge hole
JP2007299541A 2007-11-19 2007-11-19 Immersion nozzle for continuous casting Expired - Fee Related JP5027625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007299541A JP5027625B2 (en) 2007-11-19 2007-11-19 Immersion nozzle for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007299541A JP5027625B2 (en) 2007-11-19 2007-11-19 Immersion nozzle for continuous casting

Publications (2)

Publication Number Publication Date
JP2009125750A JP2009125750A (en) 2009-06-11
JP5027625B2 true JP5027625B2 (en) 2012-09-19

Family

ID=40817199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007299541A Expired - Fee Related JP5027625B2 (en) 2007-11-19 2007-11-19 Immersion nozzle for continuous casting

Country Status (1)

Country Link
JP (1) JP5027625B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2588262B1 (en) * 2010-07-02 2019-12-25 Vesuvius U S A Corporation Submerged entry nozzle
CN102764884B (en) * 2012-06-18 2014-09-10 中冶南方工程技术有限公司 Straight-through type continuous casting immersion-type water gap

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001129645A (en) * 1999-10-29 2001-05-15 Shinagawa Refract Co Ltd Immersion nozzle for continuous casting and continuous casting method
US20070158884A1 (en) * 2004-01-23 2007-07-12 Yuichi Tsukaguchi Immersion nozzle for continuous casting and continuous casting method using the immersion nozzle

Also Published As

Publication number Publication date
JP2009125750A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
RU2559011C2 (en) Pouring shell
TWI435779B (en) A sucmerged nozzle of continuous casting apparatus
WO2012132562A1 (en) Submerged nozzle for continuous casting
JP6514199B2 (en) Nozzle and casting equipment
JP5027625B2 (en) Immersion nozzle for continuous casting
AU2007329897A1 (en) Molten metal continuous casting method
EP1854571B1 (en) Refractory nozzle for the continous casting of steel
JP4475292B2 (en) Immersion nozzle for continuous casting of molten metal and continuous casting method using the same
JP5867531B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP6577841B2 (en) Immersion nozzle
KR100551997B1 (en) submerged entry nozzle for continuous casting
JP2017177178A (en) Tundish for continuous casting, and continuous casting method using the tundish
JP6668568B2 (en) Tundish for continuous casting and continuous casting method using the tundish
TWI731561B (en) Dip the mouth
JP2004283857A (en) Nozzle for continuously casting steel
JP7388599B1 (en) Immersion nozzle for continuous casting and continuous casting method of steel
KR101140608B1 (en) Submerged entry nozzle enable to control initial scattering of molten steel and method for controlling initial scattering using the same
JP2005103567A (en) Tundish for continuous casting, and method for continuous casting
CN103909256A (en) Porous submersed nozzle for pouring blooms
JP6668567B2 (en) Tundish for continuous casting and continuous casting method using the tundish
US8113267B2 (en) Twin-roll casting machine
JP5266154B2 (en) Rectifying structure that suppresses drift caused by opening and closing of slide plate
KR100423947B1 (en) submerged entry nozzle for continous casting
JP2005224809A (en) Mold for continuously casting molten metal, and continuous casting method using the same
JP2004148400A (en) Immersion nozzle for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees